
HAL Id: hal-02388021
https://hal.science/hal-02388021v1

Submitted on 30 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Checking Deadlock-Freedom of Parametric
Component-Based Systems

Marius Bozga, Radu Iosif, Joseph Sifakis

To cite this version:
Marius Bozga, Radu Iosif, Joseph Sifakis. Checking Deadlock-Freedom of Parametric Component-
Based Systems. Tools and Algorithms for the Construction and Analysis of Systems - 25th Inter-
national Conference, Apr 2019, Prague, Czech Republic. pp.3-20, �10.1007/978-3-030-17465-1_1�.
�hal-02388021�

https://hal.science/hal-02388021v1
https://hal.archives-ouvertes.fr

Checking Deadlock-Freedom of Parametric
Component-Based Systems?

Marius Bozga, Radu Iosif and Joseph Sifakis

Univ. Grenoble Alpes, CNRS, Grenoble INP???, VERIMAG, 38000 Grenoble France
{Marius.Bozga,Radu.Iosif,Joseph.Sifakis}@univ-grenoble-alpes.fr

Abstract. We propose an automated method for computing inductive invariants
used to proving deadlock freedom of parametric component-based systems. The
method generalizes the approach for computing structural trap invariants from
bounded to parametric systems with general architectures. It symbolically ex-
tracts trap invariants from interaction formulae defining the system architecture.
The paper presents the theoretical foundations of the method, including new re-
sults for the first order monadic logic and proves its soundness. It also reports on
a preliminary experimental evaluation on several textbook examples.

Modern computing systems exhibit dynamic and reconfigurable behavior. To tackle the
complexity of such systems, engineers extensively use architectures that enforce, by
construction, essential properties, such as fault tolerance or mutual exclusion. Architec-
tures can be viewed as parametric operators that take as arguments instances of com-
ponents of given types and enforce a characteristic property. For instance, client-server
architectures enforce atomicity and resilience of transactions, for any numbers of clients
and servers. Similarly, token-ring architectures enforce mutual exclusion between any
number of components in the ring.

Parametric verification is an extremely relevant and challenging problem in sys-
tems engineering. In contrast to the verification of bounded systems, consisting of a
known set of components, there exist no general methods and tools succesfully applied
to parametric systems. Verification problems for very simple parametric systems, even
with finite-state components, are typically intractable [15,9]. Most work in this area
puts emphasis on limitations determined mainly by three criteria (1) the topology of
the architecture, (2) the coordination primitives, and (3) the properties to be verified.

The main decidability results reduce parametric verification to the verification of a
bounded number of instances of finite state components. Several methods try to deter-
mine a cut-off size of the system, i.e. the minimal size for which if a property holds, then
it holds for any size, e.g. Suzuki [19], Emerson and Namjoshi [14]. Other methods iden-
tify systems with well-structured transition relations, for which symbolic enumeration
of reachable states is feasible [1] or reduce to known decidable problems, such as reach-
ability in vector addition systems [15]. Typically, these methods apply to systems with

??? Institute of Engineering Univ. Grenoble Alpes
? The research leading to these results has received funding from the European Union Horizon

2020 research and innovation programme under grant agreement no. 700665 CITADEL (Criti-
cal Infrastructure Protection using Adaptive MILS) and no. 730086 ERGO (European Robotic
Goal-Oriented Autonomous Controller).

{Marius.Bozga,Radu.Iosif,Joseph.Sifakis}@univ-grenoble-alpes.fr

global coordination. When theoretical decidability is not of concern, semi-algorithmic
techniques such as regular model checking [16,2], SMT-based bounded model checking
[3,13], abstraction [7,10] and automata learning [12] can be used to deal with more
general classes of The interested reader can find a complete survey on parameterized
model checking by Bloem et al. [9].

This paper takes a different angle of attack to the verification problem, seeking gen-
erality of the type of parametric systems and focusing on the verification of a particular
but essential property: deadlock-freedom. The aim is to come up with effective methods
for checking deadlock-freedom, by overcoming the complexity blowup stemming from
the effective generation of reachability sets. We briefly describe our approach below.

A system is the composition of a finite number of component instances of given
types, using interactions that follow the Behaviour-Interaction-Priorities (BIP) paradigm
[6]. To simplify the technical part, we assume that components and interactions are
finite abstractions of real-life systems. An instance is a finite-state transition system
whose edges are labeled by ports. The instances communicate synchronously via a
number of simultaneous interactions involving a set of ports each, such that no data
is exchanged during interactions. If the number of instances in the system is fixed and
known in advance, we say that the system is bounded, otherwise it is parametric.

a e

r

a

f1b1

f1

b1

b2 f2

b2

f2e
s u1 u2

w1 w2

Semaphore Task1 Task2

Γ = a∧b1 ∨a∧b2 ∨ e∧ f1 ∨ e∧ f2

(a) Bounded System

b(1)

a e

...

f (i)b(i)b(1) f (1)

u(i)u(1)
e

s

r

Semaphore Task1 Taski

w(i)w(1)

b(i)a

Γ = a∧∃i.b(i)∨ e∧∃i. f (i)

f (i)f (1)

(b) Parametric System

Fig. 1: Mutual Exclusion Example

For instance, the bounded system in Figure 1a consist of component types Semaphore,
with one instance, and Task, with two instances. A semaphore goes from the free state
r to the taken state s by an acquire action a, and viceversa from s to r by a release
action e. A task goes from waiting w to busy u by action b and viceversa, by action
f . For the bounded system in Figure 1a, the interactions are {a,b1}, {a,b2}, {e, f1} and
{e, f2}, depicted with dashed lines. Since the number of instances is known in advance,
we can view an interaction as a minimal satisfying valuation of the boolean formula
Γ = (a∧b1)∨ (a∧b2)∨ (e∧ f1)∨ (e∧ f2), where the port symbols are propositional vari-
ables. Because every instance has finitely many states, we can write a boolean formula
∆ = [¬r∨¬(w1 ∨w2)]∧ [¬s∨¬(u1 ∨ u2)], this time over propositional state variables,
which defines the configurations in which all interactions are disabled (deadlock). Prov-
ing that no deadlock configuration is reachable from the initial configuration r∧w1∧w2,
requires finding an over-approximation (invariant) I of the reachable configurations,
such that the conjunction I∧∆ is not satisfiable.

2

The basic idea of our method, supported by the D-Finder deadlock detection tool
[8] for bounded component-based systems, is to compute an invariant straight from the
interaction formula, without going through costly abstract fixpoint iterations. The in-
variants we are looking for are in fact solutions of a system of boolean constraintsΘ(Γ),
of size linear in the size of Γ (written in DNF). In our example, Θ(Γ) =

∧
i=1,2(r∨wi)↔

(s∨ui). Finding the (minimal) solutions of this constraint can be done, as currently im-
plemented in D-Finder, by exhaustive model enumeration using a SAT solver. Here
we propose a more efficient solution, which consists in writing Θ(Γ) in DNF and
remove the negative literals from each minterm. In our case, this gives the invariant
I = (r∨ s)∧

∧
i=1,2(wi∨ui)∧ (r∨u1∨u2)∧ (s∨w1∨w2) and I∧∆ is proved unsatisfiable

using a SAT solver.
The main contribution of this paper is the generalization of this invariant generation

method to the parametric case. To understand the problem, consider the parametric
system from Figure 1, in which a Semaphore interacts with n Tasks, where n > 0 is not
known in advance. The interactions are described by a fragment of first order logic,
in which the ports are either propositional or monadic predicate symbols, in our case
Γ = a∧∃i . b(i)∨e∧∃i . f (i). This logic, called Monadic Interaction Logic (MIL), is also
used to express the constraints Θ(Γ) and compute their solutions. In our case, we obtain
I = (r∨ s)∧ [∀i . w(i)∨ u(i)]∧ [r∨∃i . u(i)]∧ [s∨∃i . w(i)]. As in the bounded case,
we can give a parametric description of deadlock configurations ∆ = [¬r∨¬∃i . w(i)]∧
[¬s∨¬∃i . u(i)] and prove that I ∧ ∆ is unsatisfiable, using the decidability of MIL,
based on an early small model property result due to Löwenheim [18]. In practice, we
avoid the model enumeration suggested by this result and check the satisfiability of such
queries using a decidable theory of sets with cardinality constraints [17], available in
the CVC4 SMT solver [4].

The paper is structured as follows: §1 presents existing results for checking deadlock-
freedom of bounded systems using invariants, §2 formalizes the approach for comput-
ing invariants using MIL, §3 introduces cardinality constraints for invariant generation,
§4 presents the integration of the above results within a verification technique for para-
metric systems and §5 reports on preliminary experiments carried out with a prototype
tool. Finally, §6 presents concluding remarks and future work directions. For reasons
of space, all proofs are given in [11].

1 Bounded Component-based Systems

A component is a tuple C = 〈P,S, s0,∆〉, where P = {p,q,r, . . .} is a finite set of ports, S
is a finite set of states, s0 ∈ S is an initial state and ∆ ⊆ S×P×S is a set of transitions
written s

p
−→ s′. To simplify the technical details, we assume there are no two different

transitions with the same port, i.e. if s1
p1
−−→ s′1, s2

p2
−−→ s′2 ∈ ∆ and s1 , s2 or s′1 , s′2 then

p1 , p2. In general, this restriction can be lifted, at the cost of cluttering the presentation.
A bounded system S = 〈C1, . . . ,Cn,Γ〉 consists of a fixed number (n) of components

Ck = 〈Pk,Sk, s0
k,∆k〉 and an interaction formula Γ, describing the allowed interactions.

Since the number of components is known in advance, we write interaction formulae
using boolean logic over the set of propositional variables BVar def

=
⋃n

k=1(Pk ∪Sk). Here
we intentionally use the names of states and ports as propositional variables.

3

A boolean interaction formula is either a ∈ BVar, f1 ∧ f2 or ¬ f1, where fi are for-
mulae, for i = 1,2, respectively. We define the usual shorthands f1∨ f2

def
= ¬(¬ f1∧¬ f2),

f1→ f2
def
= ¬ f1∨ f2, f1↔ f2

def
= (f1→ f2)∧ (f2→ f1). A literal is either a variable or its

negation and a minterm is a conjunction of literals. A formula is in disjunctive normal
form (DNF) if it is written as

∨n
i=1

∧mi
j=1 `i j, where `i j is a literal. A formula is positive if

and only if each variable occurs under an even number of negations, or, equivalently, its
DNF forms contains no negative literals. We assume interaction formulae of bounded
systems to be always positive.

A boolean valuation β : BVar→ {>,⊥} maps each propositional variable to either
true (>) or false (⊥). We write β |= f if and only if f = >, when replacing each boolean
variable a with β(a) in f . We say that β is a model of f in this case and write f ≡ g for
[[f]] = [[g]], where [[f]] def

= {β | β |= f }. Given two valuations β1 and β2 we write β1 ⊆ β2 if
and only if β1(a) => implies β2(a) =>, for each variable a ∈ BVar. We write f ≡µ g for
[[f]]µ = [[g]]µ, where [[f]]µ def

= {β ∈ [[f]] | for all β′ : β′ ⊆ β and β′ , β only if β′ < [[f]]}
is the set of minimal models of f .

1.1 Execution Semantics of Bounded Systems

We use 1-safe marked Petri Nets to define the set of executions of a bounded system. A
Petri Net (PN) is a tuple N = 〈S ,T,E〉, where S is a set of places, T is a set of transitions,
S ∩T = ∅, and E ⊆ S ×T ∪T × S is a set of edges. The elements of S ∪T are called
nodes. For a node n, let •n def

= {m ∈ S ∪T | E(m,n) = 1}, n• def
= {m ∈ S ∪T | E(n,m) = 1}

and lift these definitions to sets of nodes, as usual.

r w2

ab1 ab2

s u2u1

w1

e f1 e f2

Fig. 2: PN for Mutual Exclusion

A marking for a PN N = 〈S ,T,E〉 is a func-
tion m : S → N. A marked Petri net is a pair
N = (N,m0), where m0 is the initial marking of
N = 〈S ,T,E〉. We consider that the reader is fa-
miliar with the standard execution semantics of a
marked PN. A marking m is reachable in N if
and only if there exists a sequence of transitions
leading fom m0 to m. We denote by R(N) the set
of reachable markings of N . A set of markings
M is an invariant of N = (N,m0) if and only if
m0 ∈M andM is closed under the transitions of
N. A marked PN N is 1-safe if m(s) ≤ 1, for each s ∈ S and each m ∈ R(N). In the
following, we consider only marked PNs that are 1-safe. In this case, any (necessarily
finite) set of reachable markings can be defined by a boolean formula, which identifies
markings with the induced boolean valuations. A marking m is a deadlock if for no
transition is enaled in m and let D(N) be the set of deadlocks of N. A marked PN N
is deadlock-free if and only if R(N)∩D(N) = ∅. A sufficient condition for deadlock
freedom isM∩D(N) = ∅, for some invariantM of N .

In the rest of this section, we fix a bounded system S = 〈C1, . . . ,Cn,Γ〉, where Ck =

〈Pk,Sk, s0
k,∆k〉, for all k ∈ [1,n] and Γ is a positive boolean formula, over propositional

variables denoting ports. The set of executions of S is given by the 1-safe marked PN
NS = (N,m0), where N = (

⋃n
i=1 Si,T,E), m0(s) = 1 if and only if s ∈ {s0

i | i ∈ [1,n]} and

4

T , E are as follows. For each minimal model β ∈ [[Γ]]µ, we have a transition tβ ∈ T and

edges (si, tβ), (tβ, s′i) ∈ E, for all i ∈ [1,n] such that si
pi
−→ s′i ∈ ∆

i and β(pi) =>. Moreover,
nothing else is in T or E.

For example, the marked PN from Figure 2 describes the set of executions of the
bounded system from Figure 1a. Note that each transition of the PN corresponds to a
minimal model of the interaction formula Γ = a∧b1∨a∧b2∨ e∧ f1∨ e∧ f2, or equiv-
alently, to the set of (necessarily positive) literals of some minterm in the DNF of Γ.

1.2 Proving Deadlock Freedom of Bounded Systems

A bounded system S is deadlock-free if and only if its corresponding marked PN NS
is deadlock-free. In the following, we prove deadlock-freedom of a bounded system,
by defining a class of invariants that are particularly useful for excluding unreachable
deadlock markings.

Given a Petri Net N = (S ,T,E), a set of places W ⊆ S is called a trap if and only if
W• ⊆ •W. A trap W of N is a marked trap of the marked PN N = (N,m0) if and only if
m0(s) = > for some s ∈W. A minimal marked trap is a marked trap such that none of
its strict subsets is a marked trap. A marked trap defines an invariant of the PN because
some place in the trap will always be marked, no matter which transition is fired. The
trap invariant of N is the least set of markings that mark each trap of N . Clearly, the
trap invariant of N subsumes the set of reachable markings of N , because the latter is
the least invariant of N and invariants are closed under intersection1.

Lemma 1. Given a bounded system S, the boolean formula:

Trap(NS) def
=

∧
{
∨k

i=1 si | {s1, . . . , sk} is a marked trap of NS}
defines an invariant of NS.

Next, we describe a method of computing trap invariants that does not explicitly
enumerate all the marked traps of a marked PN. First, we consider a trap constraint
Θ(Γ), derived from the interaction formula Γ, in linear time. By slight abuse of notation,
we define, for a given port p ∈ Pi of the component Ci, for some i ∈ [1,n], the pre- and
post-state of p in Ci as •p def

= s and p• def
= s′, where s

p
−→ s′ is the unique rule2 involving p

in ∆i, and •p = p• def
= ⊥ if there is no such rule. Assuming that the interaction formula is

written in DNF as Γ =
∨N

k=1
∧Mk
`=1 pk`, we define the trap constraint:

Θ(Γ) def
=

∧N
k=1

(∨Mk
`=1
•pk`

)
→

(∨Mk
`=1 pk`

•
)

It is not hard to show3 that any satisfying valuation of Θ(Γ) defines a trap of NS and,
moreover, any such trap is defined in this way. We also consider the formula Init(S) def

=∨n
k=1 s0

k defining the set of initially marked places of S, and prove the following:

Lemma 2. Let S be a bounded system with interaction formula Γ and β be a boolean
valuation. Then β ∈ [[Θ(Γ)∧ Init(S)]] iff {s | β(s) =>} is a marked trap ofNS. Moreover,
β ∈ [[Θ(Γ)∧ Init(S)]]µ iff {s | β(s) = >} is a minimal marked trap of NS.

1 The intersection of two or more invariants is again an invariant.
2 We have assumed that each port is associated a unique transition rule.
3 See [?] for a proof.

5

Because Θ(Γ) and Init(S) are boolean formulae, it is, in principle, possible to com-
pute the trap invariant Trap(NS) by enumerating the (minimal) models ofΘ(Γ)∧Init(S)
and applying the definition from Lemma 1. However, model enumeration is inefficient
and, moreover, does not admit generalization for the parametric case, in which the size
of the system is unknown. For these reasons, we prefer a computation of the trap invari-
ant, based on two symbolic transformations of boolean formulae, described next.

For a formula f we denote by f + the positive formula obtained by deleting all
negative literals from the DNF of f . We shall call this operation positivation. Second,
for a positive boolean formula f , we define the dual formula (f)∼ recursively on the
structure of f , as follows: (f1∧ f2)∼ def

= f1∼∨ f2∼, (f1∨ f2)∼ def
= f1∼∧ f2∼ and a∼ def

= a, for
any a ∈ BVar. Note that f ∼ is equivalent to the negation of the formula obtained from f
by substituting each variable a with ¬a in f .

The following theorem gives the main result of this section, the symbolic computa-
tion of the trap invariant of a bounded system, directly from its interaction formula.

Theorem 1. For any bounded system S, with interaction formula Γ, we have:
Trap(NS) ≡

(
[Θ(Γ)∧ Init(S)]+

)∼
Intuitively, any satisfying valuation ofΘ(Γ)∧Init(S) defines an initially marked trap

of NS and a minimal such valuation defines a minimal such trap (Lemma 2). Instead
of computing the minimal satisfying valuations by model enumeration, we directly cast
the above formula in DNF and remove the negative literals. This is essentially because
the negative literals do not occur in the propositional definition of a set of places4.
Then the dualization of this positive formula yields the trap invariants in CNF, as a
conjunction over disjunctions of propositional variables corresponding to the places
inside a minimal initially marked trap.

Just as any invariants, trap invariants can be used to prove absence of deadlocks in
a bounded system. Assuming, as before, that the interaction formula is given in DNF
as Γ =

∨N
k=1

∧Mk
`=1 pk`, we define the set of deadlock markings of NS by the formula

∆(Γ) def
=

∧N
k=1

∨Mk
`=1¬(•pk`). This is the set of configurations in which all interactions are

disabled. With this definition, proving deadlock freedom amounts to proving unsatisfi-
ability of a boolean formula.

Corollary 1. A bounded system S with interaction formula Γ is deadlock-free if the
boolean formula

(
[Θ(Γ)∧ Init(S)]+

)∼
∧∆(Γ) is unsatisfiable.

2 Parametric Component-based Systems

From now on we shall focus on parametric systems, consisting of a fixed set of com-
ponent types C1, . . . ,Cn, such that the number of instances of each type is not known in
advance. These numbers are given by a function M : [1,n]→N, where M(k) denotes the
number of components of type Ck that are active in the system. To simplify the technical

4 If the DNF is (p∧q)∨ (p∧¬r), the dualization would give (p∨q)∧ (p∨¬r). The first clause
corresponds to the trap {p,q} (either p or q is marked), but the second does not directly define
a trap. However, by first removing the negative literals, we obtain the traps {p,q} and {r}.

6

presentation of the results, we assume that all instances of a component type are created
at once, before the system is started5. For the rest of this section, we fix a parametric
system S = 〈C1, . . . ,Cn,M,Γ〉, where each component type Ck = 〈Pk,Sk, s0

k,∆k〉 has the
same definition as a component in a bounded system and Γ is an interaction formula,
written in the fragment of first order logic, defined next.

2.1 Monadic Interaction Logic

For each component type Ck, where k ∈ [1,n], we assume a set of index variables Vark

and a set of predicate symbols Predk def
= Pk ∪Sk. Similar to the bounded case, we use

state and ports names as monadic (unary) predicate symbols. We also define the sets
Var def

=
⋃n

k=1 Vark and Pred def
=

⋃n
k=1 Predk. Moreover, we consider that Vark ∩Var` = ∅

and Predk ∩Pred` = ∅, for all 1 ≤ k < ` ≤ n. For simplicity’s sake, we assume that all
predicate symbols in Pred are of arity one. For component types Ck, such that M(k) = 1
and predicate symbols pr ∈Predk, we shall write pr instead of pr(1), as in the interaction
formula of the system from Figure 1b. The syntax of the monadic interaction logic (MIL)
is given below:

i, j ∈ Var index variables
φ := i = j | pr(i) | φ1∧φ2 | ¬φ1 | ∃i . φ1

where, for each predicate atom pr(i), if pr ∈ Predk and i ∈ Var` then k = `. We use the
shorthands ∀i . φ1

def
= ¬(∃i . ¬φ1) and distinct(i1, . . . , im) def

=
∧

1≤ j<`≤m¬i j = i`6. A sentence
is a formula in which all variables are in the scope of a quantifier. A formula is positive
if each predicate symbol occurs under an even number of negations. The semantics of
MIL is given in terms of structures I = (U, ν, ι), where:

– U def
= [1,maxn

k=1 M(k)] is the universe of instances, over which variables range,
– ν : Var→ U is a valuation mapping variables to elements of the universe,
– ι : Pred→ 2U is an interpretation of predicates as subsets of the universe.

For a structure I = (U, ν, ι) and a formula φ, the satisfaction relation I |= φ is defined as:
I |= ⊥ ⇔ never I |= i = j ⇔ ν(i) = ν(j)
I |= p(i)⇔ ν(i) ∈ ι(p) I |= ∃i . φ1 ⇔ (U, ν[i← m], ι) |= φ1 for some m ∈ [1,M(k)]

provided that i ∈ Vark

where ν[i← m] is the valuation that acts as ν, except for i, which is assigned to m.
Whenever I |= φ, we say that I is a model of φ. It is known that, if a MIL formula has a
model, then it has a model with universe of cardinality at most exponential in the size
(number of symbols) of the formula [18]. This result, due to Löwenheim, is among the
first decidability results for a fragment of first order logic.

Structures are partially ordered by pointwise inclusion, i.e. for Ii = (U, νi, ιi), for
i = 1,2, we write I1 ⊆ I2 iff ι1(p) ⊆ ι2(p), for all p ∈ Pred and I1 ⊂ I2 iff I1 ⊆ I2 and
I1 ,I2. As before, we define the sets [[φ]] = {I | I |= φ} and [[φ]]µ = {I ∈ [[φ]] | ∀I′ . I′ ⊂

5 This is not a limitation, since dynamic instance creation can be simulated by considering that
all instances are initially in a waiting state, which is left as result of an interaction involving a
designated “spawn” port.

6 Throughout this paper, we consider that
∧

i∈I φi = > if I = ∅.

7

I → I′ < [[φ]]} of models and minimal models of a MIL formula, respectively. Given
formulae φ1 and φ2, we write φ1 ≡ φ2 for [[φ1]] = [[φ2]] and φ1 ≡

µ φ2 for [[φ1]]µ = [[φ2]]µ.

2.2 Execution Semantics of Parametric Systems

We consider the interaction formulae of parametric systems to be finite disjunctions of
formulae of the form below:

∃i1 . . .∃i` ∧ϕ∧
∧`

j=1 p j(i j)∧
∧`+m

j=`+1∀i j . ψ j→ p j(i j) (1)
where ϕ,ψ`+1, . . . ,ψ`+m are conjunctions of equalities and disequalities involving index
variables. Intuitively, the formulae (1) state that there are at most ` component instances
that engage in a multiparty rendez-vous interaction on ports p1(i1), . . . , p`(i`), together
with a broadcast to the ports p`+1(i`+1), . . . , p`+m(i`+m) of the instances that fulfill the
constraints ψ`+1, . . . ,ψ`+m. Observe that, if m = 0, the above formula corresponds to
a multiparty (generalized) rendez-vous interaction ∃i1 . . .∃i` ∧ϕ∧

∧`
j=1 p j(i j). An ex-

ample of peer-to-peer rendez-vous is the parametric system from Figure 1. Another
example of broadcast is given below.

Example 1. Consider the parametric system obtained from an arbitrary number of Worker
components (Figure 3), where C1 = Worker, Var1 = {i, i1, i2, j} and Pred1 = {a,b, f ,u,w}.
Any pair of instances can jointly execute the b (begin) action provided all others are
taking the a (await) action. Any instance can also execute alone the f (finish) action.

u(i2)

f (i1)

Worker(i1)

f (i2)

Worker(i2)

f (j)

Worker(j)

a(j)b(j)

...

b(i1) a(i1) a(i2)b(i2)

b(i1)

f (i2) f (j)

a(i1) a(i2) a(j)

b(i2) b(j)

f (i1)

w(i1) w(i2) w(j)

u(i1) u(j)

Γ = [∃i1∃i2 . i1 , i2∧b(i1)∧b(i2)∧∀ j . j , i1∧ j , i2→ a(j)] ∨ ∃i. f (i)

Fig. 3: Parametric System with Broadcast

The execution semantics of a parametric system S is the marked PN NS = (N,m0),
where N = (

⋃n
k=1 Sk × [1,M(k)],T,E), m0((s0

k, i)) = 1, for all k ∈ [1,n] and i ∈ [1,M(k)],
and the sets of transitions T and edges E are defined next. For each minimal model
I = (U, ν, ι) ∈ [[Γ]]µ, we have a transition tI ∈ T and the edges ((si,k), tI), (tI, (s′i ,k)) ∈ E

for all i ∈ [1,n] such that si
pi
−→ s′i ∈ ∆

i and k ∈ ι(pi). Moreover, nothing else is in T or E.
As a remark, unlike in the case of bounded systems, the size of the marked PN NS,

that describes the execution semantics of a parametric system S, depends on the maxi-
mum number of instances of each component type. The definition of the trap invariant
Trap(NS) is the same as in the bounded case, except that, in this case, the size of the
boolean formula depends on the (unbounded) number of instances in the system. The

8

challenge, addressed in the following, is to define trap invariants using MIL formulae of
a fixed size.

2.3 Computing Parametric Trap Invariants

To start with, we define the trap constraint of an interaction formula Γ consisting of a
finite disjunction of (1) formulae, as a finite conjunction of formulae of the form below:

∀i1 . . .∀i` .
[
ϕ∧

(∨`
j=1
•p j(i j)∨

∨`+m
j=`+1∃i j . ψ j∧

•p j(i j)
)]
→[∨`

j=1 p j
•(i j)∨

∨`+m
j=`+1∃i j . ψ j∧ p j

•(i j)
]

where, for a port p ∈ Pk of some component type Ck, •p(i) and p(i)• denote the unique
predicate atoms s(i) and s′(i), such that s

p
−→ s′ ∈ ∆k is the (unique) transition involving

p in T k, or ⊥ if there is no such rule.

Example 2. For example, the trap constraint for the parametric (rendez-vous) system in
Figure 1b is ∀i.[r∨w(i)]→ [s∨u(i)] ∧ ∀i.[s∨u(i)]→ [r∨u(i)]. Analogously, the trap
constraint for the parametric (broadcast) system in Figure 3 is:

∀i1.∀i2. [i1 , i2∧ (w(i1)∨w(i2)∨∃ j.(j , i1∧ j , i2∧w(j)))]→
[i1 , i2∧ (u(i1)∨u(i2)∨∃ j.(j , i1∧ j , i2∧w(j)))]

∧ ∀i. u(i)→ w(i)

We define a translation of MIL formulae into boolean formulae of unbounded size.
Given a function M : [1,n]→N, the unfolding of a MIL sentence φ is the boolean formula
BM (φ) obtained by replacing each existential [universal] quantifier ∃i . ψ(i) [∀i . ψ(i)],
for i ∈ Vark, by a finite disjunction [conjunction]

∨M(k)
`=1 ψ[`/i] [

∧M(k)
`=1 ψ[`/i]], where the

substitution of the constant ` ∈ M(k) for the variable i is defined recursively as usual,
except for pr(i)[`/i] def

= (pr, `), which is a propositional variable. Further, we relate struc-
tures to boolean valuations of unbounded sizes. For a structure I = (U, ν, ι) we define
the boolean valuation βI((pr, `)) = > if and only if ` ∈ ι(pr), for each predicate symbol
pr and each integer constant `. Conversely, for each valuation β of the propositional
variables (pr, `), there exists a structure Iβ = (U, ν, ι) such that ι(pr) def

= {` | β((pr, `)) =>},
for each pr ∈ Pred. The following lemma relates the semantics of MIL formulae with
that of their boolean unfoldings:

Lemma 3. Given a MIL sentence φ and a function M : [1,n]→ N, the following hold:
1. for each structure I ∈ [[φ]], we have βI ∈ [[BM (φ)]] and conversely, for each valu-

ation β ∈ [[BM (φ)]], we have Iβ ∈ [[φ]].
2. for each structure I ∈ [[φ]]µ, we have βI ∈ [[BM (φ)]]µ and conversely, for each

valuation β ∈ [[BM (φ)]]µ, we have Iβ ∈ [[φ]]µ.

Considering the MIL formula Init(S) def
=

∨n
k=1∃ik . s0

k(ik), that defines the set of
initial configurations of a parametric system S, the following lemma formalizes the
intuition behind the definition of parametric trap constraints:

Lemma 4. Let S be a parametric system with interaction formula Γ and I be a struc-
ture. Then I |= Θ(Γ)∧ Init(S) iff {(s,k) | k ∈ ι(s)} is a marked trap of NS. Moreover,
I ∈ [[Θ(Γ)∧ Init(S)]]µ iff {(s,k) | k ∈ ι(s)} is a minimal marked trap of NS.

9

We are currently left with the task of computing a MIL formula which defines the
trap invariant Trap(NS) of a parametric component-based system S = 〈C1, . . . ,Cn,M,Γ〉.
The difficulty lies in the fact that the size of NS and thus, that of the boolean formula
Trap(NS) depends on the number M(k) of instances of each component type k ∈ [1,n].
As we aim at computing an invariant able to prove safety properties, such as deadlock
freedom, independently of how many components are present in the system, we must
define the trap invariant using a formula depending exclusively on Γ, i.e. not on M.

Observe first that Trap(NS) can be equivalently defined using only the minimal
marked traps ofNS, which, by Lemma 4, are exactly the sets {(s,k) | k ∈ ι(s)}, defined by
some structure (U, ν, ι) ∈ [[Θ(Γ)∧ Init(S)]]µ. Assuming that the set of structures [[Θ(Γ)∧
Init(S)]]µ, or an over-approximation of it, can be defined by a positive MIL formula, the
trap invariant is defined using a generalization of boolean dualisation to predicate logic,
defined recursively, as follows:

(i = j)∼ def
= ¬i = j (φ1∨φ2)∼ def

= φ1
∼∧φ2

∼ (∃i . φ1)∼ def
= ∀i . φ1

∼ p(i)∼ def
= p(i)

(¬i = j)∼ def
= i = j (φ1∧φ2)∼ def

= φ1
∼∨φ2

∼ (∀i . φ1)∼ def
= ∃i . φ1

∼

The crux of the method is the ability of defining, given an arbitrary MIL formula φ, a
positive MIL formula φ⊕ that preserve its minimal models, formally φ ≡µ φ⊕. Because
of quantification over unbounded domains, a MIL formula φ does not have a disjunc-
tive normal form and thus one cannot define φ⊕ by simply deleting the negative lit-
erals in DNF, as was done for the definition of the positivation operation (.)+, in the
propositional case. For now we assume that the transformation (.)⊕ of monadic predi-
cate formulae into positive formulae preserving minimal models is defined (a detailed
presentation of this step is given next in §3) and close this section with a parametric
counterpart of Theorem 1.

Theorem 2. For any parametric system S = 〈C1, . . . ,Cn,M,Γ〉, we have
Trap(NS) ≡ BM

((
(Θ(Γ)∧ Init(S))⊕

)∼)
3 Cardinality Constraints

This section is concerned with the definition of a positivation operator (.)⊕ for MIL
sentences, whose only requirements are that φ⊕ is positive and φ ≡µ φ⊕. For this pur-
pose, we use a logic of quantifier-free boolean cardinality constraints [17,4] as an in-
termediate language, on which the positive formulae are defined. The translation of MIL
into cardinality constraints is done by an equivalence-preserving quantifier elimination
procedure, described in §3.1. As a byproduct, since the satisfiability of quantifier-free
cardinality constraints is NP-complete [17] and integrated with SMT [4], we obtain a
practical decision procedure for MIL that does not use model enumeration, as suggested
by the small model property [18]. Finally, the definition of a positive MIL formula from
a boolean combination of quantifier-free cardinality constraints is given in §3.2.

We start by giving the definition of cardinality constraints. Given the set of monadic
predicate symbols Pred, a boolean term is generated by the syntax:

t := pr ∈ Pred | ¬t1 | t1∧ t2 | t1∨ t2
When there is no risk of confusion, we borrow the terminology of propositional logic
and say that a term is in DNF if it is a disjunction of conjunctions (minterms). We also

10

write t1 → t2 if and only if the implication is valid when t1 and t2 are interpreted as
boolean formulae, with each predicate symbol viewed as a propositional variable. Two
boolean terms t1 and t2 are said to be compatible if and only if t1∧ t2 is satisfiable, when
viewed as a boolean formula.

For a boolean term t and a first-order variable i ∈ Var, we define the shorthand t(i)
recursively, as (¬t1)(i) def

= ¬t1(i), (t1 ∧ t2)(i) def
= t1(i)∧ t2(i) and (t1 ∨ t2)(i) def

= t1(i)∨ t2(i).
Given a positive integer n ∈N and t a boolean term, we define the following cardinality
constraints, by MIL formulae:

|t| ≥ n def
= ∃i1 . . .∃in . distinct(i1, . . . , in)∧

∧n
j=1 t(i j) |t| ≤ n def

= ¬(|t| ≥ n + 1)

We shall further use cardinality constraints with n = ∞, by defining |t| ≥ ∞ def
= ⊥ and

|t| ≤ ∞ def
= >. The intuitive semantics of cardinality constraints is formally defined in

terms of structures I = (U, ν, ι) by the semantics of monadic predicate logic, given in
the previous. For instance, |p∧q| ≥ 1 means that the intersection of the sets p and q is
not empty, whereas |¬p| ≤ 0 means that p contains all elements from the universe.

3.1 Quantifier Elimination

Given a sentence φ, written in MIL, we build an equivalent boolean combination of car-
dinality constraints qe(φ), using quantifier elimination. We describe the elimination of
a single existential quantifier and the generalization to several existential or universal
quantifiers is immediate. Assume that φ = ∃i1 .

∨
k∈K ψk(i1, . . . , im), where K is a finite

set of indices and, for each k ∈ K, ψk is a quantifier-free conjunction of atomic propo-
sitions of the form i j = i`, pr(i j) and their negations, for some j, ` ∈ [1,m]. We write,
equivalently, φ ≡

∨
k∈K ϕk ∧∃i1 . θk(i1, . . . , im), where ϕk does not contain occurrences

of i1 and θk is a conjunction of literals of the form pr(i1), ¬pr(i1), i1 = i j and ¬i1 = i j,
for some j ∈ [2,m]. For each k ∈ K, we distinguish the following cases:
1. if i1 = i j is a consequence of θk, for some j > 1, let qe(∃i1 . θk) def

= θk[i j/i1].
2. else, θk =

∧
j∈Jk ¬i1 = i j∧ tk(i1) for some Jk ⊆ [2,m] and boolean term tk, and let:

qe(∃i1 . θk) def
=

∧
J⊆Jk

[
distinct

(
{i j} j∈J

)
∧

∧
j∈J tk(i j)

]
→ |tk | ≥ ||J||+ 1

qe(φ) def
=

∨
k∈K ϕk ∧qe(∃i1 . θk)

Universal quantification is dealt with using the duality qe(∀i1 . ψ) def
= ¬qe(∃i1 . ¬ψ). For

a prenex formula φ = Qnin . . .Q1i1 . ψ, where Q1, . . . ,Qn ∈ {∃,∀} and ψ is quantifier-
free, we define, recursively qe(φ) def

= qe(Qnin . qe(Qn−1in−1 . . .Q1i1 . ψ)). It is easy to see
that, if φ is a sentence, qe(φ) is a boolean combination of cardinality constraints. The
correctness of the construction is a consequence of the following lemma:

Lemma 5. Given a MIL formula φ = Qnin . . .Qii1 . ψ, where Q1, . . . ,Qn ∈ {∀,∃} and ψ
is a quantifier-free conjunction of equality and predicate atoms, we have φ ≡ qe(φ).

Example 3. (contd. from Example 2) Below we show the results of quantifier elimina-
tion applied to the conjunction Θ(Γ)∧ Init(S) for the system in Figure 1b:

(¬r∧¬s∧ |w∧¬u| ≤ 0∧ |u∧¬w| ≤ 0∧1 ≤ |w|) ∨
(¬r∧ |w∧¬u| ≤ 0∧ |¬w| ≤ 0∧1 ≤ |w|)∨ (s∧ r)∨ (s∧ |¬w| ≤ 0∧1 ≤ |w|) ∨
(¬s∧ |¬u| ≤ 0∧ |u∧¬w| ≤ 0∧1 ≤ |w|)∨ (|¬u| ≤ 0∧ |¬w| ≤ 0∧1 ≤ |w|) .

11

Similarly, for the system in Figure 3, we obtain the following cardinality constraints:
(3 ≤ |w| ∧ |u∧¬w| ≤ 0)∨ (2 ≤ |w| ∧ |w∧¬u| ≤ 1∧ |u∧¬w| ≤ 0) ∨

(|¬u| ≤ 1∧ |¬u∧¬w| ≤ 0∧ |u∧¬w| ≤ 0∧1 ≤ |w|)∨ (|w∧¬u| ≤ 0∧ |u∧¬w| ≤ 0∧1 ≤ |w|) .

3.2 Building Positive Formulae that Preserve Minimal Models

Let φ be a MIL formula, not necessarily positive. We shall build a positive formula
φ⊕, such that φ ≡µ φ⊕. By the result of the last section, φ is equivalent to a boolean
combination of cardinality constraints qe(φ), obtained by quantifier elimination. Thus
we assume w.l.o.g. that the DNF of φ is a disjunction of conjunctions of the form∧

i∈L |ti| ≥ `i ∧
∧

j∈U

∣∣∣t j
∣∣∣ ≤ u j, for some sets of indices L, U and some positive integers

{`i}i∈L and {u j} j∈U .
For a boolean combination of cardinality constraints ψ, we denote by P(ψ) the set

of predicate symbols that occur in a boolean term of ψ and by P+(ψ) (P−(ψ)) the set of
predicate symbols that occur under an even (odd) number of negations in ψ. The follow-
ing proposition allows to restrict the form of φ even further, without losing generality:

Proposition 1. Given MIL formulae φ1 and φ2, for any positivation operator (.)⊕, the
following hold:
1. (φ1∨φ2)⊕ ≡µ φ1

⊕∨φ2
⊕,

2. (φ1∧φ2)⊕ ≡µ φ1
⊕∧φ2

⊕, provided that P(φ1)∩P(φ2) = ∅.

From now on, we assume that φ is a conjunction of cardinality constraints that cannot
be split as φ = φ1∧φ2, such that P(φ1)∩P(φ2) = ∅.

Let us consider a cardinality constraint |t| ≥ ` that occurs in φ. Given a set P of
predicate symbols, for a set of predicates S ⊆ P, the complete boolean minterm corre-
sponding to S with respect to P is tPS

def
=

∧
p∈S p∧

∧
p∈P\S ¬p. Moreover, let St

def
= {S ⊆

P(φ) | tS → t} be the set of sets S of predicate symbols for which the complete minterm
tS implies t. Finally, each cardinality constraint |t| ≥ ` is replaced by the equivalent
disjunction7, in which each boolean term is complete with respect to P(φ):

|t| ≥ ` ≡
∨{ ∧

S∈St

∣∣∣tP(φ)
S

∣∣∣ ≥ `S | for some constants {`S ∈ N}S∈St such that
∑
S∈St

`S = `
}

Note that because any two complete minterms tS and tT , for S , T , are incompatible,
then necessarily |tS ∨ tT | = |tS |+ |tT |. Thus |tS ∨ tT | ≥ ` if and only if there exist `1, `2 ∈N
such that `1 + `2 = ` and |tS | ≥ `1, |tT | ≥ `2, respectively.

Notice that, restricting the sets of predicates in St to subsets of P(φ), instead of
the entire set of predicates, allows to apply Proposition 1 and reduce the number of
complete minterm to be considered. That is, whenever possible, we write each minterm∧

i∈L |ti| ≥ `i∧
∧

j∈U

∣∣∣t j
∣∣∣ ≤ u j in the DNF of φ as ψ1∧ . . .∧ψk, such that P(ψi)∩P(ψ j) = ∅

for all 1≤ i< j≤ k. In practice, this optimisation turns out to be quite effective, as shown
by the small execution times of our test cases, reported in §5.

The second step is building, for each conjunction C =
∧
{`S ≤

∣∣∣tP(φ)
S

∣∣∣∧ ∣∣∣tP(φ)
S

∣∣∣ ≤ uS |

S ⊆ P(φ)}8, as above, a positive formula C⊕, that preserves its set of minimal models

7 The constraints |t| ≤ u are dealt with as ¬(|t| ≥ u + 1).
8 Missing lower bounds `S are replaced with 0 and missing upper bounds uS with∞.

12

[[C]]µ. The generalization to arbitrary boolean combinations of cardinality constraints
is a direct consequence of Proposition 1. Let L+(φ) (resp. L−(φ)) be the set of positive
boolean combinations of predicate symbols p ∈ P+(φ) (resp. ¬p, where p ∈ P−(φ)).
Further, for a complete minterm tPS , we write tPS

+ (tPS
−) for the conjunction of the positive

(negative) literals in tPS . Then, we define:

C⊕ def
=

∧{
|τ| ≥

∑
tP(φ)
S

+
→τ
`S | τ ∈ L

+(φ)
}
∧

∧{
|τ| ≤

∑
tP(φ)
S
−
→τ

uS | τ ∈ L
−(φ)}

It is not hard to see that C⊕ is a positive MIL formula, because:
– for each τ ∈ L+(φ), we have |τ| ≥ k ≡ ∃i1 . . .∃ik . distinct(i1, . . . , ik)∧

∧k
j=1 τ(j) and

– for each τ ∈L−(φ), we have |τ| ≤ k≡∀i1 . . .∀ik+1 . distinct(i1, . . . , ik+1)→
∨k+1

j=1¬τ(i j).
The following lemma proves that the above definition meets the second requirement of
positivation operators, concerning the preservation of minimal models.

Lemma 6. Given P a finite set of monadic predicate symbols, {`S ∈ N}S⊆P and {uS ∈

N∪{∞}}S⊆P sets of constants, for any conjunction C =
∧
{`S ≤

∣∣∣tPS ∣∣∣∧ ∣∣∣tPS ∣∣∣ ≤ uS | S ⊆ P},
we have C ≡µ C⊕.

Example 4. (contd. from Example 3)
Consider the first minterm of the DNF of the cardinality constraint obtained by

quantifier elimination in Example 3, from the system in Figure 1b. The result of positi-
vation for this minterm is given below:(

¬r∧¬s∧ |w∧¬u| ≤ 0∧ |u∧¬w| ≤ 0∧1 ≤ |w|
)⊕

= 1 ≤ |u∧w|
Intuitively, the negative literals ¬r and ¬s may safely disapear, because no minimal
model will assign r or s to true. Further, the constraints |w∧¬u| ≤ 0 and |u∧¬w| ≤ 0
are equivalent to the fact that, in any structure I = (U, ν, ι), we must have ι(u) = ι(w).
Finally, because |w| ≥ 1, then necessarily |u∧w| ≥ 1.

Similarly, the result of positivation applied to the second conjunct of the DNF car-
dinality constraint corresponding to the system in Figure 3 is given below:(

2 ≤ |w| ∧ |w∧¬u| ≤ 1∧ |u∧¬w| ≤ 0
)⊕

= 2 ≤ |w| ∧1 ≤ |u∧w|
Here, the number of elements in w is at least 2 and, in any structure I= (U, ν, ι), we must
have ι(u) ⊆ ι(w) and at most one element in ι(w)\ ι(u). Consequently, the intersection of
the sets ι(u) and ι(w) must contain at least one element, i.e. |u∧w| ≥ 1.

4 Proving Deadlock Freedom of Parametric Systems

We have gathered all the ingredients necessary for checking deadlock freedom of para-
metric systems, using our method based on trap invariant generation (Figure 4). In par-
ticular, we derive a trap constraint Θ(Γ) directly from the interaction formula Γ, both
of which are written in MIL. Second, we compute a positive formula that preserves the
set of minimal models of Θ(Γ)∧ Init(S), by first converting the MIL formula into a
quantifier-free cardinality constraint, using quantifier elimination, and deriving a posi-
tive MIL formula from the latter.

The conjunction between the dual of this positive formula and the formula ∆(Γ) that
defines the deadlock states is then checked for satisfiability. Formally, given a paramet-
ric system S, with an interaction formula Γ written in the form (1), the MIL formula

13

smt-checking

S

∆(Γ)
(deadlock states)

(trap constraints)
Θ(Γ)∧ Init(S)

Monadic Interaction Logic

Θ(Γ)∧ Init(S)
qe

qe

∧
∆(Γ)

(CVC4)
(trap invariant)

(deadlock-freedom condition)

[Θ(Γ)∧ Init(S)]⊕

(
[Θ(Γ)∧ Init(S)]⊕

)∼

positivation

dual

Cardinality Constraints

unsat /

sat /
potential deadlock

deadlock-free

Fig. 4: Verification of Parametric Component-based Systems

characterizing the deadlock states of the system is the following:

∆(Γ) def
= ∀i1 . . .∀i` . ϕ→

[∨`
j=1¬

•p j(i j)∨
∨`+m

j=`+1∃i j . ψ j∧¬
•p j(i j)

]
We state a sufficient verification condition for deadlock freedom in the parametric case:

Corollary 2. A parametric system S = 〈C1, . . . ,Cn,M,Γ〉 is deadlock-free if(
(Θ(Γ)∧ Init(S))⊕

)∼
∧∆(Γ)→⊥

The satisfiability check is carried out using the conversion to cardinality constraints via
quantifier elimination §3.1 and an effective set theory solver for cardinality constraints,
implemented in the CVC4 SMT solver [5].

5 Experimental Results

To assess our method for proving deadlock freedom of parametric component-based
system, we ran a number of experiments on systems with a small numbers of rather
simple component types, but with nontrivial interaction patterns, given by MIL for-
mulae. The task-sem i/n examples, i = 1,2,3, are generalizations of the parametric
Task-Semaphore example depicted in Figure 1b, in which n Tasks synchronize using n
Semaphores, such that i Tasks interact with a single Semaphore at once, in a multiparty
rendez-vous. In a similar vein, the broadcast i/n examples, i = 2,3 are generalizations
of the system in Figure 3, in which i out of n Workers engage in rendez-vous on the b
port, whereas all the other stay idle — here idling is modeled as a broadcast on the a
ports. Finally, in the sync i/n examples, i = 1,2,3, we consider systems composed of n
Workers (Figure 1b) such that either i out of n instances simultaneously interact on the
b ports, or all interact on the f ports. Notice that, for i = 2,3, these systems have a dead-
lock if and only if n , 0 mod i. This is because, if n = m mod i, for some 0 < m < i,
there will be be m instances that cannot synchronize on their b port, in order to move
from w to u, in order to engage in the f broadcast.

All experiments were carried out on a Intel(R) Xeon(R) CPU @ 2.00GHz virtual
machine with 4GB of RAM. Table 1 shows separately the times needed to generate

14

example interaction formula t-gen t-smt result
task-sem 1/n ∃i∃ j1. a(i)∧b(j1)

∨
∃i∃ j1. e(i)∧ f (j1) 22 ms 20 ms unsat

task-sem 2/n ∃i∃ j1∃ j2. j1 , j2∧a(i)∧b(j1)∧b(j2)
∨

∃i∃ j1∃ j2. j1 , j2∧ e(i)∧ f (j1)∧ f (j2) 34 ms 40 ms unsat
task-sem 3/n ∃i∃ j1∃ j2∃ j3. distinct(j1, j2, j3)∧a(i)∧b(j1)∧b(j2)∧b(j3)

∨
∃i∃ j1∃ j2∃ j3. distinct(j1, j2, j3)∧ e(i)∧ f (j1)∧ f (j2)∧ f (j3) 73 ms 40 ms unsat

broadcast 2/n ∃i1∃i2.i1 , i2∧b(i1)∧b(i2) ∧
∀ j. j , i1∧ j , i2→ a(j)

∨
∃i. f (i) 14 ms 20 ms unsat

broadcast 3/n ∃i1∃i2∃i3.distinct(i1, i2, i3)∧b(i1)∧b(i2)∧b(i3) ∧
∀ j. j , i1∧ j , i2∧ j , i3→ a(j)

∨
∃i. f (i) 409 ms 20 ms unsat

sync 1/n ∃i.b(i)
∨
∀i. f (i) 5 ms 20 ms unsat

sync 2/n ∃i1∃i2. i1 , i2∧b(i1)∧b(i2)
∨
∀i. f (i) 7 ms 50 ms sat

sync 3/n ∃i1∃i2∃i3.distinct(i1, i2, i3)∧b(i1)∧b(i2)∧b(i3)
∨
∀i. f (i) 11 ms 40 ms sat

Table 1: Benchmarks

the proof obligations (trap invariants and deadlock states) from the interaction formulae
and the times needed by CVC4 1.7 to show unsatisfiabilty or come up with a model. All
systems considered, for which deadlock freedom could not be shown using our method,
have a real deadlock scenario that manifests only under certain modulo constraints on
the number n of instances. These constraints cannot be captured by MIL formulae, or,
equivalently by cardinality constraints, and would require cardinality constraints of the
form |t| = n mod m, for some constants n,m ∈ N.

6 Conclusions

This work is part of a lasting research program on BIP linking two work directions:
(1) recent work on modeling architectures using interaction logics, and (2) older work
on verification by using invariants. Its rationale is to overcome as much as possible
complexity and undecidability issues by proposing methods which are adequate for the
verification of essential system properties.

The presented results are applicable to a large class of architectures characterized
by the MIL. A key technical result is the translation of MIL formulas into cardinality
constraints. This allows on the one hand the computation of the MIL formula character-
izing the minimal trap invariant. On the other hand, it provides a decision procedure for
MIL, that leverages from recent advances in SMT, implemented in the CVC4 solver [5].

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. The Bulletin of Symbolic
Logic 16(4), 457–515 (2010)

2. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking without
transducers (on efficient verification of parameterized systems). In: Grumberg, O., Huth,
M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 721–736
(2007)

15

3. Alberti, F., Ghilardi, S., Sharygina, N.: A framework for the verification of parameterized
infinite-state systems*. CEUR Workshop Proceedings 1195, 302–308 (01 2014)

4. Bansal, K., Reynolds, A., Barrett, C.W., Tinelli, C.: A new decision procedure for finite sets
and cardinality constraints in SMT. In: IJCAR’16 Proceedings. pp. 82–98 (2016)

5. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A.,
Tinelli, C.: CVC4. In: CAV’11 Proceedings. LNCS, vol. 6806, pp. 171–177 (2011)

6. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.: Rigor-
ous component-based system design using the BIP framework. IEEE Software 28(3), 41–48
(2011)

7. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting ws1s systems to verify pa-
rameterized networks. In: Graf, S., Schwartzbach, M. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 188–203 (2000)

8. Bensalem, S., Bozga, M., Nguyen, T., Sifakis, J.: D-finder: A tool for compositional deadlock
detection and verification. In: CAV’09 Proceedings. LNCS, vol. 5643, pp. 614–619 (2009)

9. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder, J.: Decidability
of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory, Morgan
& Claypool Publishers (2015)

10. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled,
D.A. (eds.) Computer Aided Verification. pp. 372–386 (2004)

11. Bozga, M., Iosif, R., Sifakis, J.: Checking Deadlock-Freedom of Parametric Component-
Based Systems. Tech. Rep. ArXiv 1805.10073, https://arxiv.org/abs/1805.10073 (2018)

12. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over parameterised
concurrent systems. In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017,
Vienna, Austria, October 2-6, 2017. pp. 76–83 (2017)

13. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaı̈di, F.: Cubicle: A parallel smt-based model
checker for parameterized systems. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided
Verification. pp. 718–724 (2012)

14. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL’95 Proceedings. pp. 85–94
(1995)

15. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3),
675–735 (1992)

16. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with
rich assertional languages. Theoretical Computer Science 256(1), 93 – 112 (2001)

17. Kuncak, V., Nguyen, H.H., Rinard, M.C.: Deciding boolean algebra with Presburger arith-
metic. J. Autom. Reasoning 36(3), 213–239 (2006)

18. Lowenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Ann 470, 76–447 (1915)
19. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4),

213–214 (1988)

16

	Checking Deadlock-Freedom of Parametric Component-Based Systems
	Bounded Component-based Systems
	Execution Semantics of Bounded Systems
	Proving Deadlock Freedom of Bounded Systems

	Parametric Component-based Systems
	Monadic Interaction Logic
	Execution Semantics of Parametric Systems
	Computing Parametric Trap Invariants

	Cardinality Constraints
	Quantifier Elimination
	Building Positive Formulae that Preserve Minimal Models

	Proving Deadlock Freedom of Parametric Systems
	Experimental Results
	Conclusions

