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Abstract. The entailment between separation logic formulæ with inductive pred-
icates (also known as symbolic heaps) has been shown to be decidable for a large
class of inductive definitions [4]. Recently, a 2EXPTIME algorithm has been pro-
posed [7], however no precise lower bound is known (although a EXPTIME-
hard bound for this problem has been established in [5]). In this paper, we show
that deciding entailment between predicate atoms is 2EXPTIME-hard. The proof
is based on a reduction from the membership problem for exponential-space
bounded alternating Turing machines [3].

1 Introduction

In this paper, we consider the fragment of separation logic formulæ known as symbolic
heaps, defined as (separated) conjunctions of atoms. Such atoms may be either equa-
tional atoms, asserting equalities or disequalities between memory locations, points-to
atoms asserting that some location refers to a given record, or may be built on additional
predicates that assert that a part of the memory has a specific shape. For genericity, such
predicates are associated with user-provided inductive definitions that allow one to de-
scribe custom data-structures. Satisfiability is EXPTIME-complete for such formulæ
[2], but entailment is not decidable in general3 [5,1]. However, the entailment problem
was proven to be decidable for a large class of inductive definitions, whose syntactical
restrictions ensure that the generated heap structures have a bounded-tree width [4],
using a reduction to monadic second order logic interpreted over graphs. A EXPTIME-
hard bound was established in [5], and very recently, a 2EXPTIME algorithm has been
proposed [7]. However, personal communication with the authors of [7] revealed sev-
eral problems related to quantifier instantiation that are potential sources of incomplete-
ness. Thus we believe that their decision procedure might not cover the entire class of
entailments between symbolic heaps and is complete for a strict subclass in which the
existential quantifiers of the right-hand side of entailments can be instantiated by the
free variables on the left. In this paper, we show that the problem is 2EXPTIME-hard,
even if only entailment between predicate atoms is considered. The proof uses a reduc-
tion from the membership problem for alternating Turing machines [3] whose working
tape is exponentially bounded in the size of the input. Proving a matching 2EXPTIME
upper bound reduces essentially to fixing the issues of the algorithm proposed in [7]
and is considered for future work.

3 Entailment does not reduce to satisfiability since the considered logic has no negation.



2 Separation Logic with Inductive Definitions

For a finite set S , we denote by ||S || ∈N its cardinality. For a partial mapping f : A⇀ B,
let dom( f ) def

= {x ∈ A | f (x) ∈ B} and img( f ) def
= { f (x) | x ∈ A} be its domain and range,

respectively, and we write f : A ⇀fin B if ||dom( f )|| < ∞. Given integers n ≤ m, we
denote by ~n . . m� the set {n,n + 1, . . . ,m}. For a tuple t = (t1, . . . , tn) and i ∈ ~1 . . n�, we
denote by ti the element on the i-th position in t. By slight abuse of notation, we write
t ∈ t if t = ti, for some i ∈ ~1 . . n�.

Let Var = {x,y, . . .} be an infinite countable set of logical first-order variables and
Pred = {p,q, . . .} be an infinite countable set of uninterpreted relation symbols, called
predicates. Each predicate p has an arity #p ≥ 1, denoting the number of arguments. In
addition, we consider a special function symbol nil, of arity zero. A term is an element
of the set Term def

= Var∪{nil}. Let k≥ 1 be an integer constant fixed throughout this paper.
The logic SLk is the set of formulæ generated inductively as follows:

φ := emp | t0 7→ (t1, . . . , tk) | p(t1, . . . , t#p) | t1=̇t2 | t1,̇t2 | φ1 ∗φ2 | ∃x . φ1

where p ∈ Pred, t1, t2, . . . , t#p ∈ Term and x ∈ Var. We write ⊥ for t,̇t, for any t ∈ Term.
A ground formula is a formula of SLk in which no predicates occur. We write fv(φ)

for the set of free variables, that occur in φ not within the scope of an existential
quantifier. By writing φ(x1, . . . , xn) we mean x1, . . . , xn ∈ fv(φ) and φ[y1/x1, . . . ,yn/xn]
is the formula obtained from φ by simultaneously substituting each xi with yi, for
i ∈ ~1 . . n�. A substitution is a mapping σ : Var → Term and we denote by φσ the
formula φ[σ(x1)/x1, . . . ,σ(xn)/xn].

To interpret SLk formulæ, we consider an infinite countable set Loc of locations and
a designated location nil ∈ Loc. Let Loci def

= {(`1, . . . , `i) | `1, . . . , `i ∈ Loc}. The semantics
of SLk formulæ is defined in terms of structures (s,h,I), where:

– s : Term→ Loc is a total mapping of terms into locations, called store, such that
always s(nil) = nil,

– h : Loc ⇀fin Lock is a finite partial mapping of locations into k-tuples of locations,
called heap, such that nil < dom(h). Let Heaps denotes the set of heaps, and

– I : Pred→
⋃

i≥1 2Loci×Heaps is an interpretation associating each predicate p a set
of pairs

〈
(`1, . . . , `#p),h′

〉
∈ Loc#p×Heaps.

Two heaps h1 and h2 are disjoint iff dom(h1)∩dom(h2) = ∅, in which case their dis-
joint union is denoted h1]h2, undefined otherwise. The satisfaction relation |= between
structures and SLk formulæ is defined, as usual, recursively on the syntax of formulæ:

(s,h,I) |= t1=̇t2 ⇔ h = ∅ and s(t1) = s(t2)
(s,h,I) |= t1,̇t2 ⇔ h = ∅ and s(t1) , s(t2)
(s,h,I) |= emp ⇔ h = ∅

(s,h,I) |= t0 7→ (t1, . . . , tk)⇔ dom(h) = {s(t0)} and h(s(t0)) = (s(t1), . . . ,s(tk))
(s,h,I) |= p(t1, . . . , t#p) ⇔

〈
(s(t1), . . . ,s(t#p)),h

〉
∈ I(p)

(s,h,I) |= φ1 ∗φ2 ⇔ there are disjoint heaps h1 and h2, such that h = h1] h2
and (s,hi,I) |= φi, for each i = 1,2

(s,h,I) |= ∃x . φ ⇔ (s[x← `],h,I) |= φ, for some ` ∈ Loc



where s[x← `] is the store mapping x into ` and behaving like s for all t ∈ Term \ {x}.
Given formulæ φ and ψ, we write φ ac

= ψ if ψ is obtained from φ by a reordering of ∗-
connected subformulæ. Since ∗ is associative and commutative, any two such formulæ
are equivalent. It is known that, for any formulæ φ and ψ, if x < fv(ψ) then the formulæ
(∃x . φ)∗ψ and ∃x . φ∗ψ are equivalent [6]. Thus, each SLk formula φ can be written as
∃x1 . . .∃xn . ψ ∗∗m

j=1 p j(u
j
1, . . . ,u

j
#p j

), where φ̂ def
= ψ is a ground formula, called the hat

of φ. Note that, moreover, φ̂ is unique, up to the ac
= relation.

In the rest of this paper, we consider that the predicates are intepreted by a set S
of rules p(x1, . . . , x#p)⇐ ρ, where ρ is an SLk formula, such that fv(ρ) ⊆ {x1, . . . , x#p }.
We refer to p(x1, . . . , x#p) as to the head and to ρ as to the body of the rule. A rule is
a base rule if its body is a ground formula. W.l.o.g., we assume that any two heads
with the predicate symbol p share the same tuple of variables xp (this can be achieved
by variable renaming) and by writing p(xp) we mean that xp is the unique tuple of
variables associated with p. We write p(xp)⇐S ρ if the rule p(xp)⇐ ρ belongs to S.

A set S of rules defines a transformer function TS on interpretations of predicates.
For an interpretation I, the interpretation TS(I) is defined as:

TS(I) def
= λp .

{
〈`,h〉 | ([xp← `],h,I) |= ρ, p(xp)⇐S ρ

}
where xp = (x1, . . . , x#p), ` = (`1, . . . , `#p) and [xp ← `] is any store mapping xi into
`i, for all i ∈ ~1 . . #p�. It is not hard to prove that the set of interpretations forms a
complete lattice, equipped with the pointwise inclusion as a partial order, union as join
and intersection as meet. Moreover, the transformer function is monotonic, because no
predicate symbol occurs under negation in a rule body. Consequently, TS has a unique
least fixed point Tµ

S
. In the rest of this paper, given a set of rules S, we write (s,h) |=S φ

for (s,h,Tµ
S

) |= φ and refer also to the pairs (s,h) as structures. We are now ready to
define the class of entailment problems, which are the concern of this paper:

Definition 1 (Entailment Problem). Given a set of rules S and two SLk formulæ φ
and ψ is it the case that for every store s and every heap h such that (s,h) |=S φ, we have
(s,h) |=S ψ ? Instances of the entailment problem are denoted φ |=S ψ.

2.1 Unfolding Trees

In many cases it is useful to think of heaps from the least fixed point interpretation of
a predicate symbol as obtained by a finite unfolding of the predicate, which produces
a ground formula in which all the predicate symbols have been successively replaced
with the bodies of their defining rules. In this section, let S be a given set of rules.

Definition 2 (Unfolding). A formula ψ is a 1-unfolding of a formula φ, written φ =⇒S
ψ, if ψ is obtained by substituting an occurrence of an atom p(y1, . . . ,y#p) in φ with
ρ[y1/x1, . . . ,y#p/x#p], where (p(x1, . . . , x#p),ρ) ∈ S is a rule. An unfolding of φ is a for-
mula ψ such that φ =⇒∗

S
ψ, where =⇒∗

S
is the reflexive and transitive closure of =⇒S.

Moreover, ψ is a ground unfolding of φ if ψ is a ground formula.



It is often convenient to place the steps of an unfolding sequence in a tree that
records the partial order in which these steps occur. We assume the set of nodes in a
tree t, denoted as nodes(t), to be a finite prefix-closed subset of N∗, where N∗ is the set
of finite sequences of positive integers, such that if w and wi are nodes of t, for some
i ∈ N \ {0}, then so are w j, for all j ∈ ~0 . . i− 1�. We write |w| for the lenght of the
sequence w and λ for the empty sequence (|λ| = 0). The label of a node w ∈ nodes(t) is
denoted by t(w) and the subtree of t rooted at w by t|w. The height of a tree is height(t) def

=

maxw∈nodes(t) |w|. A traversal of a tree t is an enumeration of nodes(t) such that the index
of a node is smaller than all indices of its successors.

Definition 3 (Unfolding Tree). Given a formula φ, an unfolding tree for φ is a tree u,
labeled with pairs (p,ψ), where p ∈ Pred∪{⊥} and ψ is a formula, such that:

– t(λ) = (⊥,φ), and
– if u(w) = (p,ψ), then there exists a bijective mapping from the set of occurrences of

atoms q(t1, . . . , t#q) in ψ and the children of w, such that if q(t1, . . . , t#q) is mapped to
wi, then u(wi) = (q(t1, . . . , t#q),ρ[t1/x1, . . . , t#q/x#q]), where q(x1, . . . , x#q)⇐S ρ.

We denote by TS (φ) the set of unfolding trees for φ.

Clearly, every traversal of an unfolding tree u ∈ TS (φ0) corresponds to a ground unfold-
ing sequence σ : φ0 =⇒S φ1 =⇒S . . . =⇒S ψ where, for each node wi of label (q(t),ψ) in
σ, φi is obtained from φi−1 by replacing q(t) by ψ. It is easy to check that the outcome
ψ only depends on u, not on σ. In other words, all traversals of u yield the same ground
formula, denoted by F (t). By convention, we let F (u) def

= φ if nodes(u) = {λ}. The fol-
lowing lemma provides an equivalent definition for the semantics of SLk formulæ:

Lemma 1. Given a SLk formula φ, for any store s and any heap h, we have (s,h) |=S φ
if and only if (s,h) |= F (u), for some unfolding tree u ∈ TS (φ).

Proof : It is sufficient to give the proof only in the case φ = p(t1, . . . , t#p), for a predicate
symbol p ∈ Pred and terms t1, . . . , t#p ∈ Term, the generalization to the case where φ is
any SLk formula being immediate. We start by proving the following fact:

Fact 1 Let u ∈ TS
(
p(t1, . . . , t#p)

)
be an unfolding tree, such that (necessarily) u(0) =

(p(t1, . . . , t#p),ρσ), for some rule:

p(x1, . . . , x#p)⇐∃y1 . . .∃yn . ρ̂∗
m∗

j=1
p j(t

j
1, . . . , t

j
#p j

)︸                                    ︷︷                                    ︸
ρ

and some substitutionσ such thatσ(xk) = tk, for all k ∈ ~1 . . #p�, thenF (u) ac
=∃y1 . . .∃yn . ρ̂σ∗

∗m
j=1F (u j), where u j ∈ TS

(
p j(t

j
1, . . . , t

j
#p j

)σ
)
, for all j ∈ ~1 . . m�.

Proof : Let s : φ0 = p(t1, . . . , t#p) =⇒S φ1 = ρσ =⇒S . . . =⇒S φr = F (u) be a ground
unfolding sequence. Then there exists ` ∈ ~1 . . m� and a position j ∈ ~1 . . r� in this se-
quence such that the sequence φ1 =⇒S . . . =⇒S φ j traverses all nodes from u|`. W.l.o.g.,
let ` and j be the least such numbers, respectively. We re-organize the unfolding se-
quence s into s1 by moving all steps between 1 and j, corresponding to visits of nodes



from u|`′ , for `′ ∈ ~1 . . m� \ {`}, after j and let k ≤ j be the new position of φ j in s1.
Clearly this re-organization does not change the outcome φr, who is the same for s and
s1. Because all nodes from u| j are visited by s1 : φ1

0 = φ0 =⇒S φ
1
1 = φ1 =⇒S . . . =⇒S

φ1
k =⇒S . . . =⇒S φ

1
r = φr, we obtain:

φ1
k

ac
= ∃y1 . . .∃yn . ρ̂σ∗ ∗

j∈~1. .m�\`
p j(t

j
1, . . . , t

j
#p j

)∗F (u`)

The unfolding sequence φ1
k =⇒S . . . =⇒S φr is strictly smaller than s and we apply the

same argument inductively until the ground formula F (u) is derived. ut

Let t def
= (t1, . . . , t#p) and s(t) def

= (s(t1), . . . ,s(t#p)). Let T0
S

def
= λp.∅ be the interpretation

mapping each predicate symbol into the empty set. We have (s,h) |=S p(t) if and only
if 〈s(t),h〉 ∈ Tµ

S
(p) =

(⋃∞
i=0T

i
S

)
(p). The last equality uses the fact that TS is monotone

and continuous which, by Kleene’s Fixpoint Theorem, guarantees that its least fixpoint
is the limit of the increasing sequence of approximants

{
Ti
S

}
i≥0

.
For any predicate symbol p ∈ Pred and any tuple of terms t = (t1, . . . , t#p), we prove

the following equivalence by induction on i ≥ 0:

〈s(t),h〉 ∈ Ti
S

(p)⇔ (s,h) |= F (u), for some u ∈ TS (p(t)), such that height(u) ≤ i

In the base case i = 0, the equivalence holds because both 〈s(t),h〉 ∈ T0
S

(p) is false and
TS (p(t)) contains no unfolding tree of height 0. For the induction step i ≥ 1, we consider
two directions:
”⇒” If 〈s(t),h〉 ∈ Ti

S
(p) then

(
s,h,Ti−1

S

)
|= ρσ, for some rule:

p(x1, . . . , x#p)⇐S ∃y1 . . .∃yn . ρ̂∗
m
∗

j=1
p j(t

j
1, . . . , t

j
#p j

)︸                                    ︷︷                                    ︸
ρ

and substitution σ such that σ(xk) = tk, for all k ∈ ~1 . . #p�. Then there exists locations
`1, . . . , `n ∈ Loc and heaps h0,h1, . . . ,hm such that h =

⊎m
j=0 h j and the following hold:

– (s′,h0) |= ρ̂σ, and
–

〈
s′(t jσ),h j

〉
∈ Ti−1
S

(p j), for all j ∈ ~1 . . m�,

where s′ def
= s[y1 ← `1, . . . ,yn ← `n] and t j

def
= (t j

1, . . . , t
j
#p j

), for all j ∈ ~1 . . m�. By the

induction hypothesis, we obtain unfolding trees u j ∈ TS
(
p j(t jσ)

)
, of height at most i−1,

such that (s′,h j) |=F (u j), for all j ∈ ~1 . .m�. Note that, by Definition 3, the root of each
u j has a single child and let u j |0 be the subtree of u j rooted at the child of λ. Then we

define an unfolding tree u, such that u(λ) def
= (⊥, p(t)), u(0) def

= (p,ρσ) and u| j
def
= u j |0, for

all j ∈ ~1 . . m�. It is straightforward to check that u ∈ TS (p(t)) and that the height of u
is at most i. We are left with proving that (s,h) |= F (u), which follows from Fact 1 and
the inductive hypothesis (s′,h j) |= F (u j), for all j ∈ ~1 . . m�.

”⇐” If (s,h) |= F (u) then, by Definition 3, the root of u has a single child 0 whose label
is u(0) = (p(t),ρσ), for a rule:

p(x1, . . . , x#p)⇐S ∃y1 . . .∃yn . ρ̂∗
m
∗

j=1
p j(t

j
1, . . . , t

j
#p j

)︸                                    ︷︷                                    ︸
ρ



and a substitution σ(xk) = tk, for all k ∈ ~1 . . #p�. By Fact 1, we obtain:

F (u) ac
= ∃y1 . . .∃yn . ρ̂σ∗

m
∗

j=1
F (u j)

for some unfolding trees u j ∈ TS

(
p j(t

j
1, . . . , t

j
#p j

)
)
, of height at most i−1, for j ∈ ~1 . .m�.

Since (s,h) |= F (u), there exists locations `1, . . . , `n ∈ Loc, such that:
– (s′,h0) |= ρ̂σ and
– (s′,h j) |= F (u j), for all j ∈ ~1 . . m�,

where s′ def
= s[y1 ← `1, . . . ,yn ← `n] and h =

⊎m
j=0 h j. By the inductive hypothesis, we

obtain: 〈
s
′(t jσ),h j

〉
∈ Ti−1
S

(p j) ⊆ T
µ
S

(p j)

where t j
def
= (t j

1, . . . , t
j
#p), for all j ∈ ~1 . . m�. But then (s′,h j) |=S p j(t jσ), for all j ∈

~1 . . m�, thus (s,h) |=S ρσ and (s,h) |=S p(t) follows. ut

3 A Decidable Class of Entailments

In general, the entailment problem is undecidable, proofs can be found in [5,1]. Thus
we consider a subclass of entailments for which decidability (with elementary recursive
complexity) was proved in [4] and provide a 2EXPTIME lower bound for this problem.
The decidable class is given by three restrictions of the systems used for the interpreta-
tion of predicates, namely progress, connectivity and establishment, defined in the rest
of this section.

First, the progress condition requires that each rule adds to the heap exactly one
location, namely the one associated to the first parameter of the head. Second, the con-
nectivity condition requires that all locations added during an unfolding of a predicate
atom p(t) form a connected tree-like structure.

Definition 4 (Progress & Connectivity). A set of rules S is progressing if and only if,
the body ρ of each rule p(x1, . . . , x#p)⇐S ρ is of the form ∃z1 . . .∃zm . x1 7→ (y1, . . . ,yk)∗ψ
and ψ contains no occurrence of a 7→ atom. If, moreover, each occurrence of a predicate
atom in ψ is of the form q(yi,u1, . . . ,u#q−1), for some i ∈ ~1 . . k�, then S is connected.

For upcoming developments, we make the connection between heaps and unfolding
trees more precise, in the context of progressing connected sets of rules.

Lemma 2. Assume that S is a progressing and connected set of rules and that (s,h) is a
structure such that (s,h) |=S p(t1, . . . , t#p), for some predicate symbol p ∈Pred and terms
t1, . . . , t#p ∈Term. Then there exists an unfolding tree u ∈TS

(
p(t1, . . . , t#p)

)
and a bijection

Λ : dom(h)→ nodes(u)\{λ} such that (s,h) |=F (u) and for each node wi ∈ nodes(u)\{λ},
where i ∈ N, we have Λ−1(wi) ∈ h(Λ−1(w)).

Proof : If (s,h) |=S p(t1, . . . , t#p), by Lemma 1, there exists u ∈TS
(
p(t1, . . . , t#p)

)
, such that

(s,h) |=F (u). Note that, by Definition 3, the root of u is labeled by u(λ) = (⊥, p(t1, . . . , t#p))



and has a single child, namely 0. The bijection Λ is built inductively on the structure of
the subtree u|0 of u, rooted at 0, taking into account Definition 4. ut

Given a structure (s,h) such that (s,h) |=S p(t1, . . . , t#p), for any location ` ∈ dom(h),
necessarily ` must be allocated by a 1-unfolding of some atom q(t), which corresponds
to a node in an unfolding tree Λ(`) ∈ TS

(
p(t1, . . . , t#p)

)
. In the following, we shall denote

by Prs,h,Λ(`) the predicate symbol q. Note that the existence of the unfolding tree u and
bijection Λ : dom(h)→ nodes(u) \ {λ} are guaranteed by Lemmas 1 and 2, respectively.
The notation Pr(`) stands for Prs,h,Λ(`), for some Λ as in Lemma 2, where the structure
(s,h) is clear from the context.

The third condition requires that all the existentially quantified variables introduced
during a can only be associated with locations from the heap, in every ground unfolding
of a formula. To formalize this condition, for a ground formula φ, we define the partial
satisfaction relation as (s,h)  φ iff h = h1 ] h2 and (s,h1) |= φ and partial entailment as
φ  ψ iff (s,h)  ψ for each structure (s,h), such that (s,h) |= φ. If φ is ground, its set of
allocated variables is alloc(φ) def

= {x ∈ fv(φ) | x′ 7→ (y1, . . . ,yk) occurs in φ and φ  x=̇x′}.
Note that alloc(φ) = fv(φ) if φ is unsatisfiable. Extending this notion to formulæ that
are not necessarily ground, we define allocS(φ) def

=
⋂

u∈TS(φ) alloc(F (u)), i.e. a variable is
allocated in φ iff it is allocated in every ground unfolding of φ w.r.t. a set of rules S.

Definition 5 (Establishment). A set of rulesS is established if and only if, for each rule
(p(xp),∃z1 . . .∃zm . ψ) ∈ S, where ψ is quantifier-free, we have z1, . . . ,zm ∈ allocS(ψ).

In the following, we consider only sets of rules that are progressing, connected and
established (PCE). The interest for PCE sets of rules is motivated by the following
decidability result, proved in [4]:

Theorem 1 (Decidability). Given a PCE set of rules S and two formulæ φ and ψ
such that the free variables of ψ are also free in φ, the problem φ |=S ψ belongs to
ELEMENTARY.

The rest of this paper is concerned with proving that the entailment problem φ |=S ψ, for
PCE sets of rules S, is 2EXPTIME-hard. Previously, a EXPTIME-hard bound for this
problem was established in [5].

3.1 Syntactic Shorthands

Before proving 2EXPTIME-hardness by reduction from the membership problem of
alternating Turing machines running in exponential space, we define several syntactical
shorthands that simplify the presentation.

Given a term t and n ≥ 0, we denote by tn the tuple consisting of n occurrences of
t. In the rest of the paper we silently assume that any heap entry of the form h(`) =

(`1, . . . , `k) is represented by a binary heap h2 : Loc ⇀fin Loc2 such that dom(h2) = {`}∪{
`i

0 | i ∈ ~1 . . k−1�
}

, h2(`) = (`1
0, `1) and h2(`i

0) = (`i+1
0 , `i+1), for all i ∈ ~1 . . k−1�, with

`k
0 = nil. This allows one to encode records of non constant length (for instance tuples

of length N) by using only a constant number of record fields (i.e., k = 2).



Deep Hats For a tuple t = (t1, . . . , t j) ∈ Term j, j ≥ 1 and n ≥ 0, by writing:

p(x1, . . . , x#p)⇐∃y1 . . .∃yr . x1 7→ (u1, . . . ,ui−1, [t]n,ui+1, . . . ,um)∗ψ

we denote the rules:

p(x1, . . . , x#p)⇐∃y1 . . .∃yr . x1 7→ (u1, . . . ,ui−1, t1, . . . , t j,ui+1, . . . ,um)∗ψ, if n = 0

and, recursively, for all n > 0:

p(x1, . . . , x#p)⇐ ∃y1 . . .∃yr∃z . x1 7→ (u1, . . . ,ui−1,z,ui+1, . . . ,um)∗ p̃n−1(z, x1, . . . , x#p,y1, . . . ,yr)∗ψ′

p̃`(z1, . . . ,z#p+r+1)⇐ ∃z′1 . z1 7→ (z′1)∗ p̃`−1(z′1,z2, . . . ,z#p+r+1), for ` ∈ ~1 . . n−1�
p̃0(z1, . . . ,z#p+r+1)⇐ z1 7→ (t1, . . . , t j)∗ψ′′

where p̃`, for ` ∈ ~0 . . n− 1� are fresh predicate symbols of arity # p̃` = #p + r + 1 and
ψ′′ (resp. ψ′) is the separating conjunction of all atoms of ψ whose first argument is in
t (resp. is not in t). Clearly, ψ′ ∗ψ′′ ac

= ψ, and the obtained rules are connected.

Special Variables We assume the existence of the following special variables that oc-
cur free in each formula: 0,1,γ1, . . . ,γN , for some fixed constant N ≥ 2, used throughout
the paper. These variables will always be allocated and denote separate locations, as
required by the following rule:

Const(x)⇐ x 7→ (0,1,γ1, . . . ,γN)∗0 7→ (nil)∗1 7→ (nil)∗∗N
i=1γi 7→ (nil) (1)

Considering special variables is without loss of generality in the following, because
these variables can be added to the parameter list of each head in the system, at the
expense of cluttering the presentation.

Binary Choices The symbol • occurring in the body of a rule ranges over the special
variables 0 and 1. Thus any rule of the form:

p(x1, . . . , x#p)⇐∃z1 . . .∃zn . x1 7→ (y1, . . . ,yi−1,•,yi+1, . . . ,ym)∗ψ

stands for the following two rules:

p(x1, . . . , x#p)⇐ ∃z1 . . .∃zn . x1 7→ (y1, . . . ,yi−1,0,yi+1, . . . ,ym)∗ψ
p(x1, . . . , x#p)⇐ ∃z1 . . .∃zn . x1 7→ (y1, . . . ,yi−1,1,yi+1, . . . ,ym)∗ψ

Note that eliminating the occurrences of • will increase the number of rules in S by a
constant at most 2k, because k is assumed to be constant (i.e. independent of the input
of a decision procedure).

Binary Variables A binary variable b is understood as ranging over the domain of
the interpretation of 0 and 1, namely the locations assigned to 0 and 1 by the formula
Const (1). Additionally, for each binary variable b, we consider the associated variable



b, intended to denote the complement of b. More precisely, the formula ∃b . ψ is under-
stood as ψ[0/b,1/b]∨ψ[1/b,0/b]. However, this direct substitution of the (existentially
quantified) binary variables by 0 and 1 within the rules of an established system would
break the establishment condition (Definition 5), because 0 and 1 are not necessarily
allocated within the body of the rule4. This problem can be overcome by passing 0 and
1 as parameters to a fresh predicate. More precisely, a rule of the form:

p(x1, . . . , x#p)⇐∃b1 . . .∃bi∃y1 . . .∃yn . x1 7→ ([t]m)∗ψ (2)

where 1 ≤ i ≤ m, is a shorthand for the following set of rules:

p(x1, . . . , x#p)⇐ ∃y . x1 7→ (y)∗ p′(y, x1, . . . , x#p,0,1)
p(x1, . . . , x#p)⇐ ∃y . x1 7→ (y)∗ p′(y, x1, . . . , x#p,1,0)

p′(y, x1, . . . , x#p,b1,b1)⇐ ∃b2 . . .∃bi∃y1 . . .∃yn . y 7→ ([t]m−1)∗ψ

Clearly, the elimination of the binary existential quantifiers from the rule (2) will add
2i rules to the set. Note that the hat [t]m, of height m ≥ i decreases at each step of the
elimination. This guarantees that rules resulting from the elimination of ∃b1, . . . ,∃bi
respectively, are progressing (Definition 4).

Next, for a vector b = (b1, . . . ,bn) of binary variables, we denote by b the vector
(b1, . . . ,bn). The following rule:

p(x1, . . . , x#p)⇐∃y1 . . .∃ym . x1 7→ t ∗ψ | (b1, . . . ,bn) 0 (c1, . . . ,cn) (3)

where b1, . . . ,bn ∈ {x2, . . . , x#p,y1, . . . ,ym} occur only once in t and do not occur in ψ and
c1, . . . ,cn ∈ {x2, . . . , x#p,y1, . . . ,ym}, is a shorthand for the following set of rules:

p(x1, . . . , x#p)⇐∃y1 . . .∃ym . x1 7→ (t[ci/bi]) [•/b j] j∈~1. .n�\{i} ∗ψ, i ∈ ~1 . . n� (4)

Intuitively, the rule (3) introduces new binary variables b1, . . . ,bn, such that not all of
them are equal to the complement of c1, . . . ,cn, respectively. In other words, at least
one bi must be equal to ci, for some i ∈ ~1 . . n�. Note that expanding the rule (3) as
described above results in at most n rules of the form (2), hence the full elimination of
binary variables from the system is possible in polynomial time.

4 Alternating Turing Machines

An Alternating Turing Machine (ATM) is a tuple M = (Q,Γ,δ,q0,g) where:
– Q is a finite set of control states,
– Γ = {γ1, . . . ,γN ,b} is a finite alphabet, b is the blank symbol and each symbol from
Γ \ {b} is named after a special variable,

– δ⊆Q×Γ×Q×(Γ\{b})×{←,→} is the transition relation, (q,a,q′,b,µ) ∈ δmeaning
that, in state q, upon reading symbol a, the machine moves to state q′, writes b , b
to the tape5 and moves the head by one to the left (resp. right) if µ=← (resp. µ=→),

4 In fact they are allocated by the side condition Const.
5 A machine never writes blank symbols, that are used only for the initially empty tape cells.



– q0 ∈ Q is the initial state, and
– g : Q→ {∨,∧} partitions the set of states into existential (g(q) = ∨) and universal

(g(q) = ∧) states.
A configuration of M is a tuple (q,w, i) where q ∈Q is the current state, w :N→Γ is (the
contents of) the tape, such that ||{ j ∈ N | w( j) , b}||<∞ and i ∈ ~0 . .max { j ∈ N | w( j) , b}+
1� is the current position of the head on the tape. We denote by ε the empty word over Γ.
For any tape w and integer i, we denote by w[i← a] the tape w′ such that w′(i) = a and
w′( j) = w( j) for all j , i. In the following, we write wi

def
= w(i), i← def

= i−1 and i→ def
= i+1.

The step relation of M is the following relation between configurations: we write

(q,w, i)
(q,a,q′ ,b,µ)
−−−−−−−→ (q′,w′, j) if and only if there exists a transition (q,a,q′,b,µ) ∈ δ such

that wi = a, w′ = w[i ← b] and j = iµ. We write (q,w, i) −→ (q′,w′, j) when the ap-

plied transition is not important. An execution is a sequence (q0,w0,0)
(q0 ,a0 ,q1 ,b0 ,µ0)
−−−−−−−−−−→

(q1,w1, i1)
(q1 ,a1 ,q2 ,b1 ,µ1)
−−−−−−−−−−→ . . . Note that an execution is entirely determined by the ini-

tial configuration (q0,w0,0) and the sequence (q0,a0,q1,b0,µ0), (q1,a1,q2,b1,µ1), . . . of
transition rules applied to it.

Given a function f : N→ N, an execution is f -space bounded if and only if there
exists a constant c> 0 such that |wi| ≤ c · f (|w0|), for all i> 0. The ATM M is exponential-
space bounded if it admits only f -space bounded executions, where f (x) = 2g(x) and g
is a univariate polynomial function.

Definition 6. A derivation of an ATM M = (Q,Γ,δ,q0,g), starting from a configuration
(q0,w0,0), is a tree t, whose nodes are either:
1. branching nodes labeled with configurations (q,w, i) ∈ Q×Γ∗×N, or
2. action nodes labeled with tuples (a,b,µ) ∈ Γ×Γ \ {b}× {←,→}, where a is the sym-

bol read, b is the symbol written and µ is the move of the head at that step,
such that the root of t is a branching node, t(λ) = (q0,w0,0) and, moreover:
a. each branching node labeled by (q,w, i), such that g(q) = ∨, has exactly one succes-

sor, that is an action node labeled by (a,b,µ), where (q,a,q′,b,µ) ∈ δ, whose succes-

sor is a branching node labeled by (q′,w′, j) such that (q,w, i)
(q,a,q′ ,b,µ)
−−−−−−−→ (q′,w′, j),

b. each branching node labeled by (q,w, i), such that g(q) = ∧ has exactly one suc-
cessor for each tuple (q,a,q′,b,µ) ∈ δ such that a = w(i), and the successor associ-
ated with a transition (q,a,q′,b,µ) is a branching node, labeled by (q′,w′, j) with

(q,w, i)
(q,a,q′ ,b,µ)
−−−−−−−→ (q′,w′, j).

We say that M accepts (q0,w0, i0) iff it has a derivation starting from (q0,w0, i0).

Definition 7. The membership problem (M,w) asks the following: given an ATM M =

(Q,Γ,δ,q0,g) and an input word w ∈ (Γ \ {b})∗ does M accept (q0,w,0) ?

The complexity class AEXPSPACE is the class of membership problems where M is
exponential-space bounded. It is known that AEXPSPACE=co−AEXPSPACE=2EXPTIME
[3], where co−AEXPSPACE is the complement class of AEXPSPACE6. In the follow-
ing, we shall w.l.o.g. consider only the membership problem (M, ε). Indeed, let (M,w)

6 Every ATM can be complemented in linear time, by interchanging the existential with the
universal states, thus all alternating classes are closed under complement.



be any instance of the membership problem, and let c and g be the constant and poly-
nomial function witnessing the fact that M is exponential-space bounded. Let Mw be
the ATM that produces w starting from input ε. Clearly, Mw uses at most |w| working
space, thus the machine Mw; M which runs Mw on the empty word and then continues
with M runs in space c · 2g(|w|) and accepts (q0, ε,0) if and only if M accepts (q0,w,0).
If N ≥ log2(c)+g(w), then Mw; M runs in space 2N. Therefore, we assume from now on
that M = (Q,Γ,δ,q0,g) is an ATM started in the configuration (q0, ε,0) and that M runs
in space at most 2N on (q0, ε,0), where N is polynomial w.r.t. the length of w.

4.1 Pseudo-derivations as Heaps

Given an ATM M = (Q,Γ,δ,q0,g), we consider its pseudo-derivations, which are the
trees of Definition 6 relaxed so that any sequence of three consecutive branching-action-
branching node labels (q,w, i), (a,b,µ) and (q′,w′, i′) only needs to ensure the existence
of a transition (q,a,q′,b,µ) ∈ δ, i.e. we drop the requirements wi = a, w′ = w[i← b] and

i′ = iµ from the condition (q,w, i)
(q,a,q′ ,b,µ)
−−−−−−−→ (q′,w′, i′) in Definition 6. Clearly, the leaves

of a pseudo-derivation are all labeled by universal states.
We represent the pseudo-derivations of M as tree-shaped heaps generated by a set

of rules where, intuitively, each predicate q(x) allocates a branching node labeled by a
configuration (q,w, i), for some w ∈ Γ∗ and some i ∈ ~0 . . 2N − 1�, and each predicate
q(x,a,b,µ) allocates an action node labeled (a,b,µ). Importantly, since M starts on the
empty word ε, the tape contents in a branching node can be derived from the sequence of
actions along the path from the root to that node. For this reason, we shall not explicitly
represent tape contents within the configurations and label branching nodes with pairs
(q, i) ∈ Q×~0 . . 2N−1�.

We represent each position i ∈ ~0 . . 2N −1� on the tape succintly, by an N-tuple of
binary digits bin(i) ∈ {0,1}N and encode the left and right moves as ←̃ def

= 0 and →̃ def
= 1.

Let τ(q,a) def
= δ∩ ({q}× {a}×Q×Γ \ {b}× {←,→}) be the set of transitions of M with

source state q, reading symbol a from the tape.
As previously mentioned, we simplify the presentation by considering atoms of

the form x 7→ (y1, . . . ,ym) for an arbitrary m ≥ 1, with the understanding that the heap
corresponding to this atom is uniquely encoded by a binary heap. This is without loss
of generality, because a rule containing such atoms can be transformed into a finite
set of rules containing only atoms of the form x 7→ (y1,y2), resulting in a progressing,
connected and established set of rules. With this in mind, we consider the following
rules, for each state q ∈ Q:

q(x)⇐ ∃x′ . x 7→ (•N, x′)∗q′(x′,a,b, µ̃) (5)
if g(q) = ∨ and (q,a,q′,b,µ) ∈ τ(q,a)

q(x)⇐ ∃y1 . . .∃yn . x 7→ (•N,y1, . . . ,ym)∗ m
∗

j=1
q j(y j,a,b j, µ̃ j) (6)

if g(q) = ∧ and τ(q,a) = {(q,a,q1,b1,µ1), . . . , (q,a,qm,bm,µm)}

q(x,y,z,u)⇐ ∃x′ . x 7→ (y,z,u, x′)∗q(x′) (7)

The heaps defined by the above rules ensure only that the control structure of a deriva-
tion of M is respected, namely that the branching and action nodes alternate correctly,



and that the sequence of control states labeling the branching nodes on any path is
consistent with the transition relation of M. In other words, these trees encode pseudo-
derivations of M. Further, we introduce a top-level predicate pM(x) that allocates the
special variables 0,1,γ1, . . . ,γN and ensures that the initial state q0 of M is the first
control state that occurs on an path of a pseudo-derivation:

pM(x)⇐∃y0∃z0 . x 7→ ([y0]N,z0)∗q0(y0)∗Const(z0) (8)

Note that the hat [y0]N above ensures that every heap in the least fixed point interpreta-
tion of p begins with a tree of height N. The use of this tree will be made clear below.
For now, let S be the set consisting of the rules above. We formalize the encoding of a
pseudo-derivation by a structure:

Definition 8. A structure (s,h) such that (s,h) |=S pM(x) encodes a pseudo-derivation t
of M, written as (s,h)B t, if and only if there exists a injective mapping f : nodes(t)→
dom(h) \ s(Γ∪{0,1}) such that, for all w ∈ nodes(t), the following hold:
1. for all i ∈ N, if wi ∈ nodes(t) then f (wi) ∈ h( f (w)),
2. if w is a branching node and t(w) = (q, i) then Pr( f (w)) = q and h( f (w)) = (`1, . . . , `N+1),

where ` j = s(bin(i) j), for all j ∈ ~1 . . N� and `N+1 ∈ dom(h),
3. if w is an action node and t(w) = (a,b,µ) then h( f (w)) = (s(a),s(b),s(̃µ), `4), where

`4 ∈ dom(h),
We write (s,h) > t instead of (s,h)B t if condition (2) above is replaced by the weaker:
2’. if w is a branching node and t(w) = (q, i) then h( f (w)) = (`1, . . . , `N+1), where ` j =

s(bin(i) j), for all j ∈ ~1 . . N� and `N+1 ∈ dom(h).

Note that, by Lemma 1 (s,h) |=S pM(x) iff there exists an unfolding tree u ∈ TS (pM(x))
such that (s,h) |=F (u) and, by Lemma 2, there exists a bijection Λ : dom(h)→ nodes(u)\
{λ}, such that Λ−1(wi) ∈ h(Λ−1(w)), for all wi ∈ nodes(u). Then the occurrence of Pr(.) at
point (2) of Definition 8 stands for Prs,h,Λ(.), the structure (s,h) being clear from the con-
text and the existence of Λ being guaranteed by Lemma 2. The weaker relation (s,h) > t
shall be used next to encode pseudo-derivations by structures that are not necessarily
models of the above rules (more rules will be added later).

Lemma 3. (A) For each pseudo-derivation t of an ATM M = (Q,Γ,δ,q0,g), there exists
a structure (s,h) |=S pM(x) such that (s,h)B t. (B) Dually, for each structure (s,h) |=S
pM(x), there exists an accepting pseudo-derivation t of M such that (s,h)B t.

Proof : (A) Let t be a pseudo-derivation of M. We build an isomorphic tree u, such that
nodes(t) = nodes(u) and the labels of u are of the form (q,φ), where q ∈ Pred and φ is a
formula. The definition of u is top-down on the structure of t, for each node w ∈ nodes(t),
with label t(w) = (q, i):

– if g(q) =∨ , where t(w0) = (a,b,µ) and t(w00) = (q′, i′) (we have necessarily w0,w00 ∈
nodes(t), where w0 and w00 are the only children of w and w0, respectively), then
we define:

u(w) def
= (q, ∃x′ . x 7→ (bin(i), x′)∗q(x′,a,b, µ̃)) (see rule 5)

u(w0) def
= (q, ∃x′′ . x′ 7→ (a,b, µ̃, x′′)∗q(x′′)) (see rule 7)



– otherwise, g(q) = ∧ and t(w j) = (a j,b j,µ j) for j ∈ ~1 . . n� are the children of w, and
t(w j0) = (q′j, i

′
j), for all j ∈ ~1 . . n�, in which case we define:

u(w) def
=

(
q, ∃y1 . . .∃yn . x 7→ (bin(i),y1, . . . ,yn)∗∗n

j=1 q j(y j,a j,b j, µ̃ j)
)

(see rule 6)

u(w j) def
=

(
q j, ∃x′ . y j 7→ (a j,b j, µ̃ j, x′)∗q′j(x′)

)
(see rule 7)

Finally, either one of the following holds:

– w = vi, for some v ∈ nodes(t), i ∈ N and the atom q(x) occurs exactly once in u(v),
– w = λ and the variable x in the definition of u(w) is the same as y0, in which case

necessarily t(λ) = (q0,0).

Next, we extend u to an unfolding tree û ∈ TS (pM(x)) by adding to it a hat of height
N and a sibling tree u′ ∈ TS (Const(z0)). It is not hard to check that û ∈ TS (pM(x))
and that F (û) is satisfiable, since there are no equality or disequality atoms and no
variable occurs allocated in two different subtrees of û. Then, let (s,h) be a structure
such that (s,h) |= F (û). To check that (s,h)B t, we need to exhibit an injective mapping
f : nodes(t)→ dom(h) that meets the conditions (1), (2) and (3) from Definition 8. Be-
cause S is a progressing and connected set of rules and (s,h) |=F (û), by Lemma 2, there
exists a bijective mapping Λ : dom(h)→ nodes(û) \ {λ} such that Λ−1(wi) ∈ h(Λ−1(w)),
for all w ∈ nodes(û) \ {λ} and all i ∈ N, such that wi ∈ nodes(û). Let f be the restriction
of Λ−1 to nodes(u). Point (1) follows by the definition of Λ, whereas points (2) and (3)
are simple checks.

(B) Conversely, if (s,h) |=S pM(x) then, by Lemma 1, there exists an unfolding tree
u ∈ TS (pM(x)) such that (s,h) |= F (u). Since S is progressing and connected, by Lemma
2, there exists a bijective mapping Λ : dom(h)→ nodes(u) \ {λ}, as before. By the def-
inition of S, all nodes w ∈ nodes(u) \ {λ} that are labeled with predicates q and q, for
some q ∈ Q, occur below a unique node w0 ∈ nodes(u), such that t(w0) = (q0,φ), for
some formula φ. We build a pseudo-derivation t of M such that nodes(t) = nodes(u|w0 ),
by induction on the structure of u|w0 . Namely, for each w ∈ nodes(u|w0 ):

– If u|w0 (w) = (q,φ) then φ is the body of a rule (5) or (6). In the case (5) (the other case
is similar and left to the reader) we have h(Λ−1(w)) = (`1, . . . , `N+1), with `1, . . . , `N ∈
{s(0),s(1)} and let i be the integer such that bin(i) = (s−1(`1), . . . ,s−1(`N)). Note that,
since 0 and 1 are always allocated separately in F (u), the restriction of s to the set
{0,1} is a bijection. In this case, we define t(w) def

= (q, i).
– Otherwise, u|w0 (w) = (q,φ) and φ is the body of a rule (7). In this case, we have
h(Λ−1(w)) = (`1, `2, `3, `4), with `1 ∈ s(Γ), `2 ∈ s(Γ \ {b}) and `3 ∈ {s(0),s(1)}. Note
that, since each γ ∈ Γ∪ {0,1} is allocated separately in F (u), the restriction of s to
the set Γ ∪ {0,1} is a bijection. In this case, we define t(w) def

= (s−1(`1),s−1(`2),µ),
where µ =← if `3 = s(0) and µ =→ if `3 = s(1).

It is easy to check that, indeed t is a pseudo-derivation of M. To check that (s,h)B t, we
take f : nodes(t)→ dom(h) as the restriction of Λ−1 to the nodes of u|w0 . Clearly, f is
injective and the conditions (1), (2) and (3) of Definition 8 are easy checks. ut



4.2 Encoding Complement Membership as Entailment Problems

Given an ATM M = (Q,Γ,δ,q0,g), a pseudo-derivation of M is a derivation of M if the
contents of the tape is consistent with the sequence of the actions applied, in particular
the following conditions must hold:

I. If a branching node labeled (q, i) is followed by an action node labeled (a,b,→)
[resp. (a,b,←)], itself followed by a branching node labeled (q′, i′) then necessar-
ily i′ = i + 1 [resp. i = i′+ 1], i.e. the position of the head changes according to the
action executed between the adjacent configurations.

II. For every i ∈ ~0 . . 2N − 1�, if along a path from a branching node labeled (q, i),
followed by an action node labeled (a,b,µ), to another branching node labeled
(q′, i), followed by an action node labeled (a′,b′,µ′), there is no branching node
labeled (q′′, i), then necessarily a′ = b. Indeed, the symbol read on position i must
be the one previously written, since it was not changed in the meantime.

III. For every i ∈ ~0 . . 2N − 1�, if along a path from the root to a branching node
labeled (q, i), followed by an action node labeled (a,b,µ), there is no branching
node labeled (q′, i), then necessarily a = b, i.e. the tape is initially empty.

In the following, we shall not check that the above conditions hold for some deriva-
tion of M, but rather the opposite: that for each derivation of M, at least one of the
above conditions is broken. In other words, we reduce from the complement of the
membership problem (M, ε) to an entailment problem, defined next. This does not
change the final 2EXPTIME-hardness result, because 2EXPTIME=AEXPSPACE=co−
AEXPSPACE, as previously mentioned.

In the following, we shall give the rules for a predicate cM(x) such that the entail-
ment pM(x) |=S cM(x) holds, for a suitable set of rules S, containing the rules for pM(x)
and cM(x), iff every pseudo-derivation of M breaks at least one of the conditions (I), (II)
or (III), in other words, that M, started on input ε, has no derivation.

Let B def
= maxq∈Q,a∈Γ ||τ(q,a)|| be the maximum branching degree of a derivation of

M. First, we define an auxiliary predicate r(x) that generates all tree-shaped heaps in
which branching nodes correctly alternate with action nodes, with no regard to the labels
of those nodes. In the following, we stick to the convention that predicate symbols p
represent branching nodes, whereas p represent action nodes:

r(x)⇐ ∃y1 . . .∃yn . x 7→ (•N,y1, . . . ,yn)∗∗n
j=1 r(y j), for each n ∈ ~0 . .B�

r(x)⇐ ∃y . x 7→ (a,b,•,y)∗ r(y), for each a ∈ Γ and b ∈ Γ \ {b}

Next, we define the heap encodings of those derivation trees that violate condition
(I). To this end, we guess a vector b in {0,1}N, encoding a position on the tape i ∈
~0 . . 2N−1�, a shift µ ∈ {←,→}, encoded by µ̃ ∈ {0,1} and get the binary complement of
the (encoding of the) position reached from b by applying µ. Here we distinguish two
cases, depending on the choice of µ:
(a) if µ is → then bin(i) = b def

= (b1, . . . ,bn,0,1N−1−n) for some n ∈ ~0 . . N− 1� and let
c def

= (b1, . . . ,bn,0,1N−1−n) be the complement of bin(i + 1) = (b1, . . . ,bn,1,0N−1−n).
(b) otherwise, bin(i) = b def

= (b1, . . . ,bn,1,0N−1−n) and let c def
= (b1, . . . ,bn,1,0N−1−n) be

the complement of bin(i−1) = (b1, . . . ,bn,0,1N−1−n).



For every n ∈ ~0 . .N−1� and every m ∈ ~0 . .B� and i ∈ ~1 . .m�, we consider the rules:

c1(x)⇐ ∃b1. . .∃bn∃y . x 7→ ([y]N)∗d1(y,1,b1 . . .bn,0,1N−n−1︸                ︷︷                ︸
b

,b1 . . .bn,0,1N−n−1︸                ︷︷                ︸
c

) (9)

c1(x)⇐ ∃b1. . .∃bn∃y . x 7→ ([y]N)∗d1(y,0,b1 . . .bn,1,0N−n−1︸                ︷︷                ︸
b

,b1 . . .bn,1,0N−n−1︸                ︷︷                ︸
c

)(10)

d1(x,u, b, c)⇐ ∃y1 . . .∃ym.x 7→ (•N,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗d1(yi,u, b, c) (11)

d1(x,u, b, c)⇐ ∃y1 . . .∃ym.x 7→ (b,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗ e1(yi,u, b, c) (12)

d1(x,u, b, c)⇐ ∃y . x 7→ (a,b,•,y)∗d1(y,u, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (13)
e1(x,u, b, c)⇐ ∃y . x 7→ (a,b,•,y)∗ f1(y,u, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (14)
f1(x,u, b, c)⇐ ∃y1 . . .∃ym . x 7→ (e,y1, . . . ,ym)∗ m

∗
j=1

r(y j) | e 0 c (15)

Intuitively, rules (9) and (10) choose the move u ∈ {0,1} and the binary vectors b, c ∈
{0,1}N, according to the cases (a) and (b) above, respectively. Note that we use the hat
[y]N to eliminate the binary variables b1, . . . ,bn, as n ≤ N, according to the elimination
procedure described in §3.1. Then a path to the branching node, labeled (q′, i′), that
violates condition (I) is chosen, by alternating the branching and action nodes allocated
by rules (11) and (13), respectively. The offending branching node is allocated by rule
(15) and its predecessors are the branching and the action nodes, labeled with (q, i)
and (i,a,b,µ), such that i′ , iµ. These latter nodes are allocated by rules (12) and (14),
respectively.

The pseudo-derivations of M that violate condition (II) are encoded by the tree-
structured heaps defined by the rules below. To this end, we guess a binary vector b ∈
{0,1}N denoting the position of a write action that has an inconsistent read descendant
and let c be its binary complement. Then, for every m ∈ ~0 . . B� and i ∈ ~1 . . m�, we
consider the rules below:

c2(x)⇐ ∃b1 . . .∃bN∃y . x 7→ ([y]N)∗d2(y,b1, . . . ,bN︸     ︷︷     ︸
b

,b1, . . . ,bN︸     ︷︷     ︸
c

) (16)

d2(x, b, c)⇐ ∃y1 . . .∃ym . x 7→ (•N,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗d2(yi, b, c) (17)

d2(x, b, c)⇐ ∃y . x 7→ (a,b,•,y)∗d2(y, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (18)
d2(x, b, c)⇐ ∃y . x 7→ (a,b,•,y)∗ e2(y,b, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (19)

e2(x,γ, b, c)⇐ ∃y1 . . .∃ym . x 7→ (b,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗ e2(yi,γ, b, c) (20)

e2(x,γ, b, c)⇐ ∃y . x 7→ (a,b,•,y)∗ f2(y,γ, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (21)
e2(x,γ, b, c)⇐ ∃y . x 7→ (a,b,•,y)∗g2(y,γ, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (22)
f2(x,γ, b, c)⇐ ∃y1 . . .∃ym . x 7→ (e,y1, . . . ,ym)∗ ∗

j∈~1. .m�\{i}
r(y j)∗ e2(yi,γ, b, c) | e 0 c (23)

g2(x,γ, b, c)⇐ ∃y1 . . .∃ym . x 7→ (b,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗g2(yi,γ) (24)

g2(x,γ)⇐ ∃y . x 7→ (a,b,•,y)∗ r(y), for each a ∈ Γ \ {γ}, b ∈ Γ \ {b} (25)



Intuitively, rule (16) uses the hat [y]N to choose the tuple of binary variables b =

(b1, . . . ,bN) and their complements c = (b1, . . . ,bN). First, the path to a branching node
labeled by the binary position b is non-deterministically chosen by an alternation of
branching and action nodes allocated by the the rules (17) and (18), respectively, until
the node and its predecessor are allocated by rules (20) and (19), respectively. The sym-
bol written on the tape by this node is stored in the second parameter of e2(x,γ, b, c).
Next, a path to a second branching node labeled by the binary position b is non-
deterministically chosen by an alternation of branching and action nodes allocated by
the the rules (21) and (23) respectively, while checking that no branching node with
the same position b occurs on this second path (23). At the end, we reach the offend-
ing branching node (24), whose predecessor is allocated by rule (22). At this point, we
check that the symbol read by the last action node is different than the symbol previ-
ously written at position b, by rule (19). This check is done by rules (24) and (25), thus
ensuring that condition (II) is indeed violated.

Next, we define the tree-structured heap encodings of the derivation trees that vi-
olate condition (III). To this end, we guess a binary vector b ∈ {0,1}N denoting the
position where a symbol different from b has been read, with no previous write action
at that position and let c be its complement. We consider the rules below, for every
m ∈ ~0 . .B� and i ∈ ~1 . . m�:

c3(x)⇐ ∃b1 . . .∃bN∃y . x 7→ ([y]N)∗d3(y,b1, . . . ,bN︸     ︷︷     ︸
b

,b1, . . . ,bN︸     ︷︷     ︸
c

) (26)

d3(x, b, c)⇐ ∃y1 . . .∃ym . x 7→ (e,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗d3(yi, b, c) | e 0 c (27)

d3(x, b, c)⇐ ∃y . x 7→ (a,b,•,y)∗d3(y, b, c), for all a ∈ Γ, b ∈ Γ \ {b} (28)
d3(x, b, c)⇐ x 7→ (a,b,•,y)∗ e3(y, b, c), for all a ∈ Γ, b ∈ Γ \ {b} (29)
e3(x, b, c)⇐ ∃y1 . . .∃ym . x 7→ (b,y1, . . . ,ym)∗ ∗

j∈~1. .m�\{i}
r(y j)∗ f 3(yi) (30)

f 3(x)⇐ ∃y . x 7→ (a,b,•,y)∗ r(y), for all a,b ∈ Γ \ {b} (31)

After the initial guess of the binary position b, by rule (26), a path to a branching node
labeled by b is nondeterministically guessed, by an alternation of branching and action
nodes corresponding to the rules (27) and (28), respectively, while checking that no
branching node labeled with position b occurs on this path. Once this node is reached,
by rule (29), we check that its action node successor reads a symbol different than b, by
rules (30) and (31), which is in violation of condition (III).

Finally, the predicate cM(x) that choses the condition (I), (II) or (III) to be violated,
is defined by the following rules:

cM(x)⇐∃y0∃z0 . x 7→ (y0,z0)∗ ci(y0)∗Const(z0), for all i ∈ {1,2,3, } (32)

Let S denote the set of rules introduced so far. The following lemma states the property
of the models of cM(x):

Lemma 4. Given a pseudo-derivation t of M and a structure (s,h), such that (s,h) > t,
we have (s,h) |=S cM(x) if and only if t is not a derivation of M.



Proof : (sketch)

Fact 2 Assume that (s,h) |=S cM(x). For all `,`′ ∈ dom(h) and i, j ∈ ~1 . . k�, h(`)i = h(`′) j
iff either (i) ` = h(`)i, (ii) h(`)i ∈ s(Γ∪{0,1}), or (iii) ` = `′ and i = j.

Proof : By close analysis of allocation within the rules of S. ut

“⇒” If (s,h) |=S cM(x) then, by Lemma 1, there exists an unfolding tree u ∈TS (cM(x))
such that (s,h) |= F (u). Since S is a progressing and connected set of rules and, more-
over (s,h) |=F (u), by Lemma 2, there exists a bijection Λ : dom(h)→ nodes(u)\{λ} such
that, for all wi ∈ nodes(u), where i ∈ N, we have Λ−1(wi) ∈ h(Λ−1(w)). Moreover, since
(s,h)> t, there exists an injective mapping f : nodes(t)→ dom(h)\s(Γ∪{0,1}) such that,
for all w ∈ nodes(t) such that wi ∈ nodes(t), we have f (wi) ∈ h( f (w)). Consequently, we
obtain the bijection Λ ◦ f : nodes(t)→ nodes(u) \ {λ} where, for all wi ∈ nodes(t), such
that i ∈ N, there exists j ∈ N such that f (wi) = h( f (w)) j. Since Λ is bijective and λ <
img(Λ), there exists a node vk ∈ nodes(u), for some k ∈N, such that h( f (w)) j = Λ−1(vk).
By Lemma 2, there exists m ∈ N such that Λ−1(vk) = h(Λ−1(v))m. Since f is injective,
h( f (w)) j = f (wi) , f (w). Moreover, h( f (w)) j < s(Γ∪ {0,1}) thus, by Fact 2, we obtain
that f (w) = Λ−1(v), as a consequence of h( f (w)) j = h(Λ−1(v))m. Then we obtain that, for
all wi ∈ nodes(t), such that i ∈ N, there exists k ∈ N, such that:

Λ( f (wi)) = Λ(h( f (w) j)) = vk = Λ( f (w))k

We can conclude that t and u|0 are isomorphic, i.e. nodes(t) = nodes(u) \ {λ}.
By the definition of S, namely rule (32), there exists a unique node w0 ∈ nodes(u) \

{λ} such that u(w0) = (ci,φi), for some formula φi, where i ∈ {1,2,3}. Distinguishing the
cases i = 1,2,3 and using the fact that (s,h) > t, one shows that t breaks the one of the
conditions (I), (II) or (III), respectively, thus t is not a derivation of M. The proof is
along the lines of the second point of Lemma 3.
”⇐” If t is an accepting pseudo-derivation but not a derivation of M, then t violates one
of the conditions (I), (II) or (III). In each case, we build an unfolding tree u ∈ TS (cM(x)),
along the lines of the proof of the first point of Lemma 3. Using the fact that (s,h) > t,
we show that (s,h) |= F (u), leading to (s,h) |=S cM(x). ut

Note that, akin to the rule for pM(x) (8), the rules (32) contain an occurrence of
Const(z0) as a sibling to a hat of height N, that occurs in ci(y0), for all i = 1,2,3. Then
the entailment pM(x) |= cM(x) holds if and only if, for each structure (s,h) such that
(s,h) |= pM(x) and each extension s[y0← `0], for some location `0 ∈ Loc, the heap h is
matched by the unfolding of one of the rules with head c1(y0), c2(y0) or c3(y0). This is
possible because each such rule uses a hat [y]N, matching the one from the rule with
head pM(x) (8).

Lemma 5. The entailment pM(x) |=S cM(x) holds if and only if the membership problem
(M, ε) has a negative answer.

Proof : “⇒” Suppose, for a contradiction, that M accepts (q0, ε,0). By Definition 6 it has
a derivation t. Since t is a derivation, it is also a pseudo-derivation of M and, by Lemma
3, there exists a structure (s,h) such that (s,h) |=S pM(x) and (s,h)B t. Moreover, (s,h)> t
follows from (s,h)B t and, by Lemma 4, we obtain (s,h) 6|=S cM(x), thus pM(x) 6|=S cM(x),
contradiction.



”⇐” Suppose, for a contradiction, that pM(x) 6|=S cM(x), hence there exists a structure
(s,h) such that (s,h) |=S pM(x) and (s,h) 6|=S cM(x). By Lemma 3, there exists a pseudo-
derivation t of M such that (s,h)B t, hence (s,h) > t. By Lemma 4, t is a derivation of
M, hence (M, ε) has a positive answer, contradiction. ut

We state the main result of this paper below:

Theorem 2. The entailment problem p(x) |=S q(x), where S is a progressing, connected
and established set of rules and p,q are predicate symbols in Pred that occur as heads
in S, is 2EXPTIME-hard.

Proof : Given an exponential-space bounded ATM M we define a set of rules S, based
on the description of M, such that pM(x) |=S cM(x) if and only if (M, ε) has a negative an-
swer (Lemma 5). Moreover, the set of rules is easy shown to be progressing, connected
and established. The reduction is possible in time polynomial in the size of the stan-
dard encoding of M. Indeed, the number of rules in S is O(||Q|| ·N ·B) and the succint
representation of each rule, using deep hats, binary choices and binary variables can be
generated in time O(||Γ|| ·B ·N). Finally, the complete elimination of binary variables is
possible in polynomial time. Since we reduce from the complement of a AEXPSPACE-
complete membership problem and co-AEXPSPACE=AEXPSPACE=2EXPTIME, we
obtain the 2EXPTIME-hardness result. ut

5 Conclusions

We show that the entailment problem, for symbolic heaps with inductively defined pred-
icates, showed to be decidable (with elementary recursive time complexity) in [4] has an
actual 2EXPTIME-hard lower bound. In the light of the recent results of [7], we expect
2EXPTIME to be the tight complexity for what is currently the most general decidable
class of entailments for Separation Logic with inductive definitions.
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