
HAL Id: hal-02387783
https://hal.science/hal-02387783

Submitted on 30 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Soundworks - A Framework for Networked Music
Systems on the Web - State of Affairs and New

Developments
Benjamin Matuszewski

To cite this version:
Benjamin Matuszewski. Soundworks - A Framework for Networked Music Systems on the Web - State
of Affairs and New Developments. Proceedings of the Web Audio Conference (WAC) 2019, Dec 2019,
Trondheim, Norway. �hal-02387783�

https://hal.science/hal-02387783
https://hal.archives-ouvertes.fr

Soundworks
A Framework for Networked Music Systems on the Web

State of Affairs and New Developments

Benjamin Matuszewski
CICM/musidance EA1572, Université Paris 8

STMS Ircam-CNRS-Sorbonne Université
Paris, France

benjamin.matuszewski@ircam.fr

ABSTRACT
This paper presents a novel major version of soundworks, a frame-
work dedicated at developing distributed multimedia applications
on the web and entirely written in javascript. Since its first re-
lease in 2015, the framework has served as a basis for numerous
artistic and research projects such as concerts, installations, work-
shops, teaching or experimental setups. These diverse use cases
and situations permitted to validate numerous aspects of the frame-
work but also showed some limitations—particularly in terms of
inclusion of non-expert developers such as artists and researchers—
leading to the novel version presented here.

The paper first presents some applications developed in the last
year and show that, despite their idiosyncrasies, recurring problems
have emerged during their elaboration and development (e.g. state-
management). Second, we present new design and implementation
aspects of the framework developed to overcome these issues. Fi-
nally we describe a simple testbed application—designed to sum-
marize a number of recurring features and constraints encountered
in Network Music Systems—and some elements of its implemen-
tation within soundworks.

We believe that this novel version will provide solid foundations
for the design and implementation of higher-level tools dedicated
to non-expert developers, and thereby, foster new artistic, techno-
logical and epistemic areas. The soundworks framework is open-
source and released under BSD-3-Clause license.

1. INTRODUCTION
The recent specification and development of the WebAudio

API—together with other APIs such as WebSockets [17] and the
developments of ubiquitous computing [16] with smartphones and
nano-computers—enabled novel possibilities in the area of Net-
worked Music Systems. These novel tools, alongside with the pos-
sibilities offered by a full-featured and interactivity-centered lan-
guage such as javascript permit to envision these technologies
from several points of view. First, they can be considered as a
new development and a natural extension in the long history of
multi-source electro-acoustic music. [13] Second, they can provide
a novel platform for composition and performance. [3] Third, they

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.

© 2019 Copyright held by the owner/author(s).

enable a wide range of possibilities in the creation of new interfaces
for musical expression. [8] In all cases, these trends tends to show
that these technologies—with their simplicity, ubiquity and inher-
ent networked nature—can play a central role in the evolution of
Networked Music Systems. [2, 15]

In this context, the development of a dedicated framework,
adapted to and designed for the specificities of the web platform
is essential. In the last years, a number of such frameworks
have been proposed by the community. [1, 7] For now, however,
these solutions are far from the maturity of environments such as
Max/MSP or PureData. While these environment have developed
a number of key concepts along the years, [9,10] we think however
that adapting these concepts directly to the web 1, 2 tends to neglect
the main specificity of the platform (and the novel possibilities it
unfolds): the network.

soundworks3,4 is a framework dedicated to the development of
distributed multimedia applications on the web. The initial ver-
sion of the framework, released in 2015, has been written by S.
Robaszkiewicz and N. Schnell. [11] Since then, the framework has
known two major revisions (in 2016 and 2017) and has served
as a basis for numerous artistic and research projects (e.g. con-
certs, installations, workshops, pedagogical or experimental se-
tups). Thereby, soundworks has permitted to explore Network
Music Systems in many directions such as: participative perfor-
mances, use of smartphones as speaker array or as new instruments,
measures of movements in collective settings. While these achieve-
ments tends to prove the efficacy of the framework considered as an
experimental platform, [12] they also permitted to highlight some
inherent and recurring difficulties. soundworks#v3 aims to ad-
dress some of these difficulties as well as to provide solid foun-
dations upon which environments that facilitate the inclusion and
agency of non-expert developers can be built.

In Section 2, we review three recent soundworks applications
implemented in close collaboration with multiple stakeholders, and
present of some of their similarities despite their different aims and
goals. In Section 3, we present the main conceptual and technical
aspects of soundworks#v3, designed to provide a better support
to the recurring needs described in 2. Finally, in Section 4, we
describe a simple, yet not trivial, application that we consider rep-
resentative of recurring aspects of Networked Music Systems, and
shortly present elements of its implementation using soundworks.

1https://github.com/petervdn/webaudiotool
2https://github.com/Fr0stbyteR/webaudio-patcher
3https://github.com/collective-soundworks/soundworks
4https://www.npmjs.com/org/soundworks

https://github.com/petervdn/webaudiotool
https://github.com/Fr0stbyteR/webaudio-patcher
https://github.com/collective-soundworks/soundworks
https://www.npmjs.com/org/soundworks

2. ACHIEVEMENTS AND RATIONALES
In this section we shortly present three applications that has been

designed and used in several contexts (e.g. workshops, perfor-
mances, installations, scientific experiments) in the last year. These
descriptions focus on the features and strategies implemented to
support the needs, agency and workflows of non-expert developer
users (e.g. artist, researcher, performers) in working situations. We
conclude with a formalization of these recurring patterns, leading
to the developments presented in section 3.

2.1 Elements
Elements5 is an application that has been specifically designed

to conceive and prototype movement-based distributed Interactive
Machine Learning scenarios. [5] The application has been itera-
tively tested and developed in several contexts such as workshops,
artworks and performances6 or scientific experiments.7

The key aspects for the appropriation of the application by non-
expert developer users stand in two complementary elements:

• A JSON file dedicated at configuring the different clients in
terms of interface, type of synthesis or mapping.

• A controller (see Figure 1, left) that allows for both remote mon-
itoring (e.g. plot sensors, decoding of the ML algorithm) and
remote control of each client (e.g. mute, volume).

Figure 1: On the left, Elements’ controller interface highlighting the
different possibilities of monitoring and control. On the right, perfor-
mance of Cordas composed by Michelle Agnes Magalhaes.

2.2 Future Perfect
Future Perfect is an immersive 3D audio visual performance and

installation work developed by Garth Paine during a residency that
took place in 2018 between Ircam and ZKM.8 The application al-
lows the composer to perform on the audience smartphone’s speak-
ers using several dedicated interfaces. Figure 2 shows the composer
in performance situation with three iPads as well as screenshots of
the different interfaces designed and used for composing and per-
forming.

In this application, many strategies have been implemented to
provide the composer a dynamic environment in which he could
test sonic material (i.e. dynamic update of sound files, creation of
presets), simply configure many aspect of the synthesis (e.g. granu-
lar synthesis parameters, fade times), but also have useful feedback
on the state of audience’s smartphones (e.g. loading states, position
in concert hall). Again, the key elements here were the remote mon-
itoring and control interfaces that enabled a rapid feedback loop in
both composition and performance situations.

5https://como.ircam.fr/apps/elements
6https://www.youtube.com/watch?v=c6Flruf_Udc
7https://www.unige.ch/cisa/emodemos/
8https://www.ircam.fr/person/garth-paine/

Figure 2: On the left, Garth Paine performing Future Perfect. On the
right, screenshots of the different interfaces used during composition
and performance.

2.3 Biotope
Biotope is an generative and interactive installation composed

by Jean-Luc Hervé, realized at Ircam and exposed at the Centre
Georges Pompidou, Paris in the context of the exhibition “La fab-
rique du vivant”.9,10 The installation is composed of 27 Raspberry
Pi nano-computers (see Figure 3, left) running soundworks clients
written using NodeJs. [4] The audio synthesis is achieved using a
NodeJs wrapper on top of libpd.11

Figure 3: On the left, screenshot of the centralized controller. On the
right, photography of the musical agents, running on Raspberry Pi,
created for the Biotope installation composed by Jean-Luc Hervé.

In this system, many strategies have been implemented to pro-
vide a dynamic and testable environment to the composer and to
the computer music designer. Among them, the more important
ones are: a mean to easily update audio content, and a centralized
controller dedicated at both monitoring the state of the application
(for example, each square in Figure 3 right, represents a musical
agent in its relative position in the exhibition space, the different
colors give an overview of their state in real-time) and at control-
ling the state and parameters of each client in real-time.

2.4 Recurring Patterns
We can see that these different examples—which span across a

wide range of applications (from experimental system to perfor-
mance or installation)—share common strategies. First, they all
provide a dedicated client that allows to monitor and take control
over every client of the system in a simple way. This point stands to
be of primary importance to maintain the agency of the user work-
ing in a complex setup composed of many devices. Second, they
all allow—at different levels of maturity and usability—to update
content, mappings and synthesis parameters dynamically or from
configuration files. Indeed, these applications implement a similar
architectural pattern where the state of each client is synchronized

9https://www.ircam.fr/agenda/biotope/detail/
10https://youtu.be/RmSujqdT6L0
11https://github.com/ircam-jstools/node-libpd

https://como.ircam.fr/apps/elements
https://www.youtube.com/watch?v=c6Flruf_Udc
https://www.unige.ch/cisa/emodemos/
https://www.ircam.fr/person/garth-paine/
https://www.ircam.fr/agenda/biotope/detail/
https://youtu.be/RmSujqdT6L0
https://github.com/ircam-jstools/node-libpd

in some way with the server, allowing to update every part of the
distributed application from a centralized point.

This pattern—that appeared very effective for implementing ver-
satile and adaptable tools fostering creativity—provide insights on
the functionalities our framework must facilitate. More precisely, it
shows the necessity of a robust and versatile distributed state man-
agement system, aimed at simplifying remote monitoring and con-
trol in an environment composed of many devices.

While the presented examples showed the feasibility of creat-
ing such systems using the current version of soundworks, the
experience showed that these aspects were not properly supported
by the framework, leading to overly complicated and redundant
architectures. This is these drawbacks that the novel version of
soundworks presented in the next section propose to overcome.

3. DESIGN AND IMPLEMENTATION
In this section, we present some design and implementation as-

pects of the third version of the soundworks framework. First, we
present the scope and high-level aspects of the framework. Second,
we describe in more depth the novel state management component
that have been introduced to support recurring patterns described in
Section 2. We briefly conclude by presenting the motivations and
expected benefits of the novel packaging and distribution strategy.

3.1 Architecture Overview
Since its inception, soundworks is dedicated at simplifying the

development of web-based and distributed real-time musical sys-
tems. Figure 4 presents a bird’s-eye view of a typical soundworks
application. Applications created using soundworks follow a star
network architecture centered around a NodeJs server. [6] Clients
can have multiple responsibilities (e.g. audio rendering, visual ren-
dering, control) and be of different kinds (e.g. mobile, desktop,
nano-computers).

Figure 4: High-level view of the architecture of a typical soundworks
application: clients of various types (e.g. mobile and desktop browsers,
embedded hardware running a NodeJs client, external software com-
municating through OSC or MIDI) connected to a central NodeJs
server.

Until now, the framework has mainly focused on mobile appli-
cations and has therefore privileged certain caracterictics of these
platforms (e.g. graphical user interface, usability). While these
aspects remain important, it appears now that—to preserve its effi-
ciency as an experimental platform and to support more and more
complex applications and use-cases—the framework must evolve
toward more modularity and extensibility, considering both soft-
ware (e.g. integration of third party components and libraries) and
hardware (e.g. integration of IoT elements).

In this objective, the scope of the framework has been refined
and narrowed down to focus on three key aspects, namely: commu-
nications, service management and state management. As a con-
sequence, some features such as templating, have been removed
from the framework and are now delegated to external and special-
ized libraries. These developments also permitted to reduce the API
surface area of the framework.

3.2 Communications and Services
While similar in their principles, the communication and service

management components have evolved toward more simplicity and
efficiency. Figure 5 summarizes the initialization process common
to all soundworks clients:

• The init step consists in connecting two WebSockets to the
server, one dedicated to string (JSON compliant) data and an-
other dedicated to binary data. The API of both sockets is similar
and expose a simple publish / subscribe interface.

• Once both sockets are connected, soundworks can start the ser-
vices initialization. As services can depend on each others (for
example, the clock synchronization process can rely on a re-
sumed audio context), soundworks takes care of the services’
dependency graph and start each service accordingly.

• Finally, when all services are in ready state the application spe-
cific code (called Experience in soundworks’ terminology)
can start.

client initialisation

http request
and response

connecting
web-sockets

initializing
services

enter
experience

init

start

ready

run

application

connecting
web-sockets

initializing
services

enter
experience

in
it

st
ar
t

re
ad
y

run

application

Figure 5: Initialization process of a soundworks clients, here a mobile
browser and a NodeJs client running in embedded hardware.

Figure 5 also illustrates a novel feature of the framework that en-
ables the seamless implementation of soundworks clients in any
type of javascript environment (i.e. browsers or NodeJs). In-
deed, while this approach has already been tested and deployed in
a production setting (cf. 2.3), the complete rewriting of the frame-
work permitted to properly integrate it by making most of the code
compatible to both platforms. This novel feature should simplify
the creation of applications composed of multiple kind of clients
(e.g. smartphones and nano-computers), and thus allow to general-
ize and democratize the concept of web of audio things described
in [4] (note that similar ideas has been proposed in [14]).

3.3 State Management
An important novel feature of soundworks is the integration of

a state management system.
Indeed, since the introduction of the Flux pattern proposed by

Facebook,12 a number of state management libraries13 have been
proposed. The usage of this pattern is nowadays widespread and
considered a good practice among the javascript community.
However, existing libraries are not firstly designed for distributed
applications and are difficult to adapt to our context for two main
reasons. First, they do not formalize nor integrate the notion of
discrete and volatile events very common in our applications (e.g.
triggering a sound). Second, they do not provide out-of-the-box
a simple way of synchronizing states across several nodes in the
network.14

To tackle these issues, we created a novel protocol and im-
plemented a novel component, inspired by the Flux pattern and
adapted to the particular requirements of our applications.

Concepts and Requirements
In the context of real-time, audio-centered and distributed applica-
tions, the application of such circular pattern presents certain par-
ticularities schematized in Figure 6.

ClientServer

State

Globals

Clients
State (shared)

Globals

Clients[2]

State (local)

owner: server

owner: self

R
en

de
rin

g

Inputs / Events
motion etc. touch / clicketc.

0

1

2

3

4

state-management

1

2
3

Di
st

rib
ut

ed
 S

ta
te

 s
yn

ce
d

th
ro

ug
h

W
eb

So
ck

et
s

Figure 6: Conceptual overview of a circular and distributed state man-
agement system inspired by the Flux pattern. The main addition stands
in the necessity to keep states synchronized with the server.

The Figure particularly highlights two important requirements
and implications for the implementation of this pattern. First, it
shows that the state of every client has to be kept synchronized
server-side. The rationale for this design strategy (see Section 2
for details) stands in the need to remotely monitor and control any
client of the system from a centralized point. Indeed the possibility
to dynamically interact with any node of the network, and the rapid
feedback loop it enables, is of primary importance in working situ-
ations. Furthermore, it appears to be crucial in exploratory contexts
(such as artistic and research activities) where the final application
cannot be specified beforehand and emerges from a iterative pro-
cess.

Second, the Figure highlights the need of a certain granularity in
the definition and synchronization of the states. Indeed, while some
variables and parameters (named globals in the Figure) needs to
be accessible to every client (e.g. master volume, mute), the partic-
ular state a client (clients[2] in the Figure) should not be shared

12 https://facebook.github.io/flux/
13 For example: https://redux.js.org/ or https://vuex.vuejs.org/
14 The dop.js (https://distributedobjectprotocol.org/) library propose an interest-

ing approach, however it aims at synchronizing a single state across every node which
is not optimal (particularly in terms of bandwidth) in our context.

with all its peers. It only needs to be monitored or controlled by
particular types of clients dedicated to authoring and performance
situations.

Protocol and API
To fulfill these requirement while preserving the idea of circular
flow between actions, data and rendering proposed by the Flux
pattern, we designed a simple protocol and implemented a new li-
brary.15 The main principles of the protocol we propose are:

• Allow any node to create a new state from a declared schema.
• Allow to keep the state synchronized with the server.
• Allow any node to observe new states created on the network.
• Allow any node to attach to a state created by another node.

state-management

observe

create request

create response [id]create notification [id]

registerSchemas

update request [id, name, value]

delete request [id]

delete response [id]

attach request [id]

attach response [id]

update response [id, name, value]update notification [id, name, value]

detach request [id]

detach response [id] update request [id, name, value]

update response [id, name, value]

update request [id, name, value]

update response [id, name, value] update notification [id, name, value]

server /player/controller

Figure 7: Example of the protocol implemented by the StateManager.

Figure 7 illustrates a generic scenario enabled by this protocol.
A client (we name controller) observes the server and attach
to the state created by another client (here, called player). When
attached, the controller receives a notification each time the
state is updated by its creator (or any other attached node), enabling
remote monitoring. The controller can also update values of
the attached state, enabling remote control. At any moment, the
controller can detach from the state and stop to receive update
notifications.

The protocol is abstracted behind a small and simple API illus-
trated in the pseudo-code example of Listing 8. This simple exam-
ple also highlights two interesting aspects of the component:

• The complete abstraction of network communications, allowing
users to focus on the application logic rather than routing of net-
work messages.
15 While the component is for now integrated as a first class citizen in

soundworks, it will be abstracted and released as a standalone library in a near future.

https://facebook.github.io/flux/
https://redux.js.org/
https://vuex.vuejs.org/
https://distributedobjectprotocol.org/

1 // server−side
2 const synthSchema = {
3 volume: { type: 'float ', min: −80, max: 6 },
4 triggerSynth: { type: 'any ', event: true },
5 };
6 const manager = new StateManager (server);
7 manager.registerSchema ('synth ', synthSchema);
8
9 // client−side

10 const manager = new StateManager (client);
11 const playerState = await manager.create ('synth ');
12 playerState.subscribe (updates => {
13 for (let [key , val] of Object.entries (updates)) {
14 switch (key) {
15 case 'volume ':
16 mixer.volume = val;
17 break;
18 case 'triggerSynth ':
19 synth.trigger ();
20 break;
21 }
22 }
23 });
24 // later (or from any other attached node)
25 playerState.set ({ volume: −6 });

Figure 8: Pseudo-code example of the main aspects of soundworks state
manager API.

• The possibility to reflect on the schemas’ declarations to generate
controls and monitoring interfaces, simplifying the implementa-
tion of dynamic and complex interfaces.

3.4 Distribution: Core and Services
A final aspect that we want to present is the novel approach for

the packaging and the distribution of soundworks. The frame-
work is now distributed behind its own npm organization names-
pace: @soundworks16. Furthermore the core of the framework
and the different services have been decoupled.17 As such, ser-
vices are now imported in the application as plugins that must be
registered in the ServiceManager.

We think this modular approach will facilitate future evolutions
of the codebase, as well as maintenance of existing applications.
Furthermore, this strategy should help to simplify the design and
development of new components as well as their testing and docu-
mentation.

4. A TODO(NOISE) APPLICATION FOR DIS-
TRIBUTED AUDIO FRAMEWORKS

In this section we describe a simple application, inspired by the
TodoMVC project18, that aims at providing a common basis to test
and compare frameworks dedicated at building distributed audio
applications. We first present the motivations and features of the
application and, second, describe elements of its implementation
within soundworks.

4.1 User Story
The proposed application purposely privileges the point of view

of a user in a working situation (i.e. developer, designer, composer
or performer) rather than the point of view of the end user (e.g.
participant, audience). Indeed, while the later tends to be very ap-
plication or artwork specific, we have shown in Section 2 that the
former embodies common properties—the need for remote moni-

16 https://www.npmjs.com/org/soundworks
17 https://github.com/collective-soundworks/soundworks
18 http://todomvc.com/

toring and control of the distributed state of the application—that
can be reduced to simple features.

To illustrate these features, we have designed a basic application
composed of two different clients. The first client, we call player,
can be envisioned as the client dedicated to the end users. The
application can accept any number of players. Each player has
access to the following fonctionalities:

• can trigger a sound
• can start and stop a synthesizer
• can update a parameter (i.e. volume)

The second client, we call controller, is dedicated to the user
in working situation (e.g. design, composition, research, perfor-
mance). The application can accept any number of controller.
A controller can:

• control global parameters of the application (i.e. mute, master
volume)

• take control over each player (i.e. volume, trigger and state of
the synthesizer)

Globals parameters of the application (i.e. mute and master)
must stay synchronized across every clients of the application (i.e.
player and controller).

We think this minimal set of functionalities provides a good re-
duction of important and recurring aspects of distributed audio ap-
plications. We also believe that it could, after eventual refinements,
provide a good basis for testing, demonstrating and compare differ-
ent frameworks and approaches.

4.2 Elements of Implementation
We implemented this application using soundworks (see Figure

9).19 The experience showed possible to implement all the speci-
fied features relying on the state management system described in
3.3, allowing to focus on application logic rather than on network
communications and routing. This single fact tends to validate the
addition of this component to the core of soundworks.

Figure 9: Interface of the (a.) controller and (b.) player clients
of the Todo(Noise) application. Here, the controller duplicates the
interface of the player with id 32, allowing for remote monitoring
and control of this particular client.

The application is composed of only two schemas:

• The globals schema contains the list of connected player ids,
the id of the remote controlled user (if any), the values of the
mute and master volume parameters.

• The player schema contains the current value of the player’s
local volume, the state of the synth (started or stopped) and a
volatile event dedicated at triggering a sound.
19 https://github.com/collective-soundworks/soundworks-todo-noise

https://www.npmjs.com/org/soundworks
https://github.com/collective-soundworks/soundworks
http://todomvc.com/
https://github.com/collective-soundworks/soundworks-todo-noise

The main logic of the application is implemented in the
controller client. Indeed this client (cf. Listing 10), in its
subscription to the globals state, observes the value of the
remoteControlled parameter and attach to the state of the
corresponding player. When attached to the player state, the
controller simply instantiate the player’s GUI to locally create
a remote and synchronized monitor and control interface.

1 // src/ client / controller / ControllerExperience.js
2 this.globals.subscribe (async (updates) => {
3 for (let [key , val] in Object.entries (updates)) {
4 if (key === 'remoteControlled ') {
5 const playerId = val;
6 // detach from previous player
7 if (this.playerState) {
8 await this.playerState.detach ();
9 this.playerState = null;

10 }
11 // attach to new remote player
12 if (playerId !== null) {
13 this.playerState = await stateManager.attach

('player ', playerId);
14 // keep GUI synced with player state
15 this.playerState.subscribe (this.render);
16 // handle disconnection
17 this.playerState.onDetach (() =>

this.playerState = null);
18 }
19 }
20 }
21 this.render ();
22 });

Figure 10: Main pseudo-code logic written in the controller to re-
motely monitor and control any player of the application.

5. CONCLUSION AND FUTURE WORKS
In this paper, we have presented the motivations, design and im-

plementation of a novel version of soundworks, a framework dedi-
cated at developing distributed multimedia applications on the web.
First, we have presented three applications implemented or refined
in the last year and discussed some of the recurring difficulties—
centered on the point of view of the user in working situation—that
the current version of the framework failed to properly address.
Second, we have presented the novel architecture as well as a new
component dedicated to distributed state management and designed
to address these recurring issues. Finally, we have described a sim-
ple application—designed on the model of the TodoMVC project—
that summarizes recurring aspects of distributed audio applications,
and some elements of its implementation within the new version of
soundworks.

While we think this new version provides solid foundations to
further explore the possibilities of the web platform for Network
Music Systems, it also opens large areas of new developments.
First, a cli tool for scaffolding applications would be an important
addition. Second, the integration of NodeJs clients in the core of
the framework should simplify testing and thus help to stabilize the
framework. Third, and more important, it opens many paths for cre-
ating a more dynamic working environment, facilitating the inclu-
sion of users with different backgrounds (e.g. artists, researchers)
and transdisciplinary approaches.

6. AKNOWLEDGEMENTS
The presented work has been initiated in the CoSiMa research

project funded by the french National Research Agency (ANR,
ANR-13-CORD- 0010) and further developed in the framework of

the Rapid-Mix Project from the European Union’sHorizon 2020 re-
search and innovation programme (H2020-ICT-2014-1, Project ID
644862). It has also been supported by the Ircam project BeCoMe,
which is featured in the Constella(c)tions residency of the STARTS
program of the European Commission.

We would like to thank our projects partners and our colleagues
at IRCAM for their precious contributions to the project.

7. REFERENCES
[1] J. Allison, Y. Oh, and B. Taylor. NEXUS: Collaborative

Performance for the Masses, Handling Instrument Interface
Distribution through the Web. In Proceedings of the
NIME’13 Conference, Daejeon, Seoul, Korea, 2013.

[2] A. Barbosa. Displaced Soundscapes: A Survey of Network
Systems for Music and Sonic Art Creation. Leonardo Music
Journal, 13, Dec. 2003.

[3] J. Bischoff, R. Gold, and J. Horton. Music for an Interactive
Network of Microcomputers. Computer Music Journal, 2(3),
1978.

[4] B. Matuszewski and F. Bevilacqua. Toward a Web of Audio
Things. In Proceedings of the 15th Sound and Music
Computing Conference, Limassol, Cyprus, 2018.

[5] B. Matuszewski, J. Larralde, and F. Bevilacqua. Designing
Movement Driven Audio Applications Using a Web-Based
Interactive Machine Learning Toolkit. In Proceedings of the
4th Web Audio Conference, Berlin, Germany, 2018.

[6] B. Matuszewski, N. Schnell, and F. Bevilacqua. Interaction
Topologies in Mobile-Based Situated Networked Music
Systems. Wireless Communications and Mobile Computing,
2019, Mar. 2019.

[7] S. Piquemal. Rhizome. https://github.com/sebpiq/rhizome.
Accessed: 2019-06-24.

[8] I. Poupyrev, M. J. Lyons, S. Fels, and T. Blaine. New
Interfaces for Musical Expression. In CHI ’01 Extended
Abstracts on Human Factors in Computing Systems, 2001.

[9] M. Puckette. The Patcher. In Proceedings of the
International Computer Music Conference, 1988.

[10] M. Puckette. Combining Event and Signal Processing in the
MAX Graphical Programming Environment. Computer
Music Journal, 15(3), 1991.

[11] S. Robaszkiewicz and N. Schnell. Soundworks – a
playground for artists and developers to create collaborative
mobile web performances. In Proceedings of the 1rst Web
Audio Conference, 2015.

[12] M. Schwab. Experimental Systems: Future Knowledge in
Artistic Research. Orpheus Institute series. Leuven
University Press, 2013.

[13] B. Taylor. A History of the Audience as a Speaker Array. In
Proceedings of the NIME’17 Conference, 2017.

[14] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet.
Internet of Musical Things: Vision and Challenges. IEEE
Access, 6, 2018.

[15] G. Weinberg. Interconnected Musical Networks: Toward a
Theoretical Framework. Computer Music Journal, 29(2),
June 2005.

[16] M. Weiser. The Computer for the 21 st Century. Scientific
american, 265(3), 1991.

[17] L. Wyse and S. Subramanian. The viability of the web
browser as a computer music platform. Computer Music
Journal, 37(4), 2013.

https://github.com/sebpiq/rhizome

	Introduction
	Achievements And Rationales
	Elements
	Future Perfect
	Biotope
	Recurring Patterns

	Design and Implementation
	Architecture Overview
	Communications and Services
	State Management
	Distribution: Core and Services

	A Todo(Noise) Application for Distributed Audio Frameworks
	User Story
	Elements of Implementation

	Conclusion and Future Works
	Aknowledgements
	References

