
HAL Id: hal-02388022
https://hal.science/hal-02388022v1

Submitted on 30 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SL-COMP: Competition of Solvers for Separation Logic
Mihaela Sighireanu, Juan Navarro Pérez, Andrey Rybalchenko, Nikos

Gorogiannis, Radu Iosif, Andrew Reynolds, Cristina Serban, Jens Katelaan,
Christoph Matheja, Thomas Noll, et al.

To cite this version:
Mihaela Sighireanu, Juan Navarro Pérez, Andrey Rybalchenko, Nikos Gorogiannis, Radu Iosif, et al..
SL-COMP: Competition of Solvers for Separation Logic. Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Apr 2019,
Prague, Czech Republic. pp.116-132, �10.1007/978-3-030-17502-3_8�. �hal-02388022�

https://hal.science/hal-02388022v1
https://hal.archives-ouvertes.fr

SL-COMP: Competition of Solvers for Separation

Logic

Mihaela Sighireanu2
�, Juan A. Navarro Pérez11, Andrey Rybalchenko3, Nikos

Gorogiannis4, Radu Iosif13, Andrew Reynolds12, Cristina Serban13, Jens
Katelaan10, Christoph Matheja6, Thomas Noll6, Florian Zuleger10, Wei-Ngan

Chin5, Quang Loc Le9, Quang-Trung Ta5, Ton-Chanh Le8, Thanh-Toan
Nguyen5, Siau-Cheng Khoo5, Michal Cyprian1, Adam Rogalewicz1, Tomas
Vojnar1, Constantin Enea2, Ondrej Lengal1, Chong Gao7, and Zhilin Wu7

1 FIT, Brno University of Technology, Czechia
2 IRIF, University Paris Diderot and CNRS, France
3 Microsoft Research, Cambridge, United Kingdom
4 Middlesex University London, United Kingdom

5 National University of Singapore, Singapore
6 RWTH Aachen University, Germany

7 State Key Laboratory of Computer Science, Chinese Academy of Sciences, China
8 Stevens Institute of Technology, USA

9 Teesside University, Middlesbrough, United Kingdom
10 TU Wien, Austria

11 University College London now at Google, United Kingdom
12 University of Iowa, USA

13 VERIMAG, University Grenoble Alpes and CNRS, France

Abstract. SL-COMP aims at bringing together researchers interested
on improving the state of the art of the automated deduction methods
for Separation Logic (SL). The event took place twice until now and col-
lected more than 1K problems for different fragments of SL. The input
format of problems is based on the SMT-LIB format and therefore fully
typed; only one new command is added to SMT-LIB’s list, the com-
mand for the declaration of the heap’s type. The SMT-LIB theory of
SL comes with ten logics, some of them being combinations of SL with
linear arithmetics. The competition’s divisions are defined by the logic
fragment, the kind of decision problem (satisfiability or entailment) and
the presence of quantifiers. Until now, SL-COMP has been run on the
StarExec platform, where the benchmark set and the binaries of partici-
pant solvers are freely available. The benchmark set is also available with
the competition’s documentation on a public repository in GitHub.

1 Introduction

Separation Logic (SL) is an established and fairly popular Hoare logic for im-
perative, heap-manipulating programs, introduced nearly fifteen years ago by
Reynolds [24,20,25]. Its high expressivity, its ability to generate compact proofs,
and its support for local reasoning have motivated the development of tools for

II

automatic reasoning about programs using SL. A rather exhaustive list of the
past and present tools using SL may be found at [19].

These tools seek to establish memory safety properties and/or infer shape
properties of the heap at a scale of millions of lines of code. They intensively use
(semi-)decision procedures for checking satisfiability and entailment problems in
SL. Therefore, the development of effective solvers for such problems became a
challenge which led to both theoretical results on decidability and complexity of
these problems for different fragments of SL and to publicly available tools. To
understand the capabilities of these solvers and to motivate their improvement
by comparison on a common benchmark, we initiated in 2014 the SL-COMP

competition, inspired by the success of SMT-COMP for solvers on first order
theories.

This paper presents the history of this competition and its organization for
the round at TOOLympics 2019. Section 2 describes the main stages of the
competition. Each stage is detailed in a separate section as follows: benchmark’s
definition in Section 3, the participants in Section 4 and the running infrastruc-
ture in Section 5. We conclude the paper in Section 6 by a discussion on the
impact of the competition and its perspectives.

2 Competition’s Stages

2.1 A short history

The first edition of SL-COMP took place at FLoC 2014 Olympic Games, as
an unofficial event associated with the SMT-COMP 2014 competition [31]. The
organization details and the achievements of this edition are presented in details
in [26]. This was an opportunity to collect from participants about 600 problems
on different fragments of SL, to involve six solvers, to lay the foundations of a
common input format and to set up a discussion list involving teams developing
solvers or verification tools based on SL. Being attached to SMT-COMP allowed
to benefit from the experience of SMT-COMP’s organizer, David Cok, in setting
competition’s rules and the execution platform StarExec, as well as in running
the competition and publishing the results.

The results of the first edition led to interesting discussions on the mailing list,
mainly on the input format chosen, the layout of divisions and the frequency of
running the competition. These discussions have converged in defining a working
group on the input format and fixed a sparse rhythm of the competition, mainly
aligned with FLoC venues.

Therefore, the second edition took place at FLoC 2018 and was associated
with the first workshop on Automated Deduction for Separation Logics (ADSL).
The organization of the competition followed the stages described in the next
section and was disconnected from SMT-COMP. The organizer, Mihaela Sighire-
anu, exploited the experience acquired with the first edition in running the com-
petition on StarExec. The competition involved ten solvers which ran on 1K
problems split over ten newly defined divisions. More precisely, the benchmark

III

set included the set of problems of the 2014 edition and new problems provided
by the participants. The problems were specified in the new input format which
is aligned with the latest version of SMT-LIB, as detailed in [15] and summarized
in Section 3.2. The competition’s results have been presented during a session of
ADSL, which gave the opportunity of a live discussion on the different aspects
of organization. The results are available on the competition web site [27].

The TOOLympics edition is a rerun of the second edition with two major
changes: a new solver has been included and some benchmark instances have
been fixed. The remainder of this paper will present the organization of this
edition and the participants involved.

2.2 Organization process

The competition has a short organization period, three months on average. This
is possible due to the fact that material used in the competition (the bench-
mark set, the definition of the input format, the parsers for input and the pre-
processing tools) are publicly available on StarExec and on a shared development
repository [22] maintained by the participants and by the organizer.

The competition is launched by a call for benchmarks and participants which
also fixes the competition timeline. The call is sent on the competition mailing
list sl-comp@googlegroups.com.

New solvers are invited to send a short presentation (up to two pages) in-
cluding the team, the sub-fragment of SL dealt, the main bibliography and the
website. In addition, each solver has a corresponding person in the team, which is
responsible of preparing the solver for running the competition. This preparation
ensures that the input format is supported and that the solver is registered in the
execution platform in the divisions of the competition it asked to compete. The
organizer creates a subspace on the execution platform for each participant and
assigns the permission to the solver’s correspondent for this space. She may help
the incomer to prepare the solver by providing insights on the use of the execu-
tion platform, the input format and the pre-processors from the competition’s
input format to the solver’s format.

The benchmark problems are collected from the community and participants.
Until now, we did not limit the number of benchmark instances proposed by
participants in each category in order to improve our benchmark set. However,
this may change in the future, as discussed on Section 3. The benchmark set
may change during the competition due to reaction of competitors, but it is
fixed starting with the pre-final run.

The competition is run in three steps. The first step is a training period
where the solver’s correspondent runs the solver on the execution platform and
the existing benchmark set. During this step, the benchmark set may be changed
as well as the solver’s binary. The second step is a pre-final run, launched by the
organizer using the binaries of solvers published on the execution platform. The
results of this pre-final run are available for all solvers’ representatives, which
may allow to compare results and have a first view on competitors’ achievements.
The organizer contacts each correspondent to be sure that the results of this run

sl-comp@googlegroups.com

IV

are accepted. The last step is the final run, which determines the final result.
The binaries of solvers submitted to the final run may be different from the ones
used in the pre-final run.

The final run of the competition takes place one week before the event at
which the competition’s results are presented. However, the results are available
as soon as possible on the competition’s web site.

3 Benchmark Set

The current competition’s benchmark set contains more than 1K problems, (pre-
cisely 1286 problems), which cover several fragments of Separation Logic. 25%
of these problems are satisfiability checking problems. This section outlines the
main features of this benchmark set, including the fragments covered, the input
format, and the divisions established for this edition. A detailed description of
the input theory and format is [15].

3.1 Separation logic theory

The input theory is a multi-sorted second order logic over a signature Σ =
(Σs, Σf), where the set of sorts Σs includes two (non necessarily disjoint) subsets
of sorts representing locations of the heap, Σs

Loc
, respectively heap’s data, Σs

Data
.

For each sort Loc in Σs

Loc
, the set of operations includes a constant symbol nilLoc

modeling the null location. The heap’s type τ is an injection from location sorts
in Σs

Loc
to data sorts in Σs

Data
. We also assume that the signature Σ includes the

Boolean signature and an equality function for each sort.
Let Vars be a countable set of first-order variables, each xσ ∈ Vars having

an associated sort σ. The Ground Separation Logic SLg is the set of formulae
generated by the following syntax:

ϕ := φ | emp | t 7→ u | ϕ1 ∗ ϕ2 | ϕ1 −−∗ ϕ2 | ¬ϕ1 | ϕ1 ∧ ϕ2 | ∃x
σ . ϕ1(x) (1)

where φ is a Σ-formula, and t, u are Σ-terms of sorts in Σs

Loc
and Σs

Data
re-

spectively, such that they are related by the heap’s type τ . As usual, we write
∀xσ . ϕ(x) for ¬∃xσ . ¬ϕ(x). We omit specifying the sorts of variables and
functions when they are clear from the context.

The special atomic formulas of SLg are the so-called spatial atoms: emp spec-
ifies an empty heap, t 7→ u specifies a heap consisting of one allocated cell whose
address is t and whose value is u. The operator “∗” is the separating conjunction
denoting that the sub-heaps specified by its operands have disjoint locations. The
operator “−−∗” is the separating implication operator, also called magic wand. A
formula containing only spatial atoms combined using separating conjunction
and implication is called spatial. Formulas without spatial atoms and separating
operators are called pure.

The full separation logic SL contains formulas with spatial predicate atoms
of the form P σ1...σn(t1, . . . , tn), where each ti is a first-order term of sort σi,

V

for i = 1, . . . , n. The predicates P σ1...σn belong to a finite set P of second-
order variables and have associated a tuple of parameter sorts σ1, . . . , σn ∈ Σ

s.
Second-order variables P σ1...σn ∈ P are defined using a set of rules of the form:

P (x1, . . . , xn)← φP (x1, . . . , xn), (2)

where φP is a formula possibly containing predicate atoms and having free vari-
ables in x1, . . . , xn. The semantics of predicate atoms is defined by the least fixed
point of the function defined by these rules.

An example of a formula specifying a heap with at least two singly linked
list cells at locations x and y is:

x 7→ node(1, y) ∗ y 7→ node(1, z) ∗ ls(z, nil) ∧ z 6= x (3)

where Σs = {Int, Loc,Data} and the function node has parameters of sort Int

and Loc and its type is Data. The predicate ls is defined by the following rules:

ls(h, f)← h = f ∧ emp (4)

ls(h, f)← ∃x, i . h 6= f ∧ x 7→ node(i, x) ∗ ls(x, f) (5)

and specifies a possible empty heap storing a singly linked list of Data starting
at the location denoted by h and whose last cell contains the location denoted
by f . More complex examples of formulas and predicate definitions are provided
in [26,15].

3.2 Input format

The input format of the competition has been changed between the first and the
second edition, but it was always based on the SMT-LIB format [2]. The syntax
and semantics of this format were discussed and agreed in the public mailing
group.

Signature encoding: Following this format, the new functions of SL theory are
declared in a “theory” file SepLogicTyped.smt2 as follows:

(theory SepLogicTyped

:funs ((emp Bool)

(sep Bool Bool Bool :left-assoc)

(wand Bool Bool Bool :right-assoc)

(par (L D) (pto L D Bool))

(par (L) (nil L))

)

)

Observe that pto and nil are polymorphic functions, with sort parameters L

(for location sort) and D (for data sort). There is no restriction on the choice of
location and data sorts. However, each problem shall fix them using a special
command, not included in SMT-LIB, declare-heap. For example, to encode the
example given in Equation 3, we declare an uninterpreted sort Loc and a sort
Data as a datatype as follows:

VI

(declare-sort Loc 0)

(declare-datatype Data ((node (d Int) (next Loc))))

(declare-heap (Loc Data))

The last declaration fixes the type of the heap model.
The predicate definitions are written into SMT-LIB format using the recursive

function definition introduced in version 2.6. For instance, the definition of the
list segment from Equations 4 and 5 is written into SMT-LIB as follows (based
on the above declarations of Loc and Data):

(define-fun-rec ls ((h Loc) (f Loc)) Bool

(or (and emp (= h f))

(exists ((x Loc) (d Int))

(and (distinct h f) (sep (pto h (node d x)) (ls x f))))

)

)

Problem format: Each benchmark file is organized as follows:

– Preamble information required by the SMT-LIB format: the sub-logic of SL
theory (see Section 3.3), the team which proposed the problem, the kind
(crafted, application, etc.) and the status (sat or unsat) of the problem.

– A list of declarations for the sorts for locations and data, for the type of
the heap (the declare-heap command), for the second order predicates,
and for the free variables used in the problem’s formulae. Notice that the
input format is strongly typed. At the end of the declarations, a checking
command check-unsat may appear to trigger for some solvers the checking
for models of predicate declarations.

– One or two assertions (command assert) introducing the formulas used in
the satisfiability respectively entailment problem.

– The file ends with a checking satisfiability command check-unsat. Notice
that checking the validity of the entailment A ⇒ B is encoded by satisfia-
bility checking of its negation A ∧ ¬B.

3.3 Divisions

The main difficulty that faces automatic reasoning using SL is that the logic,
due to its expressiveness, does not have very nice decidability properties [1]. For
this reason, most program verification tools use incomplete heuristics to solve
the satisfiability and entailment problems in SL or restrict the logic employed to
decidable fragments. Overviews of decidable results for SL are available in [26,8].

Each benchmark instance of SL-COMP refers to one of the sub-logics of the
multi-sorted Separation Logic. These sub-logics identify fragments which are
handled by at least two participants or have been identified to be of interest
during the discussion for the organization of the round.

VII

The sub-logics are named using groups of letters, in a way similar to SMT-

LIB format. These letters have been chosen to evoke the restrictions used by the
sub-logics:

– QF for the restriction to quantifier free formulas;

– SH for the so-called “symbolic heap fragment” where formulas are restricted
to (Boolean and separating) conjunctions of atoms and do not contain magic
wand; moreover, pure atoms are only equality or dis-equality atoms;

– LS where the only predicate allowed is the acyclic list segment, ls, defined
in Equations 4 and 5;

– ID for the fragment with user defined predicates;

– LID for the fragment of linear user defined predicates, i.e., only one recursive
call for all rules of a predicate is allowed;

– B for the ground fragment allowing any Boolean combination of atoms.

Moreover, the existing fragments defined in SMT-LIB are used to further restrict
the theory signature. For example, LIA denotes the signature for linear integer
arithmetics.

Table 1. Divisions at SL-COMP and the participants enrolled

Division size Solvers enrolled

qf_bsl_sat 46 CVC4-SL

qf_bsllia_sat 24 CVC4-SL

qf_shid_entl 312 Cyclist-SL, Harrsh, S2S, Sleek, Slide, Songbird, Spen

qf_shid_sat 99 Harrsh, S2S, Sleek, SlSat

qf_shidlia_entl 75 ComSPEN, S2S

qf_shidlia_sat 33 ComSPEN, S2S

qf_shlid_entl 60 ComSPEN, Cyclist-SL, Harrsh, S2S, Spen

qf_shls_entl 296 Asterix, ComSPEN, Cyclist-SL, Harrsh, S2S, Spen

qf_shls_sat 110 Asterix, ComSPEN, Cyclist-SL, Harrsh, S2S, Spen

shid_entl 73 Cyclist-SL, S2S, Sleek, Songbird

shidlia_entl 181 S2S, Songbird

The current round of the competition has eleven divisions, named by con-
catenation of the name of the logic and the kind of problem solved (sat or entl).
Table 1 provides the names of these divisions and the number of problems in
each division:

– qf_bsl_sat and qf_bsllia_sat divisions include satisfiability problems for
quantifier free formulas in the ground logic using respectively none or LIA
logic for pure formulas.

– qf_shid_entl and qf_shid_sat divisions include entailment respectively
satisfiability problems for the symbolic heap fragment with user defined pred-
icates.

VIII

– qf_shidlia_entl and qf_shidlia_sat divisions include entailment respec-
tively satisfiability problems for the quantifier free, symbolic heap fragment
with user defined predicates and linear arithmetics included in pure formulas
even in the predicate definitions.

– qf_shlid_entl division includes a subset of problems of division
qf_shid_entl where the predicates are “linear” and compositional [10]. This
fragment is of interest because the entailment problem has an efficient deci-
sion procedure.

– qf_shls_entl and qf_shls_sat divisions include entailment respectively
satisfiability problems for the quantifier free symbolic heap fragment with
only ls predicate atoms.

– shid_entl division contains entailment problems for quantified formulas in
the symbolic heap fragment with general predicate definitions and no other
logic theories than Boolean.

– shidlia_entl divisions extends the problems in shid_entl with constraints
from linear integer arithmetics.

3.4 Selection process

The benchmark set was built mainly from the contributions of participants.
Some of these problems come from academic software analysis or verification
tools based on SL (e.g., SmallFoot [30], Hip [5]). We did not received any
problem issued from industrial tools. The problems were collected in the input
format submitted by the participants and then translated into the input format
of the competition. With the objective of increasing the size of the benchmark
set, we did not limit the number of problems submitted by a participant. In this
way, the edition 2018 has seen an increase of 100% in the size of the benchmark
set. However in the future we could consider a change in the regulations to find
a fair balance between teams. By using the meta-information in the preamble of
each file, we are able to track the team which proposed the problem.

Notice that each problem has been examined by the organizer to ensure that
the input format is respected and that it passed the parsing and type checking.
However, the organizer accepts the status of the problem proposed until it is
signaled incorrect by another team. In this case, a round of discussion is initiated
to find an agreement on the status included in the file. Notice that the status
(sat or unsat) shall be known because it is important for the computation of
the final result. The status of each problem was checked before the competition
using at least two solvers and it did not change during the competition.

4 Participants

Eleven solvers are enrolled for this edition of the competition after its public
announcement. Table 1 summarizes the enrollment of each solver in the divisions
presented in the previous section.

IX

4.1 Asterix

Asterix is presented in details in [21]. It was submitted by Juan Navarro Perez
(at the time at University College London, UK, now at Google) and Andrey
Rybalchenko (at the time at TU Munich, Germany, now at Microsoft Research
Cambridge, UK). The solver deals with the satisfiability and entailment checking
in the QF_SHLS fragment. For this, it implements a model-based approach. The
procedure relies on SMT solving technology (Z3 solver is used) to untangle po-
tential aliasing between program variables. It has at its core a matching function
that checks whether a concrete valuation is a model of the input formula and, if
so, generalizes it to a larger class of models where the formula is also valid.

Asterix was the winner of divisions qf_shls_sat and qf_shls_entl for
both editions.

4.2 ComSPEN

The theoretical bases of ComSPEN have been presented in [11]. The develop-
ment team is composed of Taolue Chen (University of London, UK), Chong
Gao and Zhilin Wu (State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences).

The solver deals with both satisfiability and entailment problems in a frag-
ment included in logic QF_SHIDLIA and which extends QF_SHLID with integer
linear arithmetics in predicate definitions. The underlaying technique for sat-
isfiability checking of a formula ϕ is to define an abstraction, Abs(ϕ), where
Boolean variables are introduced to encode the spatial part of ϕ, together with
quantifier-free formulae to represent the transitive closure of the data constraints
in the predicate atoms. Checking satisfiability of ϕ is then reduced to checking
satisfiability of Abs(ϕ), which can be solved by the state-of-the-art SMT solvers
(e.g., Z3), with an NP upper-bound. For the entailment problem ϕ ⊢ ψ, if ϕ and
ψ are satisfiable, the procedure builds graphs for each formula and tries to build
a graph isomorphism between them.

ComSPEN is implemented in C++. It uses the libraries Z3 and boost. The
input format is the Spen’s format, which requires a pre-processor for the compe-
tition’s input format. Results are not available for ComSPEN because the 2019
edition is the first one for it.

4.3 Cyclist-SL

Cyclist-SL [4,7] was submitted by Nikos Gorogiannis (Middlesex University
London, UK) in 2014. The solver deals with the entailment checking for the
QF_SLID fragment. It is an instantiation of the theorem prover Cyclist-SL

for the case of Separation Logic with inductive definitions. The solver builds
derivation trees and uses induction to cut infinite paths in these trees that satisfy
some soundness condition. For the Separation Logic, Cyclist-SL replaces the
rule of weakening used in first-order theorem provers with the frame rule of SL.

Cyclist-SL won the division qf_slid_entl in 2014 and was at the second
place in the same division in 2018.

X

4.4 CVC4-SL

CVC4 has a decision procedure described in [23] for the fragment QF_BSL. The
solver CVC4-SL has been submitted by Andrew Reynolds (The University of
Iowa, USA). Although this fragment is not supported by other solvers, two di-
visions were created for it because this fragment is the only one including the
separating wand operator. CVC4-SL [6] participated in the 2018 edition and
trivially won the two divisions.

4.5 Harrsh

Harrsh [17] was submitted by Jens Katelaan (TU Wien, Austria), the devel-
opment team including Florian Zuleger from the same institute and Christoph
Matheja and Thomas Noll (RWTH Aachen University, Germany). Harrsh deals
with the fragment QF_SHID for both satisfiability and entailment checking. The
decision procedures use a novel automaton model, so-called heap automata [16],
which works directly on the structure of symbolic heaps. A heap automaton
examines a SID bottom-up, starting from the non-recursive base case. At each
stage of this analysis, a heap automaton remembers a fixed amount of informa-
tion. Heap automata enjoy a variety of closure properties (intersection, union
and complementation).

Harrsh is licensed under the MIT license and available on GitHub [12].
Harrsh was implemented in Scala and runs on the JVM. Harrsh has its own
input format, but also supports both Cyclist-SL input format and the SL-

COMP input format. Many SL-COMP entailment problems violate the syntactic
restrictions of predicate definitions required by Harrsh. For this reason, the
solver comes with a preprocessor that is able to transform many (but not all)
benchmark’s problems in the division qf_shid_entl into equivalent, Harrsh

compatible specifications.
Harrsh entered SL-COMP in 2018 and competed in divisions qf_shls_sat

and qf_shid_sat with encouraging results. Compared to all other participants,
Harrsh has the disadvantage that it runs on the JVM: On simple problems,
more than 99% of the runtime of Harrsh is spent starting and shutting down
the JVM.

4.6 S2S

S2S is a solver submitted by Quang Loc Le (Teesside University, Middlesbrough,
UK). It supports separation logic extended with string and arithmetic con-
straints, which correspond to all divisions of SL-COMP except ones based on
QF_BSL. The solver is built around a generic framework to construct a forest of
disjoint cyclic reduction trees for an input, either an entailment or a satisfiability
problem. The implementation is done in Ocaml, from scratch. It contains three
main components: front end with parsers, the proof systems and backend with
SMT solvers (Z3). For the front end, the solver supports several formats, in-
cluding the one of SL-COMP. The solver implements three concrete cyclic proof

XI

systems. The first system is a satisfiability solver in separation logic with general
inductive predicates and arithmetic (fragment SLIDLIA). The second one is an
entailment solver in the same fragment of separation logic above. Its implementa-
tion is the extension of a cyclic proof system with lemma synthesis [18]. The last
system is a satisfiability solver for string logics. In all these three systems, any
input of the leaf node evaluation method could be transformed into Presburger
arithmetic and discharged efficiently by Z3.

In SL-COMP’2018, S2S won division qf_shlid_entl and qf_shidlia_sat.

4.7 Sleek

Sleek [5,28] participated in all editions of SL-COMP, the submitters at edition
2018 being Benjamin Lee and Wei-Ngan Chin (NUS, Singapore). The solver
deals with the satisfiability and entailment checking for the QF_SHID fragment.
It is an (incomplete but) automatic prover, that builds a proof tree for the input
problem by using the classical inference rules and the frame rule of SL. It also
uses a database of lemmas for the inductive definitions in order to discharge the
proof obligations on the spatial formulas. The proof obligations on pure formulas
are discharged by external provers like CVC4, Mona, or Z3.

Sleek was the winner of the division qf_shid_entl in edition 2014, and was
in the third position in the same division in edition 2018.

4.8 Slide

Slide [14,29] was submitted by Adam Rogalewicz (FIT, Brno University of Tech-
nology, Czechia), the development team including Michal Cyprian and Tomas
Vojnar from the same institute and Radu Iosif (Verimag, University Greno-
ble Alpes & CNRS, France). The solver deals with the entailment problem in
the decidable sub-fragment of QF_SLID defined in [13]. The main principle of
SLIDE is a reduction of entailment problems in SL into inclusion problems of
tree automata. For the problems in the fragment identified in [13], the decision
procedure implemented in Slide is EXPTIME-hard. More precisely, the proof
method for checking ϕ⇒ ψ relies on converting ϕ and ψ into two tree automata
Aϕ resp. Aψ, and checking the tree language inclusion of the automaton Aϕ in
the automaton Aψ.

Slide takes an input in its own input format, which can be generated by the
dedicated SL-COMP preprocessor. The reduction from the system of predicates
into tree automata and the join operator is implemented in Python3. The result
of the reduction are input files for the VATA tree automata library, which is
used as a backend for the inclusion tests.

Slide participated in both past editions of SL-COMP. In 2018 edition, Slide

solved 61 of 312 problems in division qf_shid_entl, 7 of 60 problems in division
qf_shlid_entl, and 15 of 73 problems in division shid_entl. The number of
solved problems is related to the fact that Slide is a prototype implementation,
where our primary goal was to show the advantages of automata techniques. In
order to cover more problems, one have to implement a new top-level parser,

XII

which would split the input entailment query into a set of subsequent queries,
for which the automata-based technique can be used.

4.9 SlSat

SlSat [3] was submitted at SL-COMP’2014 by Nikos Gorogiannis (Middlesex
University London, UK) and Juan Navarro Perez (at the time at UCL, UK,
now at Google). The solver deals with the satisfiability problem for the QF_SLID

fragment. The decision procedure is based on a fixed point computation of a
constraint, called the “base” of an inductive predicate definition. This constraint
is a conjunction of equalities and dis-equalities between a set of free variables
built also by the fixed point computation from the set of inductive definitions.

SlSat was at the second position in division qf_slid_sat in edition 2014,
and won this division at edition 2018.

4.10 Songbird

Songbird [32] was submitted by Quang-Trung Ta (National University of Sin-
gapore) and the development team includes Ton-Chanh Le (Stevens Institute of
Technology, USA), Thanh-Toan Nguyen, Siau-Cheng Khoo, and Wei-Ngan Chin
(National University of Singapore, Singapore). Songbird targets SHIDLIA frag-
ment. It employs mathematical induction to prove entailments involving user-
defined predicates. In addition, Songbird is also equipped with powerful proof
techniques, which include a mutual induction proof system [35] and a lemma
synthesis framework [36].

Songbird is implemented in OCaml and uses Z3 as the underlying SMT
solver for the first-order logic formula which contains equality and linear arith-
metic constraints. The input syntax of Songbird is described in [32].

Songbird integrated SL-COMP at the 2018 edition, and was the first in
four divisions: qf_shid_entl, qf_shidlia_entl, shid_entl, shidlia_entl. It
can also solve 100% of the problems in other two divisions qf_shls_entl and
qf_shls_sat, but the runtime is slower than the best provers of these divisions.

4.11 Spen

Spen [9,33] was submitted by Mihaela Sighireanu (IRIF, University Paris
Diderot & CNRS, France) and the development team includes Constantin Enea
from the same institute, Ondrej Lengal and Tomas Vojnar (FIT, Brno University
of Technology, Czechia). The solver deals with satisfiability and entailment prob-
lems for the fragments QF_SHLID and QF_SHLS. The decision procedures call the
MiniSAT solver on a Boolean abstraction of the SL formulas to check their satis-
fiability and to “normalize” the formulas by inferring its implicit (dis)equalities.
The core of the algorithm checking if ϕ ⇒ ψ is valid searches a mapping from
the atoms of ψ to sub-formulas of ϕ. This search uses the membership test in
tree automata to recognize in sub-formulas of ϕ some unfolding of the inductive
definitions used in ψ.

XIII

Spen is written in C and C++ and is open source [33]. It is based on
the VATA library for tree automata. Spen won the division qf_shlid_entl

at edition 2014 and was in the second position in divisions qf_shls_entl and
qf_shls_sat in both editions.

5 Running the Competition

SL-COMP uses the StarExec platform [34] and requires several features provided
by this platform. The pre-processing phase allows to translate each problem
into the input format of the solver without time penalties. It is used by most
of the solvers and some pre-processors are provided by SL-COMP’s organizer,
freely available on the competition GitHub repository [22]. The competition did
not use the scrambling of benchmark’s problems because the names used for
inductive definitions defined in the files of some divisions are important for the
solvers. Each benchmark file includes only one problem. The incremental feature
was not used and is not supported by most of the competing solvers.

StarExec imposes a time and space limit on each attempt of a solver to solve
a given problem. For the 2014 edition, the CPU time was limited to 2400 seconds
and the memory (RAM) limit was 100 GB. To gain some time in running the
competition, the 2018 edition used by default a timeout of 600 sec and 4 GB
of memory; if the time was exceeded, timeouts of 2400 then 3600 were tried.
Even with these bigger timeouts, some jobs did have CPU timeout or reached
the memory limit. To simplify the running, the new edition will use a memory
limit of 100 GB and a timeout of 3600 sec.

The participants trained their solvers on the platform and provided feedback
where the expected result of a problem did not match their result. Several bench-
mark’s problems and solvers were fixed during this period. One training run was
executed before the official run to provide insights about the global results and
to do a final check of the benchmark set.

The participants at each divisions are ordered according to the rules fixed for
SMT-COMP’14 edition. The best solver is the one with, in order: (a) the least
number of incorrect answers, (b) the largest number of correctly solved prob-
lems, and (c) the smallest time taken in solving the correctly solved problems.
Note that solvers are allowed to respond “unknown” or to time-out on a given
benchmark’s problem without penalty (other than not being able to count that
problem as a success).

StarExec requires that a public version of a solver be made available on
StarExec as a condition of participating in a competition. This allows users of
StarExec to rerun a competition if so desired. More importantly, it allows users
to upload a new set of problems of interest in their application domain and to
try the various solvers against those problems. This feature was very useful for
SL-COMP at edition 2018, because some solvers reused the binaries submitted in
2014. The results of the competition are provided on the competition web page
with a link to the CSV files generated by StarExec. We are also archiving the
results of previous editions in the GitHub.

XIV

6 Impact and Perspectives

The SL-COMP initiative fulfilled its goals: an interesting suite of SL problems
is publicly available in a common format and the maturity of solvers submitted
for this competition has been proven.

Moreover, we achieved to propose a common format for SL which is based on
a mature and maintained format for first-order theories, SMT-LIB. This format
reveals the features required by the existing solvers, e.g., the strong typing of
formulas, the kind of inductive definitions handled, etc.

The participation at SL-COMP allowed to measure solvers against competi-
tors and therefore to improve solvers during the competition and in meantime.
Moreover, the existing benchmark set includes challenging problems for the com-
petitors because about half (6 over 11) of the divisions are completely solved.
Five divisions include problems not yet dealt: qf_bsl_sat has 2 problems (5%),
qf_shid_entl has 11 problems (4%), qf_shid_sat has 26 problems (27%),
shid_entl has 3 problems (5%) and shid_sat has 29 problems (17%).

A community interested in such tools has been identified and informed about
the status of the existing solvers. This community could benefit from improving
the tools built on the top of decision procedures for SL.

The SMT-COMP community discovered the status of the solvers for SL and
became interested in this theory, as is demonstrated by the participation of
CVC4, one of the most complete solver of SMT-COMP.

We expect that the 2019 edition of SL-COMP will enforce these results.
The perspectives mainly concern improvement of the organization process as

the size of the competition (number of solvers and benchmark set) increases.
First of all, we are trying to reach a consensus for a good cadence of this

competition. Yearly competitions could be very exciting for the first years, but
may focus on engineering improvements rather than fundamental work. We feel
that a good cadence is alternating a competition year with a year of benchmark
set evaluation and improvement.

With the experience of the current competition, the benchmark set has to be
improved also. As mentioned above, we have to balance the number of problems
coming from the same team in each division in order to reach a fair comparison
criterium. For each problem, it would be interesting to attach a coefficient which
is taken into account in the scoring system and thus obtain a better evaluation
of each solver. A classic way to assign a difficulty level is to take into account
the size of the formulas and of the inductive definitions used in the problem.

Finally, we should intensify the exchanges with related competitions in soft-
ware verification and automated proving. Such competitions may benefit from
SL-COMP results in terms of automation, and may provide interesting bench-
mark sets. For this, the results of SL-COMP should be made available in forms
that allows to understood the state of the art of SL solvers and the contribution
of each participating solver to this state of the art. We should also provide, in
addition to the StarExec platform, other means to reproduce the results of each
edition. For example, virtual machines may be archived with the sources and
binaries of participants for each edition of the competition.

XV

References

1. Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and
Joël Ouaknine. Foundations for decision problems in separation logic with general
inductive predicates. In FOSSACS, volume 8412 of Lecture Notes in Computer

Science, pages 411–425. Springer, 2014.
2. Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theo-

ries Library (SMT-LIB). www.SMT-LIB.org, 2018.
3. James Brotherston, Carsten Fuhs, Juan A. Navarro Pérez, and Nikos Gorogiannis.

A decision procedure for satisfiability in separation logic with inductive predicates.
In CSL-LICS, pages 25:1–25:10. ACM, 2014.

4. James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Petersen. A
generic cyclic theorem prover. In APLAS, volume 7705 of Lecture Notes in Com-

puter Science, pages 350–367. Springer, 2012.
5. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Auto-

mated verification of shape, size and bag properties via user-defined predicates in
separation logic. Sci. Comput. Program., 77(9):1006–1036, 2012.

6. CVC4-SL. http://cvc4.cs.stanford.edu/wiki/Separation_Logic.
7. CYCLIST. https://github.com/ngorogiannis/cyclist.
8. Stéphane Demri and Morgan Deters. Separation logics and modalities: a survey.

Journal of Applied Non-Classical Logics, 25(1):50–99, 2015.
9. Constantin Enea, Ondřej Lengál, Mihaela Sighireanu, and Tomáš Vojnar. Compo-

sitional entailment checking for a fragment of separation logic. In APLAS, volume
8858 of Lecture Notes in Computer Science, pages 314–333. Springer, 2014.

10. Constantin Enea, Mihaela Sighireanu, and Zhilin Wu. On automated lemma gener-
ation for separation logic with inductive definitions. In Automated Technology for

Verification and Analysis - 13th International Symposium, ATVA 2015, Shang-

hai, China, October 12-15, 2015, Proceedings, volume 9364 of Lecture Notes in

Computer Science, pages 80–96. Springer, 2015.
11. Xincai Gu, Taolue Chen, and Zhilin Wu. A complete decision procedure for linearly

compositional separation logic with data constraints. In Automated Reasoning -

8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 -

July 2, 2016, Proceedings, volume 9706, pages 532–549. Springer, 2016.
12. Harrsh. https://github.com/katelaan/harrsh.
13. Radu Iosif, Adam Rogalewicz, and Jirí Simácek. The tree width of separation logic

with recursive definitions. In CADE, volume 7898 of Lecture Notes in Computer

Science, pages 21–38. Springer, 2013.
14. Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Deciding entailments in induc-

tive separation logic with tree automata. In ATVA, volume 8837 of Lecture Notes

in Computer Science, pages 201–218. Springer, 2014.
15. Radu Iosif, Cristina Serban, Andrew Reynolds, and Mi-

haela Sighireanu. Encoding separation logic in smt-lib v2.5.
https://github.com/sl-comp/SL-COMP18/input/Docs, 2018.

16. Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian
Zuleger. Unified reasoning about robustness properties of symbolic-heap separation
logic. In Programming Languages and Systems - 26th European Symposium on

Programming, ESOP 2017, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,

2017, Proceedings, volume 10201 of Lecture Notes in Computer Science, pages
611–638. Springer, 2017.

http://cvc4.cs.stanford.edu/wiki/Separation_Logic
https://github.com/ngorogiannis/cyclist
https://github.com/katelaan/harrsh

XVI

17. Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian Zuleger. Harrsh: A
tool for unied reasoning about symbolic-heap separation logic. In Gilles Barthe,
Konstantin Korovin, Stephan Schulz, Martin Suda, Geoff Sutcliffe, and Margus
Veanes, editors, LPAR-22 Workshop and Short Paper Proceedings, volume 9 of
Kalpa Publications in Computing, pages 23–36. EasyChair, 2018.

18. Quang Loc Le, Jun Sun, and Shengchao Qin. Frame inference for inductive entail-
ment proofs in separation logic. In Tools and Algorithms for the Construction and

Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part

of the European Joint Conferences on Theory and Practice of Software, ETAPS

2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I, volume 10805
of Lecture Notes in Computer Science, pages 41–60. Springer, 2018.

19. Peter O’Hearn. Separation logic. http://www0.cs.ucl.ac.uk/staff/p.ohearn/

SeparationLogic/Separation_Logic/SL_Home.html.
20. Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about

programs that alter data structures. In CSL, volume 2142 of Lecture Notes in

Computer Science, pages 1–19. Springer, 2001.
21. Juan Antonio Navarro Pérez and Andrey Rybalchenko. Separation logic modulo

theories. In APLAS, volume 8301 of Lecture Notes in Computer Science, pages
90–106. Springer, 2013.

22. SL-COMP Repository. https://github.com/sl-comp.
23. Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. A decision pro-

cedure for separation logic in SMT. In Automated Technology for Verification

and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October

17-20, 2016, Proceedings, pages 244–261, 2016.
24. John C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In

Oxford-Microsoft Symposium in Honour of Sir Tony Hoare. Palgrave Macmillan,
1999. Publication date November 2000.

25. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74. IEEE Computer Society, 2002.

26. Mihaela Sighireanu and David Cok. Report on sl-comp’14. JSAT, 9:173–186, 2014.
27. SL-COMP’2018. https://www.irif.fr/~sighirea/sl-comp/18/.
28. SLEEK. http://loris-7.ddns.comp.nus.edu.sg/~project/s2/beta/.
29. SLIDE. http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/.
30. SmallFoot. http://www0.cs.ucl.ac.uk/staff/p.ohearn/smallfoot/.
31. SMT-COMP. http://smtcomp.sourceforge.org.
32. Songbird. https://songbird-prover.github.io/.
33. SPEN. https://www.github.com/mihasighi/spen.
34. StarExec. http://www.starexec.org.
35. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Auto-

mated mutual explicit induction proof in separation logic. In FM 2016: Formal

Methods - 21st International Symposium, Limassol, Cyprus, November 9-11, 2016,

Proceedings, volume 9995 of Lecture Notes in Computer Science, pages 659–676.
Springer, 2016.

36. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Auto-
mated lemma synthesis in symbolic-heap separation logic. Proc. ACM Program.

Lang., 2(POPL):9:1–9:29, December 2017.

http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
https://github.com/sl-comp
https://www.irif.fr/~sighirea/sl-comp/18/
http://loris-7.ddns.comp.nus.edu.sg/~project/s2/beta/
http://www.fit.vutbr.cz/research/groups/verifit/tools/slide/
http://www0.cs.ucl.ac.uk/staff/p.ohearn/smallfoot/
http://smtcomp.sourceforge.org
https://songbird-prover.github.io/
https://www.github.com/mihasighi/spen
http://www.starexec.org

	SL-COMP: Competition of Solvers for Separation Logic

