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Robustness of subspace-based algorithms with

respect to the distribution of the noise:

Application to DOA estimation
Habti Abeida and Jean Pierre Delmas

Abstract

This paper addresses the theoretical analysis of the robustness of subspace-based algorithms with respect to

non-Gaussian noise distributions using perturbation expansions. Its purpose is twofold. It aims, first, to derive

the asymptotic distribution of the estimated projector matrix obtained from the sample covariance matrix (SCM)

for arbitrary distributions of the useful signal and the noise. It proves that this distribution depends only of

the second-order statistics of the useful signal, but also on the second and fourth-order statistics of the noise.

Second, it derives the asymptotic distribution of the estimated projector matrix obtained from any M -estimate

of the covariance matrix for both real (RES) and complex elliptical symmetric (CES) distributed observations.

Applied to the MUSIC algorithm for direction-of-arrival (DOA) estimation, these theoretical results allow us

to theoretically evaluate the performance loss of this algorithm for heavy-tailed noise distributions when it is

based on the SCM, which is significant for weak signal-to-noise ratio (SNR) or closely spaced sources. These

results also make it possible to prove that this performance loss can be alleviated by replacing the SCM by

an M -estimate of the covariance for CES distributed observations, which has been observed until now only by

numerical experiments.

Paper accepted to Signal Processing

I. INTRODUCTION

Subspace-based algorithms are obtained by exploiting the orthogonality between a sample subspace and

a parameter-dependent subspace. They have been proved very useful in many applications, including array

processing and linear system identification (see e.g., [1], [2]). The purpose of this paper is to complement

theoretical results already available on subspace-based estimators. Among them, the asymptotic distribution of
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the projection matrix was directly derived without any eigendecomposition in [3]. Conditions on robustness

to the distribution of the useful signal have been given in [4], [5] for Gaussian distributed noise. Equivalence

between subspace fitting and subspace matching algorithms has been studied in [6]. It has been proved that the

asymptotic minimum variance on parameters estimated by subspace-based algorithms attains the Cramér-Rao

bound for Gaussian observations in [7] and [8]. But all these properties have been derived from the SCM and

under the assumption of Gaussian distributed noise, only.

But, for heavy-tailed distributions of the noise, it has been shown (see e.g., [9], [10], [11], [12]) by numerical

experiments that the performance of MUSIC algorithm for DOA estimation derived from the SCM degrades

dramatically. To explain this behavior, the first purpose of this paper is to derive the asymptotic distribution of

the estimated projector matrix obtained from the SCM for arbitrary distributions of the useful signal and the

noise, to prove that it depends only of the second-order statistics of the useful signal, but also on the second

and fourth-order of the noise. The second purpose is to derive the asymptotic distribution of the estimated

projector matrix obtained from any M -estimate of the covariance matrix, for both RES and CES distributions

of the observations.

We take the MUSIC DOA estimation algorithm, which is always the object of active research (see e.g.,

[13]), as an example of subspace-based algorithms. We first theoretically specify the loss in performance of

this algorithm built from the SCM for arbitrary heavy-tailed distributions of strong noise with a particular

emphasis to CES distributions. The second step of our analysis, then, is to theoretically assess the robustness of

this algorithm built from an M -estimate of the covariance for CES distributed observations. These theoretical

results are confirmed by some simulations performed with either a complex circular Student t distribution or a

complex generalized Gaussian distribution of the observations or the noise model.

The paper is organized as follows. Section II specifies the general signal model and the problem formulation.

The asymptotic performance of subspace-based algorithms associated with the SCM and the M -estimate of the

covariance matrix are given in Section III and IV, respectively, with a particular attention to the asymptotic

performance of the MUSIC-based DOA estimation algorithm. Section V illustrates the theoretical performance of

the MUSIC-based DOA estimation algorithm given in the previous two sections. Finally, the paper is concluded

in Section VI.

The notations used throughout the paper are conventional. Matrices and vectors are represented by bold upper

case and bold lower case letters, respectively. IN is the identity matrix of order N and vectors are by default in

column orientation, while T , H and ∗ stand for transpose, conjugate transpose and conjugate, respectively. E(.),

Re(.), |.| and # are the expectation, real part operator, determinant and Moore-Penrose inverse, respectively.

vec(·) is the vectorization operator that turns a matrix into a vector by stacking the columns of the matrix one

below another which is used in conjunction with the Kronecker product A ⊗ B as the block matrix whose
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(i, j) block element is ai,jB and with the vec-permutation matrix K which transforms vec(C) to vec(CT ) for

any square matrix C.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal model

Consider the following model1

yt = A(θ)xt + nt ∈ CN or RN , t = 1, ..T, (1)

where (yt)t=1,..,T are independent identically distributed. nt is an additive noise, which is assumed zero-mean

circular (in the complex case) with finite fourth-order moments, spatially uncorrelated with E(ntn
+
t ) = Rn =

σ2
nIN where the symbol + stands for T in the real case and for H in the complex one. The noise nt is

independent from the signals xt,k where xt
def
= (xt,1, .., xt,K)T . (xt,k)k=1,..,K,1,..,T are either deterministic

unknown parameters (in the so-called conditional or deterministic model), or zero-mean circular (in the

complex case) random with finite fourth-order moments where E(xtx
+
t ) = Rx is nonsingular (in the so-called

unconditional or stochastic model). A(θ) is a full column rank N ×P (with P < N ) matrix parameterized by

the real-valued parameter of interest θ, which is characterized by the subspace generated by its columns. With

these assumptions, the covariance matrix of yt given in the stochastic model is

Ry = A(θ)RxA
+(θ) + Rn. (2)

B. Problem formulation

Under the Gaussian distribution of yt, the maximum likelihood estimate of Ry is the SCM:

Ry,T
def
=

1

T

T∑
t=1

yty
+
t (3)

and any subspace-based algorithm can be considered as the following mapping:

Ry,T 7−→ Πy,T
alg7−→ θT , (4)

where Πy,T denotes the orthogonal projection matrix associated with the so called noise subspace of Ry,T (built

from the SVD of Ry,T ). The functional dependence θT = alg(Πy,T ) constitutes an extension of the mapping

Πy = IN − A(θ)[A+(θ)A(θ)]−1A+(θ)
alg7−→ θ in the neighborhood of Πy. Each extension alg specifies a

particular subspace algorithm, whose MUSIC algorithm is an example.

1This model is an extension of the conditional and unconditional models described in [14] for DOA estimation.
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It has been proved in [5], that under the above assumptions on stochastic model (1), the asymptotic distribution

of any subspace-based estimate θT derived form the SCM depends only of the second-order statistics of xt when

the noise nt is Gaussian distributed. The problem we are dealing with here is to clarify how the performance is

affected when the noise is not Gaussian distributed and how the possible loss of performance can be mitigated

by using an M -estimate of Ry, instead of the SCM.

III. ASYMPTOTIC PERFORMANCE OF SUBSPACE-BASED ALGORITHMS ASSOCIATED WITH THE SCM

A. Asymptotic distribution of the SCM

Using the central limit theorem applied to the sequence of independent random variables vec(yty
+
t ) = y∗t⊗yt

in the complex case [resp., yt ⊗ yt in the real case], which are identically [resp., non-identically] distributed

in the stochastic [resp. deterministic] model, we get the following convergence in distribution:

√
T (vec(Ry,T )− vec(Ry))

L→ N
(
0,Rry ,Cry

)
(complex case), N

(
0,Rry

)
(real case), (5)

where Ry is given by (2) in the stochastic model and by A(θ)Rx,∞A+(θ) + Rn with Rx,∞
def
=

limt→∞
1
T

∑T
t=1 xtx

+
t (if it exists) in the deterministic model. In the stochastic model, Rry and Cry denote the

covariance and the complementary covariance or pseudo covariance of y∗t ⊗ yt, respectively. They are given

by2:

Rry = (A∗ ⊗A)Rrx(A
T ⊗A+) + (A∗R∗xA

T )⊗Rn + R∗n ⊗ (ARxA
+) + Rrn (6)

Cry = RryK, (7)

where A
def
= A(θ) for short, Rrx and Rrn are the covariance matrices of vec(xtx

+
t ) and vec(ntn

+
t ), respectively.

Whereas in the deterministic model, Rry and Cry are given by:

Rry = (A∗R∗x,∞AT )⊗Rn + R∗n ⊗ (ARx,∞A+) + Rrn and Cry = RryK. (8)

Considering the statistics of the noise: Rn = σ2
nIN and

Rrn = (Rn ⊗Rn)K′ + Qn = σ4
nK

′
+ Qn, (9)

where

K′
def
= IN2 [resp., K′

def
= IN2 + K] in the complex [resp., real] case (10)

2Note that all asymptotic covariance R and complementary covariance C of Hermitian structured estimators are related by C = RK.
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and Qn is the quadrivariance of the noise defined by [Qn]i+(j−1)N,k+(l−1)N = Cum(n∗t,j , nt,i, nt,`, n
∗
t,k) with

nt = (nt,1, ..., nt,N )T . To go further, we must specify these cumulants. Here we consider the following usual

assumptions: (i) the components (nt,i)i=1,..,N are identically distributed and (ii) the only non-zero expectations

E(n∗t,jnt,int,`n
∗
t,k) are obtained for i = j = k = ` and for two indices equal two by two. For example, in the

complex case:

E(n∗t,jnt,int,`n
∗
t,k) =


E|nt,i|4 = κσ4

n for i = j = k = `

(E|nt,i|2)2 = σ4
n for i = j 6= k = ` and i = k 6= j = `

0 elsewhere,

(11)

where κ is the kurtosis of the noise. In this case, it is straightforward to prove that:

Qn = σ4
n(κ− ρ)ΛN , (12)

where ρ = 3 [resp., ρ = 2] in the real [resp., complex] case with ΛN
def
=
∑N

i=1(eie
T
i ) ⊗ (eie

T
i ), where ei is

the N th vector with one in the position i and zeros elsewhere. Note that κ−ρ = 0 for real or circular complex

Gaussian distributions and κ−ρ is strictly positive or negative for respectively, super-Gaussian or sub-Gaussian

distribution of the noise.

The assumptions (i) and (ii) are also satisfied when nt is RES or CES distributed. Note that the real (RCG)

or complex compound Gaussian (CCG) distribution (also referred to as spherically invariant random vectors

(SIRV) in the engineering literature that has been widely used for modeling radar clutter), is a subclass of the

RES or CES distributions. Using the stochastic representation theorem of these distributions (see e.g., [15, th.3

and def.3] in the complex case), nt is distributed as

√
Qt Σ1/2ut for RES/CES distributions,

√
τt Σ1/2wt for RCG/CCG distributions, (13)

where Qt and τt are non-negative real random variables, ut and wt are respectively uniformly distributed on

the unit real (or complex) N -sphere and Gaussian distributed N (0, IN ) (or N (0, IN ,0)), Qt [resp., τt] and ut

[resp., wt] are independent and Σ is the scatter matrix of the distribution of nt. Because here the second-order

moments of nt are finite, the density generator of the distribution of nt can always be definite such that the

scatter matrix is equal to the covariance matrix, i.e.,

Σ = Rn = σ2
nIN . (14)

In this case, it is straightforward to prove that for RES/CES and RCG/CCG distributions:

Qn = σ4
n(η − 1)

(
K′ + vec(IN )vecT (IN )

)
, (15)
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where

η =
E(Q2

t )

N(N + 1)
[resp., η = E(τ2

t )] for RES/CES [resp., RCG/CCG] distributions. (16)

B. Asymptotic distribution of the associated projector

Then using the standard perturbation result for orthogonal projectors [16] (see also [3]) applied to Πy

associated with the noise subspace of Ry:

δ(Πy) = −Πyδ(Ry)S
# − S#δ(Ry)Πy + o (δ(Ry)) , (17)

where S
def
= ARxA

+ [resp., ARx,∞A+] in the stochastic [resp. deterministic] model, the asymptotic behaviors

of Πy,T and Ry,T are directly related. The standard theorem of continuity (see e.g., [17, p. 122]) on regular

functions of asymptotically Gaussian statistics applies:

√
T (vec(Πy,T )− vec(Πy))

L→ N
(
0,Rπy ,Cπy

)
(complex case), N

(
0,Rπy

)
(real case), (18)

with

Rπy = [(ST
# ⊗Πy) + (ΠT

y ⊗ S#)]Rry [(S
T# ⊗Πy) + (ΠT

y ⊗ S#)]. (19)

Then using (6) and (9) with (12) and (15), we get the following result:

Result 1: In the stochastic and deterministic models, the sequence
√
T (vec(Πy,T )− vec(Πy)) where Πy,T

denotes the noise projector associated with the SCM (3) converges in distribution to the zero-mean Gaussian

distribution of covariance given for nonparameterized distributed noise by:

Rπy = [(UT ⊗Πy) + (ΠT
y ⊗U)]K′

+ σ4
n(κ− ρ)[(ST

# ⊗Πy) + (ΠT
y ⊗ S#)]ΛN [(ST

# ⊗Πy) + (ΠT
y ⊗ S#)] (20)

with U
def
= σ2

nS
#RyS

# and for RES/CES/RCG/CCG distributed noise by:

Rπy = [(UT ⊗Πy) + (ΠT
y ⊗U)]K′ + (η − 1)[(U′T ⊗Πy) + (ΠT

y ⊗U′)], (21)

with U′
def
= σ4

n(S#)2, which is inversely proportional to the square of the SNR.

We note that when nt is Gaussian distributed, κ = 3 [resp., κ = 2] in the real [resp. complex] case, Qt is

Gamma(1,N ) distributed and τt = 1 which implies η = 1 for RES/CES [resp., RCG/CCG] distributions and

we check that Rπy reduces to the first term [(UT ⊗Πy) + (ΠT
y ⊗U)]K′ derived for the Gaussian distribution

of the noise.
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C. Asymptotic performance of DOA estimated by the MUSIC algorithm

In the DOA application, A is the steering matrix [a1, ...,aP ], where each vector (ak)k=1,..,P is parameterized

by θk which is the DOA of the kth source. We prove in Appendix A the following result:

Result 2: In the stochastic and deterministic models, the sequence
√
T (θT − θ), where θT is the DOA

estimate given by MUSIC algorithm, converges in distribution to the zero-mean Gaussian distribution of

covariance matrix given for the nonparametric noise model by:

[RSCM
NG (θ)]k,` = [RSCM

G (θ)]k,` +
σ4
n(κ− 2)

αk,kα`,`
gHk ΛNg`, (22)

where gk
def
= aTk S#T ⊗ a

′

kΠy + a
′T
k ΠT

y ⊗ aHk S#, and αk,`
def
= 2a

′H
k Πya

′
` where a′k

def
= dak/dθk and for

CES/CCG parametric noise model, by:

[RSCM
CES/CCG(θ)]k,` = [RSCM

G (θ)]k,` +
(η − 1)

αk,kα`,`
Re(α∗k,`a

H
k U′a`), (23)

where

[RSCM
G (θ)]k,` =

1

αk,kα`,`
Re(α∗k,`a

H
k Ua`), (24)

is the asymptotic covariance matrix of DOA estimate derived for the first time in [18, th.3.1] for circular

Gaussian distributed noise.

For a single source, (22) and (23) become respectively:

RSCM
NG (θ1) =

1

α1,1

[
σ2
n

σ2
1

+
1

‖a1‖2
σ4
n

σ4
1

]
+

β1

α2
1,1

[
(κ− 2)

σ4
n

σ4
1

]
, (25)

RSCM
CES/CCG(θ1) =

1

α1,1

[
σ2
n

σ2
1

+
1

‖a1‖2
σ4
n

σ4
1

]
+

(η − 1)

α1,1

1

‖a1‖2
σ4
n

σ4
1

, (26)

where β1 is a positive purely geometric factor and σ2
1

def
= E|x2

t | [resp., limT→∞
1
T

∑T
t=1 x

2
t ] in the stochastic

[resp. deterministic] model. Note that the additive term in (22), (23), (25) and (26) is inversely proportional to

the square of the SNR. Therefore, non-Gaussian noise effects can occur mainly at low SNR values. Furthermore,

note that for sub-Gaussian (κ < 2) noise distributions, this asymptotic variance is slightly reduced as κ ≥ 1.

On the other hand, it can be largely increased for super-Gaussian (κ > 2) noise distributions because κ is not

upper-bounded, and can also be very large for heavy-tailed noise distributions and for low SNRs.

IV. ASYMPTOTIC PERFORMANCE OF SUBSPACE-BASED ALGORITHMS ASSOCIATED WITH THE

M -ESTIMATE OF COVARIANCE

To mitigate the loss of performance of subspace-based algorithms for strong non-Gaussian distributed noise,

the SCM can be replaced by the ML estimate of Ry. However, this estimate cannot be obtained for specific
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non-Gaussian RES/CES distributions of xt and nt in (1) because the family of RES/CES distributions is not

closed under summation of independent RES/CES distributed random variables. To overcome this difficulty,

we assume in this section that the observations yt in (1) are independent zero-mean RES/CES identically

distributed, with stochastic representation (13) and finite fourth-order moments and whose covariance Ry is

always given by (2). Note that this model is approximately satisfied in the strong noise scenario where the

RES/CES distributed noise fixes the distribution of yt. With this new model, we first recast the derivations of

the previous section to compare the asymptotic performance of subspace-based algorithms based on the SCM

and M -estimate.

A. Asymptotic distribution of the projector associated with the SCM

By following the approach of Section III-A, the sequence
√
T (vec(Ry,T )− vec(Ry)) converges in distri-

bution to the zero-mean Gaussian distribution N (0,Rry ,Cry) in the complex case and N
(
0,Rry

)
in the real

case, of covariance matrix:

Rry = η(RT
y ⊗Ry)K

′ + (η − 1)vec(Ry)vec+(Ry), (27)

where η is given by (16). This gives, following the steps of section III-B, the sequence
√
T (vec(Πy,T )− vec(Πy)) converges also in distribution to the zero-mean Gaussian distribution

N (0,Rπy ,Cπy) of covariance matrix:

Rπy = η[(UT ⊗Πy) + (ΠT
y ⊗U)]K′. (28)

B. Asymptotic distribution of the projector associated with the M -estimate

We start to consider the ML estimate of the scatter matrix Σy of the zero-mean RES/CES distribution of yt,

which is equal here to its covariance Ry. This ML estimate is solution of the implicit equation:

Σy,T =
1

T

T∑
t=1

u
(
y+
t Σ−1

y,Tyt

)
yty

+
t , (29)

where u(t)
def
= − 1

g(t)
dg(t)
dt is a real-valued non-negative weight function fixed by the density generator g(.) of

the underlying RES/CES distribution [15, (38)], whose probability density function can be written as:

p(yt) ∝ |Σy|−1g
(
yHt Σ−1

y yt
)

(complex case), p(yt) ∝ |Σy|−1/2g
(
yTt Σ−1

y yt
)

(real case). (30)

Note that under specific conditions on the density generator given in [19] for RES and extended to CES in

[15], the solution of the implicit equation (29) is unique and can be obtained by an iterative fix point algorithm,

given any initial positive definite Hermitian matrix Σ0.
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Furthermore, this estimate belongs to the class of M -estimators of scatter matrices introduced by Maronna

[19], where u(.) does not need to be related to the density generator of any particular RES/CES distribution.

Existence and uniqueness of the solution Σu
y,T of (29) have been proved in the real case, provided u(.) satisfies

a set of general conditions (called Maronna conditions) stated by Maronna in [19]. These conditions have been

extended to the complex case in [11] and [15]. Under these conditions, it has been also proved in the real case

that the solution of (29) can be derived by an iterative fix point algorithm. The sequence Σu
y,T of solutions of

(29) converges in probability to Σu
y proportional to Σy (Σu

y = σuΣy, where σu depends on u(.) and the RES

distribution of yt). The extension of these results to the complex case has been done in [15].

These M -estimates of scatter matrices have been proposed for robust estimate of Σy against outliers and

heavy-tailed non-Gaussian distributions. Under these Maronna conditions, it has been proved in the real case

[20] and the complex case [15], [10], that the sequence
√
T (vec(Σu

y,T ) − vec(Σu
y)) converges in distribution

to the zero mean Gaussian distribution N (0,RΣuy ,CΣuy ) in the complex case and N (0,RΣuy ) in the real case,

with covariance:

RΣuy = ϑ1(ΣT
y ⊗Σy)K

′ + ϑ2vec(Σy)vec+(Σy), (31)

where the parameters ϑ1 and ϑ2 [15, rels. (48), (49)] and [10, rels. (7), (12)] depend on u(.) and the involved

RES/CES distribution. They are given with our notations by:

ϑ1 =
E[u2(Qt/σu)Q2

t ]

N(N + 1)(1 + [N(N + 1)]−1cu)2
and ϑ2 =

E[(u(Qt/σu)Qt −Nσu)2]

(N + cu)2
− ϑ1

N
, (32)

with cu
def
= E[u′(Qt/σu)Q2

t /σ
2
u] [15, (47)] where u′(x)

def
= du(x)/dx and σu solution of E[u(Qt/σu)Qt/σu] =

N [15, (46)]. Note that σu = 1 for finite second-order moments of yt and ML estimate of Σy (i.e., for

u(t) = − 1
g(t)

dg(t)
dt ).

Finally note that the covariance matrix Rry (27) of the asymptotic distribution of the SCM can be derived

form (31) for the weight function u(t) = 1 for which cu = 0, which gives: ϑ1 = E(Q2
t )/(N(N + 1)) = η and

ϑ2 = E(Q2
t )/(N(N + 1))− 1 = η − 1 from (16).

Now, denote by Πy,T , the noise projector built from the SVD of Σu
y,T . Noting that Σu

y , Σy = Ry are

proportional and following the approach of Section III-A, we get the following result:

Result 3: The sequence
√
T (vec(Πy,T )− vec(Πy)) converges in distribution to the zero-mean Gaussian

distribution N (0,Rπy ,Cπy) in the complex case and N
(
0,Rπy

)
in the real case of covariance matrix:

Rπy = ϑ1[(UT ⊗Πy) + (ΠT
y ⊗U)]K′. (33)

Following the steps Section III-C, Result 2 also applies here. Thus the following result is obtained.

Result 4: The asymptotic covariance of the DOA estimated by the MUSIC algorithm associated with the
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SCM and the covariance M -estimate (29) are respectively given for CES distributed observations by:

[RSCM
CES/CCG(θ)]k,` = η[RSCM

G (θ)]k,` and [RM.Est
CES/CCG(θ)]k,` = ϑ1[RSCM

G (θ)]k,`. (34)

Therefore, the gain from using an M -estimate of the covariance rather than the SCM is uniquely characterized

by the factor ϑ1/η, which depends on the specified non-Gaussian noise distributions.

V. NUMERICAL ILLUSTRATIONS

This section illustrates the theoretical performance of the MUSIC-based DOA estimation algorithm given by

Results 2 and 4. We consider throughout this section two uncorrelated sources of equal power (σ2
1 = σ2

2) are

impinging on an ULA with N = 6 sensors for which ak = (1, ejθk , . . . , ej(N−1)θk)T where θk = sin(παk)

with αk are the DOAs relative to the normal of array broadside. The SNR is defined as SNR = σ2
1/σ

2
n. The

following table proved in the Appendix, gives the values of the parameter η and ϑ1 that are involved in the

different asymptotic covariance matrices.

CES Distributions η ϑ1

N (0,Σ,0) 1 1

CtN,ν(0,Σ) ν−2
ν−4

N+1+ν/2
N+ν/2

CGGN,β(0,Σ) N
N+1

Γ(N/β)Γ((N+2)/β)
Γ((N+1)/β)2

N+1
N+β

Table.1. Parameters η and ϑ1 used in the illustrations.

In the first experiment the sources are QPSK distributed and the noise nt is either circular complex Student

t-distributed (i.e., nt ∼ CtN,ν(0, σ2
nI)) with parameter ν > 4 to have finite fourth-order moment or complex

circular Gaussian distributed (i.e., nt ∼ N (0, σ2
nI,0) obtained also for ν →∞). Fig.1 compares the asymptotic

variances of DOA estimates obtained with the MUSIC algorithm based on the SCM, given by (23) for the

two previously described noise models. These asymptotic variances are also compared to the corresponding

MSEs (where T = 500 estimated by 1000 Monte Carlo runs). It can be seen from this figure that the CES

distributed noise model cause deeper loss of performance of the MUSIC algorithm based on SCM for weak

SNR. Note that the CRB cannot be plotted in this figure because yt is distributed here as a mixture of four

circular complex Student t-distributions, whose CRB is not available.

Fig.2 shows the theoretical ratio r
def
= RSCM

G (θ1)/RSCM
CES/CCG(θ1) of the asymptotic variances for Gaussian

distributed and Student t-distributed noise with respect to the DOA separation ∆θ = |θ2 − θ1| for different

values of the parameter ν at SNR = 10dB. We see that the performance deteriorates strongly for small DOA

separation and for small parameter ν (ν → 4), i.e., for heavy-tailed noise distributions. Obviously, this ratio

tends to 1 for ν →∞ (Gaussian case).
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Var. CES dist. (with ν=4.1) and MSE(x)

Var. CES dist.  (with ν=5) and MSE(+)

Var. Gauss. dist. and and MSE (∗)

Fig.1. Asymptotic variances Var(θ1,T ) given by (23) and (24) and its associated MSEs versus SNR with ∆θ = 0.25(rd).

DOA separation (rd)
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0.7
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1
ν=10
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ν=4.5

ν=5

ν=8

ν=4.1

Fig.2. Theoretical ratio r def
= RSCM

G (θ1)/RSCM
CES/CCG(θ1) as a function of ∆θ for SNR = 10dB.

In the second experiment, the observations yt are CES distributed of covariance Ry = Σy =
∑2

k=1 σ
2
kaka

H
k +

σ2
nI. Figs. 3 and 4 exhibit the ratio r def

= RM.Est
CES/CCG(θ1)/RSCM

CES/CCG(θ1) = ϑ1/η deduced from (34), versus N

for different values of the parameters ν and β for the circular complex Student t-distribution CtN,ν(0,Σy) and

the circular complex generalized Gaussian distribution CGGN,β(0,Σy), respectively.

In Fig.3, we can see performance improvements escalating when the ML estimate of Ry (M -estimate) is

used instead of the SCM with decreasing spikiness parameter ν. For ν → ∞, the noise tends to be Gaussian

distributed (where the SCM is the ML estimate of the covariance matrix) and the performance tends to be

November 6, 2019 DRAFT



12

equivalent. In Fig.4, we see that this improvement of performance increases both when β > 1 (super-Gaussian

case) and β < 1 (sub-Gaussian case), and obviously disappears if the noise is Gaussian distributed (i.e., β = 1).

Moreover, we see that the number N of sensors has little impact on improving the performance for circular

complex Student t-distributed observations compared to those distributed with a circular complex generalized

Gaussian distribution.

Fig.5 compares the CRB derived in [21] and [22], the asymptotic variances of DOA estimates obtained with

the MUSIC algorithm based on SCM and M -estimate of the covariance given by (34) for CGGN,β(0,Σy)

observations, and the corresponding MSEs (where T = 500 estimated by 2000 Monte Carlo runs). It can be

seen from this figure the validity of the derived theoretical asymptotic variances in (34) which are in good

agreement with the corresponding MSEs. We also observe, in comparison with the CRB, that the MUSIC

based on M -estimate of the scatter matrix is asymptotically efficient at high SNR values.

N

2 4 6 8 10 12 14 16 18

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν=4.1

ν=15

ν=10

ν=8

ν=6

ν=5

ν=4.5

Fig.3. r = RM.Est
CES/CCG(θ1)/RSCM

CES/CCG(θ1) versus N for different values of ν for the CtN,ν(0,Σy) distribution.
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1
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β=0.3

β=5

β=0.2

Fig.4. r = RM.Est
CES/CCG(θ1)/RSCM

CES/CCG(θ1) versus N for different values of β

(β > 1 for super-Gaussian case and β < 1 for sub-Gaussian case) for the CGGN,β(0,Σy) distribution.

SNR(dB)
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Var.  SCM and MSE (o )
Var.  M.Est. and MSE (∇)

CRB

Fig.5. Asymptotic variances given by (34), CRB and associated MSE versus SNR

with ∆θ = 0.25(rd) for the CGGN,β(0,Σy) distribution with β = 0.2.

VI. CONCLUSION

This paper has provided theoretical tools for analyzing the performance loss of SCM-based subspace

algorithms with respect to non-Gaussian heavy-tailed noise distributions, which has been analyzed until now

only by numerical experiments. We have proved that this loss of performance can be mitigated by replacing

the SCM with an M -estimate of the covariance for RES/CES distributions. Simulation results of the MUSIC
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DOA estimation algorithm have been presented to illustrate the theoretical analysis when the observations are

distributed according to either circular complex Student t-distribution or circular complex generalized Gaussian

distribution. But these results can be applied to many other subspace-based algorithms. Finally, note that our

analysis assumes that both conditions (i) distributions have finite fourth-order moments and (ii) the M -estimate

of the covariance matrix belongs to the RES/CES family of distributions are satisfied, but otherwise, they will

certainly open up new avenues for performance analysis.

APPENDIX

Proof of Result 2: Using again the standard theorem of continuity, the DOAs estimated by the MUSIC algorithm

based on Πy,T are asymptotically Gaussian distributed with covariance R(θ) = Dg(θ)Rπy [D
g(θ)]H where the

Jacobian matrix Dg(θ) of the mapping g which is the MUSIC algorithm that associates θT to Πy,T is given

(see e.g., [25]): by

Dg(θ) =


dT1
...

dTP

 with dTk =
−1

αk,k

(
a

′

k
T ⊗ aHk + aTk ⊗ a

′

k
H
)
. (35)

Plugging (35) and (20)-(21) in R(θ) = Dg(θ)Rπy [D
g(θ)]H , (22) and (23) follow.

Proof of Table.1:

a) Circular complex generalized Gaussian distributions:

The density generator of this distribution is g(t) = e−t
β/b which gives the ML weight function u(t) = (β/b)tβ−1.

Thus, σu that is solution of E[u(Qt/σu)Qt/σu] = N [15, (46)] is given by σu = (β/(bN))E(Qβt ) = 1 from

E(Qβt ) = Nb/β [23, a16], cu
def
= E[u′(Qt)Q2

t ] = (β(β − 1)/b)E(Qβt ) = N(β − 1), and E[u2(Qt)Q2
t ] =

(β2/b2)e(Q2β
t ) = N(β+N) from E(Q2β

t ) = (Nb2/β)(1+N/β) [23, a16]. As a result ϑ1 = (N +1)/(N +β)

from (32).

Because E(utu
H
t ) = IN/N [15, lemma.1], (13) implies that E(Qt) = N . Otherwise, E(Qt) = b1/β Γ[(N+1)/β]

Γ[N/β]

and E(Q2
t ) = b2/β Γ[(N+2)/β]

Γ[N/β] from [24, (16)], where Γ(.) is the gamma function. Consequently η =

NE(Q2
t )

(N+1)[E(Qt)]2 = N
N+1

Γ(N/β)Γ((N+2)/β)
Γ((N+1)/β)2 .

b) Circular complex Student t-distribution:

The density generator of this distribution is g(t) =
(
1 + 2t

ν

)−(2N+ν)/2 which gives the ML weight function

u(t) = 2N+ν
ν+2t . σu solution of E[u(Qt/σu)Qt/σu] = N [15, (46)] is equal to unity because E[u(Qt)Qt] = N [21,

(11)]. Using E[Qtψ
′
(Qt)] = ν

2
N

N+1+ν/2 and E[ψ2(Qt)] = N(N+1)(N+ν/2)
N+1+ν/2 with ψ(x)

def
= xu(x) from [26], we

get cu
def
= E[u′(Qt)Q2

t ] = ν
2

N
N+1+ν/2 −N (using also E[u(Qt)Qt] = N ) and E[u2(Qt)Q2

t ] = N(N+1)(N+ν/2)
N+1+ν/2 ,

which give ϑ1 = N+1+ν/2
N+ν/2 from (32).
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From [15, (8) and Sec. IV.], E|y4
i,t|/[E|y2

i,t|]2 − 2 = 4
ν−4 with yi,t

def
= eTi yt. Then E|y2

i,t| = E(τt)(e
T
i Σyei) and

E|y4
i,t| = 2E(τ2

t )(eTi Σyei)
2 from (13). Consequently 4

ν−4 + 2 = 2 E(τ2
t )

[E(τt)]2
= 2E(τ2

t ). This implies η = ν−2
ν−4 .
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