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Abstract

During normal viewing, the continuous stream of
visual input is regularly interrupted, for instance
by blinks of the eye. Despite these frequents blanks
(that is the transient absence of a raw sensory
source), the visual system is most often able to
maintain a continuous representation of motion. For
instance, it maintains the movement of the eye such
as to stabilize the image of an object. This ability
suggests the existence of a generic neural mechanism
of motion extrapolation to deal with fragmented in-
puts. In this paper, we have modeled how the visual
system may extrapolate the trajectory of an object
during a blank using motion-based prediction. This
implies that using a prior on the coherency of mo-
tion, the system may integrate previous motion
information even in the absence of a stimulus. In
order to compare with experimental results, we sim-
ulated tracking velocity responses. We found that
the response of the motion integration process to a
blanked trajectory pauses at the onset of the blank,
but that it quickly recovers the information on the
trajectory after reappearance. This is compatible
with behavioral and neural observations on motion
extrapolation. To understand these mechanisms,
we have recorded the response of the model to a
noisy stimulus. Crucially, we found that motion-
based prediction acted at the global level as a gain
control mechanism and that we could switch from a
smooth regime to a binary tracking behavior where
the dot is tracked or lost. Our results imply that a
local prior implementing motion-based prediction
is sufficient to explain a large range of neural and
behavioral results at a more global level. We show
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that the tracking behavior deteriorates for sensory
noise levels higher than a certain value, where mo-
tion coherency and predictability fail to hold longer.
In particular, we found that motion-based predic-
tion leads to the emergence of a tracking behavior
only when enough information from the trajectory
has been accumulated. Then, during tracking, tra-
jectory estimation is robust to blanks even in the
presence of relatively high levels of noise. Moreover,
we found that tracking is necessary for motion ex-
trapolation, this calls for further experimental work
exploring the role of noise in motion extrapolation.

Keywords

motion detection; motion extrapolation; probabilis-
tic representation; predictive coding; contrast re-
sponse function; gain control

1 Introduction

1.1 Problem statement

The continuous flow of information originating from
the visual world is constantly fragmented by dif-
ferent sources of noise, occlusions or blanks. For
instance, the path of a moving object can often
be transiently blocked from the observer’s line of
sight. However, one is still able to judge the current
position of a moving object during such periods of
occlusion as well as estimate its future trajectory
at its reappearance. This ability to transform such
fragmented sensory inputs into a correct continu-
ous representation has been a major pressure in
the evolution of visual systems because it leads to
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appropriate reactions matched to the physical evi-
dences: It is vital to accurately follow the trajectory
of a fleeing prey and stabilize its image onto the
retina in order to catch it or, on the contrary, to
escape from an approaching predator, despite the
fact that it can transiently disappear from the line
of sight [19]. The problem of motion occlusion is a
particular case of a more general problem in neu-
roscience: motion extrapolation. In the absence of
sensory input, the visual system can extrapolate the
instantaneous position of a moving object from its
past trajectory.

An essential clue to solve that problem is the
prior knowledge that objects follow smooth, coher-
ent trajectories. Following the first law of newtonian
mechanics, the trajectory of an object is only per-
turbed by external forces. Since we know a priori
that these forces are more likely to be small com-
pared to the inertia of an object of relevance, the
trajectory of objects in the physical world tend to
follow smooth, straight trajectories. As such, the
projection of these trajectories on the retinotopic
space is such that the statistics of natural images
also exhibit similar regularities regarding their vi-
sual trajectories. Such prior knowledge may be the
basis of learning processes based on the prediction of
the path of the trajectory. During transient blank-
ing, it is most likely that such processes (along with
the knowledge that the sensory input was indeed
blanked and not definitively removed) are at the root
of the mechanisms underlying motion extrapolation.
Their behavioral consequences are well known. For
instance, when a moving target disappears, smooth
pursuit eye movements continue at the same velocity
during the initial period of occlusion [9] and such
a feat is only possible when observers have some
knowledge on the path of motion [20] . Therefore,
there must be some underlying neural computations
but it is yet not clear how this can be done efficiently
and where it is implemented in the visual system.

This perceptual phenomenon provides invaluable
tools with which we may study the mechanisms
of motion detection and draw inferences about the
properties of underlying neural populations. First, it
is involved in different sensory modalities as sensory
fragmentation exists in vision but also for instance
in haptic tasks (hence in the somatosensory system).
Second, it is a powerful mean to distinguish between
the different computational steps of the visual mo-
tion system. Object motion information is extracted

along a cascade of feedforward cortical areas, where
area V1 extracts local motion information that is
integrated in extra-striate middle temporal (MT)
and medial superior temporal (MST) areas.

The middle temporal (MT) and medial superior
temporal (MST) areas in the superior temporal sul-
cus (STS) process visual motion and oculomotor
signals driving pursuit (see [27] for a review) and
are therefore key elements in motion extrapolation.
Early physiological studies in macaque monkey iden-
tified area MT as a specialized module for visual
motion processing [2, 15]. This involves extract-
ing the speed and direction of the moving object.
MT neurons respond selectively to visual motion
and tuned for local speed and direction of lumi-
nance features moving in their receptive fields [37].
Pack and Born [46] have shown that the temporal
dynamics of motion integration can be seen from
time-varying firing rates. They showed that neu-
ronal responses quickly progress from local to global
motion direction in about 100 ms suggesting that
such mechanisms are dynamical and progressive.
These results pinpoint the key role of MT neurons
in local motion analysis as well as global motion
integration. However, these neurons respond only
when the retinal image motion is present while MST
neurons maintain their firing activity when there is
no retinal image motion as during a transient image
occlusion [42] or during tracking imaginary target
covering the visual field outside of the receptive field
currently recorded [26]. Similar sustained activity
during target occlusion has been found in monkey
posterior parietal cortex, and it is linked to an image
motion prior to target disappearance [4]. In another
study [56] have stimulated the retina of tiger sala-
mander with a periodically flashing stimulus and
have found various firing patterns when a flash is
omitted. This sustained activity is known as “omit-
ted stimulus response” (OSR) and is explained by
a model based on tunable oscillators which extrapo-
late the response to the periodic stimulation even
at times matched to the missing stimulus. OSR has
also been reported in the flicker electroretinogram
(ERG) of the human cone system [38].

What is the link between behavioral and neu-
ronal signatures of motion extrapolation? Visual
motion information is primarily used for gaze sta-
bilization [27, 28, 35] and sensorimotor transforma-
tion underlying smooth pursuit eye movements [30].
The fact that sustained activity in area MST was
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seen during transient occlusion of a moving target
supports the notion that the two phenomena are
closely related [42]. On the other hand, since motion
extrapolation is also seen in lower level neuronal
structures, such as the retina, this calls for a more
generic computational framework. Since motion
extrapolation is implemented at the scale of a single
cortical area, this would suggest that such a mecha-
nism would be implemented by a finely structured
set of diffusive mechanisms. A potential candidate
is naturally the dense network of lateral interactions
as found in sub-cortical and cortical structures in-
volved in sensory processing as well as sensorimotor
control. However, direct evidence for such neural
mechanisms is still lacking. Before proposing a so-
lution using motion-based prediction, we will first
review some existing experimental and theoretical
evidences.

1.2 Different types of motion extrap-
olation

A classical way of studying motion extrapolation is
by presenting a moving target that travels behind
an occluder for a short period of time. A seminal
study used timing estimation by asking participants
to make a button press response at the time they
judge the occluded target to have reached a partic-
ular point [54]. Since then, this phenomenon has
been studied at various levels (behavioral or neural),
across species and modalities. For instance, motion
extrapolation has been under study by focusing on
various specific questions in physiology or behavior.
In physiology, motion extrapolation was shown to
occur in retina [19] and [56] or in higher cortical
areas [4]. Behaviorally, motion extrapolation was
studied in the context of target catching [43], ap-
parent motion [23] and trajectory extrapolation for
occluded or disappeared stimuli [34], perceptual ex-
trapolation of blurred visual target [17], in audio
visual targets [65], role of motion extrapolation in
control of eye movements [33], blurred targets and
behavior humans [17]. Motion extrapolation can
be carried out for lateral motion, with the target
moving across the fronto-parallel plane, or for ap-
proach motion, when the object moves towards the
observer [14]. Herein, we investigate visual, lat-
eral motion extrapolation as a generic paradigm to
challenge prediction algorithms.

A tightly coupled phenomenon is motion inertia,
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Figure 1: The problem of fragmented trajectories
and motion extrapolation. As an object moves in
visual space (as represented here for commodity by
the red trajectory of a tennis ball in a space-time
diagram with an one-dimensional space on the ver-
tical axis), the sensory flux may be interrupted by a
sudden and transient blank (as denoted by the verti-
cal, gray area and the dashed trajectory). How can
the instantaneous position of the dot be estimated
at the time of reappearance? This mechanism is
the basis of motion extrapolation and is rooted on
the prior knowledge on the coherency of trajecto-
ries in natural images. We show below the typical
eye velocity profile that is observed during Smooth
Pursuit Eye Movements (SPEM) as a prototypical
sensory response. It consists of three phases: first, a
convergence of the eye velocity toward the physical
speed, second, a drop of velocity during the blank
and finally, a sudden catch-up of speed at reappear-
ance [7].
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which might be regarded as the perceptual equiv-
alent of motion extrapolation for object identifi-
cation. To put motion inertia in evidence, it has
been shown in experiments that when one object
moves and breaks into two trajectories, the tra-
jectory that tends to be perceived as pursuing its
motion is the one corresponding to the least pertur-
bation (acceleration or curvature). Equivalently, if
a moving object has been presented before, there
is a strong perceptual tendency to continue seeing
it in previous direction [50]. These findings also
imply that the interactions between pairs of dots
seen in sequence is affected by the history of their
interactions, suggesting that probably the neurons
responding to motion are directionally coupled in
a feed forward way which facilitates the perception
of unidirectional movement [3]. Assuming the exis-
tence of such a strategy, it needs to be clarified how
such rules may be related to the spread of neural
activity and how a neural system uses accumulated
information from the trajectory of moving object
in order to favor the detection of an unique, global
motion. This was studied by looking at how peo-
ple may extrapolate motion on a straight line [47].
One can interpret that in a Bayesian way: as a
prior, motion is temporally coherent, and motion
inertia is a built in strategy of the visual system
to respect this prior. As such motion inertia and
motion extrapolation certainly share some common
mechanisms, though here, we focus on the later.

1.3 Experimental evidence of motion
extrapolation

The neural systems controlling smooth pursuit eye
movements (SPEMs) are likely to be critically de-
pendent upon motion extrapolation, in close synergy
with saccades [66]). Several studies have shown that
blanking a small moving target results in a very
typical temporal profile of eye velocity (see Fig-
ure 1). Eckmiller and Mackeben [16] investigated
monkey smooth pursuit behavior when a moving tar-
get briefly disappeared and then reappeared. They
found that monkeys are able to continue pursuing
when the target disappears for up to 800 ms. Using
a similar paradigm, Becker and Fuchs [7] showed
that humans maintain smooth pursuit up to 4 s af-
ter the disappearance of the target. They found
that the eye velocity rapidly decreased about 200 ms
after target disappearance. This deceleration phase

lasted for about 280 ms and then the eye velocity
stabilized at approximately 40 to 60% of the normal
pursuit velocity. To develop an eye velocity related
to the velocity of the target that preceded the ex-
tinction, the subjects needed to see the motion for
at least 300 ms. Becker and Fuchs [7] referred to
this phenomenon as predictive pursuit. This mech-
anism can also be at play during other open-loop
responses such as anticipatory smooth tracking of
a highly predictable target motion [5]. There is
an ongoing debate of whether the origin of motion
extrapolation is within the oculomotor control sys-
tem [33] or rather occurs at the sensory level. Using
event related potentials, Makin, Poliakoff, and El-
Deredy [34] have suggested on electrophysiological
grounds that both systems may be contributing. To
tease apart the relative contribution of retinal (i.e.
image-driven) and extra-retinal (i.e. eye movements-
driven) in the phenomenon of motion extrapolation
is out of the scope of the present study and we will
restrict ourselves herein to the open-loop, image-
driven pursuit behavior.

Motion extrapolation seems to be a highly adapt-
able mechanism. We have already suggested that
such behavior may be related to the regularities
observed in natural scenes. One may then wonder
how this may be affected by experimental condi-
tions such as learning or reinforcement [32]. Becker
and Fuchs [7] had already examined the effect of
training on predictive pursuit and reported only
a modest change, indicating that such a response
could be under adaptive control. Using an operant
conditioning procedure, Madelain and Krauzlis [32]
found that human subjects instructed to track a
small spot, tend to follow it even during the absence
of sensory input. The speed decreased however to a
smaller plateau value and subject often performed
a catch-up saccade to track the object again. Cru-
cially, their performance increased across sessions
and subjects could pursue dots up to 4 seconds
after the onset of a blank after intensive learning.
One important aspect for prediction to occur is that
target trajectories must be regular and clear. In
another study, [10] investigated used the aperture
problem to probe the impact of visual motion infor-
mation at target reappearance. A moving tilted bar
produces a small direction bias at pursuit initiation
in the direction orthogonal to the bar’s orientation.
They found a significant, albeit much smaller bias
at target reappearance, as compared to pursuit ini-
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tiation. Moreover, they put in evidence a strong
difference in the amplitude of such a bias, depending
on whether the blanking onset occurred in either the
open- or closed-loop phase of pursuit. The tracking
direction bias introduced by the aperture problem
was significantly less in the late phase, suggesting
that the oculo-motor system would switch from a
preference for the sensory input (early phase) to
an internal (motor-based) signal in the late phase.
All these results raise the question of how we can
model the different facets of motion extrapolation
in a common framework.

1.4 Existing theories on motion ex-
trapolation

There are a variety of models proposing different
mechanisms underlying motion extrapolation. A
first class of models are built upon control-like mod-
els of the visuo-oculomotor system [53]. Such models
were refined to specifically address the problem of
motion extrapolation [13] by including additional
layers in a cascade model from Goldreich, Krauzlis,
and Lisberger [18]. These models may be subdivided
into those where the predicted signal is based of
some motor command [9] and those that specifically
use the adaptation of an internal model [32]. Still,
while these different behavioral models can fit some
data very nicely, they lack a global explanation of
the mechanisms underlying motion extrapolation.

Most of these models share a common mecha-
nism: during blanking, information is inferred from
past information using a smoothness constraint on
possible trajectories. This is well formulated by
smoothing the inferred velocity in control models
with an internal positive feedback [29, 52, 53]. An
engineering answer for such an adaptive system is
a Kalman filter. It involves projecting the current
estimate of the system based on the prior knowledge
and correcting the predictions based on the mea-
surement. A mix of measurement and prediction
are used to estimate the current state based on their
reliability reflected from their variances. Studies
investigating sensory-motor transformation already
suggest for a mix of measurement based signal and
an internal signal based on reliability extracted from
their respective uncertainties for an optimal perfor-
mance in a motor task [8]. Similarly, this may be
expressed in as a Kalman filter, that is in a generic
Bayesian framework with a clear hypothesis [64].

Following the idea of Kalman filter and extending
the work of Montagnini et al. [39], Bogadhi, Mon-
tagnini, and Masson [10] proposed a hierarchical
recurrent Bayesian framework to understand both
motion integration as observed in smooth pursuit
and also the predictive nature of pursuit. Proba-
bilistic inference has been successful in explaining
motion perception to a variety of stimuli [63]. They
are somewhat similar to some of the engineering
models proposed earlier [44] but allow for a more
explicit formulation of the underlying hypothesis.
Such a framework accommodates uncertainty in
the motion information in the measurement like-
lihoods [22, 60, 63] and also expectation can be
represented through the prior which can alter mo-
tion perception [58]. Representing uncertainty in
the measurements and prior expectation gives a
simple, yet powerful framework to investigate pre-
dictive behavior of the system under investigation
possibly to optimally adapt to changes in the mea-
surements. As shown by Wuerger et al. [65] in a
temporal localization task, the bias and variability
show similar patterns for motion defined by vision,
audition or both. Such optimal integration is con-
sistent with a probabilistic representation of motion.
The framework implements Bayesian estimation uti-
lizing motion measurements and motion prediction.
Measurements of observed input are interpreted
probabilistically by a likelihood function. To detect
straight trajectories with constant velocity, input
motion can be temporally grouped and expressed in
terms of a Bayesian generalization of a Kalman fil-
tering [64], as standard Kalman filter models are not
able to account for psychophysical data. A neural
network model of described probabilistic framework
shares interesting similarities with known proper-
ties of visual cortex and qualitatively accounts for
psychophysical experiments on motion occluders
and motion outliers. The approach from Bogadhi,
Montagnini, and Masson [10] allows for a mix of
prediction and measurement based on their relia-
bility, as measured from their respective variances.
The combined estimate is used to drive the pursuit
response. The hierarchical framework allows to in-
vestigate the adaptive behavior of pursuit as well
as the role of prediction on motion integration as
observed in pursuit responses. However, this model
may still be seen as an incremental refinement of
previous results and does not yield a generic account
on the motion extrapolation mechanism.
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As we have seen, most theoretical efforts to
study motion extrapolation is based on temporal co-
herency of motion. This assumption, as understood
in a Bayesian framework, may be represented by
defining a prior in the probabilistic representation of
motion. This will then be integrated in the dynam-
ical motion integration process: In a probabilistic
representation of motion, posterior estimation of
motion is the product of this prior and current sen-
sory evidence (likelihood). An important question is
therefore to know how to define this prior function.

1.5 Motion extrapolation and
motion-based prediction

Yuille and Grzywacz [67] have shown that the effi-
ciency of motion integration was highly dependent
on the smoothness of the trajectory of the stimulus.
Behavioral data showed that humans can detect a
target dot moving in a smooth trajectory embedded
in randomly moving dots, while the target dot is
not distinguishable from noise in each frame sep-
arately. This challenging detection task is called
outlier detection and might be explained by a net-
work of interconnected motion detectors [62]. In
such a network, every stimulated local motion de-
tector sends a facilitatory signal to adjacent units.
These are in turn stimulated and this sequence goes
on, ultimately implementing a direction selective
spatiotemporal integration. Signals from local mo-
tion detectors are made coherent in space and time
and lower the threshold for detecting stimuli mov-
ing in smooth versus segmented trajectories [21]. In
the outlier detection case, distractor dots do not
move coherently enough to accumulate information
while for the target dot, precision increases gradu-
ally and as a consequence, the accuracy of velocity
estimation is improved. During occlusion of target
motion, that is without likelihood measurements,
velocity estimation is degraded and probabilities
are diffused in space and time. However, the model
may still have enough momentum or motion inertia
to propagate estimations of target dot’s position.
This process will break down if the occluder gets
too long but the motion inertia effect of target mo-
tion on distractors is visible [62]. As a consequence,
an important aspect of this prior is a motion-based
prediction, that is, including both the position and
velocity from the trajectory of motion.

Such a prior on the temporal coherency of mo-

tion can be defined in a probabilistic framework.
This was formulated theoretically by [11] but their
neural network implementation lacked the precision
needed to work on realistic input sequences. In our
earlier work [49], we implemented efficiently such a
prior to investigate different aspects of spatiotem-
poral motion integration. Particularly, this model
focused on the aperture problem and proposed that
motion-based predictive coding is sufficient to infer
global motion from all local ambiguous signals. The
aperture problem is a challenging problem to study
integration of local motion information [12, 31, 46].
The model proposed that instead of specific mech-
anisms such as line-endings detectors, the gradual
spatio-temporal integration of motion. It accounts
for the properties of physiological and behavioral
responses to the aperture problem. First, the tempo-
ral dynamics of the solution to the aperture problem
and its dependence on several properties of input
such as contrast or bar length can be represented.
Second, end stop cells emerge from the dynamics
of the model instead of having ad hoc rules such as
line-ending detectors.

The hypothesis of independence of motion sig-
nals in neighboring parts of visual space results
in the failure of feedforward models in accounting
for temporal dynamic of global motion integration
. In those models, local measurement of global
motion is the same everywhere independent of po-
sition. In motion-based prediction, the retinotopic
position of motion is an essential piece of infor-
mation to be represented. By explicitly including
the interdependence of local motion signals between
neighboring times and positions knowing the current
speed along a smooth trajectory, incoherent features
are explained away, while coherent information is
progressively integrated. This context-dependent,
anisotropic diffusion in the probabilistic represen-
tation of motion also results in the formation of
a tracking behavior favoring temporally coherent
features. Herein, we will challenge such a model
to account for the different properties of motion
extrapolation.

1.6 Objectives and outline

This paper has been prepared in following order: In
Section 2 we develop the same probabilistic model-
ing framework as the one proposed for the solution
to the aperture problem [49]. Moreover, we include
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details on the structure and implementation of the
model but also details on the experimental and nu-
merical aspects of the model. Then, we report in
Section 3 results from experiments where we studied
motion extrapolation under three different condi-
tions for a horizontally moving dot: moving in a
blanked trajectory, moving in presence of high back-
ground noise and moving in a blanked trajectory
with high background noise. In the first condition,
extrapolation of motion information during a blank
has been studied compared to a control stimulus
without blank. To stress on the role of prediction
in motion extrapolation, we have done all experi-
ments under three configuration of the model which
correspond to motion estimations with and without
prediction in position or velocity of stimulus. In
the second condition, we have surveyed motion ex-
trapolation by looking at states of motion tracking
and its stability. In the last condition, we predict
that motion extrapolation is dependent on noise
and propose a behavioral experiment to test this
prediction.

Finally in the discussion (Section 4), we will inter-
pret these results in the light of current knowledge
on probabilistic inference and dynamical systems
and we will discuss the limitations of the current
study along with suggestions for future work.

2 Model & methods

2.1 Probabilistic detection of motion

First, we define a generic probabilistic framework
for studying motion integration. The translation of
an object in the planar visual space at a given time
is fully given by the probability distribution of its
position and velocity, that is, as a distribution of our
value of belief among a set of possible positions and
velocities. It is usual to define motion probability
at any given location. If one particular velocity
is certain, its probability becomes 1 while other
probabilities are 0. The more the measurement is
uncertain (for instance when increasing noise), the
more the distribution of probabilities will be spread
around this peak. This type of representation can be
successfully used to solve a large range of problems
related to visual motion detection. These problems
belong to the more general framework of the optimal
detection of a signal perturbed by different sources

of noise and ambiguity.
In such a framework, Bayesian models make ex-

plicit the optimal integration of sensory information
with prior information. These models may be de-
composed in three stages. First, one defines likeli-
hoods as a measure of belief knowing the sensory
data. This likelihood is based on the definition
of a generative model. Second, any prior distri-
bution, that is, any information on the data that
is known before observing it, may be combined to
the likelihood distribution to compute a posterior
probability using Bayes’ rule. The prior defines
generic knowledge on the generative model over a
set of inputs, such as regularities observed in the
statistics of natural images or behaviorally relevant
motions. Finally, a decision can be made by opti-
mizing a behavioral cost dependent on this posterior
probability. An often used choice is to choose the
belief that corresponds to the maximum a posteriori
probability.

2.2 Luminance-based detection of
motion

Such a Bayesian scheme can be applied to motion
detection using a generative model of the luminance
profile in the image [63]. This is first based on
the luminance conservation equation. Knowing the
velocity ~V = (u, v), we can assume that luminance
is approximately conserved along this direction, that
is, that after a small lapse dt:

It+dt(x+ u · dt, y + v · dt) = It(x, y) + νI (1)

where we define luminance at time t by It(x, y)
as a function of position x, y and νI is the obser-
vation noise. This noise is assumed to be Gaus-
sian with zero mean and variance σ2

I/dt, that is,
νI ∝ N (I; 0, σ2

I/dt). Note that for convenience we
scaled variance by dt such that the variance σ2

I

can be represented per unit of time, independently
of the time step dt. Using the Laplacian approx-
imation, one can derive the likelihood probability
distribution p(It(x, y)|~V ) as a Gaussian distribu-
tion. In such a representation, precision is finer
for a lower variance. Indeed, it is easy to show
that the logarithm of p(It(x, y)|~V ) is proportional
to the output of a correlation-based elementary
motion sensors or equivalently to a motion-energy
detector [1]. Interestingly, lower contrast motion
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results in wider distributions of likelihood and thus
posterior p(~V |It(x, y)). Therefore, contrast dynam-
ics for a wide variety of simple motion stimuli is
determined by the shape of the probability distribu-
tion (i.e. Gaussian-like distributions) and the ratio
between variances of likelihood and prior distribu-
tions as was validated experimentally on behavioral
data [6].

The generative model explicitly assumes a trans-
lational motion ~V over the observation aperture,
such as the receptive field of a motion-sensitive cell.
Usually, a distributed set ~Vt(x, y) of motion estima-
tions at time t over fixed positions x, y in the visual
field gives a fair approximation of a generic, complex
motion that can be represented in a retinotopic map
such as areas V1 and MT. This provides a field of
probabilistic motion measures p(It(x, y)|~Vt(x, y))).
To generate a global read-out from this local infor-
mation, we may integrate these local probabilities
over the whole visual field. Assuming independence
of the local information as in [63], spatio-temporal
integration is modeled at time T by Equation (1)
and

p(~V |I0:T ) ∝
∏

x,y,0≤t≤T

p(It(x, y)|~V (x, y))p(~V ) (2)

where we write as I0:t the information on luminance
from time 0 to t. Such models of spatio-temporal
integration can account for several nonlinear prop-
erties of motion integration such as monotonic spa-
tial summation and contrast gain control and are
successful in explaining a wide range of neurophysi-
ological and behavioral data.

2.3 Motion-based predictive coding

The independence hypothesis set above formally
states that the local measurement of global mo-
tion is the same everywhere, independently of the
position of different motion parts. In fact, the inde-
pendence hypothesis assumes that if local motion
signals would be randomly shuffled in position, they
would still yield the same global motion output
(e.g. [40]). As shown by Watamaniuk, McKee, and
Grzywacz [62], this hypothesis is particularly at
stake for motions along coherent trajectories: mo-
tion as a whole is more than the sum of its parts.
A first assumption is that the retinotopic position
of motion is an essential piece of information to
be represented. In particular, in order to achieve

fine-grained predictions, it is essential to consider
that the spatial position of motion x, y, instead of
being a given parameter (classically, a value on a
grid), is an additional random variable for repre-

senting motion along with ~V . Compared to the
representation p(~V (x, y)|I) used in previous stud-

ies [11, 63], the probability distribution p(x, y, ~V |I)
more completely describes motion by explicitly rep-
resenting its spatial position jointly with its veloc-
ity. Indeed, it is more generic as it is possible to
represent any distribution p(~V (x, y)|I) with a dis-

tribution p(x, y, ~V |I), while the reverse is not true
without knowing the spatial distribution of the posi-
tion of motion p(x, y|I). By doing so, we introduce
an explicit representation of the segmentation of
motion in visual space as an essential ingredient in
motion-based predictive coding.

Here, we explore the hypothesis that we may take
into account most dependence of local motion sig-
nals between neighboring times and positions by
implementing a predictive dependence of successive
measurements of motion along a smooth trajectory.
In fact, we know a priori that natural scenes are
predictable due to both rigidity and inertia of phys-
ical objects. Due to the projection of their motion
in visual space, visual objects preferentially follow
smooth trajectories. We may implement this con-
straint into a generative model by using the trans-
port equation on the motion itself. Assuming for
simplicity that the sensory representation is updated
at discrete, regularly spaced times, then, at time t,
during the small lapse dt, motion is approximately
translated with respect to its velocity :

xt+dt = xt + ut · dt+ νx

yt+dt = yt + vt · dt+ νy (3)

ut+dt = γ · ut + νu

vt+dt = γ · vt + νv (4)

with

νx, νy ∝ N (x, y; 0, DX · dt) (5)

νu, νv ∝ N (u, v; 0, (σ−2
p +D−1

V )−1 · dt) (6)

Where νx, νy, νu and νv are random variables that
blur position and velocity at each time step. These
are centered Gaussians defined by their variances
in position space by DX · dt and in velocity space
defined as in [63] by (σ−2

p + D−1
V )−1 · dt (where
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the standard deviation of the prior is defined as
σp). Note that for convenience we scaled variance
by dt such that the diffusion coefficients can be
represented per unit of time, independently of the

time step dt. Here, γ = (1 +
D2

V

σ2
p

)−1 is the damping

factor introduced by the prior and γ ≈ 1 for a
high value of σp. The update rule (see [48] for
a derivation) assumes independence of the prior
on slow speeds with respect to predictive prior on
smooth trajectories. Equations (3)-(4) describe the
internal model of motion, while equations (5)-(6)
give a model for the noise in this model.

As a consequence, the estimated positions and
velocities are slightly randomized at each frame. We
controlled that this procedure led to similar results
as [63] (see also [48] for an analytical solution). Note
that we return to the usual formulation described
in [49] when setting σp to a high value (100 was
sufficient in our numerical simulations). We define
DX and DV as the diffusion coefficients of position
and velocity, respectively in a generative model of
diffusion which are scaled to be represented in units
of time, independently of dt. In fact, it is important
to properly tune DX and DV since they explicitly
quantify the precision of the prediction.

We may now use this generative model to inte-
grate motion information using a Markov random
chain on joint random variables zt = xt, yt, ut, vt:

p(zt+dt|I0:t) =

∫
dztp(zt+dt|zt) · p(zt|I0:t) (7)

p(zt+dt|I0:t+dt) =p(It+dt|zt+dt)
· p(zt+dt|I0:t)/p(It+dt|I0:t) (8)

To implement this recursion, we first compute
p(It|zt) from the observation model (Equation (1)).
The predictive prior probability p(zt|zt−dt) is de-
fined by the generative model in Equation (3) and
(4). Note that prediction (Equation (7)) always in-
creases the variance by “diffusing” information. On
the other hand, during estimation (Equation (8)),
coherent data increases precision of the estimation
while incoherent data increases the variance. This
balance between diffusion and reaction will be the
most important factor for the convergence of the
dynamical system. Overall, these master equations,
along with the definition of the prior transition
p(zt|zt−dt), define our model as a dynamical sys-
tem with a simple global architecture but yet with
complex recurrent loops.

Unfortunately, the dimensionality of the proba-
bilistic representation makes it impossible to im-
plement a realistic simulation of the full dynam-
ical system on classical computer hardware. In
fact, even with a moderate quantization of the rel-
evant representation spaces, computing integrals
over hidden variables in the filtering and prediction
equations (respectively Equations (7) and (8)) leads
to a combinatorial explosion of parameters that is
intractable with the limited memory of current se-
quential computers. Alternatively, if we assume that
all probability distributions are Gaussian, this for-
mulation is equivalent to Kalman filtering on joint
variables. Such an implementation may be achieved
using for instance a neuromorphic approximation
of the equations mentioned above [11]. Indeed, one
may assume that master equations are implemented
by a finely tuned network of lateral and feed-back
interactions. One advantage of this recursive defini-
tion in the master equations is that it gives a simple
framework for the implementation of association
fields. However, this implementation has the con-
sequence of blurring predictions. To describe some
nonlinear aspects of motion integration we have used
particle filtering in our previous work [49] and here
we will use it to tackle the motion extrapolation
problem.

2.4 Numerical simulations

Master equations can be approximated using Se-
quential Monte Carlo (SMC) [49]. The SMC algo-
rithm itself is controlled by only two parameters.
The first one is the number of particles N which
tunes the algorithmic complexity of the representa-
tion. In general, N should be large enough and an
order of magnitude of N ≈ 210 was always sufficient
in our simulations. In the experimental settings that
defined here (moving dots), the complexity of the
scene is well controlled and remains low. Control
experiments have tested the behavior for several
numbers of particles (from 25 to 216). We found
that, except with N smaller than 100, results were
always very similar. However, we kept N to this
quite high value to maintain the generality of the
results in the perspective of further extensions of the
model. The other parameter is the threshold above
which particles are resampled. We found that this
parameter had little qualitative influence providing
that its value is large enough to avoid staying in a
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local minima. Typically, a resampling threshold of
20% was sufficient.

Once the parameters of the SMC were fixed, the
only free parameters of the system were the vari-
ances used to define the likelihood and the noise
model. The likelihood of sensory motion was com-
puted using Equation (1) using the same method
as Weiss, Simoncelli, and Adelson [63]. We defined
space and time as the regular grid on the toroidal
space to avoid border effects. Next, visual inputs
were 128× 128 grayscale images on 150 frames. All
dimensions were set in arbitrary units and we de-
fined speed such that V = 1 corresponds in toroidal
space to the velocity of one spatial period within
one temporal period that we defined arbitrarily to
100 ms biological time. Raw images were prepro-
cessed (whitening, normalization) and we computed
at each processing step the likelihood locally at
each point of the particle set. This computation
was dependent only upon image contrast and the
width of the receptive field over which likelihood was
integrated. We tested different parameters values
that resulted in different motion direction or spatio-
temporal resolution selectivities. For instance, a
larger receptive field size gave a better estimate of
velocity but a poorer precision for position, and
reciprocally. Therefore, we set the receptive fields
size to a value yielding to a good trade-off between
precision and localization (that is 5% of the image’s
width in our simulations). Similarly, the contrast
of the likelihood was tuned to match the average
noise value in the set of images. Once fixed, these
two values were kept constant across all simulations.
All simulations were performed using python with
modules numpy [45] and scipy (respectively version
2.6, 1.5.1 and 0.8.0) on a cluster of linux nodes.
Visualization was performed using matplotlib [24].
All scripts are available upon request from the cor-
responding author.

2.5 Experimental procedure

All of our experimental conditions include a single
dot moving horizontally at constant speed, albeit in
different contexts. The dot could be blanked tran-
siently during its displacement (blank condition),
presented with a high level of noise (noise condition)
or blanked with a high level of background noise
(blank + noise condition). In the two blanking con-
ditions, the target disappeared for a duration of 28%

of its whole spatial period. It then reappeared at the
location it should be with a continuous motion and
followed the same trajectory some the remaining
lapse of time. Note that as V = 1, the blank dura-
tion is also 28% of a temporal period. We controlled
that during the blank, the local motion energy gave
an uniform likelihood for all velocities, as expected.
To investigate the effects of background noise, we
added to the signal one of 20 linearly increasing
values of standard deviation of independent, identi-
cally distributed gaussian noise (from 0.01 to 0.20
relative to a peak signal value of 1). This noise
could be added to a normal trajectory of a partially
blanked one.

To quantify the efficiency of motion detection, we
computed different statistics. A first representation
looked at the temporal dynamics of motion distri-
bution. For this we estimated the histograms of
estimated position and velocity signals along both
horizontal and vertical axis. When adding noise
to the motion stimulus, we also measured contrast
gain in order to quantify the tracking performance
by plotting the estimated values of eye velocity as a
function of contrast. All simulations were repeated
for 20 trials and below we plot average values across
trials. Error bars are their standard deviation across
trials.

One main objective of the study was to compare
our motion-based prediction (MBP) model with dif-
ferent controls. We defined two models as limiting
cases of the MBP model. A first control model
is obtained when motion estimation is made de-
pendent upon the velocity prediction but not upon
the position prediction. We called this model PV,
and it corresponds to the model of Weiss, Simon-
celli, and Adelson [63] as defined by Equation 2.
Then, the motion-based prediction was similar but
we switched off the prediction in position by set-
ting a high value for DX with respect to the spatial
period (see equations (3)-(5)). Typically, a value
of 100 was sufficient. Equations of motion’s posi-
tion in the generative model then were simplified to
xt, yt ∝ N (x, y; 0, DX · t).

A second control model was by making motion
estimation dependent upon the position prediction
but not the velocity prediction. We called it PX
and set an high value for DV with respect to the
typical physical speed of stimuli (see equations (4)
and (6)). Typically a value of 100 was sufficient
in our simulations. The equations for the velocity
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in the generative model can then be simplified to
ut, vt ∝ N (u, v; 0, σ2

p). This PX model will perform
an isotropic diffusion of information since it lacks
any prediction on the velocity component of motion.
This is similar to the isotropic diffusion model of
Tlapale et al [61] when removing the contour-based
information.

3 Results

Our goal was to investigate the role of prediction
in motion extrapolation in the presence of different
sources of uncertainty such as a transient disappear-
ance of the target and high background noise. We
tested the dependency of our model upon predic-
tion versus current sensory input. Motion extrapo-
lation for a single dot moving at constant velocity
was tested in three different conditions: a transient
blanking trajectory in absence of background noise;
a complete trajectory with different background
noise levels and a transient blanking trajectory with
background noise.

3.1 Extrapolation of motion informa-
tion in a blanked trajectory

We first used as an input the movie of single dot
translating along a straight trajectory and that is
transiently blanked after a short period of visible dis-
placement. This situation is similar to those used in
physiological [4], behavioral [10] and theoretical pre-
vious studies [11]. By doing so, we can challenge the
dynamics of information being accumulated along
the occluded trajectory that is, in absence of sensory
input. We measured the estimated positions and
velocities of dot motion at time windows located
just before, during and after the blank.

In Figure 2, we plot the histogram of the esti-
mated positions and velocities obtained with the
three different models: PX (motion estimation is
only predictive in position, not velocity), PV (mo-
tion estimation is only predictive in velocity, not
position) and MBP that is the full motion-based
model where there is a predictive motion estimation
both in position and velocity. Remind that PX and
PV were obtained simply by choosing high values
of DV and DX , respectively.

In Figure 2, for the earliest frames, velocity his-
tograms first spread over a larger area but pro-

gressively fit into a narrow band centered on the
physical velocity (u = 1 and v = 0, see rightmost
columns). This strongly suggests a convergence of
the estimated motion direction towards the veridi-
cal movement of the stimulus. During the blanking
period marked by vertical white dashed lines, the his-
tograms illustrate different states. In the PX control
model (upper row), velocity estimations (u and v)
are largely scattered around zero, favoring the occur-
rence of slow speeds. Because of the measurements,
the estimations still became narrower and centered
on the physical velocity of stimulus both before and
after blanking. During blanking, estimated posi-
tions diffused in an isotropic manner (two leftmost
columns). With both PV and MBP model configu-
rations, the dynamics of velocity estimations paused
during blanking and distributions were maintained
around the last estimated values computed right
before target disappearance. At stimulus reappear-
ance, the distributions immediately resume their
convergence. The estimated positions (x and y)
computed with the full MBP model exhibited a dy-
namics similar to velocity estimations suggesting the
existence of an internal model that updates the es-
timations with a slow diffusion. By contrast, in the
PV control model, there is no prediction to update
the next stimulus position and therefore estimation
histograms spread across all possible positions (see
second row, left columns). This difference between
PV and MBP model performance is summarized in
Figure 3. We plot the estimated velocity obtained
with each model (mean and standard deviation)
together with the control condition where the dot
was continuously visible. Clearly, when the stimulus
reappeared after blanking, motion-based predictive
estimation tend to converge immediately back to
the control speed with a quick catch up. Such
dynamics was more sluggish with the PV model
(blue curve): motion integration did resume but at
roughly the same slope as observed at the onset of
the blank. Note that we did not plot the perfor-
mance of the PX model in Figure 3, because of the
very large variability of estimated velocity observed
across trials (see Figure 2). Moreover, the rather
small difference observed between PV and MBP
models is due to the rather simplistic dot motions
used in the present study. As explained above, the
sensory layer of both models is made of a bank of
motion energy filters which are highly efficient in
locally detecting straight dot translations. Choosing
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Figure 2: Histograms of estimated motion for a horizontally moving dot with a blanked trajectory under
three predictive configurations of the model. Blanking period is indicated with dashed white lines and
each row represents full motion estimation under the configuration denoted by the inner title. Each plot
illustrates the probability distribution function of a relevant variable (vertical axis) with respect to time
(horizontal axis) as in Figure 1. The color bar on top indicates the value of probability as it is estimated
for each frame (one column in each image). In each configuration, the two left columns correspond to
estimated positions (x and y) while the right columns represent estimated velocities (u and v). At the
earliest frames, for all configurations, estimated variables are scattered in a rather wide area but then
gradually converge to the veridical solution (x, y, u, v) = (1, 0, 1, 0)). (First row) PX configuration:
motion estimation is only predictive in position of motion and not in velocity. (Second row) PV
configuration: Motion estimation is only predictive in velocity of motion and not in position. (Third
row) MBP configuration: in this configuration, motion estimation is predictive in both position and
velocity of motion and predictive information is transported anisotropically using the velocity information
(compare variable x with configurations PX and PV).
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Figure 3: Estimated velocity in PV and MBP con-
figurations of Figure (2). Estimation is measured as
the response of the model to a horizontally moving
dot with u = 1 and a short blank in the trajectory.
Blanking period has been shown with shaded area.
The trace in black dashed lines represent the control
condition in which trajectory of stimulus includes
no blank. Error bars show standard deviation of
error over 20 trials. Note the quick catch up after
reappearance of stimulus in MBP configuration.

a high value for DX and DV in PV and PX mod-
els is then equivalent to switching to basic sensory
level without prediction in position and velocity re-
spectively. That is to say, our working hypothesis
imposes a large scale coherency constraint on stimu-
lus trajectory as reflected in the range of values for
DX and for DV . Still, we can observe the temporal
dynamics of motion estimation as already shown
with more ambiguous inputs [49].

3.2 Predictive tracking in the pres-
ence of varying noise levels

In the next step, we tested the robustness of our
model when using more realistic conditions such as
low contrast (or low signal-to-noise ratio) inputs.
This approach is similar to the previous psychophys-
ical work on temporal coherency and predictability
of motion [62]. Below, we report the performance
of two model configurations (PV and MBP) when
gradually increasing the level of background noise

to an horizontally moving dot. We first did it for
a fully visible trajectory in order to estimate the
contrast (or SNR) thresholds at which the tracking
states of the model change [49].

We measured the estimated velocity averaged over
20 trials when the input image was corrupted by an
independent and identically distributed Gaussian
noise (see Figure 4). In order to first explore the role
of prediction for overcoming the distracting effect of
noise, we set our motion estimation routine to the
PV case to minimally rely on position predictions.
To do so, we chose a DX value high enough so that
the model did favor any estimation in particular.
We then repeated the same experiment but with the
full MBP model. We found that including motion-
based prediction led to a more precise tracking than
in the PV case, at both low and high levels of noise.
We found a range of contrast (or SNR) in which the
MBP model was still maintaining perfect tracking
while the PV model was in the no tracking state.
Two particular aspects shall be noticed. First, with
the PV model, increasing the noise level gradually
decreased the convergence rate of the motion detec-
tion process. Second, with the full MBP model, we
observed a binary response mode (i.e. the dot is
either tracked or not tracked). In the tracking state,
the convergence rate was found to be dependent
upon the level of noise, as in the PV configuration.
Increasing noise up to a certain level results in a
shift of the onset of the tracking state, until the
model reached the no tracking state. Our results in
Figure 4 are similar to the outlier detection exper-
iment observed in psychophysics by Watamaniuk,
McKee, and Grzywacz [62] where a horizontally mov-
ing dot was surrounded by many other distractor
dots with random movements. This psychophysi-
cal study showed that the temporal coherency of
the target dot motion rendered it detectable with a
high confidence as measured by a tenfold increase
of detection threshold. Our modeling results are
consistent with this behavioral observation. As a
consequence, we similarly found a binary tracking
response in the sense that tracking is rather good up
to some noise level. Therefore we have either track-
ing or not tracking states. Furthermore, increasing
the noise level imposes a delay on emergence of
tracking state which is reflected in smooth slowing
of initial raising in velocity traces.

To summarize the effects of noise, we plotted the
efficiency of model with and without prediction in
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position (i.e. the MBP and PV models) for a range
of contrasts and fitted them with the Naka-Rushton
function [41] that can adequately describe the dif-
ferent aspects of motion integration (e.g. [48]) (see
figure 5). The gain was defined as the average es-
timated speed and contrast as the signal-to-noise
ratio. The contrast response functions were plotted
for both early and late phases (as defined in figure 2)
of tracking. Remind that here the dot trajectory was
fully visible. In the early phase (red curve), both
models have very different best-fit contrast satura-
tion values (C50 of 10.35 and 27.37, respectively)
and exponents ( n of 7.7 and 2.19, respectively). In-
terestingly, one can see in the late phase (blue curve)
a global increase in contrast gain for both models, as
illustrated by a leftward shift of the curves. The PV
model led to a change in only the contrast satura-
tion parameter (from C50 = 7.71 to n = 3.42), while
the full MBP model exhibited a significant change
in both in half-saturation (C50 = 7.15) and slope
(n = 20.89) parameters of the contrast response
function. This is characteristic of the emergence
of the tracking behavior in the motion-based pre-
diction model and complements the analysis done
in [49]. As a consequence, we have demonstrated
here that this model is sufficient to explain some
well-known static non-linear computations such as
the gain control mechanism implemented by divisive
normalization [55, 57]. These are essential compo-
nents of neural computations and we show here that
they may emerge from a predictive coding formula-
tion instead of an explicit descriptive mechanism. In
a final experiment, we will see the potential function
of this tracking response.

3.3 Motion extrapolation in noisy
blanked trajectory

In the last series on experiments, we combined the
different sources of uncertainty studied above by
simulating a noisy dot moving along a partially
blanked trajectory. Above, we have shown that mo-
tion extrapolation requires enough accumulation of
information from the observed trajectory parts for
allowing the emergence of the tracking state. More-
over, we found that there is contrast threshold for
reaching this tracking state. Since our goal is to in-
vestigate the temporal evolution of the information
that is accumulated from the observed trajectory,
by imposing two independent sources of uncertainty

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

Es
tim

at
ed

 v
el

oc
ity

PV

noise=0.01
noise=0.1
noise=0.15

0 20 40 60 80 100 120 140
Time (N_frames)

0.0

0.2

0.4

0.6

0.8

1.0
Es

tim
at

ed
 v

el
oc

ity
MBP

noise=0.01
noise=0.1
noise=0.15

Figure 4: Estimated velocity of PV and MBP con-
figurations averaged over 20 trials. Stimulus is a
horizontally moving dot with u = 1 which includes
different noise values at background and no blank
in trajectory. Colors from dark to light correspond
to the response to the stimulus with noise levels
between 0.01 to 0.2. (Top) Estimated velocity of
(PV) configuration while motion estimation only
benefits from predictions in velocity of stimulus.
(Bottom) Estimated velocity of motion-based pre-
diction (MBP) configuration, where estimation is
predictive in both position and velocity of motion.
This configuration tracks well up to approximate
noise value of 0.13 and after that enters into the
“no tracking” state. For PV configuration this state
transfer happens at noise value 0.06. As noise in-
creases, in both configurations we observe a slower
convergence in estimated velocity and more impor-
tantly a temporal shift of the emergence of tracking.
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Figure 5: Response gain functions are plotted with
best-fit Naka-Rushton functions [48] for both PV
and MBP models. Increasing contrast produces
a S-shape increase in response gain whose shape
changes with both time and model configurations.
Similar to the psychophysical reports by Watama-
niuk, McKee, and Grzywacz [62], gain and half-
saturation values increase from the early to late
tracking phases. There is an increase in the slope of
the contrast response curve in the late response of
the motion-based prediction configuration indicat-
ing a transition from no-tracking to tracking states.

(i.e. noise and blanking) we can highlight the differ-
ences between predictive and non predictive motion
estimation.

As in the previous sections, we quantified the
efficiency of motion estimation by the estimated
velocity of the tracking responses (see figure 6). We
extend the results shown in figure 3 by now using
blanked trajectory with low noise to higher levels
of noise. As we mentioned before, a quick veloc-
ity catch up as illustrated in figure 3 indicates the
emergence of a tracking state after stimulus reap-
pearance. Such catch up was still visible in the
presence of strong noise levels, at least up to a cer-
tain threshold. We expected a general degradation
of motion extrapolation by increasing noise level and
consequently a lower tracking performance, down
to the no tracking state. For noises higher than
contrast thresholds, no such velocity catch up was
observed and the models in fact remained in the
no tracking state (see figure 6). At all noise levels,
incorporating position prediction as in the full MBP
model revealed several differences in performance,
when compared to the PV model. In particular,
the MBP model was less sensitive to noise and its
dynamics at intermediate signal-to-noise ratio was
brisker than the PV case. Indeed, the MBP model
remained able to match the stimulus trajectory af-
ter target reappearance in the presence of relatively
high noise level (up to 0.11). In comparison, the PV
model remained in the no tracking state for noise
levels higher than 0.05.

In summary, we found that making the motion
extrapolation task more difficult by miwing two un-
certainty sources deteriorates the tracking response.
This can be explained by an insufficiently accumu-
lated information about dot trajectory in the noisy
and blanking conditions. This is evidenced by the
comparison of responses at corresponding contrasts
between figure 4 and figure 6. The full MBP model
takes advantage from predictions in position and
velocity domains, in comparison to the PV case and
can accommodate higher noise levels before losing
its tracking ability. In addition, a stronger internal
representation of motion is maintained during blank-
ing in this case (see MBP estimations in Figure 2).
It also more quickly converges to the true, physical
motion after reappearance. These results call for
similar experiments to be done psychophysically by
combining these different sources of uncertainty.
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Figure 6: Motion extrapolation with sensory noise:
Stimulus is a horizontally moving dot with u = 1
which includes a blank as shown with shaded area.
In addition there is a sensory noise and colors from
dark to light correspond to noise levels increasing
linearly between 0.01 to 0.2. (Top) Estimated veloc-
ity of model under PV configuration while motion
estimation only benefits from predictions in velocity
space. (Bottom) Estimated velocity of motion-
based prediction (MBP) configuration, where esti-
mation is predictive in both position and velocity
of motion. In both configurations, increasing of
noise corrupts tracking performance and after blank
response converge only for noise values under a
threshold and then enters to no tracking state. This
threshold for PV and MBP configurations are 0.05
and 0.11 respectively. Note that the quick catch up
after reappearance of stimulus never appears in PV
but only in MBP in the cases in which a tracking
state stabilized before blank.

4 Discussion

In the present study, we investigated the role of
motion-based prediction [49] in motion extrapola-
tion during target blanking, a condition frequently
used in psychophysical, behavioral and neuronal
studies to measure how the brain maintains an ac-
curate representation of target motion despite large
fluctuations in the input (e.g. [4, 7, 10]). Our goal
was to test how the motion prediction framework
described in our previous work [49] can be extended
to these conditions.

First, we probed the dynamics of motion extrap-
olation by measuring the impact of a transient ab-
sence of the stimulus, as imposed by a short blank in
trajectory of the stimulus. We found a prototypical
temporal pattern characterized by a pause in the
motion integration process during the blank and
a quick recovery of the actual position of the dot.
This model behavior was largely different when turn-
ing off the anisotropic component of motion-based
prediction. In this PV incomplete model, at the
end of the blank, the integration dynamics resumed
at a convergence rate similar to the one observed
at the initial target motion onset. This difference
can be explained by the fact that the full model
can maintain a nearly accurate representation of
the target trajectory in both position and velocity
domain. In this regard, the full MBP model is more
consistent with both physiological (e.g. Assad and
Maunsell [4] and Newsome and Paré [42]) and be-
havioral (e.g. [7, 9, 10]) observations. Interestingly,
the comparison between PV, PX and the full MBP
model further highlights the need of both position
and velocity informations for correctly maintaining
and predicting an accurate representation of target
motion, an aspect that has been already introduced
at the theoretical level [11, 49, 66].

An important issue was to answer to the ques-
tion raised by the experimental study of Assad and
Maunsell [4]. In monkeys, while MT does not rep-
resent motion during the blank, it seems that such
information can be preserved in upstream cortical
areas such as MST [42]. This later result is compati-
ble with our approach, where neurons remain active
during the transient disappearance of the stimulus,
but it is still largely not known how and why such a
dichotomy would emerge in the visual system. We
demonstrate that a two layer model where motion in-
formation is primarily extracted locally before being
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diffused along a particular path can provide a solu-
tion. Such architecture presents the advantage of
mixing different spatial and temporal scales and can
be implemented in many biological systems, from
retina to cortex. Future works will be conducted
to propose a biological plausible implementation of
our diffusion mechanism.

To further explore the model dynamics, we tested
its robustness by adding background noise in dif-
ferent trajectory conditions. Increasing the back-
ground noise induced at some threshold value a
sharp change in the dynamics, the model shifting
from tracking to no tracking states. Such sharp
transition as a function of signal-to-noise ratio is
consistent with behavioral studies (e.g. [59]) showing
a strong nonlinear relationship between pursuit gain
and contrast (see [36] for a review). Interestingly,
this sharp nonlinearity of the transition between
tracking and non-tracking states —and which is
classically implemented by some well-known static
non-linear computations such as divisive normaliza-
tion [55, 57]— emerges here as a property of the
dynamical system. The theoretical link between
Bayesian inference and divisive normalization has
been already suggested by several authors (e.g. [25])
including us ( [6]). The current study emphasizes
that dynamical inference as implemented here can
also reproduce the temporal dynamics of normaliza-
tion mechanisms through lateral interactions [51].
Further work remains to be done to validate this
analogy in particular with respect to the adaptation
of this non-linearity to the dynamical statistics of
the input.

Our model investigates at an abstract level, the
computational advantages of anisotropic diffusion
of information within a probabilistic representation
of motion. Previous work from Burgi, Yuille, and
Grzywacz [11] has suggested that there are multiple
analogies of this computing architecture with the
structure of neural computation in cortical areas.
They originally proposed a constructive approach
to implement such motion-based prediction with
neural fields. However, their implementation was
limited by severe constraints on the simulation of
such neural-networks on classical computers. In-
deed, this parallel structure is rather not optimal
for a sequential computer and necessitate a large
amount of memory to achieve a sufficient precision.
Hopefully, the advent of novel computational ar-
chitectures (clusters, neuromorphic hardware) will

foster the precision of the implementation of such
models in a more biologically realistic fashion.

A last advance of our model is its ability to repro-
duce the dynamics of different brain responses to
transiently occluded target, from neuronal activity
up to highly accurate behaviors such a voluntary
pursuit eye movements. Thus, our model has the
potential to unify different approaches that were
previously proposed to understand motion extrapo-
lation. For instance, recent behavioral experiments
imposing a blank during the straight trajectory of a
tilted line shows complementing results in the light
of our own results [10]. Indeed, they show that if
the object is tracked long enough and the blank
is short enough, the bias that is characteristic of
the aperture problem (the eye following first the
direction perpendicular to the segment) disappears.
This data is well fitted by a two-layer Bayesian net-
work stacking a sensory and a motor levels. They
explain motion extrapolation as a feed-back loop
from the representation of the position of the eye
to the sensory stage. Our model proposes that a
complementary mechanism could be motion-based
prediction and that the sensory representation of
motion is sufficient to explain motion extrapola-
tion. As we were careful to study the early stage
of the tracking response (such that there can be no
feedback from a motor stage), we predict that such
systems should work in synergy and allow a more
complete modeling of motion extrapolation. The
main novelty of such scheme is that a simple generic
framework —motion-based prediction— may ex-
plain a large range of mechanisms that are often
explained by the explicit modeling of specialized
computations. In our earlier work [49], we have
shown that motion-based prediction is sufficient in
solving the aperture problem and that the special-
ized mechanisms that were long supposed to be the
source of this solution (texture-independent motion
trackers, line-ending detectors, ...) instead emerged
from the response to the model.

Many low-level classical problems such as motion
extrapolation, the aperture problem or anticipation
poses fundamental questions about the computa-
tional properties of large-scale networks of neurons.
Moreover, their signatures can be found in many
different species or neuronal architectures. They
are shared by different sensory systems and can
therefore be used as a way of unifying the search for
generic computations using population codes. Com-
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plementing our previous work on the aperture prob-
lem [49], we have shown here that the same architec-
ture can solve another instance of low-level uncer-
tainties, extrapolating current trajectories in the ab-
sence of sensory evidence. This study demonstrates
the need to elaborate generic computational solu-
tions that can eventually be implemented through
realistic mechanisms such as divisive normalization
mediated by lateral interactions.

Acknowledgments

This work is supported by projects FACETS-
ITN (EU funding, grant number 237955) and
“BrainScaleS” (EU funding, grant number FP7-
269921). Code to reproduce figures and supple-
mentary material are available on the correspond-
ing author’s website at https://laurentperrinet.
github.io//publication/khoei-13-jpp/

References

[1] Edward H. Adelson and James R. Bergen.
“Spatiotemporal energy models for the percep-
tion of motion”. In: Journal of Optical Society
of America, A. 2.2 (Feb. 1985), pp. 284–99.

[2] J. Allman, J. Kaas, and R. Lane. “The mid-
dle temporal visual area (MT) in the bush-
baby,Galago senegalensis”. In: Brain Research
57.1 (July 1973), pp. 197–202.

[3] Stuart Anstis and V. S. Ramachandran. “Vi-
sual inertia in apparent motion”. In: Vision
Research 27.5 (Jan. 1987).

[4] John A. Assad and John H. R. Maunsell.
“Neuronal correlates of inferred motion in pri-
mate posterior parietal cortex”. In: Nature
373.6514 (Feb. 1995), pp. 518–521.

[5] G. R. Barnes and P. T. Asselman. “The mech-
anism of prediction in human smooth pursuit
eye movements.” In: The Journal of physiol-
ogy 439 (Aug. 1991), pp. 439–461.

[6] Frédéric V. Barthélemy et al. “Dynamics of
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