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Abstract

The machinery behind the visual perception of motion and the subsequent sensorimotor transformation, such as
in Ocular Following Response (OFR), is confronted to uncertainties which are efficiently resolved in the primate’s
visual system. We may understand this response as an ideal observer in a probabilistic framework by using Bayesian
theory (Weiss et al., 2002) which we previously proved to be successfully adapted to model the OFR for different
levels of noise with full field gratings (Perrinet et al., 2005). More recent experiments of OFR have used disk gratings
and bipartite stimuli which are optimized to study the dynamics of center-surround integration. We quantified two
main characteristics of the spatial integration of motion : (i) a finite optimal stimulus size for driving OFR, surrounded
by an antagonistic modulation and (ii) a direction selective suppressive effect of the surround on the contrast gain
control of the central stimuli (Barthélemy et al., 2006). Herein, we extended the ideal observer model to simulate
the spatial integration of the different local motion cues within a probabilistic representation. We present analytical
results which show that the hypothesis of independence of local measures can describe the spatial integration of the
motion signal. Within this framework, we successfully accounted for the contrast gain control mechanisms observed
in the behavioral data for center-surround stimuli. However, another inhibitory mechanism had to be added to account
for suppressive effects of the surround.

Keywords
Visual perception, motion integration, tracking eye movements, Ocular Following Response, Bayesian model, center-
surround interactions

1 Introduction

Local motion signals are often noisy and ambiguous.
To elaborate an accurate perception of the spatiotempo-
ral layout of our environment or to direct our actions
towards a particular object of interest, the biological
system responsible for the visual perception of motion
must integrate these piecewise measurements in a se-
lective way. The machinery behind this dynamical in-
tegration process has been scrutinized at different lev-
els, from single neurons to behavior. However, one still
lacks an integrative view of motion integration.
Probabilistic representations of motion are useful tools
to understand these mechanisms. In these represen-
tations, all the information extracted from the image
is coded as probability distribution functions (PDFs)
of the different possible velocities of translation. As
is inspired by the architecture of visual cortical area

MT, spatiotemporal distributions of activity within
large populations of units broadly tuned for direction
selectivity build maps of the local motion informa-
tion (Nowlan and Sejnowski, 1995), these distributed
representations may be interpreted as maps of PDFs.
An ideal decision process could then be used to infer
the most plausible interpretation of the image from this
distributed probabilistic representation using standard
operations from probability theory in order to trigger
and control adaptive behavioral responses.
We use such an approach to model how motion infor-
mation is quickly integrated in order to drive reflexive
eye movements involved in tracking object motion in
primates. Because the aim of these responses is to sta-
bilize onto the retinas the images of a single object of
interest, they are an ideal candidate to probe both the
low-level motion mechanisms that single-out this ob-
ject and compute its motion and the decision process
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Figure 1: Basic properties of human OFR. Several properties of motion integration for driving ocular following
as summarized from our previous work. (a) A leftward drifting grating elicits a brief acceleration of the eye in the
leftward direction. Mean eye velocity profiles illustrate that both response amplitude and latency are affected by the
contrast of the sine-wave grating, given by numbers at the right-end of the curves. Quantitative estimates of the sen-
sorimotor transformation are given by measuring the response amplitude (i.e. change in eye position) over a fixed
time window, at response onset. Relationships between (b) response latency or (c) initial amplitude and contrast are
illustrated for the same grating motion condition. These curves define the Contrast Response Function (CRF) of the
sensorimotor transformation and are best fitted by a Naka-Rushton function (reprinted from (Barthélemy et al., 2007)).
(d) At fixed contrast, the size of the circular aperture can be varied to probe the spatial summation of OFR. Clearly,
response amplitude first linearly grows up with stimulus size before reaching an optimal size, the integration zone.
For larger stimulus sizes, response amplitudes are lowered (reprinted from (Barthélemy et al., 2006)). (e) OFR are
recorded for center-alone and center-surround stimuli. The contrast of the center stimulus is varied to measure the
contrast response function and compute the contrast gain of the sensorimotor transformation at both an early and a late
phase during response onset. Open symbols are data obtained for a center-alone stimulus, similar to those illustrated
in (c). When adding a flickering surround, ones can see that late (but not early) contrast gain is lowered, as illustrated
by a rightward shift of the contrast response function (Barthélemy et al., 2006).
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that triggers a motor response in the appropriate direc-
tion and at the correct speed.

2 Ocular Following Responses in
primates: a probe of dynamical
motion integration

In human and non-human primates, a brief (<200ms)
translation of the visual scene elicits reflexive tracking
eye movements at ultra-short latency (∼55ms in mon-
keys and ∼85ms in humans, see Fig. 1-a) (Miles et al.,
1986; Gellman et al., 1990). The responses, also called
Ocular Following Responses (OFR), exhibit many of
the properties that are attributed to low-level motion
detectors. They are triggered primarily by a motion
energy signal that is extracted from the spatiotempo-
ral luminance distribution in the image (Miles et al.,
1986; Masson et al., 2002; Sheliga et al., 2005). For
instance, reversing the contrast of a high density dot-
pattern during a one-step apparent motion results in a
reversed ocular response, following the direction of the
first-order motion signal (Masson et al., 2002). These
reflexive responses are best driven by motion signals
extracted in the low spatial (<1cpd) and high temporal
(>10Hz) frequency range. Moreover, latency of ocular
following depends on the temporal frequency of the lo-
cal change in luminance and not the speed of the visual
motion (Miles et al., 1986; Gellman et al., 1990).
Contrast is another important factor for driving ocular
following responses, as it is related to the signal-to-
noise ratio of the mechanism that computes a velocity
signal with appropriate strength and accuracy to drive
the sensorimotor transformation. Both latency and am-
plitude of the earliest phase of ocular following were
found to be nonlinearly dependent upon the contrast
of moving sine waves (Fig. 1-b,c). When considering
the amplitude of the initial eye acceleration, the con-
trast response functions mimics those observed for mo-
tion selective neurons: a rapidly expanding phase at low
contrast followed by a saturation of response amplitude
with high contrast (Masson and Castet, 2002; Sheliga
et al., 2005; Barthélemy et al., 2007). This relation-
ship is best fitted by a Naka-Rushton function, similar
to that used for describing contrast response functions
of neurons at various stages along the motion path-
way (Sclar et al., 1990; Albrecht et al., 2002). A simi-
lar relationship was found between response amplitude
and signal-to-noise ratio when varying the percentage
of correlated motion in a dynamic sequence of random-
dot patterns (Masson, BarthÃ©lemy and Vanzetta, un-

published). Latency of ocular following also undergoes
a considerable change when contrast varies from low
(<5%) to mid-range values. Barthélemy et al. (2007)
showed in humans that the relationships between re-
sponse latency and contrast can be best described by an
inverted Naka-Rushton function1. Lastly, higher order
motion cues can influence the direction of tracking ini-
tiation, albeit with a slightly longer latency, reflecting
the temporal dynamics of motion integration in the pri-
mate visual motion pathway (Masson and Castet, 2002;
Masson, 2004).
These short-latency ocular following responses are
driven by a global motion signal built by pooling local
motion over a very large part of the visual field (Mas-
son, 2004; Barthélemy et al., 2006). Masson and col-
leagues have investigated the properties of such spa-
tial integration of motion in both humans (Barthélemy
et al., 2006) and monkeys (Barthélemy and Masson,
2006). They found that motion is linearly integrated
over the central 20 deg of the visual field. Within
this central, driving part of the visual field, different
motion signals are linearly integrated by computing a
vector average of the local motion directions (Masson
and Castet, 2002; Barthélemy et al., 2006). However,
at high spatial frequency, stretching the stimulus size
above the optimal summation area results in a satura-
tion followed by a decrease of initial eye velocity. Re-
ductions in eye velocity with large stimuli were much
stronger in monkeys than in humans. Moreover, hyper-
saturation was seen mostly for long temporal integra-
tion window, reflecting the fact that surround suppres-
sion is delayed relative to the center-driven response on-
set.
Such an hyper-saturation is generally interpreted as the
signature of an inhibitory surround, driven by motion
in the same direction as the center. Such surround sup-
pression was originally described by Miles and col-
leagues in monkeys (Miles et al., 1986). Using very
large random-dots patterns, they found that drifting the
surround (typically larger than 40 degrees of visual an-
gle) in the same direction lowered the responses driven
by central motion, a phenomenon called ”in-phase sup-
pression”. On the contrary, antagonistic surround mo-
tion boosted the initial eye acceleration: ”anti-phase
enhancement”. Both suppression and enhancement
were evident only in the later part of the responses,
i.e. ∼30ms after response onset. Similar, albeit much
smaller effects were reported in humans (Gellman et al.,
1990). In monkeys, similar modulatory effects of sur-
round motion has been demonstrated at the level of both
areas MT (Born and Tootell, 1991) and MST (Eifuku
and Wurtz, 1999).

1This suggests a generic monotonous relationship between contrast —that is signal-to-noise ratio— and time of integration in this early phase
of information integration.
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In humans, Barthélemy et al. (2006) found further ev-
idence for such surround inhibition when comparing
contrast response functions obtained with or without
a dynamical surround at high contrast. They used a
flickering pattern as surround stimulus to disentangle
visual and motor interactions in center-surround condi-
tions. A flickering sine-wave is a static grating whose
contrast is time modulated and which can be interpreted
as the sum of two similar gratings, drifting in opposite
directions. Thus, no net motion signal was present in
the surround area, which therefore did not elicit ocu-
lar responses when presented alone. Nevertheless, sur-
round flicker lowered contrast gain for center-driven
responses, resulting in flatter and shifted amplitude-
contrast response functions (see Fig. 1-e). We have
obtained similar results in macaque ocular following
responses. Interestingly, this inhibitory effects of sur-
round motions was delayed relative to tracking onset
and built up over time in both humans and monkeys.
Overall, these inhibitory surround effects are very sim-
ilar to that observed at the single neuron level (Ca-
vanaugh et al., 2002) or at population level (Reynaud
et al., 2007) in primate area V1. Similar modulatory
surround have been reported in area MT (Heuer and
Britten, 2002) but no data are yet available for area
MST in macaques.
In monkeys, ocular following responses are initiated
shortly after the earliest response onset of neurons in
the medio-temporal (MT) and medial superior (MST)
areas of the dorsal pathway. Kawano (1999) and col-
leagues have tracked the temporal dynamics of neu-
ronal information flow from cortical to sub-cortical
structures, leading to eye movement onset. Further-
more, complete lesions of areas MT and MST in the
macaque dorsal pathway completely abolish ocular fol-
lowing as well as other short-latency tracking responses
such as disparity- and radial flow vergence (Takemura
et al., 2007). Firing rates of neurons in both areas
MT and MST encode for stimulus direction and speed
when presented with the stimuli driving ocular follow-
ing (Kawano et al., 1994). Discharge patterns of MST
neurons reflect the different components of the visual
signal such as image acceleration and velocity. On the
other hand, properties of ocular responses (i.e. eye ve-
locity profiles) are best correlated with neuronal dis-
charges in the ventral paraflocullus (VPFL) lobe of the
cerebellum (Takemura and Kawano, 2002). These sim-
ulations suggest that MST neurons represent global dy-
namic properties of the visual stimulus and therefore
that the entire populations of MST neurons encodes vi-
sual information for ocular following responses. MST
neurons are often seen as template neurons that encode
global flow informations by pooling local motion infor-
mation from MT neurons (Duffy and Wurtz, 1991). A

critical step is therefore to understand how local mo-
tion are extracted and pooled at the population level
to encode a single vector related to object direction
and speed. Similar population decoding scheme have
been recently proposed to account of initial eye accel-
eration for voluntary smooth pursuit eye movements in
macaque (Priebe and Lisberger, 2004).
In summary, ocular following responses are an excel-
lent opportunity to probe the dynamics of motion inte-
gration at behavioral level. The amplitude of the ear-
liest phase of ocular following is proportional to initial
eye acceleration which has been shown to be directly
related to image velocity (see (Lisberger et al., 1987)).
Moreover, a change in eye speed or direction would re-
flect a change in the output of the visual motion path-
way as evidenced by the parallel dynamics observed for
solving the aperture problem at the neuronal (Pack and
Born, 2001; Smith et al., 2005) and behavioral (Masson
et al., 2000; Masson and Castet, 2002) levels. From the
properties of the behavioral responses, we can then in-
fer the basic properties of motion processing and how
a single velocity signal is extracted from a cascade of
neuronal populations from areas V1, MT and MST.
Moreover, since the dynamics of the earliest part of
eye movements reflects the firing rate of output neurons
of the cortical visual processing (Osborne et al., 2004),
we might then illustrate the neuronal dynamics at a fine
grain and probe the output of large scale neuronal net-
works implementing a neuronal solution for motion in-
tegration and segmentation.

Figure 2: Architecture of the model. The model con-
sists in pooling elementary cues from local informa-
tion (represented for instance in neuronal assemblies)
to provide a “global” decision which drives the oculo-
motor system and closes the oculo-motor loop by mov-
ing the eye’s position. Every local detector (or node)
integrates motion information from the image on its
receptive field so as to provide a local representation
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of the possible translation velocity probabilities in the
receptive field (schematized by the circular probabil-
ity distribution functions in velocity space (vx, vy)).
This distributed information may then pooled across
the different nodes (and hence across space) but also
integrated in time and potentially by other modalities
(e. g. proprioception). A decision (or reference signal)
is formed using a statistical inference criterion, usually
either the Maximum A Posteriori (MAP) probability or
the conditional expectancy, and this decision is trans-
formed accordingly by the oculomotor system to pro-
duce an eye movement.

3 An “ideal observer” model for
OFR

We will use here the tools of statistical inference
to model the behavioral results obtained in both hu-
man and non-human primates (Barthélemy and Mas-
son, 2006; Barthélemy et al., 2006, 2007; Masson and
Castet, 2002). Our goal is to model how information is
pooled over a large population of broadly tuned neurons
to extract a signal related to the retinal velocity of the
moving object. As in (Barthélemy et al., 2007), we will
study the reference signal given by the model (usually
the velocity that is considered as the most probable) and
compare it to the behavioral data by assuming that the
gain of the oculo-motor system (the observed change
in eye position) is proportional to this velocity. This
assumption is reasonable since we restrict ourselves to
ultra-short latencies and that our measurements remain
in the open-loop part of the dynamics (inferior than
100 ms in human), that is that due to the latencies in
the visual system, there was no feed-back of the eye’s
motion on the system.
As described in (Barthélemy et al., 2007), we model the
ideal response ~vm knowing the given information as the
conditional expectancy:

~vm = E(~v|I) =

∫
~vP (~v|I)dP (~v|I) (1)

where E(~v|I) is the mean velocity computed from the
probability of the different possible velocities ~v know-
ing the observed image I. A major difficulty is to com-
pute this probability P (~v|I) globally over the whole
field and a solution which seems to be implemented
in the visual system consists in pooling the informa-
tion that is extracted locally and which acts as a dis-
tributed probabilistic representation of the map of lo-
cal translation velocities. For the purpose of generality

we define these local measurements as different nodes
n ∈ P , where P is the total population of nodes. Typ-
ically in the visual system, the nodes have local recep-
tive fields where P (~v|I,n) may be more easily com-
puted (see Fig. 2). In fact, it is then possible to eval-
uate locally the probability distribution of the velocity
~v thanks to a stochastic model of the local translation
near n : In(~x, t) = In(~x − ~vdt, t − dt) + ν, where ~x
is the position in the receptive field and ν is a Gaussian
noise image of variance σ2

n. By definition, this noise is
inversely proportional to the Michelson’s Contrast and
we note the full contrast image : I1,n = C−1.In.
Adding a Gaussian prior of variance σ2

p,n favoring slow
speed (Weiss et al., 2002), it follows from Bayes’ theo-
rem:

P (~v|I,n) =
1

Z
.e
−
C2.DI1,n(~v)

2.σ2n .e
− ‖~v‖2

2.σ2p,n (2)

where DI1,n = C−2.DIn is the contrast-normalized
gradient constraint for the local image in the receptive
field:

DI1,n(~v) = ‖I1,n(~x, t)− I1,n(~x− ~v.dt, t− dt)‖2 (3)

This constraint function is exactly the same as the one
used in image processing when computing the hypoth-
esis of conservation of image luminance along different
translation velocities. It is equivalent also to the corre-
lation in the spectral space with the plane perpendicular
to ~v (Simoncelli and Heeger, 2001). However, one has
to preprocess images so that neighboring pixels’ lumi-
nance values are decorrelated and that such an hypoth-
esis still holds.
In the range of experiments that we describe here, the
whole image will be composed locally by single grat-
ings with parameters their velocity ~vn and spatial fre-
quency fn2 which may be written:

I1,n = sin(2πfn(~x− ~vn.t)) (4)

for which DI1,n is easy to compute analytically: it is
well approached (up to the Nyquist frequency) by a
quadratic function with a minimum constraint at ~v =
~vn. Every node can thus be characterized by a mean
~vn and a covariance matrix σ2

n such that the density
P (~v|I,n) is Gaussian:

N (~vn, σn) =
1

Z
. exp(−1

2
(~v − ~vn)Tσ−2n (~v − ~vn)) (5)

with Z =
√
det(2πσn). Qualitatively, information is

larger for lower variances3. It is useful to determine the
2To extend this paradigm to natural images, one should consider that this composition is composed locally by multiple gratings as is illustrated

in the wavelet representation.
3This characterizes the aperture problem as σ2,n >> σ1,n: the variance is higher along the orientation of the line than perpendicular to it.
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principal axis of this distribution so that we have σ2
n

given by(
cos(θn) − sin(θn)
sin(θn) cos(θn)

)(
σ2
1,n 0
0 σ2

2,n

)
(6)

where θn is the orientation of the grating (or the line)
relative to the vertical (that is relative to a rightward
horizontally perceived motion) and σ1,n < σ2,n are the
two eigenvalues of the distribution. In particular, the
solution to the gain in Eq. 1 for a full-field grating of
speed ~vg as a function of the contrast, that is the Con-
trast Response Function (CRF) is thanks to Eq. 2 neces-
sarily a Naka-Rushton curve (Naka and Rushton, 1966)
of slope 2:

~vm(C) =
C2

C2
50 + C2

~vg (7)

with ~vm being the reference speed, perpendicular to the
grating and C50 ∝ σp

σ1,n
is the contrast at half saturation

(see Fig. 3, Left). This curve gives a general account
for the sigmoidal form of the saturation in a wide range
of experiments and proved to efficiently account for the
OFR at different contrasts compared to the computation
with a full field image using Eq. 2 (Barthélemy et al.,
2007) (see also (Hurlimann et al., 2002) for a similar
analysis). It is described by the contrast of half satura-
tion only, however with this quadratic hypothesis it is
not possible to fit CRFs which look more or less “bi-
nary” (see Fig. 3, Right).
We have recently shown that such a Bayesian model
can accurately account for a large set of contrast re-
sponse functions such as obtained with different mo-
tion stimuli such as grating, barber-poles (i.e. a grating
drifting behind an elongated, tilted aperture) and plaids
(i.e. the sum of two gratings moving in different di-
rections). We elaborated a two-pathways version of the
inferential model to account for the independent extrac-
tion of 1D (i.e. gratings) and 2D (i.e. local features)
motion that drive early and late component of ocular
following (Masson and Castet, 2002). More important,
we found that different contrast gain can be simulated
using a shared motion extraction stage across different
stimuli. Best fits are shown in Fig. 4-a-e. This result
shows that the dynamic of ocular following responses
reflects how motion information is pooled across dif-
ferent channels extracting grating and feature motions
and reflect the signal-to-noise ratio within each channel.
Each channel has different temporal integration proper-
ties, also fitted to the observed data (Barthélemy et al.,
2007). However, the model cannot explain the differ-
ence in latency observed between early (i.e. 1D-driven)
and late (i.e. 2D-driven) component of ocular follow-
ing (Masson et al., 2000; Masson and Castet, 2002).

This pure delay is another argument for assuming in-
dependent nodes in extracting motion signals which are
progressively taken in account in the global behavioral
signal.
Knowing contrast response functions for a single grat-
ing motion (Figure 4a), we next asked the question of
how to combine these local, non-linear responses so as
to give a global motion integration. Such a pooling of
information across space is a key aspect of motion inte-
gration for reducing noise or normalizing driving inputs
with context information. We have investigated how
ocular following depends upon this spatio-temporal in-
tegration in two series of experiments. First, we asked
what is the optimal stimulus size for driving ocular fol-
lowing responses, using grating stimuli of different spa-
tial frequencies. Second, we probed how the contrast
response function of OFRs driven by a central mov-
ing patch would be affected by surrounding motion sig-
nals. These experiments have been conducted both in
humans (Barthélemy et al., 2006) and monkeys and we
will first give a general analytical formulation before
applying it to the spatial integration of motion.

4 Integration of independent in-
formation for the OFR

A first analytical solution is given thanks to the hypoth-
esis of independence of the measure of velocity on these
different nodes (Weiss et al., 2002) which permits to
write:

logP (~v|I) =
∑
n∈P

logP (~v|I,n) (8)

This ensures that from Eq. 2, as a product of Gaussian,
the resulting distribution is also a Gaussian: P (~v|I) =
ΠnP (~v|I,n) = N(~vm,σ)(~v). In that case, the Maxi-
mum A Posteriori will again correspond to the mean
(see Eq. 1). Solving the polynomial equation of 2 × 2
matrices in Eq. 8, it follows that the resulting distribu-
tion N(~vm,σ)(~v) obeys:{

σ−2 =
∑
σ−2n

σ−2.~vm =
∑
σ−2n .~vn

(9)

with σ−2n given by(
cos(−θn) − sin(−θn)
sin(−θn) cos(−θn)

)(
σ−21,n 0

0 σ−22,n

)
(10)

This simple relation gives a general formula for the
pooling of information from different nodes with gaus-
sian PDFs and is a generic tool that we will apply to
the different experimental setups. In fact, knowing
that a stimulus is constituted by different gratings, it
is straightforward using this equation to compute the
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Figure 3: Naka-Rushton curves. (Left) A typical response to OFR as a function of contrast is shown as a Naka-
Rushton curve according to Eq. 7. These curves are totally described by their saturation at half contrast and show a
typical sigmoidal shape: the gain is zero at zero contrast, it smoothly increases to reach a linear regime at half satu-
ration contrast and then saturates to one. A property of these curves is that the tangent of the curve at half contrast
meets the origin. (Right) Using Naka-Rushton curves with powers of n instead of 2 (here with C50 = 1), one could
produce a richer set of curves which have different slopes at half-contrast, from a “sloppy” response (n = 1) to a more
“binary” response (n = 4).

distribution of the pooled information. However, this
won’t apply if the stimulus is constituted by transparent
overlapping gratings where the probability distribution
is multi-modal.
This equation also applies to dynamical integration. In
fact, if one assumes independence in time of the mea-
surement noises (the nodes are now centered in space
and at different instants in time), the pooling of this in-
formation is factorial. In particular, if the probability
distribution function is a steady gaussian, Eq. 9 states
that the inverse variance will increase proportionally to
the integration time (that is from the onset of the inte-
gration), so that one may evaluate the dynamical evo-
lution of integration. This was confirmed in a previous
study (Barthélemy et al., 2007) and there is thus under
this hypothesis a direct equivalence between the inte-
gration time and the contrast of the image (see Fig. 1-e).
It should be stressed that this is a pure feed-forward
model of integration since all information is pooled and
no change occur along loops (for instance one does not
change the content of the information with intermedi-
ate computations as in a recurrent model). It is there-
fore easy to imagine neuronal implementations, for in-
stance by using divisive normalization (Simoncelli and
Heeger, 2001). However, there may be many imple-
mentations for the same function and in particular it is
likely that the distributed probabilistic representation is
not explicitly coded in the activity of neuronal assem-
blies. Nevertheless, our general model has more pre-

dictive power from our knowledge of the representation
and it’s link to statistical inference and Bayesian theory
in general. In general, from the commutativity of Eq. 9,
there are many different implementations of the same
distribution of nodes. In particular, the prior in all nodes
can be pooled separately for clarity, as was done for the
full-field stimulus. Even if it is highly likely that sta-
tistical inferences are computed thanks to more compli-
cated recurrent networks with local, lateral or feed-back
connections, this model allows to understand a large
class of non-linear systems as the simple interaction of
linear local detectors and to test this simple hypothe-
sis. We will now show that it applies to a large range
of experiments involving spatio-temporal integration of
motion information in primate OFR.

5 Spatial summation for OFR: ef-
fects of stimulus size

If we only consider a grating of speed ~vg on a central
disk aperture, it follows from Eq. 9 that the reference
signal will be:

~vm =

∑
n∈Pc

1
σ2
x∑

n∈Pc
1
σ2
x

+
∑

n∈P
1

σ2
p,x

.~vg (11)

where Pc is the population of active central nodes (that
is the intersection of P with the disk). It appears
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Figure 4: Contrast response function of OFR. Amplitude of (a,b,c) horizontal and (d,e) vertical ocular following
responses plotted against contrast of 1D (i.e. gratings) or 2D (i.e. features such as line-endings or blobs) motion cues.
Different contrast gain are observed for each stimulus (i.e. grating, barber-pole and plaid motion) but all relation-
ships can be simulated using a single probabilistic model such as is developed herein. The only modification is the
introduction of a second, parallel pathway that extracts 2D feature motions. Re-plotted from (Barthélemy et al., 2007)
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first that the prior may be simply pooled as σp =
(
∑
~x∈P

1
σ2
p,~x

)−1/2. Then, to model the integration over

Pc, we may consider that the density (or weight) of
nodes pooling responses for the OFR is a centered
Gaussian PDF of visual space with a width of ω. We
may thus write that:∑

n∈Pc

1

σ2
x

∝ C2.

∫
0≤r≤d

exp(− r2

2.ω2
)2πrdr

where d is the diameter and C the contrast. From∫ r=d

r=0

exp(− r2

2.ω2
)2πrdr = 2πω2(1− exp(− d2

2.ω2
))

it follows that from Eq. 11,

~vm(C, d) =
1

1 +
C2
e

C2.g2(d)

.~vg

with g2(d) = 1− exp(− d2

2.ω2
) (12)

where Ce is a constant corresponding to the half sat-
uration contrast to the full-field grating. For a fixed
diameter, the CRF will be again necessarily a Naka-
Rushton curve (Naka and Rushton, 1966) of slope 2
with C50 ∝ g−1(d).Ce. This formula is to be com-
pared with the Naka-Rushton gain, and shows that even
if it similar qualitatively, the gain g2 will give a better
account of the integration on the disk.
Even if this family of curves shows a relatively good
behavior for a large range of OFR responses (see low
contrasts in Fig. 5, Left) in particular for humans, they
don’t correspond to some observations, for instance for
high grating frequencies (see Fig. 5, Right). In fact,
these responses show a suppression after a specific con-
trast (Sceniak et al., 1999), the so-called super satura-
tion, which could not be accounted for this integration
model. In fact, it appears clearly that the CRF will have
the same variations as g2(d) and thus that it will be
here necessarily monotonously increasing, i. e. the big-
ger the integration field’s diameter, the higher the OFR
gain4.
One solution is generally to add another integration
term which accounts for this “surround suppression”.
As in the Ratio Of Gaussian (ROG) model of Ca-
vanaugh et al. (2002), we may assume that the surround
suppression is initiated by the pooling of information
on Pc toward the null velocity5 on a similar Gaussian
distribution but with a larger size ωi. It thus comes

~vm =
~vg

1+

1+C
2

C2
i

.g2
i
(d)

C2

C2
e

.g2(d)

=
C2

C2
e
.g2(d).~vg

1+C2

C2
i

.g2
i
(d)+C2

C2
e
.g2(d)

with g2i (d) = 1− exp(− d2

2.ω2
i

) (13)

whereCi and ωi are similar constants as in Eq. 12. This
relation gives a parsimonious explanation of the ROG
model by explicitly relating the division of the signal
by an increase of pooled measurement variance. This
equation provides a good fit of the behavioral data by
tuning the parameters accordingly to a super-saturation
(see Fig. 5, Right). However, this model is still rather
descriptive and further experiments have to be done to
explicit the nature of this suppressive signal.

6 Center-surround integration in
the bipartite stimulus

To challenge the possible origin of the surround sup-
pression, we used the bipartite stimuli (see Fig. 6, Top)
for the OFR. It is constituted by a central grating as be-
fore but now surrounded by a perturbation of zero net
velocity, the flicker stimulus. This stimulus is defined as
the sum of a grating of speed ~vf plus the same grating
in the opposite direction :

If1 = sin(2πf(x− ~vf t)) + sin(2πf(x+ ~vt))

= 2. sin(2πfx). sin(2πf~vt) (14)

One can see that the corresponding likelihood is a gaus-
sian function centered on the null velocity stretched in
the direction perpendicular to ~vf (see Fig. 6, Left). This
signal with null velocity is similar to the one proposed
in the previous section for the origin of the suppres-
sion. It thus comes that the integrative probability is a
gaussian N (~vm, σm) given by Eq. 9. It is possible to
solve this equation and its analytical form takes a sim-
pler form assuming that the variances perpendicular to
the gratings are negligible. It comes for the vertical ve-
locity:

~vm(C) =
1

1 +
C2
g

C2 (σ−2p + cos(θ)σ−2f )
.~vg (15)

where θ is the angle of the flicker with respect to the
central grating, σf the likelihood’s standard deviation
of the flicker, C the contrast of the central grating and
σg its likelihood’s standard deviation. One verifies that
if the flicker is absent, σ−2f = 0 and the CRF is a
standard slope-2 Naka-Rushton curve as in Eq. 7. A
striking aspect of this relation is that if the contrast of
the flicker increases (i. e. σ−1f ), then the CRF will still

4This is congruous with the ideal observer model since for a given noise, more information should give a higher estimation of the translation
speed.

5From Eq. 9, this formulation is quite general to explicit that there is a higher variance at higher eccentricities.
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Figure 5: Effects of size of a disk grating on the monkey’s OFR response. We present here the gain of the oculo-
motor response to a central grating (temporal frequency 10 Hz, see inset in Fig. 1-a) as a function of its diameter for
the macaque monkey (open circles) and the model (continuous line). Fits were performed as a function of the diameter
d thanks to Eq. 13. (Left) At low frequencies (0.12 cpd) and contrasts, the gain increases monotonically with the
diameter. The curves are well fitted by Eq. 12. (Right) However in more general conditions (here 0.7 cpd), the initial
gain decreases after a given diameter suggesting a suppressive effect. This corresponds to a surround inhibition which
is well captured by Eq. 13, the inhibition being more pronounced when contrast is higher and contrary to intuition, the
diameter ω extracted from the fits remains constant across curves.
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Figure 6: Center-surround integration in the bipartite stimulus. (Left) To further evaluate the effect of the sur-
round, the bipartite stimuli is defined by a central grating of diameter dc, surrounded by an annulus of diameter ds
filled with a flicker stimulus of orientation θ. The flicker corresponds in a first approximation to a null velocity stimu-
lus but from the aperture problem, it presents an elongated probability profile along this orientation. The grating varied
in contrast, the probability getting broader as noise increased. (Right) Results show that suppression was dependent
on the contrast of the grating and weak for a low flicker contrast. However, the suppression was stronger for a full
contrast flicker and shows a dependance of the suppression as a function of the orientation of the surround as predicted
by Eq. 15.
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be a slope-2 Naka-Rushton but that the only change is
the contrast at half-saturation (as in Fig. 3-Left): the
curve will shift to a higher C50 value. This corresponds
to the behavioral data (see the early and late responses
in Fig. 1-e) and was observed for various angles θ (see
Fig. 6, Right).

7 Discussion: beyond the behav-
ioral receptive field

We proposed here a simple formulation for the integra-
tion of elementary information (see Eq. 9) that we ap-
plied successfully to oculomotor data for OFR in the
primate (see Fig. 5 and Fig. 6). It is based on the nor-
mality of the distribution at the different nodes but more
importantly on the hypothesis of independence for the
measurement noise of the different nodes. This model
thus gives a simple model for the function of spatiotem-
poral integration in the visual system as an ideal ob-
server and gives in particular an account for both sub-
tractive or divisive mechanisms by relating them re-
spectively to a change across nodes in ~vn or in variance
σ2
n. This model is similar to different accounts on the

contrast gain control that appears to be a main feature
of low-level visual areas. First, it is similar to divisive
normalization (Schwartz and Simoncelli, 2001), since it
uses a similar method for computing probabilities, ex-
cept that our formulation is more general in terms of the
qualitative interpretation of the spatiotemporal integra-
tion. Also, this model could be implemented in a simple
manner using a spiking neural network (Perrinet, 2004,
2005) similarly to the feed-forward Linear/Non-Linear
model (Carandini et al., 2005). However, in our case the
non-linearity will be explicitly defined by the nodes’
probabilities and not be set arbitrarily. Finally, this
model gives an account for the results of Cavanaugh
et al. (2002) and are compatible with the Ratio Of Gaus-
sian (ROG) model by stating that the “read-out” from
the OFR could be seen as the interaction of two inte-
gration fields with different sizes and polarities. In par-
ticular, the introduction of the surround field is more
a descriptive account of the data and its characteristics
may change with the stimulus’ properties. However, we
gave a possible explanation in probabilistic terms which
may be induced by an increase of noise with eccentric-
ity.
Nonetheless, the results in the first experiment showing
a super-saturation behavior (e. g. at high frequencies)
are intriguing (see Fig. 5): for a given noise level, after
a certain diameter, integrating on a larger field leads to
a decrease of the response gain. This is in contradic-
tion with the ideal observer under a general hypothe-

sis, which should always give a higher gain when more
information is present in the image. To overcome the
hypothesis of the existence of a “suppressive field” as
above, which would be more descriptive than explana-
tory, we propose that the main hypothesis of the ideal
observer still holds, but that for these particular stimuli,
the information is coded in a different way. First, we
will explore in future work the influence of line endings
which may have a significant relative importance, but
also the possibility that nodes may propagate informa-
tion laterally. As a matter of fact, most natural motions
are rigid and knowing the speed with accuracy at a cer-
tain time, one could predict the accuracy at a latter time
at the predicted change of location. This would break
down the hypothesis of independence that led to Eq. 9
—where all nodes may be spatially permuted with a
random shuffle— and could account for the fact that for
gratings with big diameters the mistuning of responses
in space, due to the different selectivity of neurons as
a function of eccentricity, would lead to a decrease of
total gain.

Reproducible research

Scripts reproducing all figures may be obtained from
the author upon request and on the author’s web-site at
https://laurentperrinet.github.io/.
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