
HAL Id: hal-02388025
https://hal.science/hal-02388025

Preprint submitted on 2 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural Invariants for Parametric Verification of
Systems with Almost Linear Architectures

Dorel Marius Bozga, Radu Iosif, Joseph Sifakis

To cite this version:
Dorel Marius Bozga, Radu Iosif, Joseph Sifakis. Structural Invariants for Parametric Verification of
Systems with Almost Linear Architectures. 2019. �hal-02388025�

https://hal.science/hal-02388025
https://hal.archives-ouvertes.fr

Structural Invariants for Parametric Verification of
Systems with Almost Linear Architectures

Marius Bozga, Radu Iosif and Joseph Sifakis

Univ. Grenoble Alpes, CNRS, Grenoble INP??, VERIMAG, 38000 Grenoble France

We consider concurrent systems consisting of a finite but unknown number of com-
ponents, that are replicated instances of a given set of finite state automata. The com-
ponents communicate by executing interactions which are simultaneous atomic state
changes of a set of components. We specify both the type of interactions (e.g. rendez-
vous, broadcast) and the topology (i.e. architecture) of the system (e.g. pipeline, ring)
via a decidable interaction logic, which is embedded in the classical weak sequential
calculus of one successor (WS1S). Proving correctness of such system for safety prop-
erties, such as deadlock freedom or mutual exclusion, requires the inference of an induc-
tive invariant that subsumes the set of reachable states and avoids the unsafe states. Our
method synthesizes such invariants directly from the formula describing the interac-
tions, without costly fixed point iterations. We applied our technique to the verification
of several textbook examples, such as dining philosophers, mutual exclusion protocols
and concurrent systems with preemption and priorities.

1 Introduction

The problem of parametric verification asks whether a system composed of n replicated
processes is safe, for all n ≥ 2. By safety we mean that every execution of the system
stays clear of a set of global error configurations, such as deadlocks or mutual exclusion
violations. Even if we assume each process to be finite-state and every interaction to be
a synchronization of actions without data exchange, the problem remains challenging
because we want a general proof of safety, that works for any number of processes.

In general, parametric verification is undecidable if unbounded data is exchanged
[5], while various restrictions of communication (rendez-vous) and architecture1 (ring,
clique) define decidable subproblems [14,21,20,4]. Seminal works consider rendez-
vous communication, allowing a fixed number of participants [14,21,20], placed in a
ring [14,20] or a clique [21]. Recently, MSO-definable graphs (with bounded tree- and
cliquewidth) and point-to-point rendez-vous communication were considered in [4].

Most approaches to decidability focus on computing a cut-off bound c, that re-
duces the verification problem from n ≥ 2 to at most c processes [14,20]. Other methods
identify systems with well-structured transition relations, for which symbolic enumer-
ation of reachable states is feasible [1] or reduce to known decidable problems, such as
reachability in vector addition systems [21]. When theoretical decidability is not of con-
cern, semi-algorithmic techniques such as regular model checking [25,2], SMT-based
bounded model checking [3,17], abstraction [9,12] and automata learning [15] can be

?? Institute of Engineering Univ. Grenoble Alpes
1 We use the term architecture for the shape of the graph along which the interactions take place.

used to deal with more general classes of systems. An exhaustive chart of existing para-
metric verification techniques is drawn in [11].

The efficiency of a semi-algorithmic method crucially relies on its ability of synthe-
sizing an inductive safety invariant, that is an infinite set of global configurations, which
contains the initial configurations, is closed under the transition relation, and excludes
the error configurations. In general, automatically synthesizing invariants requires com-
putationally expensive fixpoint iterations [18]. In the particular case of parametric sys-
tems, invariants can be either global, relating the local states of all processes [19], or
modular, relating the states of few processes, of unimportant identities [29,16].

We focus on parametric systems described using the Behavior-Interaction-Priorities
(BIP) framework [8], in which processes are instances of finite-state component types,
whose interfaces are sets of ports, labeling transitions between local states, and inter-
actions are sets of strongly synchronizing ports, described by formulae of an interac-
tion logic. An interaction formula captures the architecture of the interactions (pipeline,
ring, clique, tree) and the communication scheme (rendez-vous, broadcast), which are
not hardcoded, but rather specified by the system designer.

As a distinguishing feature, we synthesize invariants directly from the interaction
formula of a system, without iterating its transition relation. Such invariants depend
only on the structure (and not on the operational semantics) of the interaction network,
described by a Petri Net of unbounded size, being thus structural invariants. Essentially,
the invariants we infer use the traps2 of the system, which are sets W of local states with
the property that, if a process is in a state from W initially, then always some process
will be in a state from W. We call these invariants trap invariants [10,13].

Infering trap invariants from interaction formulae relies on two logical operations:
(a) the positivation operation, producing a weaker formula with the same minimal mod-
els, and (b) the dualization operation, that essentially switches the conjunctions with
disjunctions and the universal with existential quantifiers. Although dualization is just
a linear time syntactic transformation of formulae, positivation is a more involved oper-
ation, depending on the semantics of the underlying logic. A definition of positivation
for a simple interaction logic, relying on equalities and disequalities between process
indices to describe clique architectures, is provided in [13].
Our Contribution This paper describes a non-trivial a generalization of the method
from [13], that considers an interaction logic with equality and uninterpreted monadic
predicate symbols, which is embedded into the combined theory of sets and Presburger
cardinality constraints [27]. In addition, here we introduce a cyclic (modulo-n, where n
is the unbounded parameter of the system) successor function and embed our logic in
the weak monadic logic of one successor (WS1S), for which validity of a formula boils
down to proving language emptiness of a finite Rabin-Scott automaton built from that
formula. This new logic naturally describes systems with ring and pipeline, as well as
previously considered clique/multiset architectures. Moreover, we provide an example
showing that the method can be easily generalized to handle tree-like architectures.

The trap invariants method is incomplete, meaning that there exists parametric sys-
tems that are safe for any number of components, but whose trap invariant does not
suffice to prove safety. We deal with this problem by computing universal Ashcroft in-

2 Called in this way by analogy with the notion of traps for Petri Nets [30].

variants [6], able to add extra constraints inferred by restricting the interaction formula
of the parametric system to a fixed set of symbolic components. This technique is or-
thogonal to the trap invariant computation and resembles the computation of invisible
invariants [29], but tailored to the BIP framework we have chosen to work with.
Running Example Consider the dining philosophers system in Fig. 1, consisting of
n≥ 2 components of type Fork and Philosopher respectively, placed in a ring of size 2n.
The k-th philosopher has a left fork, of index k and a right fork, of index (k + 1) mod n.
Each component is an instance of a finite state automaton with states f (ree) and b(usy)
for Fork, respectively w(aiting) and e(ating) for Philosopher. A fork goes from state
f to b via a t(ake) transition and from f to b via a `(leave) transition. A philosopher
goes from w to b via a g(et) transition and from e to w via a p(ut) transition. In this
example, we assume that the g action of the k-th philosopher is executed jointly with the
t actions of the k-th and (k + 1) mod n forks, in other words, the philosopher takes both
its left and right forks simultaneously. Similarly, the p action of the k-th philosopher is
executed simultaneously with the ` action of the k-th and [(k + 1) mod n]-th forks, i.e.
each philosopher leaves both its left and right forks at the same time. We describe the
interactions of the system by the following first order formula Γphilo = ∃i . [g(i)∧ t(i)∧
t(s(i))]∨ [p(i)∧`(i)∧`(succ(i))], where transition labels (ports) are encoded as monadic
predicate symbols and succ(.) is the function symbol which denotes the successor of an
index in the ring. Each interaction is defined by a model of this formula, for instance
the structure interpreting g as the set {k} and t as the set {k, (k + 1) mod n} corresponds
to the interaction of the k-th philosopher taking its forks, where 0 ≤ k < n is some index.
The ring topology is implicit in the modulo-n interpretation of the successor function s
as each k-th component interacts with its k-th and succ(k)-th neighbours only.

`(succ(k))

w

e

gp

p(k) g(k)

f

b

t`

Philosopher(k)Fork(k) Fork((k + 1) mod N)

Γphilo = ∃i . [g(i)∧ t(i)∧ t(succ(i))]∨ [p(i)∧ `(i)∧ `(succ(i))]

f

b

t`

`(k) t(k) t(succ(k))

Fig. 1: Parametric Dining Philosophers

Intuitively, the system is deadlock-
free for any n ≥ 2 since there is no
circular waiting scenario involving all
the philosophers at once. A rigorous
proof requires an invariant disjoint from
the set of deadlock states, defined by
the formula ∆(Γphilo) = ∀i . [¬w(i) ∨
¬ f (i) ∨ ¬ f (succ(i))] ∧ [¬e(i) ∨ ¬b(i) ∨
¬b(succ(i))]. Our method computes a
trap invariant corresponding to the set
of solutions of the following constraint
Θ(Γphilo) = ∀i . w(i)∨ f (i)∨ f (succ(i))↔
e(i)∨ b(i)∨ b(succ(i)), derived from the interaction formula Γ and the local structure
of the component types. Together with an automata-based decision procedure for the
interaction logic, this invariant allows to prove deadlock freedom for the system in Fig.
1 in ∼0.1 seconds on an average machine.

2 Parametric Component-based Systems

A component type is a tuple C= 〈P,S, s0,∆〉, where P = {p,q,r, . . .} is a finite set of ports,
S is a finite set of states, s0 ∈ S is an initial state and ∆ ⊆ S×P×S is a set of transitions

s
p
−→ s′. To simplify the upcoming technical details, we assume there are no two different

transitions with the same port and write, for a port p that labels a transition s
p
−→ s′ ∈ ∆,

•p and p• for the source s and destination s′ of that (unique) transition, respectively.
A component-based system S = 〈C1, . . . ,CK ,Γ〉 consists of a fixed number (K) of

component types Ck = 〈Pk,Sk, s0
k,∆k〉 and an interaction formula Γ. We shall sometimes

write P(Ck), S(Ck), s0(Ck) and ∆(Ck) for Pk, Sk, s0
k and ∆k, respectively. Without loss of

generality, we assume that Pi∩P j = ∅, for all 1 ≤ i < j ≤ K and unambiguously denote
by type(p) def

= Ck the component type of a port p ∈ Pk. For instance, in Fig. 1 we have
type(g`) = type(gr) = type(p) = Philosopher and type(g) = type(`) = Fork.

The interaction logic intentionally uses the names of the ports and states, here
viewed as monadic predicate symbols Pred =

⋃K
k=1(Pk ∪Sk), where pr ∈ Pred is an

arbitrary predicate symbol. In addition, we consider a countable set Var of first-order
variables and a set of constant symbols Const. The only function symbol of arity greater
than zero is succ(.), denoting the successor function. Interaction formulae are written
in the syntax of Interaction Logic with One Successor (IL1S), given below:

t := x ∈ Var | c ∈ Const | succ(t) terms
φ := t1 ≤ t2 | pr(t) | φ1∧φ2 | ¬φ1 | ∃x . φ1 formulae

A sentence is a formula in which all variables are in the scope of a quantifier. A formula
is positive if each predicate symbol occurs under an even number of negations and
ground if it contains no variables. We write t1 = t2 for t1 ≤ t2 ∧ t2 ≤ t1, φ1 ∨ φ2 for
¬(¬φ1∧¬φ2), φ1→ φ2 for ¬φ1∨φ2, φ1↔ φ2 for φ1→ φ2∧φ2→ φ1, ∀x . φ for ¬∃ . ¬φ.

For a positive integer n > 0, we denote by [n] the set {0, . . . ,n−1}. We interpret IL1S
formulae over structures I = ([n], ι, ν), where [n] is the universe, ι : Const∪Pred→
[n]∪2[n] maps constant symbols into elements and predicate symbols into subsets of [n],
respectively, and ν : Var→ [n] maps variables into elements of [n]. The successor func-
tion symbol succ(.) is always interpreted in I by the function sn

IL1S(x) = (x + 1) mod n
and the inequality relation by the set {(u,v) ∈ [n]× [n] | u ≤ v}. With these definitions,
the truth value of a formula φ in I is defined recursively on the structure of φ and we
write I |= φ when this value is true.
Remark We adopted a circular modulo-n interpretation of the successor function,
to naturally accomodate ring-like architectures, common in distributed system design
practice. This is not a restriction, because clique architectures, where every compo-
nent can interact with any other, can be described using only equality and disequal-
ity atoms. Moreover, acyclic pipeline architectures can be described using the order
relation, as follows: we identify a least and a greatest element in the domain, namely
inf (x) def

= ∀y . x≤ y and sup(x) def
= ∀y . y≤ x, and describe interactions only for indices that

are between those elements. For the set of indices x such that ∃ζ∃ξ . inf (ζ)∧sup(ξ)∧ζ ≤
x∧ x < ξ holds, the graph of the successor function is acyclic. Further, in §3.1 we show
that IL1S can be extended with equalities modulo constants, such as the even and odd
predicates, without changing the invariant synthesis method upon which our verifica-
tion technique is based. Finally, in §3.2, we argue that tree architectures can be fitted in
this framework, with minimal changes. This claim is sustained by an example in §5. �

One of the consequences of the modulo-n interpretation of the successor function
symbol is the existence of a IL1S formula that states the exact cardinality of the model:
∃x . succk(x) = x∧

∧k−1
i=1 ¬succi(x) = x. This formula is true if and only if the cardinality

of the universe equals the constant k. Since the purpose of IL1S is to specify interac-
tions in a system whose number of components is arbitrary, we shall restrict interaction
formulae to finite disjunctions of formulae of the form below:

∃x1 . . .∃x` . ϕ∧
∧`

j=1 p j(x j)∧
∧`+m

j=`+1∀x j . ψ j→ p j(x j) (1)
where ϕ,ψ`+1, . . . ,ψ`+m are conjunctions of inequalities involving index variables, such
that no comparison between terms with the same variable is allowed, i.e. ϕ and ψ j do
not contain atomic propositions of the form succi(x) ≤ succ j(x) for i, j > 0. Moreover,
we assume that type(pi) = type(p j)⇒ pi = p j, for all 1 ≤ i < j ≤ `+ m, i.e. the formula
does not specify interactions between different ports of the same component type3.

Informally, the formula (1) states that at most ` components can simultaneously
engage in a multiparty rendez-vous, together with a broadcast to the ports p`+1, . . . , p`+m
of the components whose indices satisfy the constraints ψ`+1, . . . ,ψ`+m, respectively.
An example of peer-to-peer rendez-vous with no broadcast is the dining philosophers
system in Fig. 1, whereas examples of broadcast are found among the test cases in §5.

2.1 Execution Semantics of Component-based Systems

The semantics of a component-based system is defined by a 1-safe Petri Net, whose
(reachable) markings and actions characterize the (reachable) global states and tran-
sitions of the system. For reasons of self-completeness, we recall below several basic
definitions relative to Petri Nets.

Formally, a Petri Net (PN) is a tuple N = 〈S ,T,E〉, where S is a set of places, T is
a set of transitions, S ∩T = ∅, and E ⊆ S ×T ∪T ×S is a set of edges. The elements of
S ∪T are called nodes. Given nodes x,y ∈ S ∪T , we write E(x,y) def

= 1 if (x,y) ∈ E and
E(x,y) def

= 0, otherwise. For a node x, let •x def
= {y ∈ S ∪T | E(y, x) = 1}, x• def

= {y ∈ S ∪T |
E(x,y) = 1} and lift these definitions to sets of nodes, as usual.

A marking of N is a function m : S → N. A transition t is enabled in m if and only
if m(s) > 0 for each place s ∈ •t. The transition relation of N is defined as follows. For
all markings m, m′ and all transitions t, we write m

t
−→ m′ whenever t is enabled in m

and m′(s) = m(s)−E(s, t) + E(t, s), for all s ∈ S . Given two markings m and m′, a finite
sequence of transitions σ = t1, . . . , tn is a firing sequence, written m

σ
−→ m′ if and only if

either (i) n = 0 and m = m′, or (ii) n ≥ 1 and there exist markings m1, . . . ,mn−1 such that

m
t1
−→ m1 . . .mn−1

tn
−→ m′.

A marked Petri net is a pair N = (N,m0), where m0 is the initial marking of N. A
marking m is reachable in N if and only if there exists a firing sequence σ such that
m0

σ
−→ m. We denote by R(N) the set of reachable markings of N . A set of markings

M is an invariant of N = (N,m0) if and only if m0 ∈ M and for each m
t
−→ m′ such

that m ∈ M, we have m′ ∈ M. A marked PN N is 1-safe if m(s) ≤ 1, for each s ∈ S
and m ∈ R(N). All PNs considered in the following will be 1-safe and we shall silently
blur the distinction between a marking m : S → {0,1} and the valuation νm : S → {⊥,>}
defined as νm(s) = > ⇐⇒ m(s) = 1.

Turning back to the definition of the semantics of component-based parametric sys-
tems, let S = 〈C1, . . . ,CK ,Γ〉 be a system with component types Ck = 〈Pk,Sk, s0

k,∆k〉, for
3 This restriction simplifies the technical presentation of the results and can be removed w.l.o.g.

all k = 1, . . . ,K. For each parameter n ≥ 1, we define a marked PN Nn
S

, of size O(n),
that characterizes the set of executions of the instance of S having n replicas of each
component type. Formally, given a positive integer n ≥ 1, we haveNn

S
= (N,m0), where

N def
= 〈

⋃K
k=1 Sk × [n],T,E〉 and whose sets of transitions T and edges E are defined from

the interaction formula Γ, as follows.

(b,succ(k))

(f ,succ(k))(w,k)

(e,k)(b,k)

.

(f ,k)

pk , `k , `succ(k) gk , tk , tsucc(k)

Fig. 2: Unbounded Marked Petri Net for the Dining Philosophers Example

First, we define the set of minimal models of Γ, where minimality is with respect to
the pointwise inclusion of the sets that interpret the predicate symbols. Formally, given
structures S1 = ([n], ν1, ι1) and S2 = ([n], ν2, ι2) sharing the same universe [n], we have
S1 v S2 if and only if ι1(pr) ⊆ ι2(pr), for all pr ∈ Pred. Given a formula φ, a structure S
is a minimal model of φ if S |= φ and, for all structures S′ such that S′ v S and S′ , S,
we have S′ 6|= φ. We denote by [[φ]]min the set of minimal models of φ. Two formulae φ1
and φ2 are minimally equivalent, written as φ1 ≡

min φ2, if and only if [[φ1]]min = [[φ2]]min.
Back to the definition of Nn

S
, for each minimal model I = ([n], ν, ι) ∈ [[Γ]]min, we

have a transition tI ∈ T and edges ((s, i), tI), (tI, (s′, i)) ∈ E, for all s
p
−→ s′ ∈

⋃K
k=1∆

k,
such that i ∈ ι(p), and nothing else is in T or E. The initial marking of Nn

S
corresponds

to the initial state of each components, formally for each 1 ≤ k ≤ K, each s ∈ Sk and
each 1 ≤ i ≤ n, m0((s, i)) = 1 if s = s0

k and m0((s, i)) = 0, otherwise. For instance, Fig. 2
shows the PN for the system in Fig. 1, with the initial marking highlighted.

Below we give a property of the marked PNs that define the semantics of parametric
component-based systems.

Definition 1. Given a component-based system S, a marked PNN = (N,m0), with N =

(S ,T,E), is S-decomposable if and only if there exists an integer n > 0 such that S =⋃K
k=1 Sk × [n] and in every reachable marking m ∈ R(N), for each 1 ≤ i ≤ n and each

1 ≤ k ≤ K there exists exactly one state s ∈ Sk such that m((s, i)) = 1.

Lemma 1. The marked PN Nn
S

is S-decomposable, for each component-based system
S and each integer n > 0.

Proof : Let S = 〈C1, . . . ,CK ,Γ〉 be a system with component types Ck = 〈Pk,Sk, s0
k,∆k〉,

for all k = 1, . . . ,K, and let n > 0 be a parameter. Let Nn
S

= (N,m0) and m ∈ R(Nn
S

) be a
reachable marking. Then N = (

⋃K
k=1 Sk × [n],T,E). We prove the property by induction

on the length ` of the shortest path from m0 to m. If ` = 0 the property holds because
each component type 1≤ k ≤ K has exactly one initial state s0

k and only the states (s0
k, i)

are initially marked, for all 1 ≤ i ≤ n. For the induction step ` > 0, assume that m′
t

−→ m
and the property of Definition 6 holds for m′. Then there exists I= ([n], ν, ι,µ) ∈ [[Γ]]min,
such that t = tI and, for each i ∈ [n] and each p ∈ Pk such that s′

p
−→ s ∈ ∆k and i ∈ ι(p),

there are edges ((s′, i), tI), (tI, (s, i)) ∈ E. Suppose, for a contradiction, that there exists
1 ≤ i0 ≤ n and 1 ≤ k0 ≤ K such that m((s, i0)) = m((s′′, i0)) = 1, for two distinct states
s, s′′ ∈ Sk. Then (tI, (s, i0)), (tI, (s′′, i0)) ∈ E and i0 ∈ ι(p)∩ ι(q), for two transition rules
s′

p
−→ s, s′

q
−→ s′′ ∈ ∆k. However, this comes in contradiction with the assumption that a

transition does not involve two different ports from the same component type (1). ut

3 Computing Trap Invariants

We leverage from a standard notion in the theory of Petri Nets to define a class of
invariants, that are useful for proving certain safety properties. Given a Petri Net N =

(S ,T,E), a set of places W ⊆ S is called a trap if and only if W• ⊆ •W. A trap W of N is
an initially marked trap (IMT) of the marked PN N = (N,m0) if and only if m0(s) = >

for some s ∈ W. An IMT of N is minimal if none of its nonempty strict subsets is an
IMT of N . We denote by Imt(N) ⊆ 2S the set of IMTs of N .
Example 1. Consider an instance of the marked PN in Fig. 2 for n = 2. For simplicity,
we denote places (f ,k), (w,k), (b,k) and (e,k) as fk,wk,bk and ek for k = 0,1, respec-
tively. The local states of each component form a minimal trap, i.e. { fk,bk} and {wk,ek}

are traps, for k = 0,1. In addition, {w0,e0,w1}, {w0,b1,w1}, { f0,b0,e1} and { f1,b0,e1} are
also minimal traps. �

An IMT defines an invariant of the PN, because some place in the trap will always
be marked, no matter which transition is fired. The trap invariant of N is the set of
markings that mark each IMT ofN . The trap invariant ofN subsumes the set of reach-
able markings of N , because the latter is the least invariant of N4. To prove that a
certain set of markings is unreachable, it is sufficient to prove that the this set has empty
intersection with the trap invariant. For self-completeness, we briefly discuss the com-
putation of trap invariants for a given marked PN of fixed size, before explaining how
this can be done for marked PNs defining the executions of parametric systems, which
are of unknown sizes.

Definition 2. The trap constraint of a PN N = (S ,T,E) is the formula:

Θ(N) def
=

∧
t∈T

(∨
x ∈ •t x

)
→

(∨
y ∈ t• y

)
where each place x,y ∈ S is viewed as a propositional variable.

It is not hard to show5 that any boolean valuation β : S → {⊥,>} that satisfies the trap
constraint Θ(N) defines a trap Wβ of N in the obvious sense Wβ = {s ∈ S | β(s) = >}.
Further, if m0 : S → {0,1} is the initial marking of a 1-safe PN N and µ0

def
=

∨
m0(s)=1 s

is a propositional formula, then each minimal satisfying valuation of µ0∧Θ(N) defines
a minimal IMT of (N,m0), where minimality of boolean valuations is considered with
respect to the usual partial order β1 � β2 ⇐⇒ ∀s ∈ S . β1(s)→ β2(s).

Usually, computing invariants requires building a sequence of underapproximants
whose limit is the least fixed point of an abstraction of the transition relation of the

4 Since invariants are closed under intersection, the least invariant is unique.
5 See e.g. [7] for a proof.

system [18]. This is however not the case with trap invariants, that can be directly com-
puted by looking at the structure of the system, captured by the trap constraint, and to
the initial marking. To this end, we introduce two operations on propositional formu-
lae. First, given a propositional formula φ, we denote by (φ)+ the result of deleting (i.e.
replacing with >) the negative literals from the DNF of φ. It is not hard to show that
φ ≡min (φ)+, i.e. this transformation preserves the minimal satisfying valuations of φ.
We call this operation positivation.

Second, let φ∼ denote the result of replacing, in the negation normal form of φ, all
conjunctions by disjunctions and viceversa. Formally, assuming that φ is in NNF, let:

(φ1∧φ2)∼ def
= φ1

∼∨φ2
∼ (φ1∨φ2)∼ def

= φ1
∼∧φ2

∼ (¬s)∼ def
= ¬s s∼ def

= s

For any boolean valuation β, we have β |= φ ⇐⇒ β |= ¬(φ∼), where β(s) def
= ¬β(s) for

each propositional variable s. This operation is usually referred to as dualization.
The following lemma gives a straightforward method to compute trap invariants,

logically defined by a CNF formula with positive literals only, whose clauses corre-
spond to the (enumeration of the elements of the) traps. It is further showed that such a
formula defines an invariant of the finite marked PN:

Lemma 2. Given a marked PNN = (N,m0), we have TrapInv(N) ≡
(
((µ0∧Θ(N)))+)∼,

where TrapInv(N) def
=

∧
W∈Imt(N)

∨
s∈W s and µ0

def
=

∨
m0(s)=1 s. Moreover, [[TrapInv(N)]]

is the trap invariant of N .

Proof : Let N = (S ,T,E) and W ⊆ S be a trap of N. We have the following equivalences:
W• ⊆ •W ⇐⇒∧

p∈S [p ∈W → {t ∈ T | (p, t) ∈ E} ⊆ {t ∈ T |
∨

q∈S (t,q) ∈ E}] ⇐⇒∧
p∈S [p ∈W → (

∧
t∈T p ∈ •t→

∨
q∈S q ∈W ∧q ∈ t•)] ⇐⇒∧

p∈S
∧

t∈T (p ∈W ∧ p ∈ •t →
∨

q∈S q ∈W ∧q ∈ t•) ⇐⇒∧
t∈T (

∨
p ∈ •t p ∈W →

∨
q∈t• q ∈W)

If we use propositional variables p and q to denote p ∈W and q ∈W, respectively, we
obtain the trap constraint Θ(N) from the last formula. Hence, any boolean valuation
β ∈ [[µ0 ∧Θ(N)]] corresponds to an initially marked trap Wβ

def
= {p ∈ S | β(p) = >}. Fur-

ther, since µ0 ∧Θ(N) is a propositional formula, each satisfying valuation corresponds
to a conjunctive clause of its DNF. Hence the set of propositional variables in each
conjunctive clause in the DNF of (µ0∧Θ(N))+ corresponds to an IMT and, moreover,
every IMT has a corresponding conjunctive clause. Thus TrapInv(N) ≡

(
(µ0∧Θ(N))+)∼

follows. The second point follows directly from the definition TrapInv(N). ut

The computation of a trap invariant consists of the following steps: (1) convert the
propositional formula µ0 ∧Θ(N) in DNF, (2) for each conjunctive clause, remove the
negative literals and (3) dualize the result. Importantly, the first two steps can be re-
placed by any transformation on formulae whose result is a positive formula that is
minimally equivalent to the input, because only the minimal traps are important for the
trap invariant. Moreover, the negative literals do not occur in the propositional defini-
tion of a set of places, which is why we require the input of dualization to be a positive

formula6. These two properties of positivation constitute the basis of the definition of
positivation for quantified IL1S formulae, next in §3.2.

In the rest of this section we focus on computing trap invariants for 1-safe marked
PNs obtained from parametric systems consisting of O(n) components, where n ≥ 1 is
an unknown parameter. We write parametric trap constraints using the same logic IL1S,
used to describe interaction formulae. Namely, if Γ is an interaction formula consising
of a disjunction of formulae of the form (1), then Θ(Γ) is the conjunction of formulae
of the form below (2), one for each (1) formula in the disjunction:

∀x1 . . .∀x` . ϕ∧
[∨`

j=1
•p j(i j)∨

∨`+m
j=`+1∃x j . ψ j∧

•p j(i j)
]

→
∨`

j=1 p j
•(i j)∨

∨`+m
j=`+1∃x j . ψ j∧ p j

•(i j)
(2)

where, for a port p ∈ Pk of some component type Ck, •p(x) and p(x)• denote the unique
predicate atoms s(x) and s′(x), such that s

p
−→ s′ ∈ ∆k is the unique transition involving

p, or⊥ if there is no such rule. Note thatΘ(Γ) is the generalization of the trap constraint
Θ(N) for a given fixed size PN, to the case of a parametric system described by an inter-
action formula Γ. For instance, the trap constraint of the Dining Philosophers example
from Fig. 1, with interaction formula Γphilo = ∃i . [g(i)∧ t(i)∧ t(succ(i))]∨ [p(i)∧ `(i)∧
`(succ(i))] is Θ(Γphilo) = ∀i . w(i)∨ f (i)∨ f (succ(i))↔ e(i)∨b(i)∨b(succ(i)).

In order to define a trap invariant computation method for parametric systems de-
scribed using IL1S interaction formulae, we need counterparts of the propositional pos-
itivation and dualization operations, obtained as follows: (1) we translate IL1S trap con-
straints into equivalent formulae of weak monadic second order logic of one successor
(WS1S), and (2) we leverage from the standard automata theoretic two-way translation
between WS1S and finite Rabin-Scott automata to define positivation and dualization
directly on automata. For presentation purposes, we define first dualization on WS1S
formulae, however for efficiency, our implementation applies it on automata directly.
We have not been able to define a semantic equivalent of positivation as an operation
on WS1S formulae, thus we need to work with automata for this purpose.

3.1 From IL1S to WS1S

We introduce the standard second order logic WS1S interpreted over finite words, by
considering an infinite countable set SVar of set variables, denoted as X,Y, . . . in the
following. The syntax of WS1S is the following:

t := ε̄ | x | succ(t) terms
φ := t1 = t2 | pr(t) | X(t) | φ1∧φ2 | ¬φ1 | ∃x . φ1 | ∃X . φ1 formulae

Note that the syntax of WS1S is the syntax of IL1S, extended with the constant symbol
ε̄, atoms X(t) and monadic second order quantifiers ∃X . φ. As discussed below, we
consider w.l.o.g. equality atoms t1 = t2 instead of inequalities t1 ≤ t2 in IL1S.

WS1S formulae are interpreted over structures S = ([n], ι, ν,µ), where ι and ν are
as for IL1S and µ : SVar→ 2[n] is an interpretation of the set variables. Moreover,
the constant symbol 0̄ is interpreted as the integer zero and the successor function is

6 If the DNF is (p∧q)∨ (p∧¬r), the dualization would give (p∨q)∧ (p∨¬r). The first clause
corresponds to the trap {p,q} (either p or q is marked), but the second does not directly define
a trap. However, by first removing the negative literals, we obtain the traps {p,q} and {r}.

interpreted differently, by the function sWS1S(x) def
= x + 1 if x < n− 1 and sWS1S(n− 1) def

=

n−17. Inequalities t1 ≤ t2 can be defined in the usual way, using second-order transitive
closure of the successor relation and t1 < t2 stands for t1 ≤ t2 ∧¬t1 = t2. Moreover, 0̄
can be defined using inequality and is considered as part of the syntax mainly for the
conciseness of the presentation.

Next, we define an embedding of IL1S formulae into WS1S. W.l.o.g. we con-
sider IL1S formulae that have been previously flattened, i.e the successor function oc-
curs only within atomic propositions of the form x = succ(y). Roughly, this is done
by replacing each atomic proposition succi(x) = y by the formula ∀x1 . . .∀xi−1 . x1 =

succ(x)∧
∧i−2

j=1 x j+1 = succ(x j)→ succ(xi−1) = y, the result being a formula φflat in which
only atoms of the form s(x) = y occur. Moreover, any constant symbol c ∈ Const from
the input IL1S formula is replaced by a fresh free variable xc. Let Tr(φ) def

= ∃ξ . ∀y . y ≤
ξ∧ tr(φ), where tr(φ) is defined recursively on the structure of φ:

tr(succ(x) = y) def
= (x < ξ∧ succ(x) = y)∨ (x = ξ∧ y = 0̄) tr(x ≤ y) def

= x ≤ y
tr(pr(x)) def

= pr(x) tr(φ1∧φ2) def
= tr(φ1)∧ tr(φ2)

tr(¬φ1) def
= ¬tr(φ1) tr(∃x . φ1) def

= ∃x . tr(φ1)
and ξ is not among the free variables of φ.

Lemma 3. Given an IL1S formula φ, the following are equivalent:
1. ([n], ν, ι) |= φ,
2. ([n], ν, ι,µ) |= Tr(φ), for any µ : SVar→ 2[n].

Proof : “(1)⇒ (2)” First, it is routine to check that, for any WS1S-structure, we have
([n], ι, ν,µ) |= ∀y . y ≤ x ⇐⇒ ν(x) = n−1. Suppose that φ has a model I = ([n], ι, ν) and
the interpretation of s is sn

IL1S. Then we show that S = ([n], ι, ν,µ) is a model of Tr(φ), for
any µ : SVar→ 2[n]. For this, it is enough to show that ([n], ι, ν[µ← n− 1],µ) |= tr(φ),
by induction on the structure of φ. The base cases are:

– s(x) = y: in this case sn
IL1S(ν(x)) = ν(y) and thus ν(y) = (ν(x) + 1) mod n, by the

definition of sn
IL1S. But then either ν(x) < n−1 and ν(y) = ν(x)+1 or ν(x) = n−1 and

ν(y) = 0, thus S |= tr(s(x) = y), as required.
– pr(x): in this case ν(x) ∈ ι(p) and S |= tr(pr(x)) by the definition.

The induction cases are immediate.
“(1)⇐ (2)” If ([n], ν, ι,µ) |= Tr(φ), for some arbitrary mapping µ : SVar→ 2[n], then

we have ([n], ν[ν← n− 1], ι,µ) |= tr(φ) and we show ([n], ν, ι) |= φ by induction on the
structure of φ. The most interesting case is when φ is s(x) = y, in which case either:

– ν(x) < n−1 and ν(y) = ν(x) + 1, or
– ν(x) = n−1 and ν(y) = 0.

In each case, we have sn
IL1S(ν(x)) = ν(y), hence ([n], ν, ι) |= s(x) = y, as required. ut

Remark The above translation can be easily generalized to the case where IL1S con-
tains any WS1S-definable relation, such as the even(x) predicate, defined below:

even(x) def
= ∃X∃Y . X(x)∧X(0̄)∧∀y . X(y)↔¬Y(y)∧
∀y . X(y)∧ y , succ(y)→ Y(succ(y))∧∀y . Y(y)∧ y , succ(y)→ X(succ(y))

7 By classical convention, the successor on a finite domain is a total function that loops on the
greatest element [26, Example 2.10.3].

Analogously, we can include any modulo constraint of the form x ≡k `, where k > 0 and
0 ≤ ` < k are integer constants. �

Next, we define the dualization φ∼ of a WS1S formula φ, in negative normal form:

(t1 = t2)∼ def
= ¬t1 = t2 (¬t1 = t2)∼ def

= t1 = t2
pr(t)∼ def

= pr(t) (¬pr(t))∼ def
= ¬pr(t)

X(t)∼ def
= ¬X(t) (¬X(t))∼ def

= X(t)

(φ1∧φ2)∼ def
= φ1

∼∨φ2
∼ (φ1∨φ2)∼ def

= φ1
∼∧φ2

∼

(∃x . φ1)∼ def
= ∀x . φ1

∼ (∀x . φ1)∼ def
= ∃x . φ1

∼

(∃X . φ1)∼ def
= ∀X . φ1

∼ (∀X . φ1)∼ def
= ∃X . φ1

∼

Note that dualization acts differently on predicate literals of the form pr(t) and ¬pr(t)
than on literals involving a set variable X(t) and ¬X(t). Namely, the former are left
unchanged, whereas the latter are negated. Its formal property is stated below:

Lemma 4. Given a WS1S formula φ, for every structure S = ([n], ν, ι,µ) we have S |=
φ ⇐⇒ S |= ¬(φ∼), where S def

= ([n], ν, ι,µ) and for each pr ∈ Pred, ι(pr) def
= [n] \ ι(pr).

Proof : By induction on the structure of φ:
– t1 = t2 and ¬t1 = t2: the truth value of this atom is the same in S and S and moreover

t1 = t2 and ¬ (t1 = t2)∼ are equivalent.
– X(t) and ¬X(t): same as above.
– pr(t): the interpretation of t is the same in S and S, because it depends only on ν.

Let k ∈ [n] be this value. Then we obtain:
S |= pr(t) ⇐⇒ k ∈ ι(pr) ⇐⇒ k < ι(pr) ⇐⇒ S |= ¬pr(t) .

– ¬pr(t): a consequence of the equivalence S |= pr(t) ⇐⇒ S |= ¬pr(t), established at
the previous point.

The rest of the cases are easy applications of the induction hypothesis. ut

For technical reasons, we also introduce a booleanization operation that, given a
WS1S formula φ and a positive constant n > 0, produces a propositional formula Bn(φ)
with the property that each model ([n], ν, ι,µ) of φ can be turned into a satisfying boolean
valuation for Bn(φ) and viceversa, from every boolean model of Bn(φ) one can extract
a model of φ.

First, given an integer i ≥ 0 and a WS1S formula φ(x), we denote by φ[i/x] (resp.
t[i/x]) the formula (term) obtained from φ (resp. t) by replacing every occurrence of x
with the term si(0̄), where si denotes i successive applications of the successor function.
Second, for a set S of positive integers, the formula φ[S/X] is defined homomorphically,
starting with the base case X(t)[S/X] def

=
∨

i∈S t = si(0̄).

Bn
(
si(0̄) = s j(0̄)

) def
= i = j∨ (i ≥ n−1∧ j ≥ n−1) Bn

(
pr(si(0̄))

) def
= prmin(i,n−1)

Bn(φ1∧φ2) def
= Bn(φ1)∧Bn(φ2) Bn(¬φ1) def

= ¬Bn(φ1)
Bn(∃x . φ) def

=
∨

i∈[n] Bn(φ[i/x]) Bn(∃X . φ) def
=

∨
S⊆[n] Bn(φ[S/X])

where, for any pr ∈ Pred and j ∈ [n], pr j is a propositional variable ranging over the
boolean values > (true) and ⊥ (false). Moreover, we relate WS1S structures with
boolean valuations as follows. Given a structure S = ([n], ν, ι,µ) we define the boolean
valuation βS(pr j)

def
= > ⇐⇒ s j

WS1S(0) ∈ ι(pr), for all pr ∈ Pred and j ∈ [n]. The following
lemma states the formal property of booleanization:

Lemma 5. Given a WS1S sentence φ and n > 0, for every structure S = ([n], ν, ι,µ), we
have S |= φ ⇐⇒ βS |= Bn(φ).

Proof : We prove the following more general statement. Let φ(x1, . . . , xk,X1, . . . ,Xm) be a
WS1S formula with free variables x1, . . . , xk ∈ Var and X1, . . . ,Xm ∈ SVar, i1, . . . , ik ∈ [n]
and S 1, . . . ,S m ⊆ [n]. Then we show that:

S |= φ[i1/x1, . . . , ik/xk,S 1/X1, . . . ,S m/Xm]
⇐⇒

βS |= Bn(φ[i1/x1, . . . , ik/xk,S 1/X1, . . . ,S m/Xm])
by induction on the structure of φ:

– t1 = t2: since φ[i1/x1, . . . , ik/xk,S 1/X1, . . . ,S m/Xm] is a sentence, it must be the case
that t1 = si1 (0̄) and t2 = si2 (0̄), for some i1, i2 ≥ 0. Then we have:

S |= si1 (0̄) = si2 (0̄) ⇐⇒ si1
WS1S(0) = si2

WS1S(0)

⇐⇒ i1 = i2∨ (i1 ≥ n−1∧ i2 ≥ n−1)

⇐⇒ βS |= Bn
(
si1 (0̄) = si2 (0̄)

)
.

– pr(t): since φ[i1/x1, . . . , ik/xk,S 1/X1, . . . ,S m/Xm] is a sentence, it must be the case
that t = si(0̄), for some i ≥ 0. We obtain:

S |= pr(si(0̄)) ⇐⇒ si
WS1S(0̄) ∈ ι(pr)

⇐⇒ smin(i,n−1)
WS1S ∈ ι(pr)

⇐⇒ βS |= prmin(i,n−1) .

The rest of the cases are easy applications of the induction hypothesis. ut

Finally, we relate WS1S dualization, booleanization and propositional dualization:

Lemma 6. Given a WS1S formula φ and an integer n > 0, we have Bn(φ∼) ≡ Bn(φ)∼.

Proof : Let β : {prk | pr ∈ Pred,k ∈ [n]} → {>,⊥} be an arbitrary boolean valuation and
let S = ([n], ν, ι,µ) be a structure such that, for each pr ∈ Pred, we have ι(pr) = {k ∈ [n] |
β(prk) = >} and ν, µ are picked at random. Obviously, we have that β = βS, hence by
Lemma 10, β |= Bn(φ∼) ⇐⇒ S |= φ∼ and by Lemma 4 we get S |= φ∼ ⇐⇒ S |=¬φ ⇐⇒
β
S
|= ¬Bn(φ) again, by Lemma 10 and the definition of Bn(¬φ) = ¬Bn(φ). Let β be the

boolean valuation defined as β(prk) = ¬β(prk) for all pr ∈ Pred and k ∈ [n]. Then clearly
β = β

S
and β |= ¬Bn(φ) ⇐⇒ β |= Bn(φ)∼ follows. ut

3.2 Trap Invariants as Automata

The purpose of introducing automata is the definition of a positivation operator for
IL1S or, equivalently, for WS1S formulae. Recall that, given a formula φ, the result
of positivation is a formula (φ)⊕ in which all predicate symbols occur under an even
number of negations and, moreover φ ≡min (φ)⊕.

Unlike dualization, positivation is not defined on formulae but on equivalent au-
tomata on finite words, obtained via the classical two-way translation between WS1S

and Rabin-Scott automata, described next. Let us fix a structure S = ([n], ν, ι,µ) such
that dom(ν) = {x1, . . . , xk} , dom(ι) = {pr1, . . . ,pr`} and dom(µ) = {X1, . . . ,Xm} are all fi-
nite. Each such structure is viewed as a word wS = σ0 . . .σn−1 of length n over the
alphabet {0,1}k+`+m, where, for all i ∈ [n], we have:

– σi(j) = 1 if ν(x j) = i and σi(j) = 0 otherwise, for all 1 ≤ j ≤ k,
– σi(j) = 1 if i ∈ ι(pr j−k) and σi(j) = 0 otherwise, for all k < j ≤ k + `,
– σi(j) = 1 if i ∈ µ(X j−k−`) and σi(j) = 0 otherwise, for all k + ` < j ≤ k + `+ m.

In other words, the j-th track of w encodes (i) the unique value w(x j)
def
= ν(x j), if 1 ≤

j ≤ k, (ii) the set w(pr j)
def
= ι(pr j−k), if k < j ≤ k + `, or (iii) the set w(X j)

def
= µ(X j−k−`), if

k+` < j≤ k+`+m. For an alphabet symbol σ ∈ {0,1}k+`+m, we write σ(pr j) for σ(j+k).
Example 2. Consider the structure S= ([6], ν, ι,µ), where ν(x1) = 3, ι(pr1) = {0,2,5} and
µ(X1) = {1,3}. Moreover, assume that ν, ι and µ are undefined elsewhere. The word wS
is given below:

0 1 2 3 4 5
x1 0 0 0 1 0 0
pr1 1 0 1 0 0 1
X1 0 1 0 1 0 0

�

Given x1, . . . , xk ∈ Var, pr1, . . . ,pr` ∈ Pred and X1, . . . ,Xm ∈ SVar, a nondeterministic
finite automaton over the alphabet {0,1}k+`+m is a tuple A = (Q, I,F, δ), where Q is the
finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states
and δ ⊆ Q× {0,1}k+`+m ×Q is the transition relation. A given a word w = σ0 . . .σn−1
as before, a run of A over w is a sequence of states ρ = s0 . . . sn, such that s0 ∈ I and
(si,σi, si+1) ∈ δ, for all i ∈ [n]. The run is accepting if sn ∈ F, in which case we say that
A accepts the word w. The language of A, denoted by L(A), is the set of words accepted
by A. The following theorem is automata-theoretic folklore8:

Theorem 1. For each WS1S formula φ(x1, . . . , xk,pr1, . . . ,pr`,X1, . . . ,Xm) there exists
an automaton Aφ over the alphabet {0,1}k+`+m such that S |= φ ⇐⇒ wS ∈ L(A), for
each structure S. Conversely, for each automaton A over the alphabet {0,1}`, there
exists a WS1S formula ΦA(pr1, . . . ,pr`) such that wS ∈ L(A) ⇐⇒ S |= ΦA, for each
structure S = ([n], ν, ι,µ) such that dom(ι) = {pr1, . . . ,pr`} and dom(ν) = dom(µ) = ∅.

The construction of Aφ for the first point (logic to automata) is by induction on the
structure of φ. The main consequence of this construction is the decidability of the
satisfiability problem for the WS1S logic, implied by the decidability of emptiness for
finite automata. Incidentally, this also proves the decidability of IL1S, as a consequence
of Lemma 3. The second point (automata to logic) is a bit less known and deserves
presentation. Given A = (Q, I,F, δ) with alphabet {0,1}` and states Q = {s1, . . . , sq}, we

define a formula ΨA(pr1, . . . ,pr`,X1, . . . ,Xq) def
= ψcover ∧ψI ∧ψδ∧ψF , where:

ψcover
def
= ∀x .

∨q
i=1 Xi(x)∧

∨
1≤i< j≤q¬Xi(x)∨¬X j(x)

ψI
def
=

∨
si∈I Xi(0̄) ψF

def
= ∃x∀y . y ≤ x∧

∨
si∈F Xi(x)

ψδ
def
= ∀x∀y . y ≤ x∨

∨
(si,σ,s j)∈δ Xi(x)∧X j(succ(x))∧

∧
1≤k≤`
σ(prk)=1

prk(x)∧
∧

1≤k≤`
σ(prk)=0

¬prk(x)

8 See e.g. [26, Theorem 2.10.1 and 2.10.3].

Intuitively, each Xi keeps the positions that are labeled by the state si during the run of
A over some input word w of length n. First, each position between 0 and n−1 must be
labeled with exactly one state from Q (ψcover). The initial (ψI) and final (ψF) positions
are labeled with states from I and F, respectively. Next, each pair of adjacent positions
is labeled with a pair of states that is compatible with the transition relation of A, on
the corresponding input symbol, encoded as the tuple (w(pr1), . . . ,w(pr`)) ∈ {0,1}` (ψδ).
Finally, we define ΦA

def
= ∃X1 . . .Xq . ΨA, to capture the fact that a word w is accepted by

A if and only if there exists an accepting run of A over w.
Given a WS1S formula φ, we define a positivation operation (φ)⊕ by translating first

φ into an automaton Aφ. Then we saturate Aφ by adding new transitions to it, such that
the language of the new automaton A∗φ contains L(Aφ) and the words corresponding to
minimal structures are the same in both L(Aφ) and L(A∗φ). Then we obtain (φ)⊕ by a
slightly modified translation of A∗φ into WS1S, which is guaranteed to produce positive
formulae only. Note that the result ΦAφ of the above translation is not positive, due to
the formula ψδ which introduces negative predicates.

The saturation of an automaton A = (Q, I,F, δ) over the alphabet {0,1}` is defined
next. For each transition (s,σ, s′) ∈ δ the set δ∗ contains all transitions (s, τ, s′) such
that τ ∈ {0,1}` and σ(j) ≤ τ(j), for all 1 ≤ j ≤ `. Moreover, nothing else is in δ∗ and
A∗ def

= (Q, I,F, δ∗). In other words, A∗ is obtained by adding to A, for each transition
whose j-th track is 0, another transition in which this track is 1.

To state the formal relation between A and A∗, we define a partial order on words
over the alphabet {0,1}`, encoding the interpretations of the predicates pr1, . . . ,pr`: w1 �

w2 ⇐⇒ w1(pr j) ⊆ w2(pr j) for all 1 ≤ j ≤ `. The minimal language of A is Lmin(A) def
=

{w ∈ L(A) | ∀w′ . w′ � w∧w′ , w⇒ w′ <L(A)}.

Lemma 7. Given an automaton A over the alphabet {0,1}`, we haveLmin(A) =Lmin(A∗).

Proof : We start from the observation that L(A) ⊆ L(A∗) because A∗ = (Q, I,F, δ∗) is
obtained by adding transitions to A = (Q, I,F, δ). Moreover, given a run ρ = s0, . . . , sm of
A∗ over some word σ0 . . .σm−1, there exists a word σ′0 . . .σ

′
m−1 such that for each i ∈ [m]

and 1 ≤ j ≤ `, we have σi(j) ≤ σ′i (j) and (si,σ
′
i , si+1) ∈ δ∗ . This is because we only add

to A∗ transitions (qi,σ
′,q j) such that σ(j) ≤ σ′(i), for all 1 ≤ j ≤ `, where (qi,σ,q j) ∈ δ.

”⊆” Let w ∈ Lmin(A), then w ∈ L(A∗) because L(A) ⊆ L(A∗). Let w′ be a word such
that w′ � w and w′ , w and suppose, for a contradiction that w′ ∈ Lmin(A∗). Then A∗

has an accepting run ρ = s0, . . . , sm over w′, thus ρ is also an accepting run of A over
another word w′′ � w′. Since w ∈ Lmin(A) and w′′ � w′ � w and w′ , w, we obtain a
contradiction. Thus, w ∈ Lmin(A∗), as required.
”⊇” Let w ∈ Lmin(A∗) and let ρ = s0, . . . , sm be an accepting run of A∗ over w. Then there
exists a word w′ � w such that ρ is an accepting run of A. Since w′ ∈ L(A) ⊆ L(A∗), we
obtain that w′ = w, thus w ∈ L(A). Now suppose, for a contradiction, that there exists
w′′ � w such that w′′ , w and w′′ ∈ L(A). Then w′′ ∈ L(A∗) and since w′′ � w and
w′′ , w, this contradicts the fact that w ∈ Lmin(A∗). Thus, w ∈ Lmin(A), as required. ut

Finally, we define (φ)⊕ def
= ∃X1 . . .Xq . ψcover ∧ψI ∧ψ

∗
δ ∧ψF as the formula obtained

from Aφ = (Q, I,F, δ) by applying the translation scheme above in which, instead of ψδ,

we use the following formula:

ψ∗δ
def
= ∀x∀y . y ≤ x∨

∨
(si,σ,s j)∈δ Xi(x)∧X j(succ(x))∧

∧
1≤k≤`
σ(prk)=1

prk(x)

Note that (φ)⊕ is a positive formula, independently of whether φ is positive or not. The
following lemma proves the required property of this positivation operation.

Lemma 8. Given a WS1S sentence φ(pr1, . . . ,pr`), the following hold:
1. S |= (φ)⊕ ⇐⇒ wS ∈ L(A∗φ), for each structure S = ([n], ν, ι,µ) such that dom(ι) =

{pr1, . . . ,pr`} and dom(ν) = dom(µ) = ∅.
2. φ ≡min (φ)⊕.

Proof : (1) It is sufficient to show that (φ)⊕ ≡ ΦA∗φ
and apply Theorem 1. Denoting A =

(Q, I,F, δ), with Q = {s1, . . . , sq} and A∗ = (Q, I,F, δ∗) as before, we only show that ψ∗δ ≡
ψδ∗ . Because (φ)⊕ = ∃X1 . . .∃Xq . ψcover ∧ψI ∧ψ

∗
δ∧ψF and ΦA∗φ

= ∃X1 . . .∃Xq . ψcover ∧

ψI ∧ψδ∗ ∧ψF , we immediately obtain the result. We have the following equivalence, for
each σ ∈ {0,1}`: ∧

1≤k≤`
σ(prk)=1

prk(x) ≡
∨
σ≤τ

(∧
1≤k≤`
τ(prk)=1

prk(x)∧
∧

1≤k≤`
τ(prk)=0

¬prk(x)
)

where σ ≤ τ stands for ∀ j . 1 ≤ j ≤ ` ⇒ σ(j) ≤ τ(j). This immediately implies that
ψ∗δ ≡ ψδ∗ , by the definitions of these formulae and the construction of δ∗.

(2) For an arbitrary structure S = ([n], ν, ι,µ) we have ι(prk) = wS(prk), for any 1 ≤ k`,
by the definition of wS. Then S1 v S2 ⇐⇒ wS1 � wS2 , for any two structures Si =

([n], νi, ιi,µi), where i = 1,2. Hence a structure S is a minimal model of φ if and only
if wS ∈ Lmin(Aφ). By Lemma 7, we have Lmin(A) = Lmin(A∗). Then the result follows
from Theorem 1 and point (1) of this Lemma. ut

Positivation and booleanization are related via the following property:

Lemma 9. Given a WS1S formula φ and a constant n> 0, we have (Bn(φ))+ ≡Bn
(
(φ)⊕

)
.

Proof : First, note that, for any propositional formulae f and g, whose variables occur
under even number of negations, we have f ≡ g ⇐⇒ f ≡min g. Since both (Bn(φ))+

and Bn
(
(φ)⊕

)
are positive propositional formulae, it is sufficient to prove (Bn(φ))+ ≡min

Bn
(
(φ)⊕

)
, by showing [[(Bn(φ))+]]min ⊆ [[Bn

(
(φ)⊕

)
]] and [[Bn

(
(φ)⊕

)
]]min ⊆ [[(Bn(φ))+]],

respectively, which establishes [[(Bn(φ))+]]min = [[Bn
(
(φ)⊕

)
]]min (the latter step is left

to the reader).
“[[(Bn(φ))+]]min ⊆ [[Bn

(
(φ)⊕

)
]]” Let β ∈ [[(Bn(φ))+]]min be a valuation. Then, we also

have β ∈ [[Bn(φ)]]min, since (ϕ)+ ≡min ϕ, in general for any propositional formula ϕ.
Then, by Lemma 10, there exists a structure S ∈ [[φ]]min such that β = βS. Hence we
obtain S ∈ [[(φ)⊕]]min ⊆ [[(φ)⊕]]. But then β ∈ [[Bn

(
(φ)⊕

)
]], by Lemma 10.

“[[Bn
(
(φ)⊕

)
]]min ⊆ [[(Bn(φ))+]]” Let β ∈ [[Bn

(
(φ)⊕

)
]]min be a boolean valuation. By Lemma

10, we obtain a structure S ∈ [[(φ)⊕]]min such that β = βS. But then S ∈ [[φ]]min and
β ∈ [[Bn(φ)]]min, by Lemma 10. Hence β ∈ [[(Bn(φ))+]]. ut

We are now ready to state the main result of the paper, concerning the computation
of trap invariants for parametric component-based systems.

Theorem 2. Given a parametric component-based system S = 〈C1, . . . ,CK ,Γ〉, where
Ck = 〈Pk,Sk, s0

k,∆k〉, for all k = 1, . . . ,K, for any integer n > 0 we have:
TrapInv(Nn

S
) ≡ Bn

((
(Init(S)∧Tr (Θ(Γ)))⊕

)∼)
where Init(S) def

= ∃x .
∨K

k=1 s0
k(x).

Proof : Let Nn
S

= (N,m0) and µ0 =
∨

m0(s)=1 s. By Lemma 2, we have TrapInv(NS) ≡(
(µ0∧Θ(N))+)∼. From the definition ofNS, it is not difficult to show that µ0 ≡Bn(Init(S))

and Θ(N) ≡ Bn(Tr (Θ(Γ))), hence µ0 ∧Θ(N) ≡ Bn(Init(S)∧Tr (Θ(Γ))). By Lemma 11,
we obtain (µ0∧Tr (Θ(N)))+ ≡ Bn

(
(Init(S)∧Tr (Θ(Γ)))⊕

)
and, by Lemma 12, we obtain(

(µ0∧Θ(N))+)∼ ≡ Bn
((

(Init(S)∧Tr (Θ(Γ)))⊕
)∼)

, as required. ut

In practice, it is more efficient to perform dualization directly on the saturated au-
tomaton A∗φ for a given WS1S formula φ with predicate symbols pr1, . . . ,pr`. To this
end, we swap the 0’s and 1’s on the tracks corresponding to pr1, . . . ,pr` in the transition
rules of A∗φ and complement the resulting automaton, call it Ãφ. Using Lemma 4, it is not

difficult to show that the complement of Ãφ corresponds to the formula (φ)⊕∼, needed
to compute the trap invariant of a system. A further optimization, that avoids comple-
mentation of Ãφ, is to check the inclusion of the automaton Aψ, obtained from the safety
property to be checked (i.e. ψ may encode the states where a deadlock or mutual ex-
clusion violation occurs) into Ãφ, using state-of-the-art antichain or simulation-based
inclusion checkers. For this reasons, our experiments were carried out using the VATA
[28] tree automata library as a decision procedure for inclusion.
Remark We argue that the trap invariant synthesis method given by Theorem 2 can
be easily extended to handle unbounded tree-like (hierarchical) systems. To this end,
we consider a variant of IL1S equipped with a countably infinite set of successor func-
tions succ0,succ1, . . . (succ0 being the leftmost successor) interpreted over the set N∗ of
strings of natural numbers, that identify positions in a tree as succk(k0 . . .km) def

= k0 . . .kmk.
Also, the inequality is interpreted by the prefix relation between strings. This logic is
embedded into WSωS, the weak monadic second order logic of countably many succes-
sors. Akin to the finite word case, WSωS formulae can be translated into (bottom-up
nondeterministic) tree automata over finite trees with symbolic (binary) alphabet, on
which positivation and dualization can be implemented similar to the word case. More-
over, efficient antichain/simulation-based inclusion checks are also available for tree
automata [23], thus expensive complementation can be avoided in this case too. In §5
we present an example involving a parametric hierarchical tree architecture. A detailed
workout of this generalization is left for the future. �

4 Refining Invariants

Since the safety verification problem is undecidable for parametric systems [5], the trap
invariants method cannot be complete. As an example, consider the alternating dining
philosophers system, of which an instance (for n = 3) is shown in Fig. 3. The system
consists of two philosopher component types, namely Philosopherrl, which takes its
right fork before its left fork, and Philosopherlr, taking the left fork before the right
one. Each philosopher has two interaction ports for taking the forks, namely g` (get
left) and gr (get right) and one port for releasing the forks p (put). The ports of the
Philosopherrl component type are overlined, in order to be distinguished. The Fork
component type is the same as in Fig. 1. The interaction formula for this system Γalt

philo,
shown in Fig. 3, implicitly states that only the 0-index philosopher component is of type
Philosopherrl, whereas all other philosophers are of type Philosopherlr. Note that the
interactions on ports g`, gr and p are only allowed if inf (x) holds, i.e. x = 0.

Fig. 3: Alternating Dining Philosophers

¬inf (x)∧ [(g`(x)∧g(x))∨ (gr(x)∧g(s(x)))∨ (p(x)∧ `(x)∧ `(s(x)))]

f

b

get

leave

w

e

h
put

getright

getleft

w

e

h
put

getleft

getright

g(0) gr(0) g`(0) gr(2) g`(2)

Philosopherlr(2)Fork(0) Fork(1) Philosopherlr(1)Philosopherrl(0) Fork(2)

`(0) p(0) p(2)

Γalt
philo = ∃x . inf (x)∧ [(g`(x)∧g(x))∨ (gr(x)∧g(s(x)))∨ (p(x)∧ `(x)∧ `(s(x)))] ∨

f

b

get

leave

f

b

get

leave

w

e

h
put

getleft

getright

g(1) gr(1) g`(1) g(2)

`(1) p(1) `(2)

It is well-known that any instance of the parametric alternating dining philosophers
system consisting of at least one Philosopherrl and one Philosopherlr is deadlock-
free. However, trap invariants are not enough to prove deadlock freedom, as shown by
the global state {b(0),h(0),b(1),w(1), f (2),e(2)}, marked with thick red lines in Fig. 3.
Note that no interaction is enabled in this state. Moreover, this state intersects with
any trap of the marked PN that defines the executions of this particular instance, as
proved below. Consequently, the trap invariant contains a deadlock configuration, and
the system cannot be proved deadlock-free by this method.

Proposition 1. Consider an instance of the alternating dining philosophers system in
Fig. 3, consisting of components Fork(0), Philosopherrl(0), Fork(1), Philosopherlr(1),
Fork(2) and Philosopherlr(2) placed in a ring, in this order. Then each nonempty trap
of this system contains one of the places (b,0), (h,0), (b,1), (w,1), (f ,2) or (e,2).

Proof : Let C = {b(0),h(0),b(1),w(1), f (2),e(2)} in the following. We shall try to build
a nonempty trap T that avoids every state in C. If such a trap can be found, the coun-
terexample is shown to be spurious (unreachable). Below is the list of states allowed in

T , indexed by component (using other states that the ones listed below would result in
a trap that is satisfied by the counterexample C, which is exactly the opposite of what
we want):

Fork(0) Philosopherrl(0) Fork(1) Philosopherlr(1) Fork(2) Philosopherlr(2)
f (0) w(0),e(0) f (1) h(1),e(1) b(2) w(2),h(2)

Assume that f (0) ∈ T . Then T must contain b(0) or e(2) (constraint gr(2)∧ g(0)).
However neither is allowed, thus f (0) < T . Assume that f (1) ∈ T . Then T must contain
b(1) or h(0) (constraint gr(0)∧g(1)), contradiction, thus f (1) < T . Assume that b(2) ∈ T .
Then T must contain f (1),w(1) or f (2) (constraint p(1)∧`(1)∧`(2)), contradiction, thus
b(2) < T . Then T contains only philosopher states, except for h(0), w(1) and e(2). One
can prove that there is no such trap, for instance, for Philosopherlr(1) we have:

h(1) ∈ T ⇒ e(1) ∈ T
e(1) ∈ T ⇒ w(1) ∈ T

since f (1),b(1), f (2),b(2) < T . Since w(1) < T , we obtain that h(1),e(1) < T . Then the
only possibility is T = ∅. ut

However, the configuration is unreachable by a real execution of the PN, started in
the initial configuration

∧2
i=0 f (i)∧w(i). An intutive reason is that, in any reachable con-

figuration, each fork is in state f (ree) only if none of its neighbouring philosophers is in
state e(ating). In order to prove deadlock freedom, one must learn this and other similar
constraints. Next, we present a heuristic method for strenghtening the trap invariant,
that learns such universal constraints, involving a fixed set of components.

4.1 Ashcroft Invariants

Ashcroft invariants (AI) [6] are a classical method for proving safety properties of par-
allel programs, in which a global program state is viewed as an array consisting of
the local states of each thread. Typically, an AI is an universally quantified assertion
∀x1 . . . xm . φ that relates the local states of at most m distinct threads, which is, more-
over, an invariant of the execution of the parallel program.

Next, we define a variant of AI tuned for our purposes. We first consider a finite
window of the parametric system, by identifying a fixed set of components, together
with their interactions, and abstracting away all interactions among components out-
side of this window. The crux is that the indices of the components from the window
are not numbers but Skolem constants c1, . . . ,cw and the window is defined by a logical
formula ψ(c1, . . . ,cw) over the vocabulary of these constants, involving inequalities be-
tween terms of the form si(c j), for some i ≥ 0. This allows to slide the window inside a
certain range, without changing the view (i.e. the sub-systems observed by sliding the
window are all isomorphic). Each view is a finite component-based system, whose set
of reachable states is computable by enumerating the (finite set of) reachable markings
of a 1-safe PN of fixed size. Let Φ(c1, . . . ,cw) be the formula defining this set. Then
we show that ∀x1 . . .∀xw . ψ(x1, . . . , xw)→Φ(x1, . . . , xw) defines an AI of the parametric
system S, that can be used to strenghten the trap invariant and converge towards a proof
of the given safety property. Before entering the formal details, we provide an example.

Example 3. Consider the alternating dining philosophers system, with interaction for-
mula Γalt

philo, given in Fig. 3. We fix three adjacent components, namely Philosopherlr(c1),

Fork(c2) and Philosopherlr(c3), such that the window constraint ψ(c1,c2,c3) def
= ∃ζ . inf (ζ)

∧ζ < c1 ∧ c1 < c2 ∧ c2 = succ(c1)∧ c2 = c3 holds. The interactions specified by Γalt
philo,

involving nothing but these components are gr(c1)∧ g(c2), p(c1)∧ `(c2)∧ p(c3) and
g`(c3)∧ g(c2). In addition, Philosopherlr(c1) interacts with its left fork, not present in
the window defined by ψ. We abstract this interaction to g`(c1). The other partial in-
teractions are gr(c3) and p(c3)∧ `(c2), where the fork to the right of Philosopherlr(c3)
is missing from the window. The marked PN corresponding to the window is given
in Fig. 4, with the initial marking highlighted in blue. Let Φ(c1,c2,c3) be the ground
formula describing the set of reachable markings of this PN. The AI corresponding to
this window is ∀x1∀x2∀x3 . ∃ζ . inf (ζ)∧ ζ < x1 ∧ x1 < x2 ∧ x2 = x3 ∧ x2 = succ(x1)→
Φ(x1, x2, x3). In particular, this invariant excludes the spurious deadlock counterexam-
ple of Fig. 3 by ensuring that a fork is in state f (ree) only if none of its neighbouring
Philosopherlr’s is in state e(ating). �

Let S = 〈C1, . . . ,CK ,Γ〉 be a parametric component-based system with component
types Ck = 〈Pk,Sk, s0

k,∆k〉, for all k = 1, . . . ,K and an existential interaction formula:
Γ = ∃x1 . . .∃xm

∨`
i=1 . ϕi(x1, . . . , xm)∧

∧ki
j=1 pi j(xi j) (3)

where ϕi is a quantifier-free IL1S formula not involving predicate atoms and xi j ∈

{x1, . . . , xm}, for all i ∈ {1, . . . , `} and all j ∈ {1, . . . ,ki}. For example, the interaction for-
mulae Γphilo (Fig. 1) and Γalt

philo (Fig. 3) are both inside this class. In order to define the
notion of a window, we fix a set of constant symbols c = {c1, . . . ,cw}, each having an
associated component type, denoted by type(ci) ∈ {C1, . . . ,CK}, for all i = 1, . . . ,w. Note
that we overload the type(.) notation to handle both predicate and constant symbol ar-
guments. For instance, in Example 3, we have type(c1) = type(c3) = Philosopherlr and
type(c2) = Fork.

Definition 3. Given two IL1S formulae φ1 and φ2, we write φ1 |= φ2 for [[φ1]] ⊆ [[φ2]].
Then φ1 is non-overlapping with φ2 if and only if either φ1 |= φ2 or φ1 |= ¬φ2 holds.

A window constraint for the interaction formula Γ as before (3), is a formula ψ that
is non-overlapping with each of the formulae:

φi(ci1 , . . . ,cik) def
= ∃x1 . . .∃xp .

∧p
i=1

∧w
u=1 xi , cu∧ϕi(y1, . . . ,ym)

where 0≤ p≤w is an integer, {ci1 , . . . ,cik } ⊆ {c1, . . . ,cw} and {y1, . . . ,ym} is a reindexing of
the set {x1, . . . , xp}∪ {ci1 , . . . ,cik }. Since there are finitely many such formulae9, it is pos-
sible to build window constraints, by taking conjunctions in which each φi(ci1 , . . . ,cik)
formula occurs either positively or under negation.

Definition 4. Given a set of constant symbols c, two IL1S-structures ([n], ι1, ν1) and
([n], ι2, ν2) are c-isomorphic, denoted ([n], ι1, ν1) ≈c ([n], ι2, ν2) if and only if ι1(c) ∈
ι1(pr) ⇐⇒ ι2(c) ∈ ι2(pr) for all c ∈ c and all pr ∈ Pred. For a structure I, we denote by
[I]c its ≈c-equivalence class.

9 The set {φi(ci1 , . . . ,cik) | 1 ≤ i ≤ `, ci1 , . . . ,cik ∈ c} is determined by Γ and c.

Definition 5. Given a window constraint ψ, the view of Γ via ψ is the ground formula
Vψ
Γ

def
=

∨`
i=1

∧ki
j=1 πi j, where, for each 1 ≤ i ≤ ` and each 1 ≤ j ≤ ki, we have πi j

def
= pi j(ci j)

if ψ |= φi(ci1 , . . . ,cik), for some ci1 , . . . ,cik ∈ c and πi j
def
= >, otherwise.

Intuitively, the view specifies the complete interactions between the components iden-
tified by c1, . . . ,cw and their respective types as well as all the partial interactions from
which some component is missing from the window, i.e. when {ci1 , . . . ,cik } , c. Note
that each interaction is unambiguously specified by the window constraint, because ei-
ther (i) pi j(ci j) is part of the interaction then ψ |= φi, thus the component identified by ci j
and the component type type(ci j) is always in the window (no matter what value does
ci j take), or (ii) ψ 6|= φi, and since ψ is non-overlapping with φi, we have ψ |= ¬φi, in
which case the ci j component is never within the ψ window.

Fig. 4: Window Petri Net for the Alternating Dining Philosophers Example

ψ
def
= ∃ζ . inf (ζ)∧ ζ < c1 ∧ c1 < c2 ∧ c2 = c3 ∧ c2 = s(c1)

f (c2)

b(c2)

w(c3)

h(c3)

e(c1)

h(c1)

w(c1)

e(c3)

Example 4. For the system in Fig. 3 and the window constraint ψ from Example 3, we
obtain the view Vψ

Γ = (gr(c1)∧g(c2))∨(p(c1)∧`(c2)∧ p(c3))∨(g`(c3)∧g(c2))∨g`(c1)∨
gr(c3)∨(p(c3)∧`(c2)). The interaction gr(c1)∧g(c2) occurs between components inside
the window only, since ψ |= ¬ inf(c1)∧ c2 = succ(c1). On the other hand, p(c3)∧ `(c2)
is a partial interaction, because ψ |= ∃z1 . c2 = c3∧ z1 = succ(c3)∧ p(c3)∧ `(c2)∧ `(z1),
thus ports p(c3) and `(c2) are kept inside and `(succ(c3)) is abstracted away. �

A view Vψ
Γ becomes the interaction formula of a system with a constant number of

components, whose marked PN is denoted byNψ
S

. Formally, we defineNψ
S

= (Nψ,mψ
0),

where Nψ = (S ψ,Tψ,Eψ) and:
– S ψ def

= {succ(c) | s ∈ S(type(c)), c ∈ c},
– for each equivalence class [I]c of some I= ([n], ι, ν) ∈ [[Vψ

Γ]], there exists t ∈ Tψ and

(succ(c), t), (t, s′(c)) ∈ Eψ iff s
p
−→ s′ ∈ ∆(type(c)) and ι(c) ∈ ι(p), for all succ(c) ∈ S ψ,

– for all succ(c) ∈ S ψ, we have m0(succ(c)) = 1 iff s = s0(type(c)).
Since this is a 1-safe marked PN of known size, it is possible to compute its reachable
markings by exhaustive enumeration and compute a ground formula Φψ

Γ(c1, . . . ,cw) that
defines this set. For instance, the marked PN for the view of the system in Fig. 3 via the
window constraint ψ from Example 3, is given in Fig. 4. Its set of reachable markings
is defined by the formula10:

(w(c1)∧ f (c2)∧w(c3))∨ (h(c1)∧ f (c2)∧w(c3))∨ (w(c1)∧b(c2)∧h(c3))
∨ (e(c1)∧b(c2)∧w(c3))∨ (h(c1)∧b(c2)∧h(c3))
∨ (w(c1)∧b(c2)∧ e(c3))∨ (h(c1)∧b(c2)∧ e(c3))

10 We intentionally left out the negative literals, as they play no role in proving deadlock freedom.

Finally, this formula is used to build the AI ∀x1 . . .∀xw . ψ(x1, . . . , xw)→Φ
ψ
Γ(x1, . . . , xw),

where ψ(x1, . . . , xw) and Φ
ψ
Γ(x1, . . . , xw) are obtained from ψ and Φ

ψ
Γ, respectively, by

replacing each constant symbol ci with a variable xi. The following result states that
this formula defines an invariant of the system:

Proposition 2. Let S = 〈C1, . . . ,CK ,Γ〉 be a system and let ψ(c1, . . . ,cw) be a window
constraint. ThenAψ,n

Γ

def
= [[∀x1 . . .∀xw . ψ(x1, . . . , xw)→Φ

ψ
Γ(x1, . . . , xw)]]n is an invariant

of Nn
S

, for any n > 0, where [[φ]]n def
= {([n], ι, ν) | ([n], ι, ν) |= φ} for any IL1S formula φ.

Proof : Let n > 0 be an arbitrary positive integer. The component types of S are Ck =

〈Pk,Sk, s0
k,∆k〉, for all k = 1, . . . ,K and its marked PN Nn

S
= (N,m0), where:

– N = (
⋃K

k=1 Sk × [n],T,E) and,
– for all 1 ≤ k ≤ K and all s ∈ Sk, we have m0((s, i)) = 1, if s = s0

k and m0((s, i)) = 0,
otherwise.

Moreover, for a marking m :
⋃K

k=1 Sk × [n]→ {0,1} of Nn
S

and a formula φ, we write
m ∈ [[φ]]n iff ([n], ι, ν) |= φ, where ι is such that ι(s) = {i ∈ [n] | m((s, i)) = 1} and ν is an
arbitrary valuation.

We prove first that m0 ∈ A
ψ,n
Γ . Let i1, . . . , iw ∈ [n] be arbitrary integers. Clearly,

m0((s0
k1 , i1)) = . . . = m0((s0

kw , iw)) = 1, thus ([n], ι[s0
k1 ← {i1}] . . . [s0

kw ← {iw}], ν[x1 ←

i1] . . . [xw ← iw]) |= Φ
ψ
Γ, since Φψ

Γ is the set of reachable markings of Nψ
S

and m0 sub-
sumes the initial marking thereof.

Second, we show thatAψ,n
Γ is inductive, i.e. for each move m

t

−→ m′ ofNn
S

, such that
m ∈ Aψ,n

Γ , we must show that m′ ∈ Aψ,n
Γ . First, notice that, for any interpretation ι, any

valuation ν and any i1, . . . , iw ∈ [n], we have:
([n], ι[c1← i1] . . . [cw← iw], ν) |= φ(c1, . . . ,cw)

⇐⇒ (4)
([n], ι, ν[x1← i1] . . . [xw← iw]) |= φ(x1, . . . , xw)

for an arbitrary formula φ. In the following, we define, for all s ∈
⋃K

k=1 Sk:

ιm(s) def
= {i ∈ [n] |m((s, i)) = 1}

ιm′ (s) def
= {i ∈ [n] |m′((s, i)) = 1}

Let i1, . . . , iw ∈ [n] be integers such that ([n], ιm′ , ν[x1← i1] . . . [xw← iw]) |= ψ(x1, . . . , xw).
We compute as follows:
([n], ιm′ , ν[x1← i1] . . . [xw← iw]) |= ψ(x1, . . . , xw) ⇐⇒ since ψ has only atoms sk(xi) ≤ s`(x j)
([n], ιm, ν[x1← i1] . . . [xw← iw]) |= ψ(x1, . . . , xw) ⇐⇒ by (5)
([n], ιm[c1← i1] . . . [cw← iw], ν) |= ψ(c1, . . . ,cw) =⇒ since m ∈ Aψ,n

Γ

([n], ιm[c1← i1] . . . [cw← iw], ν) |= Φ
ψ
Γ(c1, . . . ,cw) =⇒ (†)

([n], ιm′ [c1← i1] . . . [cw← iw], ν) |= Φ
ψ
Γ(c1, . . . ,cw) ⇐⇒ by (5)

([n], ιm′ , ν[x1← i1] . . . [xw← iw]) |= Φ
ψ
Γ(x1, . . . , xw) thus m′ ∈ Aψ,n

Γ , as required.
We are left with proving the step (†) above. BecauseNn

S
is S-decomposable, by Lemma

13, and since m
t

−→m′ by the hypothesis, there are states s1, s′1 ∈Sk1 . . . sm, s′m ∈Skm , with
k1, . . . ,km pairwise disjoints, integers j1, . . . , jm ∈ [n] and edges ((si, ji), t), (t, (s′i , ji)) ∈ E,
for all i = 1, . . . ,m. For each i = 1, . . . ,m, we distinguish the cases:

– if si = s′i then m((si, ji)) = m′((si, ji)) = 1,
– else, if si , s′i then m((si, ji)) = m′((s′i , ji)) = 1 and m((s′i , ji)) = m′((si, ji)) = 0.

Observe now thatNψ
S

has the same structure as the subnet obtained by restrictingNn
S

to
the states in {s1, . . . , sm, s′1, . . . , s

′
m}×{ j1, . . . , jm}. Moreover, there exists a transition t↓ψ in

N
ψ
S

and edges (si(ci), t↓ψ), (t↓ψ, s′i (ci)) ∈ Eψ only if ((si, ji), t), (t, (s′i , ji)) ∈ E. Let m↓ψ and
m′↓ψ be the projections of m and m′ on {s1, . . . , sm, s′1, . . . , s

′
m}×{ j1, . . . , jm}, respectively.

Since m
t

−→ m′, we obtain that m↓ψ
t↓ψ
−−→ m′↓ψ, thus ([n], ιm′ [c1 ← i1] . . . [cw ← iw], ν) |=

Φ
ψ
Γ(c1, . . . ,cw), as required. ut

5 Experiments

We carried out a preliminary evaluation of our parametric verification method, using
a number of textbook examples, shown in Table 1. The table reports the size of the
example (number of states/transition per component type) and the running times (in
seconds) needed to check deadlock freedom (D-freedom) and mutual exclusion (Mu-
tex). We used the MONA tool [22] to generate the automata from WS1S formulae and
the VATA tree automata library [28] to check the verification condition on automata.
The running times from the table are relative to a x86 64bit Ubuntu virtual machine
with 4GB or RAM. The files needed to reproduce the results are available online11. All
examples were successfully verified for deadlock freedom by our method using trap
invariants. However, not all experiments with mutual exclusion were conclusive, as the
intersection of the invariant with the bad states was not empty in some cases. The dash
from the Mutex column indicates that mutual exclusion checking is not applicable for
the considered example.

Example States/Transitions D-freedom (sec) Mutex (sec)
Dining Philosophers I 3/3 + 2/2 0.252 −

Dining Philosophers II 3/3 + 3/4 0.496 −

Dining Philosophers III 3/3 + 2/2 21.640 −

Exclusive Tasks 2/3 0.004 0.004
Preemptive Tasks I 4/5 0.020 1.612
Preemptive Tasks II 4/5 0.020 1.564
Burns 6/8 0.012 0.012
Szymanski 12/13 2.892 not empty
Dijkstra-Scholten I 4/4 0.012 −

Dijkstra-Scholten II 4/4 0.064 −

Table 1: Running times deadlock-freedom and mutual exclusion checking

Dining Philosphers I is the alternating dinning philosophers protocol where all but
one philosopher are taking the forks in the same order. This example requires an addi-
tional Ashcroft invariant for deadlock freedom. Dining Philosphers II is a refinement of
the previous model, where the behavior of the forks remembers which philosopher is

11 http://nts.imag.fr/images/0/06/Cav19.tar.gz

http://nts.imag.fr/images/0/06/Cav19.tar.gz

handling them (using two busy states bleft and bright). Dining Philosophers III is a variant
of the protocol, where the philosophers are sharing two global forks, taken in the same
order. In these two cases, the trap invariant is sufficient to prove deadlock freedom.

Exclusive Tasks is a mutual exclusion protocol in which every task can be waiting
or executing. A task moves from waiting to executing only if all other tasks are wait-
ing, whereas an executing task can move back from execution to waiting at any time.
Preemptive Tasks I is a concurrent system in which every task can be ready, waiting, ex-
ecuting or preempting. Initially, one task is executing, while the others are ready. A task
moves from ready to waiting at any time. A task begins execution by preempting the
currently executing tasks. When a task finishes it becomes ready and one the preempted
tasks resumes back to execution. Preemptive Tasks II is same as before, except that the
task which resumes back to execution is always the one with the highest identifier.

Burns [24] and Szymanski [31] are classical mutual exclusion protocols taken from
literature. Dijsktra-Scholten I is an algorithm used to detect termination in a distributed
computation. It organizes the computational nodes into a tree and propagates a message
from the root to all the leaves and back, once the computation is finished. In the first
variant, we consider the degenerate case where the tree is a list. Dijkstra-Scholten II
is the full version of the algorithm on an arbitrary binary tree. This example required
using MONA and VATA in tree mode, on WSωS and finite nondeterministic bottom-up
tree automata, respectively.

6 Conclusions and Future Work

We presented a method for checking safety properties of parametric systems, in which
the number of components is not known a priori. The method is based on a synthesis of
trap invariants from the interaction formula of the system and relies on two logical oper-
ations (positivation and dualization) that are implemented using the automata-theoretic
connection between WS1Sand finite Rabin-Scott automata. We show that trap invari-
ants, strenghtened with Ashcroft invariants, produced by an orthogonal method are, in
general, strong enough to prove deadlock freedom.

As future work, we plan on developing a toolbox integrating the existing tools used
to generate trap and Ashcroft invariants, supporting the interactive application of the
method to real-life architectures (controllers, autonomous cyber-physical systems, etc.)

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. The Bulletin of Symbolic
Logic 16(4), 457–515 (2010)

2. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking without
transducers (on efficient verification of parameterized systems). In: Grumberg, O., Huth,
M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 721–736
(2007)

3. Alberti, F., Ghilardi, S., Sharygina, N.: A framework for the verification of parameterized
infinite-state systems*. CEUR Workshop Proceedings 1195, 302–308 (01 2014)

4. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of
rendezvous systems. Distributed Computing 31(3), 187–222 (Jun 2018)

5. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters 22(6), 307 – 309 (1986)

6. Ashcroft, E.: Proving assertions about parallel programs. Journal of Computer and System
Sciences 10, 110–135 (02 1975)

7. Barkaoui, K., Lemaire, B.: An Effective Characterization of Minimal Deadlocks and Traps
in Petri nets Based on Graph Theory. In: 10th Int. Conf. on Application and Theory of Petri
Nets ICATPN’89. pp. 1–21 (1989)

8. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.: Rigor-
ous component-based system design using the BIP framework. IEEE Software 28(3), 41–48
(2011)

9. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting ws1s systems to verify pa-
rameterized networks. In: Graf, S., Schwartzbach, M. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 188–203 (2000)

10. Bensalem, S., Bozga, M., Nguyen, T., Sifakis, J.: D-finder: A tool for compositional deadlock
detection and verification. In: CAV’09 Proceedings. LNCS, vol. 5643, pp. 614–619 (2009)

11. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder, J.: Decidability
of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory, Morgan
& Claypool Publishers (2015)

12. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled,
D.A. (eds.) Computer Aided Verification. pp. 372–386 (2004)

13. Bozga, M., Iosif, R., Sifakis, J.: Checking deadlock-freedom of parametric component-based
systems. In: 25th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). (2019)

14. Browne, M., Clarke, E., Grumberg, O.: Reasoning about networks with many identical finite
state processes. Information and Computation 81(1), 13 – 31 (1989)

15. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over parameterised
concurrent systems. In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017,
Vienna, Austria, October 2-6, 2017. pp. 76–83 (2017)

16. Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verification.
In: Emerson, E.A., Namjoshi, K.S. (eds.) Verification, Model Checking, and Abstract Inter-
pretation. pp. 126–141 (2006)

17. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaı̈di, F.: Cubicle: A parallel smt-based model
checker for parameterized systems. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided
Verification. pp. 718–724 (2012)

18. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Conference
Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 269–282. ACM Press, New York, NY, San Antonio, Texas (1979)

19. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. The Journal of Logic and Alge-
braic Programming 52-53, 109 – 127 (2002)

20. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL’95 Proceedings. pp. 85–94
(1995)

21. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3),
675–735 (1992)

22. Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, B., Rauhe, T., Sandholm, A.:
Mona: Monadic second-order logic in practice. In: Tools and Algorithms for the Construction
and Analysis of Systems, First International Workshop, TACAS ’95, LNCS 1019 (1995)

23. Holı́k, L., Lengál, O., Simácek, J., Vojnar, T.: Efficient inclusion checking on explicit and
semi-symbolic tree automata. In: ATVA 2011, Proc. pp. 243–258 (2011)

24. Jensen, H.E., Lynch, N.A.: A proof of burns n-process mutual exclusion algorithm using
abstraction. In: TACAS (1998)

25. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with
rich assertional languages. Theoretical Computer Science 256(1), 93 – 112 (2001)

26. Khoussainov, B., Nerode, A.: Automata Theory and Its Applications. Birkhauser Boston,
Inc. (2001)

27. Kuncak, V., Nguyen, H.H., Rinard, M.C.: Deciding boolean algebra with Presburger arith-
metic. J. Autom. Reasoning 36(3), 213–239 (2006)

28. Lengál, O., Šimáček, J., Vojnar, T.: Vata: A library for efficient manipulation of non-
deterministic tree automata. In: Flanagan, C., König, B. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 79–94 (2012)

29. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants.
In: Margaria, T., Yi, W. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 82–97 (2001)

30. Sifakis, J.: Structural properties of petri nets. In: Winkowski, J. (ed.) Mathematical Founda-
tions of Computer Science 1978. pp. 474–483 (1978)

31. Szymanski, B.K.: Mutual exclusion revisited. In: Next Decade in Information Technology:
Proceedings of the 5th Jerusalem Conference on Information Technology 1990, Jerusalem,
October 22-25, 1990. pp. 110–117 (1990)

A Proofs

A.1 Proof of Lemma 2

Let N = (S ,T,E) and W ⊆ S be a trap of N. We have the following equivalences:
W• ⊆ •W ⇐⇒∧

p∈S [p ∈W → {t ∈ T | (p, t) ∈ E} ⊆ {t ∈ T |
∨

q∈S (t,q) ∈ E}] ⇐⇒∧
p∈S [p ∈W → (

∧
t∈T p ∈ •t→

∨
q∈S q ∈W ∧q ∈ t•)] ⇐⇒∧

p∈S
∧

t∈T (p ∈W ∧ p ∈ •t →
∨

q∈S q ∈W ∧q ∈ t•) ⇐⇒∧
t∈T (

∨
p ∈ •t p ∈W →

∨
q∈t• q ∈W)

If we use propositional variables p and q to denote p ∈W and q ∈W, respectively, we
obtain the trap constraint Θ(N) from the last formula. Hence, any boolean valuation
β ∈ [[µ0 ∧Θ(N)]] corresponds to an initially marked trap Wβ

def
= {p ∈ S | β(p) = >}. Fur-

ther, since µ0 ∧Θ(N) is a propositional formula, each satisfying valuation corresponds
to a conjunctive clause of its DNF. Hence the set of propositional variables in each
conjunctive clause in the DNF of (µ0∧Θ(N))+ corresponds to an IMT and, moreover,
every IMT has a corresponding conjunctive clause. Thus TrapInv(N) ≡

(
(µ0∧Θ(N))+)∼

follows. The second point follows directly from the definition TrapInv(N). ut

A.2 Proof of Lemma 3

“(1)⇒ (2)” First, it is routine to check that, for any WS1S-structure, we have ([n], ι, ν,µ) |=
∀y . y ≤ x ⇐⇒ ν(x) = n− 1. Suppose that φ has a model I = ([n], ι, ν) and the inter-
pretation of s is sn

IL1S. Then we show that S = ([n], ι, ν,µ) is a model of Tr(φ), for any
µ : SVar→ 2[n]. For this, it is enough to show that ([n], ι, ν[µ← n− 1],µ) |= tr(φ), by
induction on the structure of φ. The base cases are:

– s(x) = y: in this case sn
IL1S(ν(x)) = ν(y) and thus ν(y) = (ν(x) + 1) mod n, by the

definition of sn
IL1S. But then either ν(x) < n−1 and ν(y) = ν(x)+1 or ν(x) = n−1 and

ν(y) = 0, thus S |= tr(s(x) = y), as required.
– pr(x): in this case ν(x) ∈ ι(p) and S |= tr(pr(x)) by the definition.

The induction cases are immediate.
“(1)⇐ (2)” If ([n], ν, ι,µ) |= Tr(φ), for some arbitrary mapping µ : SVar→ 2[n], then

we have ([n], ν[ν← n− 1], ι,µ) |= tr(φ) and we show ([n], ν, ι) |= φ by induction on the
structure of φ. The most interesting case is when φ is s(x) = y, in which case either:

– ν(x) < n−1 and ν(y) = ν(x) + 1, or
– ν(x) = n−1 and ν(y) = 0.

In each case, we have sn
IL1S(ν(x)) = ν(y), hence ([n], ν, ι) |= s(x) = y, as required. ut

A.3 Proof of Lemma 4

By induction on the structure of φ:
– t1 = t2 and ¬t1 = t2: the truth value of this atom is the same in S and S and moreover

t1 = t2 and ¬ (t1 = t2)∼ are equivalent.
– X(t) and ¬X(t): same as above.

– pr(t): the interpretation of t is the same in S and S, because it depends only on ν.
Let k ∈ [n] be this value. Then we obtain:

S |= pr(t) ⇐⇒ k ∈ ι(pr) ⇐⇒ k < ι(pr) ⇐⇒ S |= ¬pr(t) .
– ¬pr(t): a consequence of the equivalence S |= pr(t) ⇐⇒ S |= ¬pr(t), established at

the previous point.
The rest of the cases are easy applications of the induction hypothesis. ut

A.4 Proof of Lemma 7

We start from the observation that L(A) ⊆ L(A∗) because A∗ = (Q, I,F, δ∗) is obtained
by adding transitions to A = (Q, I,F, δ). Moreover, given a run ρ = s0, . . . , sm of A∗ over
some word σ0 . . .σm−1, there exists a word σ′0 . . .σ

′
m−1 such that for each i ∈ [m] and

1 ≤ j ≤ `, we have σ′i (j) ≤ σi(j) and (si,σ
′
i , si+1) ∈ δ . This is because we only add to A∗

transitions (qi,σ,q j) provided that there exists (qi,σ
′,q j) ∈ δ such that σ′(j) ≤ σ(i), for

all 1 ≤ j ≤ `.
”⊆” Let w ∈ Lmin(A), then w ∈ L(A∗) because L(A) ⊆ L(A∗). Let w′ be a word such
that w′ � w and w′ , w and suppose, for a contradiction that w′ ∈ Lmin(A∗). Then A∗

has an accepting run ρ = s0, . . . , sm over w′, thus ρ is also an accepting run of A over
another word w′′ � w′. Since w ∈ Lmin(A) and w′′ � w′ � w and w′ , w, we obtain a
contradiction. Thus, w ∈ Lmin(A∗), as required.
”⊇” Let w ∈ Lmin(A∗) and let ρ = s0, . . . , sm be an accepting run of A∗ over w. Then there
exists a word w′ � w such that ρ is an accepting run of A. Since w′ ∈ L(A) ⊆ L(A∗), we
obtain that w′ = w, thus w ∈ L(A). Now suppose, for a contradiction, that there exists
w′′ � w such that w′′ , w and w′′ ∈ L(A). Then w′′ ∈ L(A∗) and since w′′ � w and
w′′ , w, this contradicts the fact that w ∈ Lmin(A∗). Thus, w ∈ Lmin(A), as required. ut

A.5 Proof of Lemma 8

(1) It is sufficient to show that (φ)⊕ ≡ΦA∗φ
and apply Theorem 1. Denoting Aφ = (Q, I,F, δ),

with Q = {s1, . . . , sq} and A∗φ = (Q, I,F, δ∗) as before, we only show that ψ∗δ ≡ψδ∗ . Because
(φ)⊕ = ∃X1 . . .∃Xq . ψcover∧ψI ∧ψ

∗
δ∧ψF and ΦA∗φ

= ∃X1 . . .∃Xq . ψcover∧ψI ∧ψδ∗ ∧ψF ,
we immediately obtain the result. We have the following equivalence, for each σ ∈
{0,1}`: ∧

1≤k≤`
σ(prk)=1

prk(x) ≡
∨
σ≤τ

(∧
1≤k≤`
τ(prk)=1

prk(x)∧
∧

1≤k≤`
τ(prk)=0

¬prk(x)
)

where σ ≤ τ stands for ∀ j . 1 ≤ j ≤ ` ⇒ σ(j) ≤ τ(j). This immediately implies that
ψ∗δ ≡ ψδ∗ , by the definitions of these formulae respectively, and the construction of δ∗.

(2) For an arbitrary structure S = ([n], ν, ι,µ) we have ι(prk) = wS(prk), for any 1 ≤ k ≤ `,
by the definition of wS. Then S1 v S2 ⇐⇒ wS1 � wS2 , for any two structures Si =

([n], νi, ιi,µi), where i = 1,2. Hence a structure S is a minimal model of φ if and only
if wS ∈ Lmin(Aφ). By Lemma 7, we have Lmin(A) = Lmin(A∗). Then the result follows
from Theorem 1 and point (1) of this Lemma. ut

A.6 Proof of Theorem 2

We define first booleanization formally. First, given an integer i ≥ 0 and a WS1S for-
mula φ(x), we denote by φ[i/x] (resp. t[i/x]) the formula (term) obtained from φ (resp.
t) by replacing every occurrence of x with the term si(0̄), where si denotes i succes-
sive applications of the successor function. Second, for a set S of positive integers, the
formula φ[S/X] is defined homomorphically, starting with the base case X(t)[S/X] def

=∨
i∈S t = si(0̄).

Bn
(
si(0̄) = s j(0̄)

) def
= i = j∨ (i ≥ n−1∧ j ≥ n−1) Bn

(
pr(si(0̄))

) def
= prmin(i,n−1)

Bn(φ1∧φ2) def
= Bn(φ1)∧Bn(φ2) Bn(¬φ1) def

= ¬Bn(φ1)
Bn(∃x . φ) def

=
∨

i∈[n] Bn(φ[i/x]) Bn(∃X . φ) def
=

∨
S⊆[n] Bn(φ[S/X])

where, for any pr ∈ Pred and j ∈ [n], pr j is a propositional variable ranging over the
boolean values > (true) and ⊥ (false). Moreover, we relate WS1S structures with
boolean valuations as follows. Given a structure S = ([n], ν, ι,µ) we define the boolean
valuation βS(pr j)

def
= > ⇐⇒ s j

WS1S(0) ∈ ι(pr), for all pr ∈ Pred and j ∈ [n]. The following
lemma states the formal property of booleanization:

Lemma 10. Given a WS1S sentence φ and n > 0, for every structure S = ([n], ν, ι,µ),
we have S |= φ ⇐⇒ βS |= Bn(φ).

Proof. We prove the following more general statement. Let φ(x1, . . . , xk,X1, . . . ,Xm) be a
WS1S formula with free variables x1, . . . , xk ∈ Var and X1, . . . ,Xm ∈ SVar, i1, . . . , ik ∈ [n]
and S 1, . . . ,S m ⊆ [n]. Then we show that:

S |= φ[i1/x1, . . . , ik/xk,S 1/X1, . . . ,S m/Xm]
⇐⇒

βS |= Bn(φ[i1/x1, . . . , ik/xk,S 1/X1, . . . ,S m/Xm])
by induction on the structure of φ:

– t1 = t2: since φ[i1/x1, . . . , ik/xk,S 1/X1, . . . ,S m/Xm] is a sentence, it must be the case
that t1 = si1 (0̄) and t2 = si2 (0̄), for some i1, i2 ≥ 0. Then we have:

S |= si1 (0̄) = si2 (0̄) ⇐⇒ si1
WS1S(0) = si2

WS1S(0)

⇐⇒ i1 = i2∨ (i1 ≥ n−1∧ i2 ≥ n−1)

⇐⇒ βS |= Bn
(
si1 (0̄) = si2 (0̄)

)
.

– pr(t): since φ[i1/x1, . . . , ik/xk,S 1/X1, . . . ,S m/Xm] is a sentence, it must be the case
that t = si(0̄), for some i ≥ 0. We obtain:

S |= pr(si(0̄)) ⇐⇒ si
WS1S(0̄) ∈ ι(pr)

⇐⇒ smin(i,n−1)
WS1S ∈ ι(pr)

⇐⇒ βS |= prmin(i,n−1) .

The rest of the cases are easy applications of the induction hypothesis. ut

Lemma 11. Given a WS1S formula φ and a constant n > 0, we have (Bn(φ))+ ≡

Bn
(
(φ)⊕

)
.

Proof. First, note that, for any propositional formulae f and g, whose variables occur
under even number of negations, we have f ≡ g ⇐⇒ f ≡min g. Since both (Bn(φ))+

and Bn
(
(φ)⊕

)
are positive propositional formulae, it is sufficient to prove (Bn(φ))+ ≡min

Bn
(
(φ)⊕

)
, by showing [[(Bn(φ))+]]min ⊆ [[Bn

(
(φ)⊕

)
]] and [[Bn

(
(φ)⊕

)
]]min ⊆ [[(Bn(φ))+]],

respectively, which establishes [[(Bn(φ))+]]min = [[Bn
(
(φ)⊕

)
]]min (the latter step is left

to the reader).
“[[(Bn(φ))+]]min ⊆ [[Bn

(
(φ)⊕

)
]]” Let β ∈ [[(Bn(φ))+]]min be a valuation. Then, we also

have β ∈ [[Bn(φ)]]min, since (ϕ)+ ≡min ϕ, in general for any propositional formula ϕ.
Then, by Lemma 10, there exists a structure S ∈ [[φ]]min such that β = βS. Hence we
obtain S ∈ [[(φ)⊕]]min ⊆ [[(φ)⊕]]. But then β ∈ [[Bn

(
(φ)⊕

)
]], by Lemma 10.

“[[Bn
(
(φ)⊕

)
]]min ⊆ [[(Bn(φ))+]]” Let β ∈ [[Bn

(
(φ)⊕

)
]]min be a boolean valuation. By Lemma

10, we obtain a structure S ∈ [[(φ)⊕]]min such that β = βS. But then S ∈ [[φ]]min and
β ∈ [[Bn(φ)]]min, by Lemma 10. Hence β ∈ [[(Bn(φ))+]]. ut

Finally, we relate WS1S dualization, booleanization and propositional dualization:

Lemma 12. Given a WS1S formula φ and an integer n > 0, we have Bn(φ∼) ≡Bn(φ)∼.

Proof. Let β : {prk | pr ∈ Pred,k ∈ [n]} → {>,⊥} be an arbitrary boolean valuation and
let S = ([n], ν, ι,µ) be a structure such that, for each pr ∈ Pred, we have ι(pr) = {k ∈ [n] |
β(prk) = >} and ν, µ are picked at random. Obviously, we have that β = βS, hence by
Lemma 10, β |= Bn(φ∼) ⇐⇒ S |= φ∼ and by Lemma 4 we get S |= φ∼ ⇐⇒ S |=¬φ ⇐⇒
β
S
|= ¬Bn(φ) again, by Lemma 10 and the definition of Bn(¬φ) = ¬Bn(φ). Let β be the

boolean valuation defined as β(prk) = ¬β(prk) for all pr ∈ Pred and k ∈ [n]. Then clearly
β = β

S
and β |= ¬Bn(φ) ⇐⇒ β |= Bn(φ)∼ follows. ut

Proof of the theorem. Let Nn
S

= (N,m0) and µ0 =
∨

m0(s)=1 s. By Lemma 2, we have
TrapInv(NS)≡

(
(µ0∧Θ(N))+)∼. From the definition ofNS, it is not difficult to show that

µ0 ≡ Bn(Init(S)) and Θ(N) ≡ Bn(Tr (Θ(Γ))), hence µ0∧Θ(N) ≡ Bn(Init(S)∧Tr (Θ(Γ))).
By Lemma 11, we obtain (µ0∧Tr (Θ(N)))+ ≡Bn

(
(Init(S)∧Tr (Θ(Γ)))⊕

)
and, by Lemma

12, we obtain
(
(µ0∧Θ(N))+)∼ ≡ Bn

((
(Init(S)∧Tr (Θ(Γ)))⊕

)∼)
, as required. ut

A.7 Proof of Proposition 1

Proof. Let C = {b(0),h(0),b(1),w(1), f (2),e(2)} in the following. We shall try to build
a nonempty trap T that avoids every state in C. If such a trap can be found, the coun-
terexample is shown to be spurious (unreachable). Below is the list of states allowed in
T , indexed by component (using other states that the ones listed below would result in
a trap that is satisfied by the counterexample C, which is exactly the opposite of what
we want):

Fork(0) Philosopherrl(0) Fork(1) Philosopherlr(1) Fork(2) Philosopherlr(2)
f (0) w(0),e(0) f (1) h(1),e(1) b(2) w(2),h(2)

Assume that f (0) ∈ T . Then T must contain b(0) or e(2) (constraint gr(2)∧ g(0)).
However neither is allowed, thus f (0) < T . Assume that f (1) ∈ T . Then T must contain

b(1) or h(0) (constraint gr(0)∧g(1)), contradiction, thus f (1) < T . Assume that b(2) ∈ T .
Then T must contain f (1),w(1) or f (2) (constraint p(1)∧`(1)∧`(2)), contradiction, thus
b(2) < T . Then T contains only philosopher states, except for h(0), w(1) and e(2). One
can prove that there is no such trap, for instance, for Philosopherlr(1) we have:

h(1) ∈ T ⇒ e(1) ∈ T
e(1) ∈ T ⇒ w(1) ∈ T

since f (1),b(1), f (2),b(2) < T . Since w(1) < T , we obtain that h(1),e(1) < T . Then the
only possibility is T = ∅. ut

A.8 Proof of Proposition 2

Below we give a property of the marked PNs that define the semantics of parametric
component-based systems.

Definition 6. Given a component-based system S, a marked PNN = (N,m0), with N =

(S ,T,E), is S-decomposable if and only if there exists an integer n > 0 such that S =⋃K
k=1 Sk × [n] and in every reachable marking m ∈ R(N), for each 1 ≤ i ≤ n and each

1 ≤ k ≤ K there exists exactly one state s ∈ Sk such that m((s, i)) = 1.

Lemma 13. The marked PNNn
S

is S-decomposable, for each component-based system
S and each integer n > 0.

Proof. Let S = 〈C1, . . . ,CK ,Γ〉 be a system with component types Ck = 〈Pk,Sk, s0
k,∆k〉,

for all k = 1, . . . ,K, and let n > 0 be a parameter. Let Nn
S

= (N,m0) and m ∈ R(Nn
S

) be a
reachable marking. Then N = (

⋃K
k=1 Sk × [n],T,E). We prove the property by induction

on the length ` of the shortest path from m0 to m. If ` = 0 the property holds because
each component type 1≤ k ≤ K has exactly one initial state s0

k and only the states (s0
k, i)

are initially marked, for all 1 ≤ i ≤ n. For the induction step ` > 0, assume that m′
t

−→ m
and the property of Definition 6 holds for m′. Then there exists I= ([n], ν, ι,µ) ∈ [[Γ]]min,
such that t = tI and, for each i ∈ [n] and each p ∈ Pk such that s′

p
−→ s ∈ ∆k and i ∈ ι(p),

there are edges ((s′, i), tI), (tI, (s, i)) ∈ E. Suppose, for a contradiction, that there exists
1 ≤ i0 ≤ n and 1 ≤ k0 ≤ K such that m((s, i0)) = m((s′′, i0)) = 1, for two distinct states
s, s′′ ∈ Sk. Then (tI, (s, i0)), (tI, (s′′, i0)) ∈ E and i0 ∈ ι(p)∩ ι(q), for two transition rules
s′

p
−→ s, s′

q
−→ s′′ ∈ ∆k. However, this comes in contradiction with the assumption that a

transition does not involve two different ports from the same component type (1). ut

Proof of the proposition. Let n > 0 be an arbitrary positive integer. The component
types of S are Ck = 〈Pk,Sk, s0

k,∆k〉, for all k = 1, . . . ,K and its marked PNNn
S

= (N,m0),
where:

– N = (
⋃K

k=1 Sk × [n],T,E) and,
– for all 1 ≤ k ≤ K and all s ∈ Sk, we have m0((s, i)) = 1, if s = s0

k and m0((s, i)) = 0,
otherwise.

Moreover, for a marking m :
⋃K

k=1 Sk × [n]→ {0,1} of Nn
S

and a formula φ, we write
m ∈ [[φ]]n iff ([n], ι, ν) |= φ, where ι is such that ι(s) = {i ∈ [n] | m((s, i)) = 1} and ν is an
arbitrary valuation.

We prove first that m0 ∈ A
ψ,n
Γ . Let i1, . . . , iw ∈ [n] be arbitrary integers. Clearly,

m0((s0
k1 , i1)) = . . . = m0((s0

kw , iw)) = 1, thus ([n], ι[s0
k1 ← {i1}] . . . [s0

kw ← {iw}], ν[x1 ←

i1] . . . [xw ← iw]) |= Φ
ψ
Γ, since Φψ

Γ is the set of reachable markings of Nψ
S

and m0 sub-
sumes the initial marking thereof.

Second, we show thatAψ,n
Γ is inductive, i.e. for each move m

t

−→ m′ ofNn
S

, such that
m ∈ Aψ,n

Γ , we must show that m′ ∈ Aψ,n
Γ . First, notice that, for any interpretation ι, any

valuation ν and any i1, . . . , iw ∈ [n], we have:
([n], ι[c1← i1] . . . [cw← iw], ν) |= φ(c1, . . . ,cw)

⇐⇒ (5)
([n], ι, ν[x1← i1] . . . [xw← iw]) |= φ(x1, . . . , xw)

for an arbitrary formula φ. In the following, we define, for all s ∈
⋃K

k=1 Sk:

ιm(s) def
= {i ∈ [n] |m((s, i)) = 1}

ιm′ (s) def
= {i ∈ [n] |m′((s, i)) = 1}

Let i1, . . . , iw ∈ [n] be integers such that ([n], ιm′ , ν[x1← i1] . . . [xw← iw]) |= ψ(x1, . . . , xw).
We compute as follows:
([n], ιm′ , ν[x1← i1] . . . [xw← iw]) |= ψ(x1, . . . , xw) ⇐⇒ since ψ has only atoms sk(xi) ≤ s`(x j)
([n], ιm, ν[x1← i1] . . . [xw← iw]) |= ψ(x1, . . . , xw) ⇐⇒ by (5)
([n], ιm[c1← i1] . . . [cw← iw], ν) |= ψ(c1, . . . ,cw) =⇒ since m ∈ Aψ,n

Γ

([n], ιm[c1← i1] . . . [cw← iw], ν) |= Φ
ψ
Γ(c1, . . . ,cw) =⇒ (†)

([n], ιm′ [c1← i1] . . . [cw← iw], ν) |= Φ
ψ
Γ(c1, . . . ,cw) ⇐⇒ by (5)

([n], ιm′ , ν[x1← i1] . . . [xw← iw]) |= Φ
ψ
Γ(x1, . . . , xw) thus m′ ∈ Aψ,n

Γ , as required.
We are left with proving the step (†) above. Because Nn

S
is S-decomposable, by

Lemma 13, and since m
t

−→ m′ by the hypothesis, there are states s1, s′1 ∈ Sk1 . . . sm, s′m ∈
Skm , with k1, . . . ,km pairwise disjoints, integers j1, . . . , jm ∈ [n] and edges ((si, ji), t), (t, (s′i , ji)) ∈
E, for all i = 1, . . . ,m. For each i = 1, . . . ,m, we distinguish the cases:

– if si = s′i then m((si, ji)) = m′((si, ji)) = 1,
– else, if si , s′i then m((si, ji)) = m′((s′i , ji)) = 1 and m((s′i , ji)) = m′((si, ji)) = 0.

Observe now thatNψ
S

has the same structure as the subnet obtained by restrictingNn
S

to
the states in {s1, . . . , sm, s′1, . . . , s

′
m}×{ j1, . . . , jm}. Moreover, there exists a transition t↓ψ in

N
ψ
S

and edges (si(ci), t↓ψ), (t↓ψ, s′i (ci)) ∈ Eψ only if ((si, ji), t), (t, (s′i , ji)) ∈ E. Let m↓ψ and
m′↓ψ be the projections of m and m′ on {s1, . . . , sm, s′1, . . . , s

′
m}×{ j1, . . . , jm}, respectively.

Since m
t

−→ m′, we obtain that m↓ψ
t↓ψ
−−→ m′↓ψ, thus ([n], ιm′ [c1 ← i1] . . . [cw ← iw], ν) |=

Φ
ψ
Γ(c1, . . . ,cw), as required. ut

	Structural Invariants for Parametric Verification of Systems with Almost Linear Architectures
	Introduction
	Parametric Component-based Systems
	Execution Semantics of Component-based Systems

	Computing Trap Invariants
	From IL1S to WS1S
	Trap Invariants as Automata

	Refining Invariants
	Ashcroft Invariants

	Experiments
	Conclusions and Future Work
	Proofs
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Proposition 2

