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Slepian-Bangs formula and Cramér Rao bound for
circular and non-circular complex elliptical

symmetric distributions
Habti Abeida and Jean-Pierre Delmas

Abstract—This paper is mainly dedicated to an extension of
the Slepian-Bangs formula to non-circular complex elliptical
symmetric (NC-CES) distributions, which is derived from a
new stochastic representation theorem. This formula includes
the non-circular complex Gaussian and the circular CES (C-
CES) distributions. Some general relations between the Cramér
Rao bound (CRB) under CES and Gaussian distributions
are deduced. It is proved in particular that the Gaussian
distribution does not always lead to the largest stochastic
CRB (SCRB) as many authors tend to believe it. Finally a
particular attention is paid to the noisy mixture where closed-
form expressions for the SCRBs of the parameters of interest
are derived.

Index Terms—Deterministic and stochastic Cramér Rao
bound, Slepian-Bangs formula, Fisher information matrix, cir-
cular, non-circular complex elliptical symmetric distributions.

I. INTRODUCTION

To assess the performance of many algorithms, it is
necessary to derive the CRB, which is a lower bound on the
variance of any unbiased estimator and is generally achieved
by the maximum likelihood estimator. This CRB is usually
computed as the inverse of the Fisher information matrix
(FIM) that must be derived for each distribution of the
observations. Fortunately a simple closed-form expression
called Slepian-Bangs formula has been derived for the real
Gaussian distribution in [1] and [2], then extended to the
circular complex normal (C-CN) and non-circular CN (NC-
CN) case in [3] and [4], respectively. This formula has been
recently extended to the C-CES distribution (see e.g., [5]–
[7]) in [8] and [9] and then in [10] and [11] in the context
of model misspecification and semiparametric distribution,
respectively. However in many fields such as communica-
tions and array signal processing, the observations are non-
circular, such that a closed-form expression of the FIM for
NC-CES distributions is also very useful.

After reformulating the definition of the NC-CES distribu-
tion (also called generalized complex elliptical distribution
GCES)) introduced in [12], this paper extends the Slepian-
Bangs formula to NC-CES distributions thanks to a new
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stochastic representation theorem based on an equivalent
definition of the univariate GCES introduced in [13, def. 2].
It is shown that this formula that includes now a pseudo-
scatter matrix encompasses the NC-CN and the C-CES
distributions. Then, some general relations between the CRB
under CES and Gaussian distributions are deduced when the
symmetry center on one side and the scatter and pseudo-
scatter matrices on the other side, are each parameterized
by different parameters, which are frequently encountered
in signal processing applications. In particular, we give
sufficient conditions for which the Gaussian distribution
does not lead to the largest SCRB. Finally a particular
attention is paid to the noisy mixture where the column
subspace of the mixing matrix characterizes the parameter of
interest for which new concentrated closed-form expressions
for the SCRBs are derived. The specific case of direction-of-
arrival (DOA) including rectilinear sources is also studied.
Note, that a preliminary result of this paper has been briefly
introduced in the conference paper [14].

II. NON-CIRCULAR CES DISTRIBUTIONS

This section briefly presents a reformulation of the defi-
nition of the nonsingular NC-CES distribution and extends
the stochastic representation theorem (see e.g., [7, th. 3])
that allows us to derive in the next section, the FIM of NC-
CES distributions. Moving from the real to the complex
representation, the definition [12, def. 1] is equivalent under
the absolutely continuous case to the following:

Definition 1:
A r.v. z ∈ CM is said to have non-singular NC-CES distri-

bution (denoted as z ∼ ECM (µ,Σ,Ω, g)) if its probability
density function (p.d.f.) is of the form

p(z) = cM,g(det(Γ̃))−1/2g(η̃), (1)

where η̃ def
= 1

2 (z̃ − µ̃)HΓ̃−1(z̃ − µ̃) with z̃
def
= (zT , zH)T ,

µ̃
def
= (µT ,µH)T and Γ̃

def
=

(
Σ Ω
Ω∗ Σ∗

)
where Σ and

Ω are M × M Hermitian positive definite and complex
symmetric matrices, respectively called scatter and pseudo-
scatter matrices. cM,g is a normalizing constant ensuring that
integrates to one and is given by cM,g

def
= 2(sMδM,g)

−1 and
where sM

def
= 2πM/Γ(M) is the surface area of CSM (unit
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complex M -sphere) and g(.) is the non-negative density
generator function satisfying δM,g=

∫∞
0
uM−1g(u)du<∞.

We note that for Ω=O and thus for Γ̃=Diag(Σ,Σ∗), (1)
reduces to the p.d.f. of the C-CES distribution [7, rel. (16)].

From the structures of Σ and Ω, there exists an M ×M
non-singular matrix A such that Σ = AAH and Ω =
A∆κA

T where ∆κ = Diag(κ1, . . . , κM ) is a real diag-
onal matrix with non-negative real entries (κk)k=1,..,M [15,
Corollary 4.6.12(b)]. Furthermore, it has been proved in
[16], that 0 ≤ κk ≤ 1. This parameterization allows us
to state the stochastic representation theorem proved in the
Appendix:

Result 1: z ∼ ECM (µ,Σ,Ω, g) with rank(Σ) = M if
and only if it admits the stochastic representation:

z =d µ+RAv, (2)

where v is defined by

v = ∆1u + ∆2u
∗, (3)

with u ∼ U(CSM ), ∆1
def
= ∆++∆−

2 and ∆2
def
= ∆+−∆−

2

where ∆+
def
=
√

I + ∆κ and ∆−
def
=
√

I−∆κ.
Note that (2)-(3) is a multivariate extension of the univariate
generation of NC-CES r.v. presented in [13, sec. IV.C], and
E(vvH) = E(uuH) = 1

M I and E(vvT ) = 1
M∆κ. The p.d.f.

of the 2nd-order modular variate Q def
= R2 is always given

by
p(Q) = δ−1M,gQ

M−1g(Q). (4)

and it is also proved in the Appendix that

1

2
(z̃− µ̃)HΓ̃−1(z̃− µ̃) =d Q. (5)

III. FIM FOR CIRCULAR AND NON-CIRCULAR CES
DISTRIBUTIONS

A. Slepian-Bangs formula

If µ, Σ and Ω are parameterized by the real-valued
parameter α, the following result is proved in the Appendix.

Result 2: The FIM corresponding to the NC-CES dis-
tributed is given (elemenwise) by

[INC
CES]k,l = ξ1µ̃

H
k Γ̃
−1
µ̃l+

ξ2
2

Tr[Γ̃kΓ̃
−1Γ̃lΓ̃

−1]

+
(ξ2 − 1)

4
Tr[Γ̃kΓ̃

−1]Tr[Γ̃lΓ̃
−1], (6)

where µ̃k
def
= ∂µ̃

∂αk
and Γ̃k

def
= ∂Γ̃

∂αk
with ξ1

def
= E[Qφ2(Q)]

M

and ξ2
def
= E[Q2φ2(Q)]

M(M+1) where φ(t)
def
= g′(t)/g(t).

This FIM (6) allows us to derive the FIM associated with
T i.i.d. snapshots zt ∼ ECM (µt,Σ,Ω, g) by summation
of the associated FIM (6), which reduces to [8, eq. (20)]
for C-CES distributions for which Ω = 0 and thus Γ̃ =
Diag(Σ,Σ∗). Note also that (6) reduces to

[INC
CN]k,l = µ̃Hk Γ̃

−1
µ̃l +

1

2
Tr[Γ̃kΓ̃

−1Γ̃lΓ̃
−1], (7)

for NC-CN distributions [4, Rel (2.1)] where g(t) = e−t for
which ξ1 = ξ2 = 1.

Finally, note that if α is partitioned as α = (αT1 ,α
T
2 )T

where µ and Γ̃ depend only on α1 and α2, respectively,
(which is very frequently encountered in signal processing
modeling), the FIM (6) continues to be block diagonal par-
titioned as for the circular Gaussian Slepian-Bangs formula
[3], Consequently, the associated CRB on the parameters
α1 and α2 are decoupled.

B. General CRB properties
In the previous conditions, we can deduce some general

CRB properties. Under finite 2nd-order moments, Σ and Ω

are proportional to the covariance R
def
= E[(z−µ)(z−µ)H ]

and pseudo-covariance C
def
= E[(z−µ)(z−µ)T ], respectively

with the same factor. Consequently, it is possible to impose
in this case Σ = R and Ω = C by using similarly as for
C-CES distributions, the constraint [7, rel. (20)] on g such
that

δM+1,g/δM,g = M. (8)

Under this constraint, it is proved in the Appendix that

ξ1 ≥ 1. (9)

Consequently, we deduce from (6) and the decoupling
between α1 and α2 in the CRB, the following result:

Result 3: For C-CES and NC-CES distributions with
finite 2nd-order moments, the SCRB on the parameter
α1 is upper bounded by the SCRB under the Gaussian
distributions of same moments µ, Σ and Ω.

SCRBCES(α1) ≤ SCRBCN(α1). (10)

In particular for noisy linear mixtures where st defined in
(15) are considered as nuisance deterministic parameters,
the CRB concentrated on the parameter of interest θ is
denoted as the deterministic CRB (DCRB) on θ. By taking
the principal submatrix of the FIM (6) on the parameter α1

associated with the parameter θ, we deduce from (9) in the
circular and non-circular case:

DCRBCES(θ) ≤ DCRBCN(θ). (11)

These results have been proved by many authors (e.g., [3,
B.3.26]) under various conditions in the circular case.

Consider now the parameter α2 of Σ and Ω. Writing the
associated FIM (6) INC

CES(α2) in matrix form:

INC
CES(α2) =

(
dvec(Γ̃)

dαT2

)H (
ξ2
2

(Γ̃−T ⊗ Γ̃−1)

+
ξ2−1

4
vec(Γ̃−1)vecH(Γ̃−1)

)(
dvec(Γ̃)

dαT2

)
,(12)

we prove the following result in the Appendix:
Result 4: For C-CES and NC-CES distributions, the

SCRB on the parameter α2 is upper or lower bounded by
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the SCRB under the Gaussian distributions of same scatter
Σ and pseudo-scatter Ω matrices, according to ξ2 ≥ 1 and
ξ2 ≤ 1, respectively.

SCRBCES(α2) ≤ SCRBCN(α2) if ξ2 ≥ 1 (13)
SCRBCES(α2) ≥ SCRBCN(α2) if ξ2 ≤ 1. (14)

This property proves that the Gaussian distributions do not
always lead to the largest stochastic CRB as may authors
tend to believe it. For example, for the complex Student
t distribution of ν degree of freedom (0 < ν < ∞) with
ν > 2 to have finite 2nd-order moments (see e.g., [7, sec.
IVA]), ξ2 = ν/2+M

ν/2+M+1 < 1 [8]. For the complex generalized
Gaussian distribution with exponent s > 0 (see e.g., [7, sec.
IVB]), ξ2 = s+M

M+1 [9] and ξ2 < 1, ξ2 = 1 and ξ2 > 1 for
s < 1 (sub-Gaussian case), s = 1 (Gaussian case) and s > 1
(super-Gaussian case), respectively.

IV. STOCHASTIC CRB FOR NOISY LINEAR MIXTURE

A. General model

Consider the following model

zt = Aθst + nt ∈ CM t = 1, ..., T, (15)

where (zt)t=1,...,T are independent zero-mean with finite
2nd-order moments C-CES or NC-CES distributed r.v.s
such that zt ∼ ECM (0,Σ, g) or zt ∼ ECM (0,Σ,Ω, g),
respectively. st and nt are independent zero-mean r.v.s. nt
is circular with E(ntn

H
t ) = σ2

nI and st ∈ CK is either
circular with E(sts

H
t ) = Rs nonsingular or non-circular

with E(s̃ts̃
H
t ) = Rs̃ nonsingular with s̃t

def
= (sTt , s

H
t )T

and E(sts
T
t ) = Cs. Consequently, the scatter and pseudo-

scatter matrices of zt are given by Σ = AθRsA
H
θ + σ2

nI
and Ω = AθCsA

T
θ , where we assume that the real-valued

parameter of interest θ is characterized by the subspace
generated by the columns of the full column rank M ×K
matrix Aθ with K < M [17] The vector of nuisance
parameters is defined by αn

def
= (ρT , σ2

n)T where ρ contains
the terms [Rs]i,j for 1 ≤ i ≤ j ≤ K [resp., the terms [Rs]i,j
and [Cs]i,j for 1 ≤ i ≤ j ≤ K] in the circular [resp., non-
circular] case. Under these conditions, the following result
is proved in the Appendix:

Result 5: The SCRB on the parameter θ alone for the
general model (15) is given by:

SCRBCES(θ) =
1

ξ2
SCRBCN(θ), (16)

where CRBCN(θ) is the SCRB derived under the Gaussian
distributions of zt, given by [18]:

SCRBCN(θ) =
σ2
n

2T

[
Re

(
daHθ
dθ

(HT ⊗Π⊥Aθ
)
daθ
dθ

)]−1
,

(17)
where aθ

def
= vec(Aθ), Π⊥Aθ

def
= I−Aθ(A

H
θ Aθ)

−1AH
θ

is the ortho-complement of the projection matrix on the
columns of Aθ and H is given by the Hermitian matrices

RsA
H
θ Σ−1AθRs and [RsA

H
θ ,CsA

T
θ ]Γ̃−1

[
AθRs

A∗θC
∗
s

]
in

the circular and non-circular cases, with K < M .
We note that (17) extends the CRB compact expressions

[19, rel. (5)] and [4, rel. (3.9)], in the circular and non-
circular cases, respectively, given for the DOA modeling
with scalar-sensors for one parameter per source for which:

SCRBCN(θ) =
σ2
n

2T

{
Re
(
(DH

θ Π⊥Aθ
Dθ)�HT

)}−1
, (18)

where Aθ
def
= [a1, ...,aK ] and (ak)k=1,...,K are respectively,

the steering matrix and vectors parameterized by the DOA
θk with θ def

= (θ1, ..., θK)T , and Dθ
def
= [da1

dθ1
, ..., daKdθK

]. But
(17) encompasses DOA modeling with vector-sensors for an
arbitrary number of parameters per source st,k (with st

def
=

(st,1, .., st,K)T [20] and many other modelings as the SIMO
[21] and MIMO [22] modelings.

B. Stochastic CRB for DOA with rectilinear sources

Consider now the DOA modeling with scalar-sensors for
one parameter per source and for rectilinear sources, i.e.,
st,k = eiφkrt,k where φk are unknown fixed parameters and
rt,k is real-valued with K < 2M . Following similar steps
as used in proving Result 5 by replacing Aθ by Ãω =(

Aθ∆φ

A∗θ∆
∗
φ

)
where ∆φ

def
= Diag(eiφ1 , . . . , eiφK ) and ω def

=

(θT ,φT )T with φ def
= (φ1, ..., φK)T and the methodology

used in proving [23, th. 1], we obtain the following result
proved in the appendix:

Result 6: The SCRB on the parameter ω is given by

SCRBCES(ω) =
1

ξ2
SCRBCN(ω), (19)

where SCRBCN(ω) is the CRB derived under the Gaussian
distribution, given by [23, rel. (11)]:

SCRBCN(ω) =
σ2
n

T

(
(D̃H

ω Π⊥
Ãω

D̃ω)�
((

1 1
1 1

)
⊗H̃

))−1
,

(20)
with Π⊥

Ãω

def
=I−Ãω(ÃH

ω Ãω)−1ÃH
ω , D̃ω

def
= [D̃θ, D̃φ] where

D̃θ
def
=
[
∂ã1

∂θ1
, ..., ∂ãK

∂θK

]
, D̃φ

def
=
[
∂ã1

∂φ1
, ..., ∂ãK

∂φK

]
and ãk

def
=

(aTk e
iφk ,aHk e

−iφk)T , and H̃
def
= RrÃ

H
ω Γ̃−1ÃωRr where

Rr
def
= E(rtr

T
t ) with rt

def
= (rt,1, .., rt,K)T .

V. CONCLUSION

An extension of the Slepian-Bang formula under NC-
CES distributions is derived thanks to a new stochastic
representation theorem. Comparisons between CRB under
CES and Gaussian distributions are presented. In particular
conditions are given for which the Gaussian distribution
does not lead to the largest stochastic CRB. Finally new
closed-form expressions of the CRB on the parameter of in-
terest of noisy mixtures under CES distributions are proved.
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VI. APPENDIX

Detailed proofs are available at [24].
Proof of Result 1 and Eq. (5): Since a linear transform in
R2M is tantamount to R-linear in CM , the definition of
GCES given in [12] is equivalent to saying that

z = µ+ Ψz0 + Φz∗0, (21)

where Ψ and Φ are M ×M fixed complex-valued matrices
and z0 is a complex spherical distributed r.v. with stochastic
representation z0 =d Ru [7, th. 3]. Since E(uuH) = 1

M I
and E(uuT ) = 0, we get:

AAH =ΨΨH+ΦΦH and A∆κA
T =ΨΦT+ΨΦT , (22)

where it is easy to prove that (Ψ,Φ) = (A∆1,A∆2) is a
solution.

It is easy to prove that Γ̃1/2 =

(
A 0
0 A∗

)(
∆1 ∆2

∆2 ∆1

)
and

thus z̃ =d µ̃+RΓ̃1/2ũ with ũ
def
= (uT ,uH)T . Consequently,

1
2 (z̃− µ̃)HΓ̃−1(z̃− µ̃) =d

1
2R

2‖ũ‖2 = Q.
Proof of Result 2: The proof follows the steps of proof
in [8, Sec. 3] where Σ and η are replaced by Γ̃ and η̃,
respectively. For example, using now z̃ =d µ̃ + RΓ̃1/2ũ,
it follows 1

2 (z̃ − µ̃)HΓ̃−1Γ̃kΓ̃
−1(z̃ − µ̃) =d

1
2QũHH̃kũ,

where H̃k
def
= Γ̃−1/2Γ̃kΓ̃

−1/2. Then after proving that the
”regularity” condition E

(
∂ log p(z;α)

∂αk

)
= 0 also applies by

proving that E
(
φ(η̃) ∂η̃

∂αk

)
= 1

2Tr(Γ̃−1Γ̃k), it follows that
the FIM [8, rel. (14] becomes

[INC
CES]k,l=−

1

4
Tr(Γ̃−1Γ̃k)Tr(Γ̃−1Γ̃l)+E

(
φ2(Q)

∂η̃

∂αk

∂η̃

∂αl

)
.

Using now Γ̃−1/2(z̃ − µ̃) =d

√
Q ũ, E(ũũH) = 1

M I,
E(ũũT ) = 1

M J′, J′Γ̃1/2J′ = Γ̃∗1/2 and J′µ̃l = µ̃∗l , where

J′
def
=

(
0 I
I 0

)
, the evaluation of E

(
φ2(Q) ∂η̃

∂αk

∂η̃
∂αl

)
goes

through slight modifications w.r.t. [8, rels. (15), (16),(17)]
by extending the key relations in [8, Sec. 3], in particular
[8, rel. (18a)]) as E[(ỹHÃỹ)(ỹHB̃ỹ)] = Tr(Ã)Tr(B̃) +
2Tr(ÃB̃)), where y =d ‖y‖u when y ∼ CNM (0, I) with
ỹ

def
= (yT ,yH)T . With some further simple calculations (6)

is derived.
Proof of Eq. (9): It follows from Cauchy-Schwarz inequality
using E(Qφ(Q))=−M , that M2 =(E(Qφ(Q)))2 ≤ E(Q)
E(Qφ2(Q))=E(Q)Mξ1. Next, note that E(Q)=

∫∞
0
δ−1M,g

QMg(Q)dQ = δ−1M,gδM+1,g

∫∞
0
δ−1M+1,gQMg(Q)dQ =

δ−1M,gδM+1,g = M .
Proof of Result 4: Because ξ2 = 1 for Gaussian distributions,
we get for NC-CES distributions:

INC
CES(α2)− INC

CN(α2) =
ξ2 − 1

2

(
dvec(Γ̃)

dαT2

)H
(

(Γ̃−T ⊗ Γ̃−1)+
1

2
vec(Γ̃−1)vecH(Γ̃−1)

)
dvec(Γ̃)

dαT2
(23)

where (Γ̃−T ⊗ Γ̃−1) + 1
2vec(Γ̃−1)vecH(Γ̃−1) is positive

definite. The proof is identical for C-CES distributions.
Proof of Result 5: In the circular case, all the steps of
the proofs given for the DOA model in [19] are applied
here. It follows from (12), that ∆ in [19, rel. (10)] and
its partition in [19, rel. (13)], and G in [19, rel. (10)]
are replaced by ∆

def
= T

1/2
i (Σ−T/2 ⊗ Σ−1/2)∂vec(Σ)

∂αTn
=

T
1/2
i (Σ−T/2⊗Σ−1/2)

[
∂vec(Σ)
∂ρT

| ∂vec(Σ)
∂σ2

n

]
def
= [V | un] and

G
def
= T

1/2
i (Σ−T/2 ⊗ Σ−1/2)∂vec(Σ)

∂θT
where Ti

def
= ξ2I +

(ξ2 − 1)vec(I)vecT (I). Thus, the SCRB of DOA alone in
[19, rel. (12)], with dependent matrix [19, rel. (14)], are
preserved. Letting A′θk

def
= ∂Aθ

∂θk
, [19, rel. (16)] is replaced

by
∂Σ

∂θk
= A′θkRsA

H
θ + AθRsA

′H
θk
, (24)

and the term gk in [19, rel. (17)] is multiplied by T
1/2
i

and where the term Aθckd
H
k in [19, rel. (18)] and [19,

rel. (27)] is replaced by the term AθRsA
′H
θk

. It fol-
lows, using vec(Rs) = Jρ where J is defined in [19],
that V in [19, rel. (19)] can be expressed as V =

T
1/2
i WJ where W

def
= Σ−T/2A∗θ ⊗ Σ−1/2Aθ. Then,

it follows from the matrix inverse lemma that Π⊥V in
[19, rel. (20)] becomes Π⊥V = I − T

1/2
i BT

1/2
i with

B def
= 1

ξ2
(H∗1 ⊗H1)− ηvec(H1)(vec(H1))H where H1

def
=

Σ−1/2AθU
−1AH

θ Σ−1/2 and where U
def
= AH

θ Σ−1Aθ and
η

def
= ξ2−1

ξ22(1+
ξ2−1
ξ2

K)
. By replacing u in [19, rel. (22)] by

un = T
1/2
i vec(Σ−1), and through some tedious algebraic

manipulations, one finds uHn Π⊥Vgk = 0, implying that
1
T [SCRB−1CES(θ)]k,l = gHk Π⊥Vgl. By further calculations
we get 1

T [SCRB−1CES(θ)]k,l = 2ξ2
σ2
n

Re(Tr(Π⊥Aθ
A′θkHA

′H
θl

))
which can also be written in the matrix form (17) using [19,
rel. (6)].

In the noncircular case, the proof follows the sim-
ilar above steps by replacing Ti by T̃i

def
= ξ2

2 I +
ξ2−1
4 vec(I)vecT (I), and Σ by Γ̃ where (24) is replaced by

∂Γ̃
∂θk

= Ã′θkRs̃Ã
H
θ +ÃθRs̃Ã

′H
θk

with Ãθ
def
= Diag(Aθ,A

∗
θ)

and Ã′θk
def
= ∂Ãθ

∂θk
.

Proof of Result 6: As we said before presenting this result,
its proof follows similar steps as the proof of Result 5 based
on [23, th. 1] by replacing Σ by Γ̃ = ÃωRrÃ

H
ω + σ2

nI,
Aθ by Ãω , and also by pointing out that Rr ∈ RK×K
is symmetric which lead us to replace J by Dρ defined
in [23, th. 1] to get vec(Rr) = Dρρ. Thus, V becomes
V = T̃

1/2
i WDρ. Hence Π⊥V in [23, th. 1] takes here the

following key form expression: Π⊥V = I− T̃
1/2
i BT̃

1/2
i with

B = 2
ξ2

W(U−1 ⊗ U−1)NKWH − η̃vec(H1)vecH(H1)

where NK is defined in [23, th. 1] and η̃ def
= ξ2−1

ξ22(1+
ξ2−1
2ξ2

K)
.

The rest of the proof follows the same line of arguments as
that of the proof of Result 5.
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