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Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input
to establish a coherent representation of the world. Although it is becoming generally
accepted, it is not clear on which level spiking neural networks may implement
predictive coding and what function their connectivity may have. We present a network
model of conductance-based integrate-and-fire neurons inspired by the architecture
of retinotopic cortical areas that assumes predictive coding is implemented through
network connectivity, namely in the connection delays and in selectiveness for the tuning
properties of source and target cells. We show that the applied connection pattern leads
to motion-based prediction in an experiment tracking a moving dot. In contrast to our
proposed model, a network with random or isotropic connectivity fails to predict the path
when the moving dot disappears. Furthermore, we show that a simple linear decoding
approach is sufficient to transform neuronal spiking activity into a probabilistic estimate
for reading out the target trajectory.

Keywords: motion detection, motion extrapolation, probabilistic representation, predictive coding, network of

spiking neurons, large-scale neuromorphic systems

1. INTRODUCTION
1.1. PROBLEM STATEMENT
In a dynamical world, prediction is a highly relevant evolution-
ary advantage. This is crucial in sensory systems, as the raw data
that is processed is most often noisy, and possibly ambiguous or
distorted. Take for example the task performed by the primate
visual system of tracking the trajectory of a moving object and
accurately moving the eyes in order to stabilize the image on the
retina. The image of the object may be blurred, or the measure
of its velocity may depend on its geometry instead of its trajec-
tory. Another problem occurs when the object is occluded, or
simply when the observer blinks. It is an advantage to be able
to predict the position and speed of the object at the end of this
blanking period. This problem is classically referred to as motion
extrapolation (see Figure 1). While predictive coding mechanisms
may have different aspects and occur at different levels ranging
from the retina to higher level areas (Gollisch and Meister, 2010),
we will focus on this particular phenomenon as prototypical
example.

Particularly in primates, object motion information is
extracted along a cascade of feed-forward cortical areas, where
primary visual area (V1) extracts local motion information that
is integrated in extra-striate middle temporal (MT) and medial
superior temporal (MST) areas (Newsome et al., 1988). MT
and MST process visual motion and oculomotor signals driv-
ing pursuit (see Ilg, 1997 for a review) and are therefore key
elements in motion extrapolation. Specifically, we will focus on
the dynamics of neural activity during the period without infor-
mative sensory input (to which we will refer as the blank) and

just after its reappearance. Indeed, the capacity of the dynam-
ics to transform such fragmented input into a correct, con-
tinuous representation is a major pressure on the evolution of
the visual system (Gollisch and Meister, 2010). It was shown
in the monkey visual system that neural activity was mostly
absent during the blank in lower areas of the visual hierar-
chy while it was maintained in some higher level areas (Assad
and Maunsell, 1995). More precisely, neural activity in MT is
driven by the motion of the dot and quickly devolves to spon-
taneous activity during a blank, while activity in its efferent area
MST is maintained to the level of neural activity expected if the
dot was not blanked when there is no retinal image motion.
This can happen during a transient image occlusion (Newsome
et al., 1988) or while tracking an imaginary target covering
the visual field outside of the receptive field currently being
recorded (Ilg and Thier, 2003). Similar sustained activity dur-
ing target occlusion has been found in primate posterior parietal
cortex, and it is linked to image motion prior to target disap-
pearance (Assad and Maunsell, 1995), that is, by a predictive
signal.

Motion extrapolation is also seen in lower level neuronal
structures, such as the retina (Berry et al., 1999), and calls for
a more generic computational framework. However, direct evi-
dence for such neural mechanisms is still lacking. Before propos-
ing a solution using a connectivity pattern based on motion-based
prediction, we will first review some existing experimental and
theoretical evidence. Along this study, our aim is to provide a basis
for future applications of neuromorphic hardware (Schemmel
et al., 2010; Brüderle et al., 2011).
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FIGURE 1 | The motion extrapolation problem. Sensory input, such as
the smooth motion of a dot in visual space, may be perturbed by
disruption of sensory drive, like when the eye blinks during a visual
stimulation. It is essential that some mechanisms may fill this blank: this
defines the motion extrapolation problem. We first define the problem by
parameterizing a generic input and its perturbation. Left: The input is a
Gaussian hill of activity in a topographically organized space, moving on a
straight trajectory. We show here a snapshot in time of the input (blue)
and the resulting input activity to the network (gray) for a period of
400 ms. This corresponds for instance to the activation of a low-level
visual area to a single dot represented by a bell-shaped hill of activity
(blue blurred circle). In addition, this input carries information about the
motion of the object (blue arrow) and drives neurons which have a close

selectivity in position and velocity (gray arrows). Right: We show the
time course of the input for one representative neuron (denoted by the
yellow star in the left panel). Top: The blue trace shows the envelope of
the inhomogeneous Poisson process that creates the input spike train.
For 0 ms < t ≤ 200 ms and 600 ms < t ≤ 800 ms the stimulus is blanked,
that is, that all neurons in the sensory layer receive input from a Poisson
process with the same rate. We permuted the input vector fed into the
network among all the cells in the network for each time step during the
blank. Black vertical lines indicate input spikes. Bottom: Histogram of the
input spike train with a bin size of 50 ms. This shows clearly the missing
information during the blank. We define the goal of solving the motion
extrapolation problem as representing the prediction of information on
motion (speed and position) during the blank.

1.2. NEURO-PHYSIOLOGICAL CORRELATES OF PREDICTION FOR
MOTION EXTRAPOLATION

At the neural level, it seems that the topography of neural rep-
resentation is an essential constraint to prediction. Indeed, it is
more efficient that populations of neurons that represent similar
parameters should be adjacent. This is due to the cost of wiring
neurons (length and volume of axon and dendrites) Chklovskii
et al. (2002) but also due to the limited speed of information
propagation in neural wires. Such aspect is particularly acute
on the surface of the cerebral cortex and this hypothesis has
been an efficient construct to understand the organization of
visual areas (Miikkulainen et al., 2005). This is also implemented
in other cerebral structures and species such as the conver-
gence of inputs from place cells in the hippocampus of rats
that code for path integration of body position in an environ-
ment (McNaughton et al., 2006). Physiological evidence shows
that similar mechanisms are present in the deep superior collicu-
lus of primates allowing for the integration of the belief on the
position of a visual target in visual space for the guidance of sac-
cadic or smooth eye movements (Krauzlis, 2004). Here, we will
focus on low-level visual areas based on the neurophysiology of
the macaque brain (V1, MT and MST), but we will keep a rather
generic formulation to explore the functional role of some key
parameters.

Neurons in such areas receive connections from neighboring
neurons in the same cortical area (local connectivity) but also
respectively by feed-forward or feed-back connections from lower
or higher areas. Focusing on area MT, early physiological studies
in macaque monkey identified this area as a specialized module
for visual motion processing (Dubner and Zeki, 1971; Allman
et al., 1973). This involves extracting speed and direction of the
moving object. MT neurons respond selectively to visual motion

and are tuned for local speed and direction of luminance fea-
tures moving in their receptive fields (Maunsell and Van Essen,
1983). Concerning motion integration, Pack and Born (2001)
have shown that the temporal dynamics of behavior can corre-
spond with the firing rates of MT neurons. They showed that
neuronal responses quickly progress from local to global motion
direction in about 100 ms, suggesting that such integrative mech-
anisms are dynamical and progressive. These results pinpoint
the key role of MT neurons in local motion analysis and global
motion integration. Area MT and MST receive feed-back connec-
tions that may modulate the activity of their neurons (Salin and
Bullier, 1995). However, these connections (mostly myelinated)
introduce constant delays and are mostly related to higher level
contextual modulations. Provided that motion extrapolation is
implemented in one single cortical area, a finely structured set of
diffusive mechanisms would be required. A potential candidate is
naturally the dense network of lateral interactions found in sub-
cortical and cortical structures involved in sensory processing and
sensorimotor control. Of particular relevance is the role of the
connectivity pattern in the emergence of a solution to this prob-
lem. In this paper we will focus on a smaller spatio-temporal scale
and study the role of lateral, intra areal (mostly unmyelinated)
connections.

A possible correlate of prediction may lay in the traveling
waves of neural activity that may be observed on the cortical
surface. Bringuier et al. (1999) was the first to show a precisely
tuned synaptic integration field (Bringuier et al., 1999) [see (Sato
et al., 2012) for a review]. Theoretical studies suggest that for
such waves to exist, there should exist some specific anisotropy
connectivity pattern (Bressloff and Coombes, 1998). It is estab-
lished that the speed of propagation of activity along these mostly
unmyelinated connections is of the order 0.1–0.4 m/s but there
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is an ongoing debate on their selectivity. In the primary visual
cortex, a set of patchy connections in the long-range horizontal
connections found in superficial layers of cortex (Bosking et al.,
1997) that preferentially connect columns with similar orienta-
tion preference has been observed in ferrets. This is consistent
with the fact that columnar interactions determine horizontal
propagation of recurrent network activity in neocortex (Wester
and Contreras, 2012). It has also been observed that activity in cat
V1 spreads anisotropically for all orientation columns (Chavane
et al., 2011). Anisotropies in the connectivity pattern necessarily
lead to a wide range of traveling wave parameters (speed, direc-
tion) and introducing inhomogeneities can in addition lead to
more complex wave profiles and possibly even wave propagation
failure (Bressloff, 2001). However, the function of these traveling
waves, and therefore the underlying structure of the intracortical
connectivity, is mostly unknown.

1.3. EXISTING NEUROMORPHIC MODELS FOR PREDICTION
There have been numerous attempts at modeling generic pre-
dictive neural mechanisms. Here, we review some prototypical
examples at different modeling levels, from a more abstract level
to a neuromorphic implementation.

Following the idea of the Kalman filter as an adaptive predic-
tive filter and extending the work of Montagnini et al. (2007),
Bogadhi et al. (2011) proposed a hierarchical recurrent Bayesian
framework to understand the behavioral response to motion
extrapolation as observed in smooth pursuit eye movements.
Indeed, probabilistic inference has been successful in explain-
ing motion perception to a variety of stimuli (Weiss et al.,
2002) under the hypothesis that sensory areas use predictive
coding as a generic neural computation (Rao and Ballard,
1999). They are somewhat similar to engineering models pro-
posed earlier (Nowlan and Sejnowski, 1995) but allow for a
more explicit formulation of the underlying hypothesis. Such
a framework accommodates uncertainty in the motion infor-
mation of the measurement likelihoods (Weiss et al., 2002;
Stocker and Simoncelli, 2006; Hedges et al., 2011). Representing
uncertainty in the measurements and prior expectation gives
a simple, yet powerful framework to investigate the predic-
tive behavior of the system, and offers the possibility to opti-
mally adapt to changes in the measurements. The approach
from Bogadhi et al. (2011) allows for a mix of prediction and
measurement based on their reliability measured from their
respective variances. The combined estimate is used to drive
the pursuit response. The hierarchical framework allows inves-
tigation of the adaptive behavior of pursuit as well as the role
of prediction on motion integration as observed in pursuit
responses. Such Bayesian models give a generic account of the
motion extrapolation mechanism but do not provide a neural
implementation.

A direct translation could in theory be performed by a prob-
abilistic population code approach (Beck et al., 2008). This
requires that neural responses represent probability distributions
and assume “Poisson-like” spike response variability. Under that
hypothesis, one could derive from a Bayesian model the archi-
tecture of a network of spiking neurons. Another approach is to
use a global and generic functional cost for the problem (such

as the free-energy of a system designed to track a dot) and
derive the optimal system. Such endeavors allow one to pro-
pose a hierarchical neural architecture (Friston, 2009), which
predicts behavioral results under visual occlusion for control and
schizophrenic patients (Adams et al., 2012). Such models are in
essence similar to other modeling approaches where neural activ-
ity is represented by average firing rate on a cortical map (forming
a so-called neural field). Such models were successful in account-
ing for a large range of classical and non-classical receptive field
properties of V1 including orientation tuning, spatial and tem-
poral frequency tuning, cross-orientation suppression, surround
suppression, and facilitation and inhibition by flankers and tex-
tured surrounds (Spratling, 2010). Similar models were applied
to problems specific to motion detection and a link can be drawn
between such solutions and classical solutions drawn in computer
vision (Tlapale et al., 2010). However, these models do not take
advantage of the specificity of computing with spiking neurons,
that is the dual property of being able to integrate information
and detect synchrony in the input.

Some models propose solutions related to motion extrapola-
tion using neuronal networks (spiking and non-spiking). A recent
model of spiking units (Lim and Choe, 2008) explains the phe-
nomenon of the flash-lag effect (Nijhawan, 2008) by a motion-
extrapolation mechanism provided by facilitating synapses, but
acts on the single cell level only. Baldo and Caticha (2005) present
a feed-forward network of leaky integrate-and-fire (LIF) neu-
rons performing prediction, but that does not account for the
role of recurrent connectivity abundant in cortical networks.
In this regard, Liu and Wang (2008) proposed a more realis-
tic recurrent network but focused on a binary decision task,
whereas we aim at a more generic solution for the problem
by studying prediction performance for a spectrum of pos-
sible directions. Recently, Jancke and Erlhagen (2010) used a
recurrent neural field model to explain visual illusions like
the Fröhlich, the flash-lag, and the representational momen-
tum effects. Our approach is similar to theirs in the sense that
the mechanism for motion-extrapolation can be seen in spread-
ing activation to surrounding neuronal populations, but differs
fundamentally in the way that connections are set up, as connec-
tion selectivity for directional tuning is not considered in their
model.

As an intermediate observation, we see that though there
exist a wide spectrum of models, a common feature is that
these models use diffusive mechanisms implemented by the
connectivity to propagate predictive information (probabilities,
population activity, spikes) from a local to a global scale. The
richness of behaviors is then mostly obtained by using differ-
ent types of neurons (for instance by varying their polarity—
excitatory or inhibitory, or the time constant of the synapses),
which implements complex non-linear mechanisms such as gain
control. This may be sufficient to account for motion extrap-
olation. However, it should also be highlighted that all these
models assume a prediction in all directions and therefore
that the connectivity is a priori isotropic. We challenge this
assumption by introducing anisotropy in the connectivity as a
key mechanism transporting motion information in a coherent
manner.
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1.4. OUR APPROACH: AN ANISOTROPIC CONNECTIVITY PATTERN
IMPLEMENTING MOTION-BASED PREDICTION

At the behavioral level, Yuille and Grzywacz (1989) have shown
that motion integration in humans is highly dependent on the
smoothness of the trajectory of the stimulus. Humans can detect a
target dot moving in a smooth trajectory embedded in randomly
moving dots, while the target dot is not distinguishable from noise
in each frame separately. Introducing a preference for smooth tra-
jectories, the activity from local motion detectors are made more
coherent in space and time and this globally lowers the thresh-
old for detecting stimuli moving in smooth versus segmented
trajectories. In particular, during a transient blanking, it is most
likely that such processes (along with the knowledge that the
sensory input was indeed blanked and not definitively removed)
underlie motion extrapolation. For instance, when a moving tar-
get disappears, smooth pursuit eye movements continue at the
same velocity during the initial period of occlusion (Bennett and
Barnes, 2003). Therefore, it seems that neural computations take
advantage of the information about motion, but it is yet not clear
how this can be done efficiently in a network of spiking neurons.

At an abstract level, a preference for temporal coherency of
motion can be defined in a probabilistic framework. This was
formulated theoretically by Burgi et al. (2000), who proposed a
neural field implementation including local to short-range con-
nectivity. However, it lacked the precision needed to efficiently
represent realistic input sequences. In our earlier work (Perrinet
and Masson, 2012), we implemented an efficient prior for smooth
trajectories to investigate different aspects of spatio-temporal
motion integration. Particularly, this model focused on the aper-
ture problem and proposed that local, diffusive predictive coding
is sufficient to infer global motion from local, ambiguous sig-
nals. The aperture problem is a challenging problem to study
integration of local motion information (Pack and Born, 2001).
The model proposed that instead of specific mechanisms such
as line-ending detectors, the gradual spatio-temporal integration
of motion relies on prediction based on the current knowledge
of motion in terms of its velocity and position (motion-based
prediction). Compared to previous models the main difference
of this implementation is that, it is possible to predict that
information about motion velocity at a known position will be
transported in the direction given by the velocity.

Indeed in motion-based prediction, the retinotopic position
of the velocity of motion is an essential piece of information that
allows routing information and allow implementation of predic-
tive coding on smooth trajectories. By including explicitly the
dependence of local motion signals between neighboring times
and positions knowing the current speed along a smooth trajec-
tory, incoherent features should get canceled out, while coherent
information should get progressively enhanced. As such, this
context-dependent, anisotropic diffusion in the probabilistic rep-
resentation of motion also results in the formation of a tracking
behavior favoring temporally coherent features. Such a model was
recently extended to account for motion extrapolation (Khoei
et al., 2013) and has been able to replicate some behavioral results
from Bogadhi et al. (2011). Our goal here is to show that the
idea of motion-based prediction [as described in Perrinet and
Masson (2012)] can be implemented in a generic network of

spiking neurons through anisotropic connectivity and that this
is sufficient to solve a motion extrapolation task. The novelty
compared to previous studies is the transition from an abstract,
probabilistic framework to a spiking neural network and the
link between anisotropic connectivity to motion-extrapolation,
a task of functional relevance. Of course, we will not exclude
that other complementary solutions may exist, but we will argue
that it constitutes one of the simplest solutions for a network
of spiking neurons. For that purpose, we will use a classical
implementation of recurrent networks using conductance-based
integrate-and-fire neurons with three prototypical connectivities:
random, isotropic or anisotropic. While the consequence of non-
homogeneous connectivities has been somewhat explored (Voges
and Perrinet, 2012), it is—up to our knowledge—the first study
of the functional consequence of anisotropic connections in a
large-scale neural network.

1.5. OBJECTIVES AND OUTLINE
This paper is organized in the following order: First, we develop
a network of spiking neurons with the connectivity directly
drawn from the probabilistic modeling framework proposed for
the solution to the aperture problem (Perrinet and Masson,
2012), and that was extended to the motion extrapolation prob-
lem (Khoei et al., 2013). We will include in Section 2.1 details on
structure and implementation of the model but also details from
the experimental and numerical aspects.

Then, we report results in Section 3 from simulations where we
studied the network response to a disappearing moving dot under
three different connectivities: random, isotropic or anisotropic.

Finally in the discussion (Section 4), we interpret these results
in the light of current knowledge on probabilistic inference and
dynamical systems, and we will discuss the limitations of the
current study along with suggestions for future work.

2. METHODS
2.1. NEURON PARAMETERS
Simulations were performed with PyNN (Davison et al., 2008) as
interface to the NEST simulator (Gewaltig and Diesmann, 2007)
on a Cray XE6 system using 96 cores. For analysis we used python
modules numpy (Oliphant, 2007), scipy (Oliphant, 2007) and
visualization was performed using matplotlib (Hunter, 2007).
Neurons were simulated as LIF neurons with conductance based
synapses. The membrane potential V of a neuron with index k
obeys the following equation:

Cm
dVk

dt
= gl (El − Vk(t)) +

∑
j

[
gj, k, E(t) (EE − Vk(t))

+ gj, k, I(t) (EI − Vk(t))
]
, (1)

where j is the index of the sources, gj, k(t) = wj, k · exp
(
− t − tspike

τp

)
is the synaptic conductance time course with p ∈ {E, I}: τp are
the synaptic time constants, and Ep is the reversal potential for
excitatory (p = E) and inhibitory (p = I) synapses respectively, gl

is the constant leakage conductance, and El the leakage or resting
potential. When the membrane potential V is above the threshold
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Table 1 | Neuron parameters.

Name Cm gl τm El EE EI τE τI

Value 1 0.1 10 −70 0 −70 5 10

Unit nF μS ms mV mV mV ms ms

voltage Vthresh = −50 mV a spike is emitted and V is set to
Vreset = −70 mV for a refractory period of τrefrac = 1 ms. Table 1
lists the parameters used for both excitatory and inhibitory neu-
rons. The cell and synapse parameters have been chosen to be in
a similar range as seen in experimental studies [see Table 3 in the
study by Rauch et al. (2003)] to allow for comparison between
future modeling and experimental studies. The model is in princi-
ple not dependent on the cell parameters and different parameters
would not change the fundamental outcome, but returning of
other parameters like connection strengths would be necessary.
The initial values of the membrane potentials are drawn from
a normal distribution around Vinit = −65 mV with a standard
deviation of 10 mV.

2.2. TUNING PROPERTIES
The model is inspired by retinotopic cortical areas like areas V1 or
V5/MT in primates. In our model, each neuron has four tuning
properties: (xi, yi, ui, vi) parameterizing the center of the spatial
receptive field of neuron i at position �xi = (xi, yi) and its preferred
direction �vi = (ui, vi). The width of this receptive field defines the
tuning selectivity of neurons and is parameterized by βX and βV ,
respectively for space (x and y) and velocity (u and v). The spa-
tial receptive fields are arranged in a hexagonal grid to optimally
cover the input space which is set to span a 1 × 1 area in arbitrary
units. As we will implement a network size of approximately 104

neurons, this will in practice correspond to a spatial scale of the
order of millimeters.Velocities should therefore be in the range of
m s−1.

In order to have receptive fields for all possible directions
(up to a certain maximum velocity of approximately |�vmax| =
4.0 ms−1) at all positions, the midpoint of each of the 100 hexag-
onal grid cells contains neurons with ten different preferred
velocities for ten different angles, hence 100 different preferred
directions per hexagonal grid cell. The lengths of preferred direc-
tions are distributed according to a distribution favoring low
velocities (Weiss et al., 2002) with a logarithmic scale for the
speed according to Weber’s law (Stocker and Simoncelli, 2006).
In order to avoid boundary effects, both spatial dimensions are
closed and continuous. This leads to a horn torus as input space,
i.e., if a stimulus leaves the 1 × 1 space it reappears on the oppo-
site side (so-called “pac-man topology”). This topology holds also
for the network connectivity, e.g., connections reaching beyond
the virtual border at xtarget = 1 will be wrapped around. After all
tuning properties are set, they get dispersed to account for natural
variability (Paik and Ringach, 2011).

2.3. INPUT STIMULUS
A classical way of studying motion extrapolation is by pre-
senting a moving target that travels behind an occluder for a
short period of time. A seminal study used timing estimation
by asking participants to make a button press response at the

time they judge the occluded target to have reached a partic-
ular point (Rosenbaum, 1975). Motion extrapolation can be
carried out for lateral motion with the target moving across the
fronto-parallel plane, or for approaching motion, when the object
moves toward the observer (DeLucia, 2004). Herein, we investi-
gate visual, lateral motion extrapolation only. For simplicity, we
study the network’s response to a moving dot stimulus and the
network’s ability to predict the trajectory of the dot when it dis-
appears behind an obstacle producing a blank gap in the input
signal.

From the definition of the tuning properties of a neuron i, we
may model the response to a moving dot as an inhomogeneous
Poisson process with a parametrically defined envelope. Indeed,
we will use the following input stimulus Li(t) as the envelope for a
Poisson process with a maximum of 5 kHz (when Li(t) reaches 1)
and a time step of 0.1 ms:

Li(t) = exp

(
−‖�xstim(t) − �xi‖2

2β2
X

− ‖�vstim − �vi‖2

2β2
V

)
(2)

where �xi is the neuron’s receptive field central position, �vi the
neuron’s preferred direction, �xstim(t), (�vstim) is the position (direc-
tion) of the moving dot (see Figure 1). As the trajectory of the dot
is rectilinear and constant, we have

�xstim(t) = �xstim(0) + �vstim · t (3)

The resulting inhomogeneous Poisson spike train is connected
to the respective neurons via one excitatory synapse of strength
winput = 5 nS. This formalization allows to study for the different
roles of theses parameters. In particular, the tuning width may
play an important role as it is known that in low level visual areas
(such as the retina), receptive fields are small (position is accurate,
motion is imprecise) while in higher level areas motion is more
finely represented, while position is less precise (as the receptive
fields’ size increase). In the rest, all neurons have the same tuning
width defined by βX = 0.15 and βV = 0.15s−1. The βX, V values
have been set so that a reasonable part of the network receives
sufficient input from the moving dot stimulus. Increasing βX, V

would make the dot appear broader, whereas smaller βX, V would
make a smaller fraction of the network respond to the stimulus.
Changes in the βX, V parameters would not change the working
concept of the model, but would require a retuning of connec-
tivity parameters like number of connections and connection
strengths.

For simplicity, we studied only networks in which excitatory
neurons receive input because inhibitory neurons primarily pro-
vide a normalization mechanism in our model, even though this
might not reflect real cortical circuits (Frégnac et al., 2003). All
neurons receive additional noise in form of Poisson spike trains
with a rate of fnoise = 2 kHz injected via excitatory and inhibitory
synapses with a weight of wnoise = 4 nS to simulate the input from
external networks. For all simulations of this paper, the network
was stimulated with a dot moving at a speed of �vstim = 0.5 s−1

from left to right (and an initial position defined by �xstim(t=0) =
(0.1, 0.5)). Crucially, during the blank phase, the stimulus vec-
tor in the network was permuted randomly at each time step
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among the whole excitatory population, so that the selectivity of
the input was completely lost while keeping a similar input aver-
age frequency as compared to phases when stimulus is active.As
the input vector is shuffled the network does not receive a coher-
ent continuous input signal. During the blank phase, cells that
are well-tuned to the stimulus receive input spike trains with a
larger inter-spike-interval leading to a decrease in the effective
input. This is due to the integration of post-synaptic potentials
on the membrane in the context of LIF neurons. Compared to an
empty input vector, this input vector shuffling during the blank
phase elevates the mean membrane potential of the population
slightly which can help the network to fill the blank phases with
meaningful input.

2.4. NETWORK CONNECTIVITY
The network study consists of an excitatory population with
Nexc = 13000 neurons and an inhibitory population with Ninh =
2520 neurons (that is, with a ratio of 16.2% inhibitory cells
over the whole population). Both populations are mutually and
recurrently connected in one of the following ways which will
be explained in the next sections: randomly, isotropically or
anisotropically.

2.4.1. Random and isotropic connectivities
Connections within and between populations can be set up in an
isotropic manner that does not depend on the source or target
neuron’s tuning properties. When neurons are connected in this
way, connection probabilities are computed according to:

pij = pmax · exp

(
−

d2
ij

2 · σ2
X

)
(4)

where pmax is a normalizing factor and dij = ∥∥�xi − �xj

∥∥ repre-
sents the distance (in visual space) between both neurons. pmax

is set so that the total number of connections between two pop-
ulations drawn isotropically is equal to an overall probability
of pk, l, (k, l) ∈ {E, I}. The connection probabilities utilized are:
pEE = 0.5%, pEI = 2%, pIE = 2%, pII = 1%.

Weights are drawn from a normal distribution with mean μiso
w

and standard deviation σiso
w = 0.2 · μiso

w . The value of μiso
w is set so

that the expected sum of incoming weights equals a certain target
value wkl specific to the type of the source and target population
(k, l ∈ {E, I}): wEE = 0.3 μS, wEI = 1.8 μS, wIE = 0.8 μS, wII =
0.15 μS (if not stated differently).

Delays are drawn from a normal distribution with a mean
value μiso

δ = 3 ms and a standard deviation of σiso
δ = 1 ms. Self-

connections have been discarded. A completely random connec-
tivity may be then achieved by setting σX to a sufficiently big value
(relative to the scale of the spatial period). This results in a flat,
uniform probability of connection over the whole population.

2.4.2. Anisotropic, motion-based prediction connectivity
Inspired by motion-based prediction (Perrinet and Masson,
2012), we may define a connectivity by wiring neurons that
are linked by a smooth trajectory with a higher probability.
Connectivity will then be specifically anisotropic as it provides

a mechanism for motion-based prediction by diffusing motion
information across the network in a forward, asymmetric man-
ner. Specifically, we will take advantage of the latency that exists
between neurons in the same cortical area and use that parame-
ter to connect cells matching a smooth trajectory. The motivation
underlying this formula is based on the idea that smooth trajec-
tories are more likely seen in natural scenes and are promoted
by the network connectivity. If the target position is situated at
the position where the source neuron predicts the stimulus to be
in a certain time τij and if the target neuron predicts the stim-
ulus to move in a similar direction �vj as the preferred direction
of the source neuron �vi, the source neuron connects with a high
probability to the target neuron.

As a consequence, the connection probability is computed
from the tuning properties of the source neuron i and target neu-
ron j according to the sampling of the prior defined in Perrinet
and Masson (2012):

pi,j = pmax · exp

⎛
⎜⎝−

∥∥∥�x∗
i, j − �xj

∥∥∥2

2 · σ2
X

⎞
⎟⎠ · exp

(
−
∥∥�vi − �vj

∥∥2

2 · σ2
V

)
(5)

�x∗
i, j = �xi + �vi · τi, j (6)

τij =
∥∥�xi − �xj

∥∥∥∥�vi

∥∥ (7)

In this formulation, �x∗
i, j is the position predicted for a motion

that would leave the source neuron’s receptive field (therefore
from position �xi and with velocity �vi) after a latency τij. Then,
parameter τij corresponds to the expected latency knowing the
respective position and velocity of source and target neurons. In
Equation (5), the parameters σX and σV determine the strength of
the tuning properties of motion-based prediction. Unless stated
otherwise, we will use σX = 0.1 and σV = 0.1−1 (see Figure 2).
Note that the precision of prediction in the velocity domain (that
is σV ) determines a scaling factor for the degree of anisotropy: the
lower σV is, the more the outgoing connections of a neuron are
aligned with the preferred direction of the source neuron. Note
also that only σV includes the predictive prior on velocity and
that we may retrieve an isotropic connectivity by setting σV to
a sufficiently high value.

The probabilities are then sorted and each target neuron
receives input from 0.5% of the source neurons that have the
highest connection probability. Those 0.5% highest probabilities
are converted to connection weights so that the sum of incom-
ing weights per neuron equals a certain target value wkl specific to
the type of the source and target population (k, l ∈ {E, I}): wEE =
0.20 μS (for motion-based connectivity and wEE = 0.25 μS for
direction-based connectivity), wEI = 1.8 μS, wIE = 0.8 μS, wII =
0.15 μS (these values are only for the example networks and
might differ depending on the exact implementation and require
an adjustment for different network sizes).This means the con-
nectivity becomes deterministic (based on the tuning properties
of the source and target cell) and the term probability refers only
to the overall selection of source cells in the network.
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FIGURE 2 | From aniso- to iso-tropic connectivities. We propose that
the local connectivity pattern of lateral connections play a crucial role in
solving the motion-extrapolation problem. In order to show that, we
compared different connectivity patterns in response to the blanked input
(see Figure 1). In the three panels, we show the incoming and outgoing
connections for the same single neuron (as marked by the yellow
diamond) for different connection rules. The preferred direction of that
neuron is shown by the yellow arrow. Cells targeted by the yellow cell are
marked with black circles and cells projecting to the yellow cell are marked
with red triangles. The relative weights of incoming (outgoing) connections
are indicated by the size of the source (target) neuron, respectively. The
preferred direction of source and target neurons is shown by solid arrows.
Connection delays are color coded. Left: Motion-based prediction
anisotropic connectivity. Inspired by previous work on motion-based
prediction (Perrinet and Masson, 2012), we propose a first pattern of
connectivity based on connecting a source neuron to a target neuron if and
only if the position and velocity of the target is compatible with a smooth
trajectory that would originate from the source neuron. The strength of this

prediction is parameterized by the width of the lateral tuning selectivity
and here we show the prototypical pattern for σX = 0.3 and σV = 0.3 ms−1

(as used for the simulations). Middle: Direction-dependent connectivity. To
create a more realistic connectivity pattern, we used the same rule but
independently of speed (i.e., the modulus of velocity), but only as a
function of the direction of motion. The target neuron is connected if and
only if its direction is close to the source’s direction and if its position is
predicted to be in the direction given by the source neuron. Additionally, to
account for physiological constraints on lateral interaction, only connections
within a radius of rConn = 0.10 or latencies shorter than 100 ms are
allowed. This leads to a more local connectivity and smaller connection
delays compared to the previous connectivity. We show here the resulting
connectivity pattern for σX = 0.3 and σV = 0.3 ms−1 with the
motion-dependent connectivity and σX = 1.0 and σV = 1.0 ms−1 with the
direction-dependent connectivity. Right: An isotropic connectivity pattern
was chosen as a control. There is no prediction in velocity space, but we
still predict that activity should diffuse locally, as the connection probability
drops with the distance between cells.

2.4.3. Anisotropic, direction-based prediction connectivity
However, if we use the previous equation to connect cells
[Equation (5)], and scale our network realistically, it appears that
latencies depend on the velocity coded by the cells, and in turn,
this leads to unrealistically high delay values with the range of
velocities we used. As a consequence, we defined another way
of setting up the connectivity which only take into account the
angle between source and target cells and the angle between the
directions coded for by the source and target cells. It is therefore
independent of the preferred speed (modulus of velocity) of the
neurons and on the latency used to connect the cells.

We use von Mises probability distribution functions to define
the tuning in the range of all directions:

pi,j = pmax · exp

(
cos

(�xj − �xi, �vi
)

σ2
X

)
· exp

(
cos

(�vi, �vj
)

σ2
V

)
(8)

The first term guarantees that information spreads in the direc-
tion that is preferred by the source cell (and where σX gives
approximately the width of tuning in radians). The second term
ensures that information is passed only to cells that code for
motion moving in a similar direction as preferred by the source
cell (and where similarly σV gives approximately the tuning width
in radians). Note that in position-velocity space, the probability
of connection is maximal in the direction given by the pre-
ferred velocity of the source cell and centered on the position

of that cell’s receptive field. The density therefore defines a cone
around this half-line, defined by widths σX and σV [see middle
panel in Figure 2]. Note that this formulation may be derived
from the formulation of motion-based prediction by lowering
the strength of prediction on the radial component of velocity.
As such, this connection probability gives a similar mechanism
for promoting smooth trajectory, and provides the diffusion of
motion information in the direction detected by the network. A
comparison of these two network connectivities is visualized in
Figure 2.

Whereas encoding and decoding of direction information is
now largely understood in various neuronal systems, how the
human brain accurately represents speed information remains
largely unknown. Speed tuned neurons have been identified in
several early cortical visual areas in monkeys. However, how
such speed tuning emerges is not yet understood. A working
hypothesis is that speed tuned neurons non-linearly combine
motion information extracted at different spatial and tempo-
ral scales, taking advantage of the statistical spatiotemporal
properties of natural scenes. Furthermore, the population code
underlying perceived speed is not yet elucidated and there-
fore we are still far from understanding how speed information
is decoded to drive and control motor responses or percep-
tual judgments. As a consequence, such a connectivity profile
will serve as a further control to test if restraining the predic-
tion to direction is sufficient to solve the motion extrapolation
problem.
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2.5. CHOICE OF PARAMETERS
The number of receptive fields has been set so that the four-
dimensional space of tuning properties is covered with a reason-
able density of cells. Decreasing the number of receptive fields
would decrease the number of cells in the network and would
impede the diffusion of information between cells. This is because
the weight of connections is sensitive to the distribution of cells in
the tuning property space, and a over-sparsely populated tuning
property space can lead to unwanted effects for activity spread in
the network. The parameters describing receptive field sizes, βX

and βV , determine the distribution of the input signal in the net-
work. They have been chosen so that a small part of the network
receives a sufficient amount of excitation that brings this small
part above the spike threshold and initiates the spread of activity,
and by that, the diffusion of motion-information in the network.
Increasing βX, V would make the stimulus appear fuzzier and,
consequently the extrapolation task more difficult. A decrease
of βX, V would make the stimulus appear sharper. But it would
not necessarily make the task easier since the source of activity
would be smaller and the seed for the diffusion of information
could possibly be too small to propagate through the network,
depending on the network connectivity parameters. The param-
eters determining the network connectivity pk, l and wk, l, (k, l) ∈
{E, I} were chosen to be in a range comparable to physiologi-
cal values for large networks. Especially the connection weights
needed to be fine tuned to solve the motion-extrapolation task.
Redistributing the tuning properties could easily lead to insta-
bilities, i.e., that the trajectory could not be extrapolated, and
too high weights could lead to an explosion of activity in the
network.

2.6. PREDICTION READOUT
A crucial issue when trying to map a Bayesian inference algorithm
to a network of spiking neurons is to understand how proba-
bility can be expressed in terms of neural activity. Herein, we
applied a simple vector averaging method to infer the prediction
about stimulus position and direction from the activity of the
excitatory population. Indeed such decoding scheme may be jus-
tified as a simple implementation of probabilistic codes as done
by Beck et al. (2008). Their approach requires several assump-
tions which are not guaranteed in our model: First of all, neurons
are assumed to have Poisson-like spiking statistics, which is obvi-
ously not true in our model since activity is strongly driven by
the stimulus and hence neuronal activity is not Poisson-like (see
3). Secondly, they assume that network activity is uncorrelated
on timescales of 50 ms, which is likewise not realistic for our
model. Furthermore, their approach works on probability dis-
tributions gained over several trials, which could principally be
done with our model, but it is computationally more expensive
than the single-trial vector-averaging method described above.
However, this provided a decoding approach which seemed to
robustly represent the activity in the network.

In particular, we used a similar formulation as the decoding
framework proposed for neurons in area MT (Jazayeri and
Movshon, 2006). Indeed, the definition of our model fits well
to their implementation. In both models, the activity of sensory
neurons is pooled in a simple additive feed-forward architecture,

In contrast to their model, we extend the application beyond the
angle of motion and apply the readout framework to position
and direction. More precisely, the tuning properties are in the
exponential family and tile uniformly the position-velocity space.
Thanks to the definition of the tuning selectivity of the neurons
in the network, the position and velocity corresponding to the
Maximum Likelihood estimation corresponds to the average
over all neurons of each central tuning parameter weighted by
the activity of the neuron (independently of βX and βV as they
are uniform for all neurons). To define a continuous activity
at each time bin a weight pi(t) is defined for each excitatory
neuron i based on the number of output spikes fired during a
time bin t:

pi = ni(t)
/Nexc∑

i

ni(t) (9)

where ni(t) is the number of spikes fired by neuron i. The time bin
size was set to 50 ms, but it could be chosen differently without
qualitative changes.

Such decoding schemes are classically implemented on
unbounded variables. However, we defined space on a torus in
order to avoid edge effects. Hence, the network average must be
computed for circular quantities (Mardia and Jupp, 2009): The
idea behind Equation 10 is that in order to compute the mean of a
circular quantity, the position and direction first need to be trans-
formed into an angle, which is then projected to the 2D unit circle
where the arithmetic mean is computed. After that, the angle that
the mean position forms is transformed back from an angle to
space. For positions, this takes the form:

xnet
pred(t) = 1 + 1

2π
arctan2

(
Nexc∑

i

pi(t) sin (2πxi − π),

Nexc∑
i

pi(t) cos (2πxi − π)

)
(10)

where xi is the center of the spatial receptive field of neuron i (the
same formula is applied to compute ypred(t)). The subtraction of
pi in the sin and cos functions is necessary to map the interval
of position which is between 0 and 1 to the interval of (−π,π)

required for the projection of position on the unit circle.
Similarly, for reading our the direction of the stimulus

predicted by the network:

vnet
pred(t) = 1

π
arctan2

(
Nexc∑

i

pi(t) sin (πvi),

Nexc∑
i

pi(t) cos (πvi)

)

(11)

The difference between Equations 10 and 11 lies in the fact that
positions are bound to be between 0 and 1, whereas directions
can be negative and larger than 1 or −1, which changes the trans-
formation to and from angles for position and direction. Taken
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together, this gives an easy decoding scheme from the neural
activity to a probabilistic read-out.

3. RESULTS
3.1. ANISOTROPIC DIFFUSION TRANSPORTS INFORMATION DURING

THE BLANK
Recurrent excitatory connectivity is a candidate for providing
mechanisms for motion-based prediction. In order to prove the
functionality of our approach, we show results for single exam-
ple networks of three different connectivity types applied to the
recurrent excitatory population: isotropic, anisotropic motion-
based (speed tuning dependent) and anisotropic direction-based
(speed tuning independent). For simplicity, the other connectivi-
ties are set up according to the isotropic scheme. Networks using
the anisotropic scheme for one or more of the other pathways
(E − I, I − E, I − I) could be tuned to perform similarly (not
shown).

The connectivity in our model is mainly controlled by two
parameters: the sum of incoming weights and the number of
connections received by a cell. The sum of incoming weights
for excitatory-excitatory connections have been tuned so that the
activity initiated by the stimulus is strong enough to propagate
through the network when the stimulus is turned off after 400 ms
of input driven activation. Weights from the excitatory to the
inhibitory population have been chosen so that inhibitory neu-
rons exhibit a reasonable level of average activity of approximately
5 Hz when the stimulus is driving the excitatory population. The
role of inhibitory to excitatory connections is to balance the
network activity when the stimulus is active after the blank. In
contrast to balanced random networks, the inhibitory to excita-
tory weights could not be set to high values that compensate for
the higher number of excitatory neurons as in previous mod-
els [e.g., (Brunel, 2000; Morrison et al., 2007)] because strong
isotropic inhibitory feedback would silence excitatory neurons in
the vicinity and impede the propagation of motion information
during the blanking period. The interplay between the excita-
tory and inhibitory populations is crucial for balancing network
activity, but more importantly, for suppressing activity that cre-
ates false predictions about the target trajectory. All connectivity
parameters were tuned so that the spread of activity within the
excitatory population is strong enough to fill a realistically long
blanking period, where the average duration of a single blink is
between 100 and 400 ms (Schiffman, 2001).

Before stimulus onset, the network input consists of back-
ground noise that persistently drives the network at low firing
rates. The stimulus spike trains are dispersed over the whole exci-
tatory population (see Figure 3). As this input is not coherent,
the type of connectivity has no effect on the activity before onset.
The stimulus activates the network between 200 and 600 ms of
the simulation before another blank phase of 200 ms in which the
input is equal to the phase before stimulus onset. Neurons that
are well tuned to the stimulus fire at very high rates (temporar-
ily up to 250 Hz) when the stimulus is present. This is due to the
strong input stimulus and the amplification by the recurrent exci-
tation. The average firing rate of neurons being active at least once
during the simulation grows to up to 20 Hz when the stimulus is
persistently present.

FIGURE 3 | Rasterplot of input and output spikes. The raster plot from
excitatory neurons is ordered according to their position. Each input spike is
a blue dot and each output spike is a black dot. While input is scattered
during blanking periods (Figure 1), the network output shows shows some
tuned activity during the blank (compare with the activity before
visual stimulation). To decode such patterns of activity we used a
maximum-likelihood estimation technique based on the tuning curve of the
neurons.

During the blank phase the global network activity drops
rapidly to a low average rate of approximately 2 Hz and those neu-
rons that convey the remaining motion information fire approx-
imately 5–15 spikes during the blanking period, as individual
output rates remain elevated to levels of 25–75 Hz. Due to the
anisotropic connectivity the activity triggered by the stimulus
propagates through the network in the direction that was initiated
by the target (see Figures 3, 4).

We observed that there needs to be a balance between stim-
ulus induced excitation and the recurrent excitation: When
recurrent excitation is too strong, the internal neural dynam-
ics dominate over the activity triggered by the stimulus and it
is likely that false tracking behavior occurs, i.e., network activ-
ity spreads too fast in the direction of the stimulus and the
predicted trajectory gets ahead of the target. When recurrent exci-
tation is not strong enough, the network activity fails to fill the
blank by its own dynamics like in the network with isotropic
connectivity.

The connectivity parameters σX and σV need to be chosen dif-
ferently for the two anisotropic networks, because their role in
determining the connection probability between cells is slightly
different according to Equations 5 and 8. For motion-based (MB)
connectivity we used σMB

X, V = 1, and for direction-based (DB)

σDB
X, V = 0.5. When σX < σV two main effects could be observed.

As the network connectivity is more specific in the spatial domain,
the prediction performance in the target direction tends to be
lower and in the target position gets more precise. But the pre-
diction can get ahead of the stimulus because excitation spreads
to fast along the predicted trajectory. In the opposite case, when
σV < σX , the prediction of target direction gets more precise.
Since the connectivity is spatially more distributed, the network
is less likely to fill the blank because excitation is diluted across
space.
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FIGURE 4 | Probabilistic population decoding and the resolution of the

motion extrapolation problem using anisotropic connectivity. The
computed prediction confidence resulting from our simulations is shown
using the motion-based anisotropic connectivity pattern with respect to time.
The three vertical dashed lines correspond to: the onset of the stimulus, the
onset of the blank and finally the reappearance of the stimulus, respectively.
The cells’ prediction confidence is defined in Equation 9 and have been

sorted and binned according to their tuning properties. The accumulated
confidence within each time bin is color coded. Top: left (right): We show the
prediction confidence of movement direction u = vx (v = vy ). Bottom: left
(right): Prediction confidence about x and y position, respectively. While
information is distributed before stimulation and quickly converges during
stimulation, it is predicted during the blank: the motion extrapolation is solved
and information is very quickly recovered at the reappearance of the stimulus.

3.2. READING-OUT THE POPULATION RESPONSE
Jazayeri and Movshon (2006) presented a framework for a
generic representation of likelihoods of sensory stimuli by
neural activity. Here, we used a similar approach (see 2.6)
which allows us to transform the binary spiking activity
into a continuous valued representation of probability about
the target motion. By these means, the activity of individ-
ual neurons can be interpreted as time-continuous confidence
measure.

The phase before stimulus onset is like a prior probability. It
is dominated by noisy activity that seems uniform and does not
converge into a coherent probability distribution (see Figure 4).
At stimulus onset, the network activity increases instantaneously
and the probability distribution changes into a meaningful rep-
resentation of motion information. During the blank period, the
network activity drops rapidly (sometimes more gradually) and
the probability distribution becomes more noisy, but changes
less dramatically. Hence, despite the overall decrease in activity,
information is not lost when the stimulus disappears. Instead,
activity continues to propagate through the network, driven by
the anisotropic connectivity. When the stimulus reappears the
network activity grows again and continues to grow up to an

average rate of 20 Hz until it is counterbalanced by the inhibitory
feedback.

3.3. MOTION-BASED PREDICTIVE ANISOTROPIC DIFFUSION SOLVES
MOTION EXTRAPOLATION

In order to get a global estimation of the motion information
we combine the probability estimates of individual neurons as
described earlier (see 2.6) by a linear weighting of their time-
varying activity. This provides a single valued, time-continuous
prediction, i.e., readout signal of target position and direction.
We will now compare the maximum confidence response for the
three different connectivities to the exact same input in order to
investigate the effect of the network connectivity on the readout
signal.

Before stimulus onset the readout signal of all three networks
follows the same noisy time course (see Figure 5). After stimulus
onset and after the blank, all three estimations coincide with the
actual target position and are very close to the target direction.
This shows that our simple linear decoding approach is sufficient
to translate the network activity into a meaningful readout signal.

The difference between the three networks can be seen dur-
ing the blank phase. During this period, the readout signal of
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FIGURE 5 | Comparison of prediction performance for the different

connectivities. The performance of direction (top) and position
(bottom) prediction as decoded from the network activity is shown
(see Equations 10, 11). First and second columns show the horizontal
and vertical components, respectively, while the last column shows
the mean squared error of the predicted position with respect to the
known position of the target. The color of the lines correspond to

the different connectivities presented in Figure 2: motion-based
prediction (solid blue), direction-dependent prediction (dashed green),
isotropic (dash-dotted red). While an isotropic connectivity clearly fails
to predict the fate of the input during the blank, we show here
that the anisotropic connectivities may efficiently solve the motion
extrapolation problem, even with an approximate solution such as the
direction-based prediction.

the network with the isotropic connectivity returns to the noisy
time course, just like before the stimulus onset. In contrast, read-
out from the networks with anisotropic connectivity continues
to give a precise estimation of the target position and direction of
motion, as can be seen from the low prediction error (see the right
most columns of Figure 5). The readout from the direction-based
connectivity is less accurate than the motion-based connectivity,
but it still shows that the direction-based diffusion mechanism
allows for inference of the target position and direction during the
blank phase. Thus, it can solve the motion extrapolation problem.

In some experiments, we observed that direction prediction
appears to be biased toward higher velocities - especially dur-
ing the blank. Improvements to the connectivity rule might
be necessary to gain a “perfect” prediction performance (zero
root-mean-square error). The reason for the drift toward higher
velocities can be seen as an unbalanced distribution of incom-
ing weights. Neurons with higher velocities are more seldom
and hence have less cells with similar tuning properties in their
vicinity. Due to the fact that all cells receive the same sum of
incoming weights, the comparatively few cells that project to cells
with high preferred velocities do this via few, strong connec-
tions, possibly leading to the observed drift and instabilities in
the network dynamics. This could possibly be solved by improv-
ing how probabilities are mapped to connection weights, e.g., by
introducing a non-linearity that prohibits weights above a cer-
tain value. Nevertheless, it was not our objective to present an
optimal ad-hoc connection algorithm that gives perfect predic-
tion performance, but to prove the fact that anisotropic, tuning
property-based connectivity could be an important mechanism
achieving motion-based prediction.

3.4. CONCLUSION
The comparison of the prediction performance of the three dif-
ferent networks shows two main points. Anisotropic connectivity
provides a mechanism for the diffusion of motion information,
which is relevant to predict future trajectories in noisy environ-
ments where the flow of information is interrupted frequently.
Also, our simple approach to read out network activity linearly is
sufficient to solve the given task, and does not require knowledge
about probability distributions gained over many trials.

4. DISCUSSION
4.1. SUMMARY AND COMMENTS
Following our previous study (Perrinet and Masson, 2012), we
have confirmed that anisotropic diffusion of information is a suf-
ficient mechanism to realize motion-based prediction as tested by
the moving-dot blanking experiment. We have studied the role
of different anisotropic and isotropic connectivity patterns and
have shown that network connectivities that take into account
the tuning properties of neurons and prefer smooth trajectories
are more efficient in predicting the trajectory of a disappearing
moving stimulus than isotropic networks. The main contribu-
tion of this study is to show that anisotropic diffusion of motion
information can be implemented in networks of spiking neu-
rons and thus could be a generic mechanism for motion-based
prediction. Furthermore we have presented, to the best of our
knowledge, the first model for motion prediction using spiking
neurons and selective anisotropic connectivity that is inspired by
a probabilistic framework.

The presented model is certainly limited and unrealistic
in many ways. We have intentionally chosen a simple model
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(in terms of neuronal and synaptic features) to focus on the effects
of connectivity patterns and to explore possible future applica-
tions for neuromorphic hardware systems (Schemmel et al., 2010;
Brüderle et al., 2011). One of the main limitations consists of
using long interconnection delays that are necessary to achieve
its main function in the current state of the model. According
to the spatial scale and the conduction delays of cortical net-
works, the connection delays resulting from our model are not
on the same order of magnitude. Assuming that the concept of
anisotropic diffusion of information operates in motion process-
ing networks, neuronal mechanisms other than such long delays
would be required to achieve the desired predictive function. One
reason for long delays is likely the size of our network and that
we are sub-sampling neurons in comparison to realistic cortical
network sizes. In larger networks it would be sufficient to have
recurrent excitation working on a more local scale and long-range
connectivity would implement the transport of an expectation
signal, possibly in the subthreshold domain. We have successfully
explored one possibility to relieve the need for long delays by con-
straining the connectivity to more local scales, which reduced the
required delays by more than one order of magnitude. Instead
of the axonal delays as employed by our model, dendritic delays,
long synaptic time constants (provided e.g., NMDA or GABA-
B currents), or a combination of those three mechanisms could
be used to implement the same principle. In summary, larger
network sizes and longer synaptic time constants would likely
help to realize our approach with shorter, more realistic connec-
tion delays. The fact that both models with longer and shorter
delays show very similar performance could be a hint for the gen-
erality of the idea of motion information being transported by
anisotropic connectivity.

4.2. CONTEXT OF EXISTING MODELS
Based on early ideas by Hubel and Wiesel (1962), models employ-
ing anisotropic connectivity have been used to describe orien-
tation selectivity (Finette et al., 1978) and its general use for
visual information processing of static images with non-spiking
units (Rybak et al., 1991). Models that are more similar to ours in
motion coherence and the representation of motion trajectories
[e.g., (Burgi et al., 2000; Jancke and Erlhagen, 2010)] do not use
anisotropy in setting up the network connectivity. Other contin-
uous recurrent network models have been used for various tasks
like spatial working memory (Compte et al., 2000) and categori-
cal discrimination with veridical judgment of motion (Liu and
Wang, 2008). Our model works on a different level, but com-
bines the functional features of previous models in the sense that
motion trajectories are represented in a spiking and probabilistic
way. Prediction signals are transported through recurrent connec-
tivity, but none of the earlier models has shown that anisotropy
could be a key element for this.

The dynamics of our network show some similarity to syn-
fire chains (Prut et al., 1998) and we believe a model with similar
dynamics and functionality could be implemented by attractor
networks making use of a columnar organization (Lundqvist
et al., 2006) that is prominent in motion processing areas like
are V5/MT (Albright et al., 1984). Work by Bressloff (2001) has
shown that weak heterogeneities in excitable neural media can

lead to wave propagation failure. We have shown that in prin-
ciple, it is favorable to have heterogeneity (i.e., the anisotropy
in connectivity) to promote the spread of activity in a mean-
ingful way. Still, there is much experimental evidence showing
that cortical networks can spread activity in the form of traveling
waves (Sato et al., 2012), and it is believed that long-range hor-
izontal connections might be one of the underlying mechanism.
It is arguable how well the conclusions of the Wilson-Cowan for-
malism used by Rybak et al. (1991); Bressloff (2001); Jancke and
Erlhagen (2010) can be translated into the context of spiking
networks, especially if the neuronal and synaptic machinery get
more complex. We leave it for future analysis to determine if our
network model could show behaviors similar to ones observed
in experiments [for a review on traveling waves see Sato et al.
(2012)].

We applied a simple vector averaging strategy to decode
the position and motion direction from the network’s response
(Georgopoulos et al., 1986), but the optimal way of decoding is
up to debate. Several studies (Priebe and Lisberger, 2004; Pack
et al., 2005) suggest a vector averaging approach with a bias
term to estimate speed, but more recent experiments suggest
that “perceived speed is not based on a labeled-line interpreta-
tion of MT cells” (Krekelberg et al., 2006). Alternative decoding
approaches involve a winner-take-all mechanism (Liu and Wang,
2008) or probabilistic codes (Beck et al., 2008). We may use an
existing method to decode the optimal estimate from the pop-
ulation of neurons as is done in real neural data (Jazayeri and
Movshon, 2006), though our goal here was to show in a simple
way that anisotropic and selective connectivity could be of great
importance for motion prediction.

Based on the results of our model, we predict that the con-
nectivity in higher cortical motion-processing areas like MT or
MST is not isotropic, but that effective connectivity between cells
depends on their tuning properties. A sign of this anisotropic,
tuning-property based connectivity could possibly be seen in
future experiments similar to those in Guo et al. (2007) in the
form of an anticipatory signal in cells that “expect” to receive
stimulus input via the recurrent network connections.

4.3. OUTLOOK AND FUTURE WORK
After having shown a proof-of-concept for the idea that motion-
based prediction can be achieved through anisotropic connectiv-
ity, many problems could be explored by the presented frame-
work. One of the most urgent challenges in our view is the
question how the recurrent connectivity can develop in a self-
organized and robust manner. In order to integrate our model
into the visual hierarchy, we need to understand how the tun-
ing properties introduced in our model could be constructed
through either feed-forward connections from lower cortical
areas, through recurrent mechanisms that shape the desired prop-
erties, or both. Similarly important is the question of how a
selective connectivity involving the inhibitory population influ-
ences the effective receptive field sizes along with the perfor-
mance and stability of the presented framework. Another future
challenge future is to use our probabilistic framework of spik-
ing neurons for more realistic input and toward real-world
applications.

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 112 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kaplan et al. Motion-based prediction in a spiking neural network

ACKNOWLEDGMENTS
This work is supported by projects FACETS-ITN (EU funding,
grant number 237955) and “BrainScaleS” (EU funding, grant
number FP7-269921). The simulations were performed on
resources provided by the Swedish National Infrastructure
for Computing (SNIC) at PDC Centre for High Performance

Computing (PDC-HPC) at KTH, Stockholm. Code to
reproduce figures and supplementary material are available
on github and on the corresponding author’s website at
http://invibe.net/LaurentPerrinet/Publications/Kaplan13. The
authors thank the reviewers for the feedback and Phil Tully for
proofreading.

REFERENCES
Adams, R. A., Perrinet, L. U., and

Friston, K. (2012). Smooth pursuit
and visual occlusion: active infer-
ence and oculomotor control in
schizophrenia. PLoS ONE 7:e47502.
doi: 10.1371/journal.pone.0047502

Albright, T. D., Desimone, R., and
Gross, C. G. (1984). Columnar
organization of directionally selec-
tive cells in visual area MT of the
macaque. J. Neurophysiol. 51, 16–31.

Allman, J., Kaas, J., and Lane, R. (1973).
The middle temporal visual area
(MT) in the bushbaby,Galago sene-
galensis. Brain Res. 57, 197–202. doi:
10.1016/0006-8993(73)90576-3

Assad, J. A., and Maunsell, J. H. R.
(1995). Neuronal correlates of
inferred motion in primate pos-
terior parietal cortex. Nature 373,
518–521. doi: 10.1038/373518a0

Baldo, M. V. C., and Caticha, N.
(2005). Computational neuro-
biology of the flash-lag effect.
Vision Res. 45, 2620–2630. doi:
10.1016/j.visres.2005.04.014

Beck, J. M., Ma, W. J., Kiani, R., Hanks,
T., Churchland, A. K., Roitman, J.,
et al. (2008). Probabilistic popu-
lation codes for bayesian decision
making. Neuron 60, 1142–1152. doi:
10.1016/j.neuron.2008.09.021

Bennett, S. J., and Barnes, G. R.
(2003). Human ocular pursuit
during the transient disap-
pearance of a visual target. J.
Neurophysiol. 90, 2504–2520. doi:
10.1152/jn.01145.2002

Berry, M. J., Brivanlou, I. H., Jordan,
T. A., and Meister, M. (1999).
Anticipation of moving stimuli by
the retina. Nature 398, 334–338. doi:
10.1038/18678

Bogadhi, A. R., Montagnini, A., and
Masson, G. S. (2011). Interaction
between retinal and extra retinal sig-
nals in dynamic motion integration
for smooth pursuit. J. Vis. 11:533.
doi: 10.1167/11.11.533

Bosking, W. H., Zhang, Y., Schofield,
B., and Fitzpatrick, D. (1997).
Orientation selectivity and the
arrangement of horizontal connec-
tions in tree shrew striate cortex. J.
Neurosci. 17, 2112–2127.

Bressloff, P. C. (2001). Traveling fronts
and wave propagation failure in an
inhomogeneous neural network.

Physica D 155, 83–100. doi:
10.1016/S0167-2789(01)00266-4

Bressloff, P. C., and Coombes, S.
(1998). Traveling waves in a chain
of Pulse-Coupled oscillators. Phys.
Rev. Lett. 80, 4815–4818. doi:
10.1103/PhysRevLett.80.4815

Bringuier, V., Chavane, F., Glaeser, L.,
and Frégnac, Y. (1999). Horizontal
propagation of visual activity in the
synaptic integration field of area 17
neurons. Science 283, 695–699. doi:
10.1126/science.283.5402.695

Brüderle, D., Petrovici, M., Vogginger,
B., Ehrlich, M., Pfeil, T., Millner,
S., et al. (2011). A comprehensive
workflow for general-purpose neu-
ral modeling with highly config-
urable neuromorphic hardware sys-
tems. Biol. Cybern. 104, 263–296.
doi: 10.1007/s00422-011-0435-9

Brunel, N. (2000). Dynamics of
sparsely connected networks of
excitatory and inhibitory spiking
neurons. J. Comput. Neurosci. 8,
183–208. doi: 10.1023/A:10089253
09027

Burgi, P. Y., Yuille, A. L., and Grzywacz,
N. M. (2000). Probabilistic motion
estimation based on temporal
coherence. Neural Comput. 12,
1839–1867. doi: 10.1162/08997660
0300015169

Chavane, F., Sharon, D., Jancke,
D., Marre, O., Frégnac, Y., and
Grinvald, A. (2011). Lateral spread
of orientation selectivity in v1 is
controlled by intracortical coopera-
tivity. Front. Syst. Neurosci. 5:4. doi:
10.3389/fnsys.2011.00004

Chklovskii, D. B., Schikorski, T., and
Stevens, C. F. (2002). Wiring opti-
mization in cortical circuits. Neuron
34, 341–347. doi: 10.1016/S0896-
6273(02)00679-7

Compte, A., Brunel, N., Goldman-
Rakic, P. S., and Wang, X.-J. (2000).
Synaptic mechanisms and network
dynamics underlying spatial work-
ing memory in a cortical network
model. Cereb. Cortex 10, 910–923.
doi: 10.1093/cercor/10.9.910

Davison, A. P., Bruderle, D., Eppler, J.,
Kremkow, J., Muller, E., Pecevski,
D., et al. (2008). PyNN: a common
interface for neuronal network
simulators. Front. Neuroinformatics
2:11. doi: 10.3389/neuro.11.011.
2008

DeLucia, P. R. (2004). “Chapter 11:
Multiple sources of informa-
tion influence time-to-contact
judgments,” in Do Heuristics
Accommodate Limits in Sensory
and Cognitive Processes? Vol. 135,
(Amsterdam: Elsevier), 243–285.

Dubner, R., and Zeki, S. (1971).
Response properties and receptive
fields of cells in an anatomically
defined region of the superior tem-
poral sulcus in the monkey. Brain
Res. 35, 528–532. doi: 10.1016/0006-
8993(71)90494-X

Finette, S., Harth, E., and Csermely,
T. J. (1978). Anisotropic connectiv-
ity and cooperative phenomena as
a basis for orientation sensitivity in
the visual cortex. Biol. Cybern. 30,
231–240. doi: 10.1007/BF00361044

Frégnac, Y., Monier, C., Chavane, F.,
Baudot, P., and Graham, L. (2003).
Shunting inhibition, a silent step
in visual cortical computation. J.
Physiol. 97, 441–451.

Friston, K. (2009). The free-energy
principle: a rough guide to the
brain? Trends Cogn. Sci. 13,
293–301.

Georgopoulos, A. P., Schwartz, A. B.,
and Kettner, R. E. (1986). Neuronal
population coding of movement
direction. Science 233, 1416–1419.
doi: 10.1126/science.3749885

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (NEural Simulation
Tool). Scholarpedia 2:1430. doi:
10.4249/scholarpedia.1430

Gollisch, T., and Meister, M. (2010).Eye
smarter than scientists believed:
neural computations in circuits of
the retina. Neuron 65, 150–164. doi:
10.1016/j.neuron.2009.12.009

Guo, K., Robertson, R. G., Pulgarin,
M., Nevado, A., Panzeri, S., Thiele,
A., et al. (2007). Spatio-temporal
prediction and inference by v1 neu-
rons: spatio-temporal integration in
v1. Eur. J. Neurosci. 26, 1045–1054.
doi: 10.1111/j.1460-9568.2007.
05712.x

Hedges, J. H., Stocker, A. A., and
Simoncelli, E. P. (2011). Optimal
inference explains the perceptual
coherence of visual motion stimuli.
J. Vis. 11, 1–16. doi: 10.1167/11.6.14

Hubel, D. H., and Wiesel, T. N. (1962).
Receptive fields, binocular interac-
tion and functional architecture in

the cat’s visual cortex. J. Physiol.
160:106.

Hunter, J. D. (2007). Matplotlib:
a 2D graphics environment.
Comput. Sci. Eng. 9, 90–95. doi:
10.1109/MCSE.2007.55

Ilg, U. J. (1997). Slow eye movements.
Prog. Neurobiol. 53, 293–329. doi:
10.1016/S0301-0082(97)00039-7

Ilg, U. J., and Thier, P. P. (2003). Visual
tracking neurons in primate area
MST are activated by Smooth-
Pursuit eye movements of an
"imaginary" target. J. Neurophysiol.
90, 1489–1502. doi: 10.1152/jn.
00272.2003

Jancke, D., and Erlhagen, W. (2010).
“Bridging the gap: a model of com-
mon neural mechanisms underly-
ing the Fröhlich effect, the flash-
lag effect, and the representational
momentum effect,” in Space and
Time in Perception and Action,
chapter 25. (Cambridge:Cambridge
University Press), 422–440.

Jazayeri, M., and Movshon, A. A.
(2006). Optimal representation of
sensory information by neural pop-
ulations. Nat. Neurosci. 9, 690–696.
doi: 10.1038/nn1691

Khoei, M., Masson, G. S., and Perrinet,
L. U. (2013). Motion-based predic-
tion explains the role of tracking
in motion extrapolation. J. Physiol.
(in press).

Krauzlis, R. J. (2004). Recasting the
smooth pursuit eye movement sys-
tem. J. Neurophysiol. 91, 591–603.
doi: 10.1152/jn.00801.2003

Krekelberg, B., van Wezel, R. J. A., and
Albright, T. D. (2006). Interactions
between speed and contrast tun-
ing in the middle temporal area:
implications for the neural code for
speed. J. Neurosci. 26, 8988–8998.
doi: 10.1523/JNEUROSCI.1983-06.
2006

Lim, H., and Choe, Y. (2008).
Extrapolative delay compensa-
tion through facilitating synapses
and its relation to the flash-lag
effect. Neural Netw. 19, 1678–1688.
doi: 10.1109/TNN.2008.2001002

Liu, F., and Wang, X.-J. J. (2008).
A common cortical circuit mecha-
nism for perceptual categorical dis-
crimination and veridical judgment.
PLoS Comput. Biol. 4:e1000253. doi:
10.1371/journal.pcbi.1000253

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 112 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kaplan et al. Motion-based prediction in a spiking neural network

Lundqvist, M., Rehn, M., Djurfeldt, M.,
and Lansner, A. (2006). Attractor
dynamics in a modular network
model of neocortex. Network 17,
253–276. doi: 10.1080/09548980600
774619

Mardia, K. V., and Jupp, P. E. (2009).
Directional Statistics, Vol. 494.
Hoboken, NJ: Wiley.

Maunsell, J. H., and Van Essen, D. C.
(1983). Functional properties of
neurons in middle temporal visual
area of the macaque monkey.
I. Selectivity for stimulus direc-
tion, speed, and orientation. J.
Neurophysiol. 49, 1127–1147.

McNaughton, B. L., Battaglia, F. P.,
Jensen, O., Moser, E. I., and Moser,
M.-B. B. (2006). Path integration
and the neural basis of the ’cognitive
map’. Nat. Rev. Neurosci. 7, 663–678.
doi: 10.1038/nrn1932

Miikkulainen, R., Bednar, J. A.,
Choe, Y., and Sirosh, J. (2005).
Computational Maps in the Visual
Cortex, 1st Edn. Berlin; Heidelberg;
New York: Springer.

Montagnini, A., Mamassian, P.,
Perrinet, L. U., Castet, E., and
Masson, G. S. (2007). Bayesian
modeling of dynamic motion
integration. J. Physiol. 101, 64–77.

Morrison, A., Aertsen, A., and
Diesmann, M. (2007). Spike-
timing-dependent plasticity in
balanced random networks. Neural
Comput. 19, 1437–1467. doi:
10.1162/neco.2007.19.6.1437

Newsome, W. T., Wurtz, R. H., and
Komatsu, H. (1988). Relation of
cortical areas MT and MST to pur-
suit eye movements. II. differenti-
ation of retinal from extraretinal
inputs. J. Neurophysiol. 60, 604–620.

Nijhawan, R. (2008). Visual prediction:
psychophysics and neurophysiology
of compensation for time delays.
Behav. Brain Sci. 31, 179–198. doi:
10.1017/S0140525X08003804

Nowlan, S. J., and Sejnowski, T. J.
(1995). A selection model for
motion processing in area MT

of primates. J. Neurosci. 15,
1195–1214.

Oliphant, T. E. (2007). Python for
scientific computing. Comput. Sci.
Eng. 9, 10–20. doi: 10.1109/MCSE.
2007.58

Pack, C. C., and Born, R. T. (2001).
Temporal dynamics of a neural
solution to the aperture problem
in visual area MT of macaque
brain. Nature 409, 1040–1042. doi:
10.1038/35059085

Pack, C. C., Hunter, J. N., and Born,
R. T. (2005). Contrast dependence
of suppressive influences in corti-
cal area MT of alert macaque. J.
Neurophysiol. 93, 1809–1815. doi:
10.1152/jn.00629.2004

Paik, S.-B., and Ringach, D. L. (2011).
Retinal origin of orientation maps
in visual cortex. Nat. Neurosci. 14,
919–925. doi: 10.1038/nn.2824

Perrinet, L. U., and Masson, G. S.
(2012). Motion-Based prediction is
sufficient to solve the aperture prob-
lem. Neural Comput. 24, 2726–2750.
doi: 10.1162/NECO_a_00332

Priebe, N. J., and Lisberger, S. G.
(2004). Estimating target speed
from the population response
in visual area MT. J. Neurosci.
24, 1907–1916. doi: 10.1523/
JNEUROSCI.4233-03.2004

Prut, Y., Vaadia, E., Bergman, H.,
Haalman, I., Slovin, H., and Abeles,
M. (1998). Spatiotemporal struc-
ture of cortical activity: proper-
ties and behavioral relevance. J.
Neurophysiol. 79, 2857–2874.

Rao, R. P., and Ballard, D. H. (1999).
Predictive coding in the visual cor-
tex: a functional interpretation of
some extra-classical receptive-field
effects. Nat. Neurosci. 2, 79–87. doi:
10.1038/4580

Rauch, A., La Camera, G., Luscher,
H.-R. R., Senn, W., and Fusi, S.
(2003). Neocortical pyramidal
cells respond as integrate-and-
fire neurons to in vivo-like input
currents. J. Neurophysiol. 90,
1598–1612.

Rosenbaum, D. A. (1975). Perception
and extrapolation of velocity and
acceleration. J. Exp. Psychol. Hum.
Percept. Perform. 1, 395–403. doi:
10.1037/0096-1523.1.4.395

Rybak, I. A., Shevtsova, N. A.,
Podladchikova, L. N., and Golovan,
A. V. (1991). A visual cortex domain
model and its use for visual infor-
mation processing. Neural Netw. 4,
3–13. doi: 10.1016/0893-6080(91)
90026-2

Salin, P. A., and Bullier, J. (1995).
Corticocortical connections in the
visual system: structure and func-
tion. Physiol. Rev. 75, 107–154.

Sato, T. K., Nauhaus, I., and Carandini,
M. (2012). Traveling waves in visual
cortex. Neuron 75, 218–229. doi:
10.1016/j.neuron.2012.06.029

Schemmel, J., Bruderle, D., Grubl, A.,
Hock, M., Meier, K., and Millner,
S. (2010). “A wafer-scale neuromor-
phic hardware system for large-scale
neural modeling,” in Proceedings of
2010 IEEE International Symposium
on Circuits and Systems (ISCAS),
(Paris: IEEE), 1947–1950.

Schiffman, H. R. (2001). Sensation and
Perception: An Integrated Approach,
5th Edn. New York, NY: John Wiley
& Sons.

Spratling, M. W. (2010). Predictive
coding as a model of response
properties in cortical area v1.
J. Neurosci. 30, 3531–3543. doi:
10.1523/JNEUROSCI.4911-09.2010

Stocker, A. A., and Simoncelli, E. P.
(2006). Noise characteristics and
prior expectations in human
visual speed perception. Nat.
Neurosci. 9, 578–585. doi: 10.1038/
nn1669

Tlapale, E., Masson, G. S., and
Kornprobst, P. (2010). Modelling
the dynamics of motion integra-
tion with a new luminance-gated
diffusion mechanism. Vision. Res.
50, 1676–1692. doi: 10.1016/j.visres.
2010.05.022

Voges, N., and Perrinet, L. (2012).
Complex dynamics in recurrent

cortical networks based on spa-
tially realistic connectivities. Front.
Comput. Neurosci. 6:41. doi:
10.3389/fncom.2012.00041

Weiss, Y., Simoncelli, E. P., and Adelson,
E. H. (2002). Motion illusions as
optimal percepts. Nat. Neurosci. 5,
598–604. doi: 10.1038/nn0602-858

Wester, J. C., and Contreras, D. (2012).
Columnar interactions determine
horizontal propagation of recur-
rent network activity in neocor-
tex. J. Neurosci. 32, 5454–5471. doi:
10.1523/JNEUROSCI.5006-11.2012

Yuille, A. L., and Grzywacz, N. M.
(1989). A mathematical analysis of
the motion coherence theory. Int.
J. Comput. Vis. 3, 155–175. doi:
10.1007/BF00126430

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 21 April 2013; accepted: 25 July
2013; published online: September
2013.
Citation: Kaplan BA, Lansner A, Masson
GS and Perrinet LU (2013) Anisotropic
connectivity implements motion-based
prediction in a spiking neural network.
Front. Comput. Neurosci. 7:112. doi:
10.3389/fncom.2013.00112
This article was submitted to the
journal Frontiers in Computational
Neuroscience.
Copyright © 2013 Kaplan, Lansner,
Masson and Perrinet. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permit-
ted, provided the original author(s) or
licensor are credited and that the origi-
nal publication in this journal is cited, in
accordance with accepted academic prac-
tice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 112 | 14

17

http://dx.doi.org/10.3389/fncom.2013.00112
http://dx.doi.org/10.3389/fncom.2013.00112
http://dx.doi.org/10.3389/fncom.2013.00112
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Anisotropic connectivity implements motion-based prediction in a spiking neural network
	Introduction
	Problem Statement
	Neuro-Physiological Correlates of Prediction for Motion Extrapolation
	Existing Neuromorphic Models for Prediction
	Our Approach: An Anisotropic Connectivity Pattern Implementing Motion-Based Prediction
	Objectives and Outline

	Methods
	Neuron Parameters
	Tuning Properties
	Input Stimulus
	Network Connectivity
	Random and isotropic connectivities
	Anisotropic, motion-based prediction connectivity
	Anisotropic, direction-based prediction connectivity

	Choice of Parameters
	Prediction Readout

	Results
	Anisotropic Diffusion Transports Information during the Blank
	Reading-Out the Population Response
	Motion-Based Predictive Anisotropic Diffusion Solves Motion Extrapolation
	Conclusion

	Discussion 
	Summary and Comments
	Context of Existing Models
	Outlook and Future Work

	Acknowledgments
	References


