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Abstract

In this paper we analyze the estimation of the angle and the range of a narrow-band source located in the

near-field of an arbitrary centro-symmetric linear array (CSLA). This analysis deals with the Cramer Rao

bound (CRB) on both angle and range, obtained thanks to an exact expression of the source-to-sensor delay

and a realistic (range-dependent) model of source-to-sensor attenuation, ultimately achieving two objectives.

On the first hand, closed-form approximate expressions of the CRB are developed and compared to those

obtained assuming (unrealistically) that sensors perceive the same power despite being at different distances

from the source. While the impact on angle estimation is negligible, range CRB significantly decreases if

one incorporates the more appropriate range-dependent power model (except for sources at broadsides).

An important consequence is that localization algorithms taking this range-dependent modelization of the

apparent source power into account in their signal modeling should have much better range performance.

On the second hand, the obtained CRBs are used to design nonuniform CSLA taking into account the

ambiguities, with improved angle and range estimation, comparatively to uniform linear arrays (ULA).

Finally, we show that our optimized CSLA for a single source also brings some benefits for two closely-

spaced sources.

Keywords: Cramer Rao bounds, linear antenna arrays, power profile, direction-of-arrival and range

estimation, near-field source localization, array optimization.

1. Introduction

CRBs are usually used to benchmark parameter estimation algorithms. Furthermore, if interpretable

expressions are obtained, they can be used to optimize the system design, for instance, to minimize the

variance of the estimated parameters (see e.g., [1, 2]). In the particular context of source localization, much

effort has been made to the far-field case for decades (see e.g., [3, 4, 5] and references therein) where the5

distance of the source to the array is large compared with the array aperture, and hence the propagating

waves are considered to be plane waves at the sensor array and only the source direction of arrival (DOA)

can be estimated.
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It is possible to estimate the range (distance from the source to the array) if this distance is not too

large compared to the array aperture. This near-field situation occurs in many practical applications such10

as sonar [6], speaker localization [7], electronic surveillance [8], object detection [9], collision avoidance radar

[10], robot navigation [11], sismic exploration [12], biomedical imaging [13],[14], seismic exploration [15], etc.

In this near-field case, wavefronts are spherical and received power varies from sensor to sensor. However,

to reduce the complexity of the localization algorithms, an approximate propagation model relevant to the

so-called Fresnel zone has been used. This latter makes use of the second-order Taylor expansion of the15

time delay parameter, with constant amplitude gain however. Numerous methods have used these approx-

imations, such as a polynomial rooting approach [16], an high-order ESPRIT algorithm [17], a weighted

linear prediction method [18], an ESPRIT/MUSIC procedure exploiting subarrays [19], a two-stage MUSIC

algorithm [20], a least-square procedure [21], a prediction and oblique projection operator method [22] and

many other approaches. Furthermore, these approximations facilitate the CRB derivations (see e.g., [23]).20

Only lately the exact time delay and range-dependent modelization of the apparent source power (called

also power profile) have been used [24], but only to derive a complicated non-interpretable approximate

expression of the near-field CRB for the ULA case. We consider here arbitrary CSLA made of pairs of

sensors symmetrically located along the two sides of the linear antenna array. Such class of nonuniform

linear arrays are chosen for their attractive features proved in [25] for constant amplitude gains. This25

includes lower DOA and range CRBs and faster convergence to the lower far-field DOA CRB. Furthermore,

thanks to the decoupling between the DOA and range parameters to the second-order w.r.t. the inverse

of the range in the Fisher information matrix, the derivation of closed-form approximate expressions of

the CRB is greatly simplified. Note that we use a definition of the near-field that is familiar in the signal

processing literature, designating the region where range estimation makes sense (to be distinguished from30

the reactive and radiative region, as understood in electromagnetism [26, ch.2].

In this paper, we first develop interpretable and accurate closed-form approximate expressions of the CRB

for both source angle and range. They are compared to those unaware of dependence of received power on

source range. These expressions are proved to depend only on three geometric parameters only: the second,

fourth and sixth-order moments of the positions of the sensors forming the arbitrary but centro-symmetric35

linear array (CSLA). The obtained expressions tend to prove that the CRB on the angle is generally barely

impacted by the power profile. In contrast, the CRB on the range is strongly reduced, except at broadside

directions, i.e. almost everywhere. Second, thanks to these closed-form expressions we design nonuniform

CSLA with improved range estimation (by as much as 60%) with identical CRB on the angle with respect

to ULAs. This design also incorporates geometric constraints to account for the array ambiguity problem.40

Specifically, these constraints lead to a constrained max-min problem. We use its equivalent to a global

polynomial maximization under, both polynomial equalities and inequalities which can be efficiently solved

using the Matlab GloptiPoly utility [36]. Finally, we show that our optimized CSLA for a single source also

2



brings some benefits for both DOA and range estimation in the context of two closely-spaced sources.

The paper is organized as follows. Section 2 introduces the data model. After giving the general45

expression of the deterministic and stochastic CRB concentrated on the localization parameters, we develop

an interpretable closed-form approximate expressions of the CRB on both angle and range in Section 3.

Section 4 is dedicated to analytical comparisons of these CRBs to the CRBs not taking the power profile

into account. These closed-form expressions are used in Section 5 to design nonuniform CSLA with improved

range estimation and immunity against array ambiguities. Finally, a conclusion is given in Section 6.50

2. Data Model

We consider a linear (possibly nonuniform) antenna array made of P sensors C1, · · · , CP depicted in

Fig.1, located along a straight line at coordinates x1, · · · , xP , respectively. Without loss of generality, we

assume the array centroid to be at the origin O of this axis. This choice allows for more compact expressions

of the CRB compared to [23, 24].55
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�
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x
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xp -

R

Fig.1 Source in the near-field impinging on an arbitrary linear array.

A source is located at point S, at a range r from the plane origin O, and forming an angle θ w.r.t. the

axis perpendicular to the array. This single source is emitting a narrow band signal of wavelength λ with

no multipath so that the complex baseband snapshot collected by the sensor p at time index t reads

yp(t) = gpe
iτps(t) + np(t), (1)

where s(t) and np(t) represent, respectively, the source signal collected at the origin and the ambient additive

noise collected by sensor p. The exact expression of the phase τp is defined as τp = 2π(SO−SCp)/λ. Using

the law of cosine, it is rewritten as

τp = 2π
r

λ

(
1−

√
βp

)
(2)

with

βp
def
= 1− 2

xp
r

sin θ +
x2p
r2
. (3)

Note that, because we fix the phase and amplitude references at the centroid of the array, our definition of

the tuple (θ, r) is different from the one in [24], which fixes the phase reference at the first sensor. Regarding

the gain gp at sensor p, we assume a spherical wavefront and a specific range-dependent power profile, where
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the signal magnitude is inversely proportional to the distance from the source [26, Chap.2]:

gp =
SO

SCp
=

1√
βp
. (4)

Thus the sensed power is variable from sensor to sensor. Again, because we use the origin as reference,

our definition of gp is different from the one used [24], for which the gain is not defined with respect to a

reference: gp = 1
SCp

= 1

r
√
βp

.

We collect N snapshots {yp(t)}p=1,..,P ;t=t1,...,tN , to estimate both angle θ and range r. Estimation

accuracy is evaluated in terms of the CRB, developed under the following commonly used assumptions60

about signal and noise [27]:

(i) np(t) and s(t) are independent,

(ii) {np(t)}p=1,..,P ;t=t1,..,tN are independent, zero-mean circular Gaussian distributed with variance σ2
n,

(iii) {s(t)}t=t1,..,tN are assumed to be either deterministic unknown parameters (the so-called conditional or

deterministic model) with σ2
s = 1

N

∑N
n=1 |s(tn)|2, or independent zero-mean circular Gaussian distributed65

with variance σ2
s (the so-called unconditional or stochastic model).

3. Expressions of the CRB

3.1. Theoretical general background on CRB for near-field sources

We focus on a single near-field source whose location is characterized by the parameter of interest

α = [θ, r]T . (5)

When the sensed power is constant across all sensors, stochastic and deterministic matrix-valued CRBs

(concentrated on the parameter of interest) are equal, up to a multiplicative term depending only on the

SNR σ2
s/σ

2
n of the source and the number P of sensors [25]. This contrasts with the case where the power

profile is taken into account for which the multiplicative term depends on α:

CRBsto(α) =

(
1 +

σ2
n

‖a(α)‖2σ2
s

)
CRBdet(α), (6)

where a(α) is the steering vector of components gpe
iτp , p = 1, .., P . Obviously, the expression of the stochas-

tic CRB can no longer be decoupled in power and geometric terms. Instead, these CRBs are given by the

following expressions:

CRBsto(α) = cstoσ (α)F−1(α) and CRBdet(α) = cdetσ (α)F−1(α), (7)

where both CRBs appear to be inversely proportional to the matrix

F(α)=Re
[
‖a(α)‖2DH(α)D(α)−DH(α)a(α)aH(α)D(α)

]
, (8)
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through the constants

cstoσ (α)
def
=

σ2
n(σ2

n + ‖a(α)‖2σ2
s)

2Nσ4
s

and cdetσ (α)
def
=
‖a(α)‖2σ2

n

2Nσ2
s

where D(α) is defined as
[
∂a(α)
∂θ , ∂a(α)

∂r

]
. We note that whenever Pσ2

s � σ2
n, we have

cstoσ (α) ≈ cdetσ (α). (9)

The above condition means that the source is more powerful than ambient noise, which is more relevant

to near-field sources. We maintain this assumption and realize that the stochastic CRB reduces to the70

deterministic CRB, on which we focus our attention from now on. In this case, the elements of the 2 × 2

matrix F(α) given in (8) reads

[F]i,j =

(
P∑
p=1

g2p

)(
P∑
p=1

g′p,ig
′
p,j + τ ′p,iτ

′
p,jg

2
p

)

−

(
P∑
p=1

g′p,igp

)(
P∑
p=1

g′p,jgp

)
−

(
P∑
p=1

τ ′p,ig
2
p

)(
P∑
p=1

τ ′p,jg
2
p

)
, i = 1, 2, (10)

where g′p,1
def
=

∂gp
∂θ , g′p,2

def
=

∂gp
∂r , τ ′p,1

def
=

∂τp
∂θ and τ ′p,2

def
=

∂τp
∂r .

3.2. Taylor expansion of the matrix F(α)

To highlight the impact of the power profile on the localization performance, we use, similarly to [25], a

Taylor expansion of the matrix F(α). To this end, we consider arbitrary CSLA, where for each sensor placed

at coordinate xp, there exists a symmetric sensor placed at coordinate −xp. As a consequence, sums of the

form
∑P
p=1 x

2k+1
p , k = 0, 1, ... are zero, while constants S2k

def
=
∑P
p=1 x

2k
p , characterizing the array geometry,

will appear in the following Taylor expansion of the matrix F(α). After tedious algebraic manipulations

(main steps are shown in Appendix 7.1), we obtain:

λ2π
r2 cos2 θ

[F(α)]1,1 = P
S2

r2
+
Pλ2πS2 + 2PS4(6 sin2θ − 1)− S2

2(1 + 5 sin2θ)

r4
+ ø(r−4), (11)

2λ2π
r sin θ cos θ

[F(α)]1,2 =
−2Pλ2πS2 + (5PS4 − 3S2

2) cos2 θ

r4
+ o(r−4), (12)

λ2π[F(α)]2,2 =
4Pλ2πS2 sin2 θ + (PS4−S2

2) cos4 θ

4r4

+
λ2π[PS4(1− 15 sin2 θ + 24 sin4 θ)− S2

2(1− 7 sin2 θ + 12 sin4 θ)]

r6

+
PS6(−5 + 57 sin2 θ − 99 sin4 θ + 47 sin6 θ)

8r6

+
S2S4(5− 49 sin2 θ + 83 sin4 θ − 39 sin6 θ)

8r6
+ ø(r−6), (13)

where limε→0 o(ε)/ε = 0 with x1, ...xP and λ fixed and λπ
def
= λ

2π . These expressions are to be compared75

to the expressions [25, rels. (7-9)] which can be retrieved from (10) by setting g′p,i = 0, i = 1, 2 to account

5



for constant gain. Compared to [25, rels. (7-9)], (11), (12) and (13) are much more intricate because they

include the power profile. Note that for more general profiles (i.e., gp =
(
SO
SCp

)α
with α 6= 1), the derivation

of (11), (12) and (13) from (10) would give even more complicated expressions difficult to exploit.

3.3. Taylor expansion of CRB(θ) and CRB(r) and key geometric parameters80

In the process of deriving the new CRB expressions, we identify the following three key geometric

parameters (S2, κ, η) where

κ
def
=

PS4

S2
2

and η
def
=

P 2S6

S3
2

(14)

play an important role in the array processing performance as well the antenna design. Using results (11)-

(13) and (7) in which we replace

‖a(α)‖2 = P

(
1− S2

Pr2
(1− 4 sin2 θ) + o(r−2)

)
, (15)

we prove in the Appendix 7.2, the following second-order expansions:

CRB(θ) =
cλ2π

PS2 cos2 θ

[
1 +

( 2κS2

P − λ2π) + sin2 θ
P g(sin2 θ, S2, λ

2
π, κ)

r2
+ o(r−2)

]
, (16)

CRB(r)

r4
=

4cλ2π

S2
2

(
4P

λ2
π

S2
sin2 θ + (κ− 1) cos4 θ

) [1 +
h(sin2 θ, S2, λ

2
π, κ, η)

r2
+ o(r−2)

]
, (17)

where

c
def
=

P

2N

σ2
n

σ2
s

(18)

and

g(sin2 θ, S2, λ
2
π, κ) = 4P 2λ4π + S2

2κ(13κ− 9) cos4 θ + 4PS2λ
2
π[(6− 7κ) sin2 θ − (5κ− 3)] (19)

and where h(sin2 θ, S2, λ
2
π, κ, η) is an intricate function given in the Appendix 7.2. We note that its expression

is not useful to give a good numerical approximation of CRB(r) as it will be shown in Fig.3, where the

approximate value deduced from (17) and (23) is very close to the approximate value deduced from only85

the ratio of the dominant terms of (17) and (23) given by (27).

4. Analysis of the CRB

4.1. Far-field vs near-field performance

We recall the deterministic far-field DOA CRB for arbitrary linear arrays [28, rel. (7)]

CRBFF(θ) =
1

N

λ2

8π2S2 cos2 θ

σ2
n

σ2
s

, (20)

allowing one to rewrite (16) as follows

CRB(θ) = CRBFF(θ)

[
1 +

( 2κS2

P − λ2π) + sin2 θ
P g(sin2 θ, S2, λ

2
π, κ)

r2
+ o(r−2)

]
, (21)

which is consistent with (20) for r tending to infinity where the effect of the power profile disappears.90
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4.2. Constant gain vs range and angle-dependent gain

On the one side we have the near-field angle (16) and range (17) CRBs. On the other side we have the

near-field angle CRBCG(θ) and range CRBCG(r) assuming constant gain (not taking in account the power

profile, i.e., gp = 1). The former are given by [25, rels. (15-16)]:

CRBCG(θ) =
cλ2π

PS2 cos2 θ

[
1 +

κS2

Pr2

{
1 +

(
1 +

4κ

κ− 1

)
sin2 θ

}
+ o(r−2)

]
, (22)

CRBCG(r)

r4
=

4cλ2π
S2
2(κ− 1) cos4 θ

[
1 + k(sin2 θ, κ, η)

S2

Pr2
+ o(r−2)

]
, (23)

where

k(sin2 θ, κ, η)
def
=

(2 + 18κ2 + 3κ− 23η) sin2 θ + 3(η − κ)

κ− 1
. (24)

Obviously, the dominant terms
cλ2
π

PS2 cos2 θ of (16) and (22) are equal, implying that the near-field DOA

CRB is barely affected by the power profile for ranges that are not too small. To go further, we look into

the second-order term (in 1/r2) in (16) and (22). For example for θ = 0, we get:

CRB(θ)|θ=0

CRBCG(θ)|θ=0
= 1 +

1

r2

(
κS2

P
− λ2π

)
+ o(r−2), (25)

where κS2

P − λ
2
π is in practice positive. Indeed κ ≥ 1 [25] implies that κS2

P − λ
2
π ≥ 1

P

∑P
p=1 x

2
p − λ2

4π2 and the95

condition 1
P

∑P
p=1 x

2
p >

λ2

4π2 is in practice satisfied given the non-ambiguity and aperture constraints.

For example, for a ULA with half-wavelength spacing and P = 2Q,

1

P

P∑
p=1

x2p =
λ2(4Q2 − 1)

48
>

λ2

4π2
from Q = 1. (26)

Consequently CRB(θ) is slightly larger than CRBCG(θ) for broadside directions (i.e., θ ≈ 0).

A similar comparison of the near-field range CRB is expressed by the following ratio of the dominant

terms of (17) and (23) for arbitrary angle θ

CRB(r)

CRBCG(r)
=

(
1 +

4Pλ2π
S2

sin2 θ

(κ− 1) cos4 θ

)−1
(1 + o(r−1)). (27)

From the above, the dominant term of CRB(r) is always smaller than the dominant term of CRBCG(r),

except for θ = 0, for which they are equal. In particular for array end-fire directions (i.e., |θ| ≈ π/2), CRB(r)

is much lower than CRBCG(r). Consequently, taking into account this power profile allows one to achieve100

better range estimation without deteriorating angle estimation. This is explained by a larger sensitivity of

the gain to the range with respect to the angle, for the end-fire directions. Furthermore, for these directions

the time delay profile is less sensitive than the power profile for the range.

These results are confirmed in Figs.2 and 3 which show respectively the ratios CRB(θ)/CRBCG(θ)

and CRB(r)/CRBCG(r), as a function of the angle θ ∈ [0, π/2). There, we assume a ULA of 6 sensors105

with half-wavelength inter-sensors spacing for a source at range r = 10λ. We see, in particular, that
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CRB(θ)/CRBCG(θ) ∈ [0.83, 1.03], whereas CRB(r)/CRBCG(r) strongly decreases in [0, π/2), taking values

1, 0.3 and 0.005 for θ = 0, 60◦ and 80◦, respectively. These figures also show a good agreement between the

approximate expressions of the CRBs deduced from (16), (17) and (22), (23) and the exact ones (deduced

from the exact expression of the matrix F (7), (8) and (10). Furthermore, we see in Fig.3 that the dominant110

terms of (17) and (23) given in the ratio (27) show also a good approximation of CRB(r)/CRBCG(r).
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1

1.05

C
R

B
(θ
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C

R
B

C
G

(θ
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Approximate from (16)(22)

Fig.2 Exact and approximate CRB(θ)/CRBCG(θ) as a function of θ.
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Fig.3 Exact and approximate CRB(r)/CRBCG(r) as a function of θ.

On the other hand, Fig.4 shows the relative CRBs on the range CRB(r)/r2 and CRBCG(r)/r2, assuming

the same ULA used above with which we collect N = 1000 snapshots and σ2
s/σ

2
n = 20dB. We see clearly in

this figure that taking into consideration the power profile allows to enlarge the domain of possible range

estimation but not for broadside directions.115

As a result, the localization algorithms will benefit from incorporating the power profile into the parame-

terization of the steering vector. This can be achieved in two ways which are outside the scope of this paper.

In the first one, the localization algorithms would use the exact parameterization (2)-(4) of the steering

vector. In the second one, they can use the traditional constant gain quadratic wavefront approximation

model to take advantage of the low computational algorithms, but with some correction methods taking the120

exact parameterization model [29].

9



100 101

r/λ

10-6

10-4

10-2

100

102

104

C
R

B
(r

)/
r2

 gain=1/r, θ=0°
 gain=Cst., θ=0°
 gain=1/r, θ=60°
 gain=Cst., θ=60°
 gain=1/r, θ=80°
 gain=Cst., θ=80°

Fig.4 CRB(r)/r2 and CRBCG(r)/r2 with N = 1000 and σ2
s/σ

2
n = 20dB.

5. Near-field array optimization

When the source is in the array far-field, DOA estimation performance, as expressed in (20), depends

fully on the geometric parameter S2. But when the source is in the array near-field, additional parameters

appear in (16) and (17), including the geometric parameters κ (for DOA estimation) and both κ and η (for125

range estimation). By focusing on the dominant terms in (16) and (17), we realize that arrays with the same

S2 have the same DOA estimation performance but their range estimation performance becomes better if κ

increases. This will motivate the development of an original methodology to optimize the array geometry,

one that improves its range estimation capability in the near-field and, at the same time, maintains the same

DOA estimation performance, an approach followed in [30] for planar arrays with constant sensed power130

across its sensors.

This methodology proceeds as follows: The number P of sensors is fixed. The reference antenna is the

ULA with half-wavelength spacing, for which we calculate values of S2 and κ (renamed as κULA). We are

interested in identifying non-uniform centro-symmetric linear arrays associated with the same value of S2,

10



but with larger values of κ, i.e. κ > κULA. Such arrays satisfy:135

CRB(θ) ≈ CRB(θ)|ULA (28)

RP (κ)
def
= lim

r→∞

CRB(r)

CRB(r)|ULA
=

4P
λ2
π

S2
sin2 θ + (κULA − 1) cos4 θ

4P
λ2
π

S2
sin2 θ + (κ− 1) cos4 θ

< 1. (29)

We note that 4Pλ2π/S2 � 1 for P > 4. Thus for values of |θ| not in the vicinity of π/2, we have the following

approximation

RP (κ) ≈ κULA − 1

κ− 1
< 1, (30)

indicating better performance of arrays with κ > κULA.

As shown in [25], it is common that the parameter κ lies in [1, P/2]. However, it is clear that values

close to P/2 are to be discarded because, they correspond to a configuration where two sensors are placed

at ±
√
S2/2, and the remaining sensors being (almost) co-located at the centroid O. This is an illustration

of the difficult array ambiguity problem that we tackle shortly under the following constraints: P , S2 and140

κ ∈ [1, P/2) are pre-fixed based on desired near-field and far-field (DOA and range) performance. To

determine positions {xp}p=1,...,P of the constituent sensors of the arbitrary CSLA, we are left with the

following degrees of freedom: P/2− 2 if P is even, and (P − 1)/2− 2 if P is odd.

Ambiguities occur when two steering vectors happen to be (very) close, despite referring to well separated

look directions [31]. One way to minimize ambiguities is to minimize the so-called relative peak sidelobe

level (PSL) ratio [32] derived from the conventional array beampattern [33], which is also essentially the

spatial correlation coefficient (SCC), proposed in [34]. If

[aFF(θ)]p
def
= lim

r→∞
[a(α)]p = e

i2πxp sin θ

λ , (31)

then

rPSL
def
= max

ω outside the mainlobe region
|aHFF(ω)aFF(θ)|2/P 2. (32)

The main difficulty is that minx1,...xP rPSL, achieved under the constraints
∑P
p=1 x

2
p = S2,

∑P
p=1 x

4
p = S4

(with S4 = κS2
2/P ) and symmetric xp, is a non-convex minimization problem1. In [30] we proposed an ad

hoc criterion that ought to avoid concentrations of sensors in the neighborhood of the origin for large values

of κ. Similarly to [30], our design technique will implement

max
x1,...xP

(
min

1≤p 6=p′≤P
|xp − xp′ |

)
s.t.

P∑
p=1

x2p = S2,

P∑
p=1

x4p = κS2
2/P and xp symmetric. (33)

First, we note that this max-min constrained optimization (33) can be transformed into a global polynomial

minimization under, both polynomial equalities and inequalities, by introducing a new decision variable zas145

1including for P = 6 and 7, for which there is a single degree of freedom, but with several local minima.
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follows:

min−z s.t. z ≤ 2x1, z ≤ xp+1−xp, p=1, .., P/2,

P/2∑
p=1

x2p =
S2

2
and

P/2∑
p=1

x4p =
κS2

2

2P
for P even (34)

min−z s.t. z ≤ x1, z ≤ xp+1−xp, p=1, .., bP/2c,
bP/2c∑
p=1

x2p =
S2

2
and

bP/2c∑
p=1

x4p =
κS2

2

2P
for Podd.(35)

As such, (34) and (35) are non-convex polynomial minimizations with polynomial equalities and inequali-

ties constraints. Following [35], these constrained minimizations can be transformed into an (often finite)

sequence of convex linear matrix inequality optimization problems. These problems are solved by means

of the matlab GloptiPoly utility [36] that builds and solves these convex linear matrix inequalities. By150

judiciously choosing the relaxation orders, we have solved our optimization problem with small relaxation

order for P = 6, 7, 8 and 9 sensors. As an example, Table 1 reports, for different values of κ and the

associated RP (κ), the optimal sensors positions that are normalized by S2 = 1, given by the criteria (33)

and the relative PSL, rPSL, for P = 8 and θ = 0◦. We note that our analysis is valid for a larger number

P of sensors, as for the polynomial approximation problem thanks to the Matlab GloptiPoly utility [36]2)155

As seen in Table 1, our objective of reducing the near-field range CRB is achieved (by up to 67%), while

ensuring arrays without ambiguity, but a tradeoff should be sought between performance improvement and

the robustness to ambiguity.

κ RP (κ) sensors positions rPSL

1.762 1 (ULA) ±0.0772,±0.2315,±0.3858,±0.5401 0.0525

2.000 0.762 ±0.0699,±0.2098,±0.3497,±0.5734 0.0114

2.222 0.624 ±0.0641,±0.1922,±0.3203,±0.5969 0.0091

2.500 0.508 ±0.0572,±0.1715,±0.2858,±0.6210 0.0420

2.857 0.410 ±0.0484,±0.1452,±0.2421,±0.6465 0.1398

3,333 0.327 ±0.0358,±0.1074,±0.1790,±0.6747 0.3828

Table 1 Values of κ, RP (κ), sensors positions, rPSL.

As suggested in our analysis, for the optimized array and a source located in its near-field, reduction160

of the range CRB is not obtained at the expense of the DOA CRB. A confirmation can be seen in Fig.5

that exhibits the ratios CRB(θ)/CRB(θ)|ULA and CRB(r)/CRB(r)|ULA for a CSLA of P = 8 sensors placed

at ±0.0484,±0.1452,±0.2421,±0.6465 with S2 = 1 associated with κ = 2.857 for θ = 10◦. We see in this

figure that the CRB on the range is significantly improved without damaging the CRB on the DOA. We

also observe that the values of CRB(θ)/CRB(θ)|ULA and CRB(r)/CRB(r)|ULA as functions of r/λ are little165

modified for different values of θ ∈ [−10◦,+10◦].

2The current version of Matlab GloptiPoly is able to handle our problem up to P = 39.
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Fig.5 Exact and approximate CRB(θ)/CRB(θ)|ULA and CRB(r)/CRB(r)|ULA as a function of r/λ.

Performance in terms of errors in DOA and range have been summarized by the notion of near-field

localization region (NFLR) introduced in [24]. This region is based on a target estimation performance

relative to the application at hand. It has been defined as the region for which the standard deviation√
E(‖ÔS−OS‖2) (where OS=r and ÔS is the estimated range) is upper-bounded by a tolerated localization

error Stdmax. Expressed independently of any localization algorithm, this minimum standard deviation is

function of the DOA and range CRBs through the
√
r2CRB(r) + CRB(θ) and the NFLR is defined as the

region corresponding to: √
r2CRB(r) + CRB(θ) ≤ Stdmax. (36)

This concept of NFLR can also be used to tune the system parameters to achieve a target localization quality

in the context of CSLA. In particular, this region (where the array is located in the x-axis) is shown for the

aforementioned optimized CLSA in Fig.6 for σ2
s/σ

2
n = 100 and N = 100. We see from this figure that this

region is larger than its counterpart region associated with the ULA. We also see, that this region is much170

larger in the lateral direction than those of the ULA with constant gain.
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Fig.6 Comparison of NFLR of optimized CSLA with variable gain and constant gain ULA.

We note that the derivation of approximate closed-form expressions of the CRBs for multiple near-field

sources under the assumptions of Section 2 seems not to be possible. However, numerical values of the

deterministic CRB on the DOA and range can be derived from the following compact deterministic CRB

expression for Q parameters per source and K sources straightforwardly derived from [38, th.4.1]:

CRBdet(α) =
σ2
n

2N

[
Re
(
DH(α)Π⊥(α)D(α)� [1Q,Q ⊗Rs]

T
)]−1

, (37)

where D(α)
def
= [D1, ...,DQ] with (Dq)q=1,..Q

def
=
[
∂a1

∂αq,1
, .., ∂aK

∂αq,K

]
and α

def
= [α1,1, ...α1,K , ..., αQ,1, .., αQ,K ]T ,

Π⊥(α) is the so-called noise projection matrix IP −A(α)[AH(α)A(α)]−1AH(α), and Rs is the covariance

matrix of the sources. 1Q,Q is the Q × Q matrix of ones, � and ⊗ are the Hadamard and Kronecker175

products, respectively. Applying (37) to the case of two equipowered uncorrelated sources of DOA θ1 and

θ2 and range r1 and r2, α = (θ1, θ2, r1, r2)T and Rs = σ2
sI2, CRBdet(α) is also proportional to c = P

2N
σ2
n

σ2
s

.

We have noticed by many experiments, that CSLA optimized for a single source also brings some benefits

for two-closely spaced sources. For example it is illustrated in Fig.7 for the optimized CLSA of 8 sensors

of Fig.5 which exhibits the ratios CRB(θi)/CRB(θi)|ULA and CRB(ri)/CRB(ri)|ULA, i = 1, 2 for r1 = r2,180

θ1 = 10◦ and θ2 = 20◦ with respect to r/λ. We see in this figure that the optimized CLSA significantly

improves both DOA and range performance for all ranges.
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Fig.7 Exact CRB(θ)/CRB(θ)|ULA and CRB(r)/CRB(r)|ULA for two equipowered uncorrelated sources as a function of r/λ.

Otherwise we note that this improvement of performance depends on the DOA separation ∆θ = θ2 −

θ1 as it is illustrated in Fig.8 for r1 = r2 = 9λ and θ1 = 0◦ which shows CRB(θi)/CRB(θi)|ULA and

CRB(ri)/CRB(ri)|ULA, i = 1, 2 as a function of ∆θ. From this figure we see that the gain in performance185

for the estimation of the DOAs is growing monotonically when the DOA separation decreases. It practically

disappears for very well separated sources (θ2 > 80◦), similarly as in the single source case illustrated in

Fig.5. In contrast, the behavior of the gain in performance for the estimation of the ranges is more involved.

It keeps on being more important for very closely spaced sources. For very well separated sources (θ2 > 80◦)

the gain in performance for the estimation of r1 is significant, similarly as in the single source case illustrated190

in Fig.5 and at the opposite there is practically no gain in the estimation of r2 because the CSLA is optimized

for the estimation of the range of a single source at broadside.
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Fig.8 Exact CRB(θ)/CRB(θ)|ULA and CRB(r)/CRB(r)|ULA for two equipowered uncorrelated sources as a function of ∆θ with θ1 = 0.

Finally, note that in the far-field case, the problem of optimization arises in a different way: As the CRB

on the DOA only depends on the second-order moments S2 of the positions of the sensors, the optimization

consists mainly in maximizing S2 under a constraint of non ambiguity by controlling the sidelobe level.195

This has been achieved by example by a selection procedure for linear and planar arrays in [37] and [32],

respectively.

6. Conclusion

In this paper, we considered a narrow-band source located in the near-field of a linear array whose sensors

are disposed symmetrically around its centroid that also serves as a reference for phase and amplitude of the200

received signal. For this scenario, we proposed simple and interpretable closed-form approximate expressions

of the CRB on both angle and range, obtained using the exact expression of the time delay and a realistic

model of power attenuation. We analyzed and compared these expressions to those not taking the power

profile into account. In particular we proved that the CRB on the angle is little impacted by the profile

of power in contrast to the CRB on the range, which is strongly reduced for not broadside directions.205

Consequently, the near-field localization algorithms will estimate range more accurately if the power profile
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is used in parameterization of the steering vector. Finally, these closed-form expressions are used to design

nonuniform CSLAs with significantly lowered range’s CRB (by as much 60%), without deteriorating the

angle’s CRB, and so while taking into account ambiguity concerns of such array. Furthermore, we show by

numerical experiments, that optimized CSLA for a single source also brings some benefits for two closely-210

spaced sources. Future research should study the improvement of performance of localization algorithms

taking into account the power profile in the parameterization of the steering vectors.

7. Appendix

7.1. Taylor expansion of the matrix F(α): Proof of (11), (12) and (13)

Injecting from (4) with (3) g′p,1
def
= ∂gp/∂θ = εp cos θ/β

3/2
p with εp

def
= xp/r into (10), we get

λ2π
r2 cos2 θ

[F(α)]1,1 =

(
P∑
p=1

1

βp

)(
λ2π

P∑
p=1

ε2p
β3
p

+

P∑
p=1

ε2p
β2
p

)
− λ2π

(
P∑
p=1

εp
β2
p

)2

−

(
P∑
p=1

εp

β
3/2
p

)2

. (38)

Then using second-order expansion of 1/βp, 1/β
3/2
p , 1/β2

p and 1/β3
p w.r.t. ε2p, (11) is derived after cumbersome215

computations.

Similarly injecting from (4) and (2) with (3)

g′p,2
def
= ∂gp/∂r =

1

r

(
−εp sin θ + ε2p

) 1

β
3/2
p

,

τ ′p,1
def
= ∂τp/∂θ =

(
2πr

λ

)(
εp cos θ

β
1/2
p

)

τ ′p,2
def
= ∂τp/∂r =

2π

λ

(
1 +
−1 + εp sin θ

β
1/2
p

)

into (10), the expressions (12) and (13) are derived with the same approach.

7.2. Taylor expansion of the CRB: Proof of (16) and (17)

First, note that the matrix F(α) can be written in the following form:

F(α) =

 b1,10 +
b1,12

r2 + o(r−2)
b1,23

r3 + o(r−3)

b1,23

r3 + o(r−3)
b2,24

r4 +
b2,26

r6 + o(r−2)
r4

 , (39)

where

b1,10 =
cos2 θ

λ2π
PS2,
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220

b1,12

r2
=

(
cos2 θ

λ2π

)
S2[Pλ2π + 2κS2(6 sin2 θ − 1)− S2(1 + 5 sin2 θ)]

r2
,

b1,23

r3
=

(
sin θ cos θ

2λ2π

)
S2[−2Pλ2π + (5κS2 − 3S2) cos2 θ]

r3
,

b2,24

r4
=

1

λ′2
S2[4Pλ2π sin2 θ + (κS2 − S2) cos4 θ]

4r4
,

b2,26

r6
=

1

λ2π

(
λ2πS

2
2 [κ(1− 15 sin2 θ + 24 sin4 θ)− (1− 7 sin2 θ + 12 sin4 θ)]

r6

+
S3
2 [η(−5 + 7 sin2 θ − 99 sin4 θ + 47 sin6 θ) + κ(5− 49 sin2 θ + 83 sin4 θ − 39 sin6 θ)]

8Pr6

)
.

Applying (7), where F(α) is given by (39) allows one to obtain, after straightforward algebraic manipu-

lations the expression of F−1(α):

CRB(θ) = cσ(α)[F−1(α)]1,1 =
cσ(α)

b1,10

[
1− 1

r2

(
b1,12

b1,10

− (b1,23 )2

b1,10 b2,24

)
+ o(r−2)

]
(40)

CRB(r) = cσ(α)[F−1(α)]2,2 =
r4cσ(α)

b2,24

[
1− 1

r2

(
b2,26

b2,24

− (b1,23 )2

b1,10 b2,24

)
+ o(r−2)

]
. (41)

Replacing the different terms bi,jk by their values in (40) and (41) and cσ(α) by c(1− S2

Pr2 (1−4 sin2 θ)+o(r−2)

thanks to (18) and (15), the expressions of (16) and (17) are proved after tedious manipulations, where

− S2

Pr2
(1− 4 sin2 θ)−

(
b1,12

r2b1,10

− (b1,23 )2

r2b1,10 b2,24

)
=

(
2κS2

P
− λ2π

)
+ g(sin2 θ, S2, λ

2
π, κ),

with

g(sin2 θ, S2, λ
2
π, κ) = 4P 2λ′4 + S2

2κ(13κ− 9) cos4 θ + 4PS2λ
2
π[(6− 7κ) sin2 θ − (5κ− 3)]

and

− S2

Pr2
(1− 4 sin2 θ)−

(
b2,26

r2b2,24

− (b1,33 )2

r2b1,10 b2,24

)
= h(sin2 θ, S2, λ

2
π, κ, η).
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