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Abstract 
Astronomical facilities will produce petabytes of observational data in the 2020s.           
Simulated data sets created to plan and interpret the data from these missions will              
match or exceed these volumes. Mining such new petabyte-scale data sets to meet             
planned science goals and to explore discovery space will require astronomers to adopt             
new approaches and to develop new tools. Increasingly complex search criteria,           
necessary for identifying objects of interest within billion-row catalogs, will strain query            
response times. Modern statistical methods will result in data-reduction methods that           
actually increase data volumes. Visualization techniques that have worked well for           
decades will be inadequate in this regime. The current network infrastructure will be             
inadequate for downloading the vast quantities of multiwavelength observational and          
simulated data that should be jointly analyzed. Analysis tools will need to be augmented              
with scalable machine learning algorithms and data analytics. To meet these           
challenges, astronomers will require access to large volumes of high-performance          
storage and high-throughput computational resources, as well as the training to use            
them. ​In this white paper, we advocate for the adequate funding of data centers to               
develop and operate “science platforms”, which will provide storage and          
computing resources for the astronomical community to run analyses near the           
data. Furthermore, these platforms should be connected to enable cross-center          
analysis and processing. ​Providing such resources will build on unrestricted data           
access to realize properly resourced data analysis, thus allowing scientists to explore            
and implement their research ideas regardless of their own institutional facilities. 

1. Key Science Goals & Objectives 
The 2020s will see large increases in data volumes from observational facilities and             
from simulations (​Figure 1​). In the optical and infrared, LSST, Euclid, and WFIRST will              
generate hundreds of petabytes of data. In the radio, surveys from the VLA, ASKAP and               
MeerKAT, and, near the end of the decade, SKA and ngVLA will also total hundreds of                
petabytes. Simulations supporting the planning and interpretation of these observational          
projects can meet or exceed these data volumes. These data sets have immense             
science potential, which will only increase when used together. 
 
“Big data” resources are central to the astronomical science goals of the 2020s. This              
importance is reflected in the large fraction of submitted science white papers that             
reference these data sets (LSST 158; Euclid 68; WFIRST 144; VLA 71; ASKAP 13;              
MeerKAT 14; SKA 84; ngVLA 85; total ~600). While the science opportunities described             
in these white papers are diverse, the inherent (often unacknowledged) data challenges            
in realizing these opportunities are common “big data” problems. These include           
fundamental activities such as discovering, querying, visualizing, downloading, storing,         
reprocessing, analyzing, federating, and sharing large data sets across multiple          
archives. (Section 2.) Below are a few examples of science white papers that illustrate              
the opportunities and challenges of astronomical big data in the 2020s and beyond. 
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Paladini et al. (2019) describe how data from Gaia, WFIRST, LSST, Euclid, and             
CASTOR can be combined to accurately measure the initial mass function of stars and              
the related mass function of molecular cores across a range of environments and             
distances. These are fundamental measurements which impact our understanding of          
stellar evolution, galaxy evolution, and planet formation. Making these measurements          
will require a multi-wavelength, multi-center analysis of imaging data across large areas            
of the sky. High-level catalogs produced by the projects are unlikely to meet the science               
requirements in crowded fields with variable backgrounds, especially for the extended           
cores. Analysis on such a large volume of pixels will present significant data challenges              
for many users. 
 
Kirkpatrick et al. (2019) describe the science potential of an all-sky infrared version of              
Gaia to determine the low-mass cutoff of star formation. Such a survey would produce              
an enormous data set with matching legacy value and data challenges. The associated             
potential and challenges are increased when this survey is used in combination with             
other large-area surveys, such as Gaia, 2MASS, WISE, ZTF, PanSTARRS, etc.           
Already, giant single catalogs like those from Gaia and WISE strain most users’ abilities              
to fully visualize and analyze. 
 
Wrobel et al. (2019) argue that observing Intermediate-mass black holes in globular            
clusters could shed light on the early formation of seed black holes and inform              
predictions of gravitational wave events. To achieve these science goals, they advocate            
for a facility like the ngVLA. ​Nyland et al. (191) also describe how the ngVLA will                
support studies of AGN feedback. The massive datasets from current and future radio             
interferometers will produce individual datasets with sizes ~0.1-1 PB. This volume           
makes it difficult for users to tune their image products to meet their science needs,               
given that traditional mission computing models cannot produce the entire range of            
possible processing choices. Analysis of the resulting image products will also be            
challenging. Already, image cubes from ALMA can reach ~1 TB in size, impossible for              
most users to view using existing tools and facilities. 
 
Wang et al. (2019) describe how systematics in measurements of Dark Energy can be              
minimized with a new galaxy redshift survey (ATLAS) producing ~200 million galaxy            
spectra, two orders of magnitude larger than the SDSS Legacy Survey spectroscopic            
sample. Such a survey would have enormous legacy potential, which would best be             
realized by supporting the community in meeting the associated big data challenges. 
 
Chary et al. (2019) argue that the loose tension between different measurements of             
some fundamental cosmological parameters could be resolved by processing data from           
Euclid, LSST, and WFIRST together ​at the pixel level​. Pixel-level projects run into “big              
data” challenges very quickly, even when full data sets are not being analyzed. 
 
Chang et al. (2019) describe how multi-messenger astronomy in the 2020s will require             
the sharing of data, code, modeling tools, and facility-specific expertise in near-real time             
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to localize the electromagnetic counterparts to gravitational wave (GW) events.          
Currently, several collaborations and data centers (e.g., the NED-GWF service at IPAC)            
combine data across the electromagnetic spectrum to facilitate prompt GW localization           
campaigns. However, in the 2020s, it will be essential to extend their capabilities in a               
collaborative analysis environment and prepare for the third generation GW and           
neutrino observatories, which will produce tens of events per hour (Reitze 2019). This             
will require developing the cyberinfrastructure needed to combine several large-area          
follow-up surveys (i.e., LSST and ZTF) with real-time alerts (LIGO/Virgo, IceCube, and            
LISA) and analysis software tools. 
 
The white papers above provide concrete examples of how large data sets will be vital               
to make progress in specific science areas spanning astrophysics. Moreover, in an            
additional series of 6 science white papers, Fabbiano et al. (2019) emphasize that many              
paradigm-shifting discoveries in the 2020s will not be made through well-formulated           
hypotheses based on knowledge of the time, but rather by an exploratory discovery             
approach enabled by new telescopes and instrumentation, as well as by high-quality            
data products in easily accessible and interoperable science archives.  
 

 
Figure 1. The 2020s and beyond will see large increases in data volumes. Approximate              
expected data volumes in terabytes of selected astronomical observational facilities and           
surveys are shown as a function of time. Symbols are plotted at the (expected) end of                
operations. ​Ongoing surveys as of this writing are plotted in 2019 with an arrow. The               
current size of major data centers are shown on the right axis. 
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2. Big Data Challenges in the 2020s 
One of the ways that “big data” enable science is by providing statistically significant              
samples. Large samples underpin future advances in nearly all fields of astrophysics,            
including studies of exoplanet systems, stellar populations in the Milky Way, galaxy            
evolution, dark matter, and dark energy. In the current archive model, scientists can             
search for data satisfying a number of constraints and visualize the results using a web               
application, but must ultimately download the data for analysis. As samples grow, each             
of these steps becomes more challenging. The obstacles are even larger when science             
goals require a combination of large data sets housed at different data centers. Indeed,              
a survey conducted by the NASA/IPAC Infrared Science Archive in 2018 reveals that             
astronomers are already struggling with “big data” problems (see Table 1).  
 
The following is a list of major challenges that will need to be met in order to realize the                   
full science potential of astrophysics in the 2020s. 
 
● Searching through large data sets: ​To identify populations within very large data            

sets, users need to set a number of search constraints. Traditionally, the most             
common constraints entered by users have been spatial coordinates or object           
names. In the era of large and all-sky photometric and spectroscopic surveys, these             
constraints are being swapped out or augmented by more complex constraints on            
color, flux, redshift, time, and other observables. During the 2020s, ​maintaining           
reasonable response times even for traditional queries -- as the volumes of archives             
continue to explode --  will be a major challenge. 

● Visualizing and interpreting large data sets: ​Data visualization is an important           
step in conceiving ideas, exploring new data sets and parameter spaces and            
connections between parameters, checking analysis, understanding and       
summarizing results, and communicating conclusions. Because visualization is so         
integral to science, most astronomical archives provide some visualization facilities          
(e.g., FITS viewing, XY charts, catalog and footprint overlays). As data sets become             
larger, more complex, and highly multi-dimensional, new methods of visualization          
are needed in order to understand them. Multi-resolution projection techniques to           
visualize networks of image surveys that cover large sky area offer a good starting              
point for next generation visualisation (e.g. Fernique et al. 2015, McGlynn et al.             
2019). Techniques such as dimensionality reduction using unsupervised machine         
learning (e.g., self organizing maps or t-Distributed Stochastic Neighbor Embedding         1

) are becoming more important as they provide tools to visualize correlation in             2

highly multi-dimensional data sets at a small cost of CPU/GPU time. Practical            
examples include the inspection of billions of images (e.g., of galaxies) or            
classification of light curves using machine learning, which would be an impractical            
task for a visual inspection by humans.  

1 Self organizing maps (SOM), ​https://en.wikipedia.org/wiki/Self-organizing_map  
2 t-Distributed Stochastic Neighbor Embedding (t-SNE), ​https://lvdmaaten.github.io/tsne/  
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● Downloading and storing large volumes of data​: Currently, once a data set is             
identified, users typically download it to an individual computer or a departmental            
cluster to proceed with scientific analysis. However, as data sets continue to grow at              
an unprecedented rate, and scientists tackle problems that require larger and larger            
data sets to solve, this download step is becoming more challenging and in some              
cases completely impractical. First, the time it takes to download data through the             
network will become prohibitively long, even with improvements to the networking           
infrastructure. Second, downloading even a small percentage of a petabyte-scale          
data set requires a large amount of storage, both for the downloaded data and for               
intermediate and user-generated data products that may also be at petabyte scales.            
While raw storage is becoming increasingly affordable, it is not an out-of-the box             
solution for most astronomers because of the difficulty of making storage perform            
well enough to support efficient high-performance computation. For these reasons,          
the bulk of the premier big data sets of the 2020s will be stuck at the data centers.  

● Analysis: The availability of “big data” in the 2020s will cause a change in the               
nature of astronomical analyses. 
○ Astroinformatics & Astrostatistics: Siemiginowska et al. (2019) describe how         

advances in statistics, computer science, and machine learning are becoming          
standard in the workflow of astronomical research. The growing complexity of           
analyses coupled with the growing sizes of data sets will result in a growing              
need for computational power, at a level that will be out of reach for many               
astronomers. 

○ Multi-archive interoperability: Joint analyses of data sets that are hosted at           
different locations can become challenging when large numbers of pixels need           
to be processed together, when huge catalogs need to be cross-matched, and            
when constraints must be applied across multiple large catalogs. Since these           
represent a large number of the desired use cases, data centers need to be              
interoperable in finite, carefully selected, and well-defined ways. In the future,           
some data sets may be distributed across data centers (e.g., the SKA regional             
centre model), which stresses the need for interoperability. 

○ Reproducibility & Replicability: It is essential to science that results can be            
verified by independent groups. Verification in the 2020s will be a challenge            
because few groups will have the resources and data skills to reproduce (run             
the same software on the same data to get the same result) or replicate (write               
software based on analysis descriptions to get similar results) complex analyses           
on huge data sets spread over multiple data centers.  

● Accessing adequate computing facilities​: The computational aspects of big data          
analytics can be challenging to astronomers in several ways. First, basic           
computational techniques that have been in use throughout the 2010s will be too             
inefficient to deal with the larger data sets of the 2020s. Analysts of the 2020s will                
need to learn to optimize code for speed and parallelism. Second, astronomers will             
need access to the considerable computing resources that are required to support            
petabyte-scale analyses. ​Compute resources at adequate scale will be located at           
sites remote from the data host. For this reason, the use of services such as those at                 
the Texas Advanced Computing Center (TACC) and those offered by commercial           
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cloud providers such as Amazon Web Services (AWS) will accelerate in the 2020s.             
In particular, fast provisioning and unlimited power to scale will make clouds            
especially appealing. Astronomers are already taking advantage of this (e..g          
Toomey et al 2017). Paying for cloud resources and ​moving petabyte-scale data            
from the data centers to a cloud resource will remain challenging. 

● Collaboration: ​Research has long been a highly collaborative effort. This is now            
being reflected in the rise of collaborative software tools. From calendars to            
messaging systems to document writing, scientists expect their tools to support           
collaboration. New technologies like Jupyter notebooks are currently opening up          
powerful new opportunities for collaboration during data analysis. The importance of           
collaboration will increase as data analysis becomes more complex to support the            
science of the next decade. The challenge will be to support the need for              
collaboration within the “big data” computing environment of the 2020s.  

 
Table 1​: Survey Results: “Which of the following problems have you encountered when 
dealing with astronomical data sets?”  
“Big Data” Challenge Respondents 
I struggle to find the data sets I need. 39% 
The data set I want takes too long to download. 35% 
I struggle to obtain enough storage space to manage the data I want. 30% 
I struggle to obtain enough computing power to analyze my data. 22% 
I struggle to scale my analysis routines to large volumes of data. 27% 
I struggle to visualize data. 30% 

3. Vision for the Future: Science Platform Network for Astronomy 
We advocate for the development of a “science platform network” to address the data              
challenges of reaching the science goals of the 2020s and beyond. Science Platforms             
give the user control over all aspects of scientific work, as needed, including data              
discovery, data access and data exploration, data and model integration, deploying new            
analysis tools and integrating them with existing tools, running production analysis and            
modeling, and collaboration and sharing results. This evolution of community data           
services, in combination with workforce training (Norman et al. 2019, Besla et al. 2019)              
are necessary to meet the science goals enumerated in the submitted science white             
papers, as well as science goals that have not yet been imagined. Science platforms              
increase the accessibility of both data and analysis resources, supporting new types of             
scientific analysis demanded by petabyte-scale data sets, as well as the inclusion of             
astronomers at all institutions (Peek et al. 2019). A science platform has three essential              
aspects: an analysis environment close to the data, scripted data access, and web             
portals. It is also essential that users can share results between these aspects.  
 
1. Interactive and batch analysis environment co-located with data. This aspect          

represents the largest change to the current data center model. Science platforms            
offer large-scale storage and computing resources at the data center itself,           
eliminating the need to download large volumes of data and to procure storage and              
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computing resources for petabyte-scale analyses. Computing resources are        
provided as a secure, interactive, and collaborative environment, allowing users to           
develop and share analysis tools and products. Analysis tools could include the            
command line, common community-created analysis packages (e.g. CASA, Tractor,         
ds9), Jupyter notebooks, and whatever tools the user chooses to upload. Once            
analysis is complete, users can download the summary results. New software tools            
developed by the community can be integrated into science platforms, but this does             
require training to ensure that new tools are designed and developed with modern             
software engineering processes (See the white paper “Elevating the Role of           
Software as a Product of the Research Enterprise” by Smith et al. 2019). We              
anticipate that providing these resources will likely rely heavily on adopting cloud            
technologies (see below).  

2. Application Program Interfaces (APIs). APIs allow scripted access to data.          
Currently, most data centers provide web APIs that can be used to search for and               
download data from the data center to a user’s local computer. APIs will continue to               
be necessary in the science platform context, and should follow (when practical) the             
standards established by the International Virtual Observatory Alliance (IVOA).  

3. Web Portals. ​Web portals are the traditional access points for astronomical data.            
Most started with simple search and download capabilities, but have evolved to            
accommodate more sophisticated search criteria, to allow previews of data products,           
to provide visualizations of catalogs and survey footprints, and to offer other data             
exploration capabilities. In the 2020s, these web portals will be providing more            
sophisticated analysis tools designed to run at the data center, in addition to the              
above described interactive and batch analysis environments. 

 
The development of science platforms will absorb many of the challenges described in             
Section 2. This transition is already underway; existing science platforms are listed in             
Table 2. However, joint analyses of data sets that are held across data centers will be                
far easier if these individual science platforms are ​interoperable​. We therefore advocate            
for a science platform ​network​, by which we mean that (1) astronomers will have              
access to a network of loosely coordinated science platforms that together provide            
access to a wide array of astronomical data; (2) these science platforms will share              
common elements (e.g. data models and APIs) so that astronomers do not encounter             
vastly different user experiences when accessing different data sets; and (3) moderate            
volumes of data can be transferred between science platforms to facilitate           
multi-wavelength science.  
 
While we anticipate that a large fraction of science analysis will be performed within and               
across platforms, the most effective implementation of a platform network would support            
scalable access to standardized tools and APIs that would allow researchers to use the              
same approaches -- and often the same scripts and codes -- on all scales from personal                
laptops to global analysis. Scientists can test analyses on locally available subsets and             
then easily transition analyzing complete holdings on platforms. By ensuring that the            
analysis capabilities in and across platforms mirror those at smaller scales -- with             
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standardized software and interfaces adapting to the changing environment -- we can            
greatly ease the adoption of platform resources across the community. 
 
To optimize the science benefits of a science platform network for astronomy, data             
centers will need to make progress in the following areas: 
 
Collaborative Workspaces. To enable analysis environments co-located with the data,          
science teams will require workspaces that consist of secure, permanent storage           
volumes for results that need to persist, and much larger temporary storage volumes for              
scratch space. These workspaces will be most effective for science if they support             
collaboration. The IVOA VOSpace concept and WebDAV are two options for supporting            
collaboration that have been adopted by existing or developing science platforms. The            
challenge for data centers will be to manage the safety, security, and fair distribution of               
workspace resources in the face of increasing and variable demand. In the future, these              
workspaces will most likely be inside commercial cloud services. 
 
Cloud Computing​. Individual scientific investigations often require large amounts of          
computing for limited times. In addition, data centers currently see spikes in the number              
of queries and download volumes in the period immediately following a large data             
release. In the science platform context, these spikes will be accompanied by spikes in              
the demand for computational resources. Because it is not cost effective for data             
centers to provision for peak demand, they will need to consider augmenting in-house             
computing resources with dynamically-scalable commercial cloud computing resources,        
perhaps using a cloud-bursting model. While we anticipate that the cost of commercial             
cloud services will decrease over the years, these costs will need to be negotiated to fit                
within the financial model of the data centers. Regardless, there will be research teams              
that require computational resources that are beyond what can be provided through            
data centers. Science platforms will therefore be most effective if they can be             
containerized and deployed into the commercial cloud by individuals as needed. 
 
Containers​. ​Container technologies (such as Docker) encapsulate dependencies        
between components of a software system, allowing users to run an application reliably             
in multiple computing environments. Containers ​reduce the cost to deploy, operate, and            
maintain instances of science platforms. They also enable the exchange of user-written            
software between science platforms. In wide commercial use, they are an essential            
technology for the development of science platforms. 
 
Networking and Data Transfer Tools​. Although science platforms will absorb much of            
the burden of moving petabyte scale data, it will still be convenient for users to be able                 
to move moderate amounts of data to their desktops or between science platforms.             
Therefore, data centers should ensure that they have state-of-the-art networking          
infrastructure and data transfer tools, which we anticipate will provide significant           
performance increases over the decade. 
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Standardized data models and web APIs​. An astronomical data model is a standard             
way of describing a data set. This standardization allows data centers to easily provide              
search and retrieval options for data sets physically held at other data centers. One              
example is the Common Archive Observation Model (CAOM) that was developed by the             
Canadian Astronomy Data Centre (​CADC) and is being taken up by a growing number              
of data centers. An astronomical web API provides access to a data center’s holdings              
over the web using HTTP protocol. Many astronomical data centers have implemented            
web APIs that follow the IVOA’s Table Access Protocol (TAP) for searching catalogs             
and tables of image metadata. CAOM, along with standard APIs, enables CADC’s            
Multi-Archive Query option , which offers users access to data hosted at multiple data             3

centers, in addition to the data held at CADC.  
 
Table 2​. Examples of Astronomical Science Platforms in Existence or Development 

CANFAR: Canadian Advanced Network for Astronomical Research ​canfar.net 
CFHT, JCMT, HST, queryable observation metadata from multiple archives in the 
Common Archive Observation Model (CAOM) 

ESA Science ​Exploitation and Preservation Platform (In Development) 
Initially Planck, Gaia, as well as GNSS Science Support Centre. Potentially all ESA 
space science (astronomy, planetary and heliophysics) datasets 

HEASARC: High Energy Astrophysics Science Archive Research Center 
Science Platform (in Development) ​heasarc.gsfc.nasa.gov/ 
Fermi, Swift, XMM-Newton, INTEGRAL, Suzaku, NuSTAR, NICER, etc. 

IPAC Science Platform (in Development) ​ipac.caltech.edu 
IRSA (Spitzer, WISE/NEOWISE, SOFIA, 2MASS, IRAS, etc.), NED (thematic, 
extragalactic object database), NASA Exoplanet Archive (thematic, exoplanet data) 

LSST: Large Synoptic Survey Telescope Science Platform (in Development) 
https://ldm-542.lsst.io/ 

NOAO Data Lab ​datalab.noao.edu 
Survey datasets from NOAO 4-m telescopes (e.g. DES, Legacy Survey, NOAO 
Source Catalog, in future DESI); high-value datasets from other facilities (e.g. 
AllWISE, unWISE, Gaia, SDSS) 

NRAO Archive Access Tool/Science Ready Data Products Initiative 
archive-new.nrao.edu 
VLA, ALMA 

SciServer ​https://www.sciserver.org 
SDSS databases and DR7 images and spectra. Specific data sets for collaborative 

3 ​http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/search/ 
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groups, e.g. mirror Millennium simulation database and raw data; Kepler light curves; 
Non-astronomical data sets. 

STScI Science Platform (in Development) 
https://mast-labs.stsci.io/2019/02/zero-to-jupyterhub-with-ansible 
HST, TESS 

 

4. Recommendations 
Key Data Centers in the U.S. ground- and space-based astronomy community should            
be funded to deploy, maintain and extend science platforms by the end of the 2020s.               
The funding includes (a) development of software components, (b) investment in           
computing and storage resources for user computing, (c) operating expenses for the            
resulting systems and (d) resources for coordination.  
 
Platform facilities should be specifically funded to work together to ensure that platforms             
are built to maximize collaborative capabilities. Since the required underpinning          
technologies are fast evolving and dependent on broader industry standards, we           
propose implementers design functional and interoperable systems, and then iterate          
within the IVOA structure to find workable long-term standards, as has worked with             
protocols like CAOM. While it is premature to propose a specific collaboration structure,             
the NASA Astronomical Virtual Observatories group (NAVO;       
https://heasarc.gsfc.nasa.gov/vo/summary​) may be a useful model to build on. 
 
Funding agencies should negotiate rates or credits with cloud infrastructure and           
computing service providers for U.S. researchers and for U.S. data centers building and             
supporting cloud-based archive and science platform services. 

5. Schedule & Cost 
Because of the diversity of data centers, in terms of current and future data holdings,               
adopted technologies, and funding streams, the cost and schedule of collaboratively           
implementing a science platform network is difficult to summarize without significant           
study. We suggest that this study be undertaken by the individual data centers as soon               
as possible. However, we can safely say that the schedule for development of the              
science platform network would ideally be driven by the schedule for the "big data"              
missions and projects of the 2020s, as described in Section 1. We suggest that a               
phased development is important to slowly acclimate the community to the change in             
community data infrastructure that will be needed. In the first phase, through FY23,             
development could focus on implementing individual science platforms, essentially         
continuing the trend seen in Table 2, while keeping in mind that the second phase,               
FY23 and beyond, will involve the implementation of the "network" capabilities           
described above.  
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