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Abstract

In this paper we consider the design of the least costly experiment for the identification of
one module in a given network of locally controlled systems. The identification experiment will
be designed in such a way that we obtain a sufficiently accurate model of the to-be-identified
module with the smallest identification cost i.e. with the least perturbation of the network.

1 Introduction

This paper contributes to the efforts of developing techniques for the identification of large-scale or
interconnected systems when the topology of the network is known. In many papers, the problem is
seen as a multivariable identification problem and structural properties of the system are then used
to simplify this complex problem (see e.g. [15]). The identifiability of the multivariable structure
is studied in a prediction error context in [32] while this multivariable structure is exploited in
other papers to reduce the variance of a given module in the network (see [16, 14, 6]). In other
contributions, conditions are derived for the consistent estimation of a given module in a dynamic
network (see e.g. [5, 12, 18]).

While many different problems have thus been extensively studied in the dynamical network
context, this is not the case for optimal experiment design (i.e. the problem of designing the
excitation signal of an identification experiment to guarantee a certain model accuracy under some
constraints on this excitation signal). In our previous contribution [2], we made the first steps
towards optimal experiment design in a dynamical network context. In [2], we considered the case
of a network made up of locally controlled systems, i.e. modules, whose interconnection is realized
by exchanging their measured output between neighbouring modules (this type of networks is usual
in the literature on multi-agent systems (see e.g. [9, 19])). For this particular type of dynamical
networks, we showed how to design the excitation signals that have to be added to each module
in order to identify models of these different modules that are sufficiently accurate to enhance the
network performance by a redesign of the local controllers. The accuracy of each model can be
measured by the inverse of the covariance matrix of the identified parameter vector of each module.
In [2], we have derived an expression for the inverse of this covariance matrix as an affine function
of the excitation signal spectra. It is important to note that the inverse of the covariance matrix of
a given module l is obviously a function of the excitation signal applied to this particular module,
but also, though in a lesser extent, a function of the excitation signals applied to all modules k
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having a path to l. Consequently, the excitation signal applied to such a module k contributes to
the accuracy of the model of l. In other words, the propagation of the excitation signals due to
the interconnection is a positive feature when we want to obtain sufficiently accurate estimates of
every module with the smallest excitation power (see also [31, 7, 8]).

In some cases, we may only be interested in the accurate identification of one specific module l
via the application of an excitation signal to l. Since the other modules have not to be identified, the
propagation of this excitation signal to the other modules due to the interconnection is a negative
feature that have to be limited as much as possible1. For this purpose, we extend the least costly
identification framework (see [4]) to this particular dynamic network identification problem. In
particular, we design the spectrum of the excitation signal applied to l in such a way that the
accuracy of the identified model (measured via the inverse of the covariance matrix) is larger than
a given threshold while entailing the smallest perturbation on the network. The perturbation (i.e.
the cost of the identification) will be measured by the sum of the effects of the excitation signal on
the input and output of each system in the network.

With respect to the least costly framework introduced in [4] for a single closed loop, the cost
of the identification experiment in the network context thus not only contains the perturbation
induced by the excitation signal in the closed loop where the system has to be identified, but also
the perturbation induced in other loops by this excitation signal. This propagation of the effect of
the excitation signal is due to the fact that the output signal of the to-be-identified loop (which
is perturbed by the excitation signal) is transmitted to neighbouring modules. In this paper, in
order to reduce this propagation, we propose an approach where the signal transmitted to the
neighbouring modules is no longer the actual output signal, but a sanitized version of this output
signal where the contribution of the excitation signal has been (partially) removed. Indeed, using
an initial estimate of the to-be-identified system, we derive an estimate of this contribution and we
subtract this estimate from the measured output signal before the transmission to the neighbouring
modules.

This new configuration is inspired by the concept of stealth identification that we introduced
in [26] for a single closed loop and that we here extend to the network case. The use of the
stealth identification in this paper is also a new application of this concept since, in [26], it was
introduced as a tool to enable classical optimal experiment design in a loop where the controller is
not Linear Time Invariant (LTI). With respect to [26]2, we also analyze which accuracy condition
the initial estimate used to compute the sanitized version of the output signal must respect for
the stealth configuration to be effective (i.e., to yield a smaller identification cost). Moreover,
another contribution of the present paper is to robustify the stealth approach by considering the
uncertainty of this initial estimate and its influence on the cost of the identification. For this
purpose, as we will see in the sequel, we will need to consider an optimal experiment design where
the cost constraint is robustified with respect to the initial uncertainty of the initial estimate. In [3],
we have recentlty proposed an approach to tackle such a robustified cost constraint. With respect
to the earlier approaches for this problem [27, 20, 10], the approach in [3] does not entail any kind
of approximation. However, the possible high dimension of the network can imply an excessive
computational complexity for the approach in [3]. To avoid this problem, we propose in this paper
an alternative approach which is more appropriate to the network situation (and its possible high
dimension) and which, while being (slightly) more conservative, has the same property as the one
in [3] i.e., it is not based on any approximation. This absence of approximation is also the main
difference with the approach proposed in the conference paper [24] on which the present paper is

1This is especially the case when the experiment is performed in a network where all modules have to track a
given reference. In this case, the excitation signal introduces an undesired perturbation on the tracking performance.

2and with respect to the conference paper [24] on which the present paper is based
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based.
Note finally that the framework considered here is much different than the frameworks of [30, 17],

which are, to our knowledge, the only other papers treating the optimal experiment design problem
in a network. In [30], the authors consider input design for nonparametric identification of static
nonlinearities embedded in a network. The main purpose of [17] lies in the use of measurable
disturbances in optimal experiment design.

Notations: The matrix In denotes the identity matrix of dimension n. The matrix X1 0 0

0
. . . 0

0 0 XN


will be denoted diag(X1, ..., XN ) when the elements Xi (i = 1, ..., N) are scalar quantities, while it

will be denoted bdiag(X1, ..., XN ) when the elements Xi (i = 1, ..., N) are matrices. For a matrix
A, AT denotes the transpose of A and A∗ its conjugate transpose. For a vector of transfer function
R(z), Ri(z) denotes the ith entry of R(z). Finally, ⊗ denotes the Kronecker product and ? the
Redheffer star product [33].

2 Description of the network configuration

We consider a network made up ofNmod single-input single-output (SISO) systems Si (i = 1, . . . , Nmod)
operated in closed loop with a SISO decentralized controller Ki (i = 1, . . . , Nmod):

Si : yi(t) = Gi(z, θ0,i)ui(t) + vi(t) (1)

ui(t) = Ki(z)(yref,i(t)− yi(t)) (2)

where the signal ui is the input applied to the system Si and yi is the measured output. This output
is made up of a contribution of the input ui and of a disturbance term vi(t) = Hi(z, θ0,i)ei(t) that
represents both process and measurement noises. The different systems Si (i = 1, . . . , Nmod) are
thus described by two stable transfer functions G0,i(z) = Gi(z, θ0,i) and H0,i(z) = Hi(z, θ0,i),
the later being also minimum-phase and monic. These transfer functions are parametrized by
an unknown true parameter vector θ0,i ∈ Rnθi in a known model structure. For each i (i =
1, . . . , Nmod), the signal ei (i = 1, . . . , Nmod) defining vi is a zero mean white noise signal of variance
σ2
ei and these white noise signals ei are for simplicity supposed to be mutually independent. In (2),
yref,i is a reference signal that will be computed based on the measured outputs of neighbouring
modules (see later). We can rewrite the above equations as follows:

ȳ(t) = Ḡ(z, θ0)ū(t) + H̄(z, θ0)ē(t) (3)

ū(t) = K̄(z)(ȳref (t)− ȳ(t)) (4)

where ȳ = (y1, . . . , yNmod)
T and ū, ē, ȳref are defined in a similar way and where θ0 = (θT0,1, . . . , θ

T
0,Nmod

)T

∈ Rnθ concatenates the true parameter vectors θ0,i (i = 1, ..., Nmod). In these equations, we also
use the notation Ḡ = diag(G1, . . . , GNmod) (H̄ and K̄ are defined in a similar way).

The closed-loop systems described in (3)-(4) will be interconnected via the following equation:

ȳref (t) = A ȳ(t) + B refext(t) (5)

where the matrix A and the vector B represent the flow of information in the network and refext is
a (scalar) external reference signal that should be followed by all outputs yi and that is generally
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only available at one node of the network. This type of interconnections is typical in formation
control or multi-agent systems (see e.g. [9, 19]).

To illustrate (5), let us consider the network represented in Figure 1. In this network, we have
Nmod = 6 systems/modules, all of the form (1) and all operated as in (2) with a decentralized
controller Ki (see Figure 2). These local closed loops are represented by a circle/node in Figure 1.
The objective of this network is that the outputs yi of all modules follow the external reference
refext even though this reference is only available at Node 1. For this purpose, a number of nodes
are allowed to exchange information (i.e. their measured output) with some other neighbouring
nodes. The arrows between the nodes in Figure 1 indicate the flow of information.

1 2 3

4 5 6

refext

y2

y3

y2
y4

y1

y5

y4

y5 y6
y5y3

Figure 1: Example of graph representation of the network, each circle represents a node i and the
edges represent the communication link between the nodes

Ki(z) G0;i(z)
yi(t)

vi(t)

−+
+

yref;i(t)

To the network

From the network

ui(t)

Figure 2: Representation of a single module/node i

For example, Node 5 receives the output of two nodes (i.e. Nodes 3 and 4) and sends its output
(i.e. y5) to three nodes (Nodes 3, 4 and 6). The reference signal yref,i of Node i will be computed
as a linear combination of the received information at Node i. For Node 5, yref,5 will thus be a
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linear combination of y3 and y4. More precisely, for all outputs yi to be able to follow the external
reference refext, A and B in (5) are generally chosen as [9, 19]:

A =


0 0 0 0 0 0

1/3 0 1/3 1/3 0 0
0 0.5 0 0 0.5 0
0 0.5 0 0 0.5 0
0 0 0.5 0.5 0 0
0 0 0 0 1 0

 B = (1, 0, ..., 0)T .

The matrix A is called the normalized adjacency matrix in the literature [9]. Using (5), we, e.g.,
see that the tracking error signals yref,1− y1 and yref,2− y2 of Nodes 1 and 2 are respectively given
by refext− y1 and 1/3 ((y1 − y2) + (y3 − y2) + (y4 − y2)). Similar relations can be found for all the
other nodes. If the different loops [Ki Gi] are designed to make the tracking error yref,i − yi as
small as possible, it can be proven that such an interconnection allows good tracking of refext at
all nodes [19, 9]. A normalized adjacency matrix can be defined for any information flow using the
following rules. Row i of A is zero if no output is sent to Node i. If yi is sent to Node j, entry (j, i)
of A will be nonzero. Finally, all nonzero entries in a row are equal and sum up to one.

We also need to introduce the notion of (directed) path between two nodes. There exists a path
from Node i to Node j if Aji 6= 0 or we can find a set of ζ intermediary nodes described by the
indexes {n1, ..., nζ} such that An1i 6= 0, An2n1 6= 0, ... , Ajnζ 6= 0. We moreover introduce the
following definitions:

Definition 1 Consider an arbitrary node of a network containing Nmod nodes, say Node j (j =
1, ..., Nmod). For this node, we define the set Pj as a set of indexes of nodes. A certain index i 6= j
belongs to Pj if there exists a path from Node j to Node i. Similarly, for the same Node j, we also
define the set Lj. A certain index i 6= j belongs to Lj if there exists a path from Node i to Node j.

As an example, P5 = {2, 3, 4, 6} and L5 = {1, 2, 3, 4} for the network of Figure 1. For the sequel,
it is important to note the following facts. If an external signal (e.g., the disturbance vi or an
excitation signal r) is added to Node j, this external signal will also influence all nodes i with
i ∈ Pj . Conversely, Node j will be influenced by all external signals added in nodes i with i ∈ Lj .

In the sequel, we will suppose that an identification procedure has delivered initial estimates
θinit,i of θ0,i (i = 1, ..., Nmod) and that all these estimates are normally distributed around θ0,i

with a covariance matrix Pinit,i. This can e.g. be done using an open-loop experiment on each
system Si disconnected from the network or via the identification procedure presented in [2] (the
experiment is then done in the network configuration). We can then say that the concatenated
vector θinit = (θTinit,1, . . . , θ

T
init,Nmod

)T is normally distributed around θ0 = (θT0,1, . . . , θ
T
0,Nmod

)T with
a covariance matrix Pinit = bdiag(Pinit,1, ..., Pinit,Nmod). Based on this statistical property, the
following ellipsoid Uinit is a β%-confidence region for the unknown parameter vector θ0:

Uinit :=
{
θ ∈ Rnθ | (θ − θinit)TP−1

init(θ − θinit) < χβ
}

(6)

where Pr(χ2(nθ) < χβ) = β and θ = (θT1 , ..., θ
T
Nmod

)T . This ellipsoid Uinit can be considered as an
uncertainty set for the unknown true parameter vector θ0. From now onwards, we will therefore
assume that θ0 ∈ Uinit.

In the sequel, we will suppose that the model accuracy obtained after this initial experiment is
satisfactory for all, but one node, say Node l (l = 1, ..., Nmod). We will therefore have to perform
a new identification experiment to obtain a better estimate of the parameter vector θ0,l describing
this node. This experiment is described in the next section.
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3 Identification of one module in the network and cost of the
experiment

3.1 Cost of an experiment in the stealth and non-stealth configurations

Kl(z) G0;l(z)
yl(t)

vl(t)

r(t)

+
−+

+
yref;l(t) To the network

From the network

ul(t)

x(t)

−

+

~yl(t)

Figure 3: To-be-identified node (i.e. Node l) during the identification experiment. In the stealth
setting, x(t) is given by (7). In the non-stealth setting, x(t) = 0.

During the identification experiment, we will apply for a duration N (i.e. from t = 1 till t = N)
an excitation signal r(t) of spectrum Φr at the output of the controller Kl of Node l (see Figure 3).
This excitation will allow to obtain sufficiently informative data ul(t) and yl(t) (t = 1, . . . , N) for
an accurate identification of Sl (see Section 3.2). In Figure 3, we also observe the signal x(t). In
this paper, we will consider two choices for x(t) corresponding to two configurations/settings: the
stealth and the non-stealth configurations. In the non-stealth setting, the signal x(t) will be chosen
equal to zero. This choice corresponds to the classical setting for an identification experiment in a
closed-loop/network context (see e.g. [2]). In the stealth setting, x(t) will be chosen as the following
estimate of the contribution of r in yl:

x(t) =
Gl(z, θinit,l)

1 +Kl(z)Gl(z, θinit,l)︸ ︷︷ ︸
=Tinit,l(z)

r(t) (t = 1, . . . , N) (7)

where θinit,l is the subvector of θinit corrresponding to Sl. Note that (7) can be easily computed
since both r and Tinit,l(z) are known.

As shown in Figure 3, the signal x(t) is subtracted from the measured output yl(t) to give
ỹl(t) = yl(t)−x(t) which will be the signal that will be transmitted to compute ȳref . Consequently,
during the identification experiment, the equations (4)-(5) become:

ū(t) = m̄l r(t) + K̄(z) (ȳref (t)− ȳ(t)) (8)

ȳref (t) = A (ȳ(t)− m̄lx(t)) + B refext(t) (9)

where m̄i (i = 1, . . . , Nmod) denotes a unit (column) vector of dimension Nmod for which the ith

entry is equal to 1 and the other entries are equal to zero.
We will show, in the sequel, the advantage of the stealth setting in order to reduce the cost of the

identification experiment. For this purpose, we need to define the latter. Let us first consider the
stealth setting. In this case, the output vector ȳ and the input vector ū in the network configuration
(3)-(8)-(9) can be rewritten as follows as a function of the external signals r, refext and ē:
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ȳ(t) = Ry(z, θ0) r(t) +Ryext(z, θ0) refext(t) + Sy(z, θ0) ē(t) (10)

ū(t) = Ru(z, θ0) r(t) +Ruext(z, θ0) refext(t) + Su(z, θ0) ē(t) (11)

for some vectors of transfer functions Ryext, R
u
ext, some matrices of transfer functions Sy, Su and

Ru(z, θ0) = m̄l S0,l(z) + N̄ (z, θ0) (T0,l(z)− Tinit,l(z)) (12)

Ry(z, θ0) = Ḡ(z, θ0) Ru(z, θ0) (13)

where S0,l(z) = 1/(1 + Kl(z)Gl(z, θ0,l)) and T0,l(z) = Gl(z, θ0,l)/(1 + Kl(z)Gl(z, θ0,l)) are scalar
transfer functions and N̄ (z, θ0) is a vector of transfer functions:

N̄ (z, θ0) = K̄(z)S̄(z, θ0)
(
INmod −AS̄(z, θ0)Ḡ(z, θ0)K̄(z)

)−1A m̄l

S̄(z, θ0) =
(
INmod + Ḡ(z, θ0)K̄(z)

)−1 (14)

For the sequel, it is important to note that Tinit,l(z) (see (7)) is the initial model of T0,l(z) that
corresponds to the parameter θinit,l. Consequently, in (12), T0,l(z)−Tinit,l(z) is the modeling error
of this initial model Tinit,l(z).

With respect to the normal operations (3)-(4)-(5), ȳ and ū are thus perturbed during the
identification experiment by Ry(z)r(t) and Ru(z)r(t), respectively. Consequently, it makes sense
to define the cost of the identification experiment as:

J(Φr, θ0) =
1

2π

∫ π

−π

((
Ry(ejω, θ0)

)∗
Ry(ejω, θ0) + η

(
Ru(ejω, θ0)

)∗
Ru(ejω, θ0)

)
Φr(ω) dω

J(Φr, θ0) =
1

2π

∫ π

−π
R∗(ejω, θ0)R(ejω, θ0) Φr(ω) dω (15)

where η is an user chosen weighting factor and where R(z, θ0) is the following vector of transfer
functions of dimension 2Nmod:

R(z, θ0) =

(
Ry(z, θ0)√
η Ru(z, θ0)

)
(16)

The cost J(Φr, θ0) can be rewritten as the sum of the individual costs Ji(Φr, θ0) (i = 1, ..., Nmod)
in each module:

J(Φr, θ0) =

Nmod∑
i=1

Ji(Φr, θ0) with (17)

Ji(Φr, θ0) =
1

2π

∫ π

−π
R∗i (ejω, θ0)Ri(ejω, θ0)Φr(ω) dω (18)

Ri(z, θ) =

(
Ryi (z, θ)√
η Rui (z, θ)

)
where Ryi (resp. Rui ) is the ith entry of Ry (resp. Ru). Due to (13), we can also rewrite (18) as
follows:

Ji(Φr, θ0) =
1

2π

∫ π

−π

(
|Gi(ejω, θ0,i)|2 + η

)
|Rui (ejω, θ0)|2Φr(ω) dω (19)
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In the non-stealth setting, the cost J(Φr, θ0) of an identification experiment and the individual
costs Ji(Φr, θ0) can be defined in a very similar way. However, the expressions for Ry and Ru that
are used in (15) and (18) have a different expression:

Ru,NS(z, θ0) = m̄l S0,l(z) + N̄ (z, θ0) T0,l(z) (20)

Ry,NS(z, θ0) = Ḡ(z, θ0) Ru,NS(z, θ0) (21)

By comparing (20) and (12), we observe that the modeling error T0,l(z) − Tinit,l(z) is replaced by
T0,l(z) in the expression of Ru,NS .

For both the stealth and non-stealth settings, using the definition of Pl (see Definition 1), the
individual costs Ji(Φr, θ0) for i 6∈ Pl will be equal to zero. However, for i ∈ Pl, these costs Ji(Φr, θ0)
will be nonzero. Consequently, the excitation signal r will not have an influence only on Node l
(where it is applied and where it is necessary for the identification of Sl), but also on all nodes i
with i ∈ Pl. For the network in Figure 1, if the excitation signal r is applied in Node 5, besides
J5(Φr, θ0) , the individual costs Ji(Φr, θ0) for i = 2, 3, 4 and 6 will also be non-zero. This result is
equivalent to the fact that Ni(z, θ0) (i.e. the ith entry of N̄ (z, θ0)) is a nonzero transfer function
for all i ∈ Pl and is equal to zero for all i 6= l, i 6∈ Pl.

The role of the stealth compensation x(t) is to reduce as much as possible this propagation of
the influence of the excitation r (applied in Node l) towards the nodes i ∈ Pl. Before explaining
this in more details, let us make the following assumptions on Node l and the considered network:

Assumption 1 Consider the set Pl (see Definition 1) corresponding to the to-be-identified Node l.
We assume that Pl is a non-empty set.

Assumption 2 Consider the set Pl (see Definition 1) corresponding to the to-be-identified Node l
and the vector of transfer functions N (z, θ0) (see (14)). We will assume that, for all i ∈ Pl, the
ith entry Ni(z, θ0) of N (z, θ0) is such that Ni(ejω, θ0) 6= 0 for (almost) all frequencies.

If Pl would be empty, there is of course no need for the stealth setting since the signal r will not
be propagated to other nodes. Assumption 2 will in fact always hold, except in pathological cases
that we here want to formally exclude.

We can now explain the role of the stealth compensation in reducing the propagation of the
influence of the excitation r towards the nodes i ∈ Pl. Let us first consider the ideal case i.e. when
Tinit,l = T0,l. This choice does not change the situation in the non-stealth setting i.e. Ji(Φr, θ0)

remains nonzero for all i ∈ Pl since Ru,NSi and Ry,NSi remains the same nonzero transfer functions
for all these i (they are not function of Tinit,l). However, in the stealth setting, for all i 6= l, the
transfer functions Rui and Ryi are identically zero when Tinit,l = T0,l. Consequently, in this ideal case,
the effect of the excitation r(t) will only be felt in the to-be-identified module i.e. Ji(Φr, θ0) = 0
for all i 6= l.

In practice, Tinit,l will of course always be different from T0,l, but, as shown in the following
proposition, the stealth configuration will remain beneficial if Tinit,l satisfies a certain accuracy
constraint that will hold in the vast majority of the cases.

Proposition 1 Consider that, following the procedure described in this section, an excitation signal
r(t) of spectrum Φr is applied to Node l of a network like the one described in Section 2 and
satisfying Assumptions 1 and 2. Let us for this spectrum Φr compute the individual costs Ji(Φr, θ0)
(i = 1, ..., Nmod) in the stealth setting and in the non-stealth setting using the respective expression
for these costs in the two settings (see Section 3.1). Suppose finally that the initial model Tinit,l(z)
of T0,l(z) satisfies the following accuracy constraint at the frequencies ω where Φr(ω) 6= 0:

|T0,l(e
jω)− Tinit,l(ejω)|
|T0,l(ejω)|

< 1. (22)
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Then, for all i ∈ Pl (see Definition 1), the individual cost Ji(Φr, θ0) in the stealth configuration is
strictly smaller than the one in the non-stealth configuration. Recall also that, for the nodes i with
i 6= l and i 6∈ Pl, Ji(Φr, θ0) = 0 in both configurations.

Proof. See Appendix A.

The property (22) is equivalent to say that, at ω, Tinit,l is a better model of T0,l than the zero transfer
function (i.e. |T0,l(e

jω) − Tinit,l(ejω)| < |T0,l(e
jω) − 0|). As already mentioned, this property will

generally be met in practice. The advantage of the stealth configuration will be further discussed
in the next section.

3.2 Identification of one given module

In Section 2, we assumed that we have obtained an initial estimate θinit = (θTinit,1, . . . , θ
T
init,Nmod

)T of

the true parameter vector θ0 = (θT0,1, . . . , θ
T
0,Nmod

)T . As already mentioned at the end of Section 2,

we will suppose that we want to increase the accuracy of the estimate3 θinit,l of the true parameter
vector θ0,l corresponding to Node l. The accuracy of θinit,l can be measured with P−1

init,l where
Pinit,l is the covariance matrix of θinit,l. The accuracy of θinit,l can be improved by combining it
with a new estimate of θ0,l obtained using a data set {yl(t), ul(t)|t = 1, . . . , N} collected as shown
in Figure 3 in the stealth or the non-stealth setting.

We consider for this purpose a full-order model structure M = {Gl(z, θl), Hl(z, θl) | θl ∈ Rnl}
for Sl. We suppose that M is globally identifiable at θ0,l i.e., θl = θ0,l is the only parameter
vector for which Gl(z, θl) and Hl(z, θl) corresponds to Sl. We will also suppose that the excitation
signal r(t) (see Figure 3) and the white noise vector ē (see (3)) are uncorrelated and that refext(t)
is a stationary signal uncorrelated with r(t) and ē(t). Then, using the data set {yl(t), ul(t)|t =
1, . . . , N}, an estimate θ̂N,l of θ0,l can be obtained via prediction error identification [23]:

θ̂N,l = arg min
θl

1

N

N∑
t=1

ε2(t, θl) with: (23)

ε(t, θl) = H−1
l (z, θl) (yl(t)−Gl(z, θl)ul(t))

Using a similar reasoning4 as in [2], we will show that θ̂N,l is a consistent estimate of θ0,l i.e., θ0,l

is the unique minimum of the asymptotic criterion Ēε2(t, θl) = limN→∞
1
N

∑N
t=1Eε

2(t, θl) (with E
the expectation operator). Let us for this purpose make a similar assumption as Assumption 2 to
exclude pathological cases for the matrix Su in (11).

Assumption 3 Consider the set Ll (see Definition 1) corresponding to the to-be-identified Node l
and the matrix of transfer functions Su(z, θ0) (see (11)). We will assume that, for all i ∈ Ll, the
(l, i) entry Suli(z, θ0) of Su(z, θ0) is such that Suli(e

jω, θ0) 6= 0 for (almost) all frequencies ω.

Proposition 2 Consider the network setup described in Section 2 and the identification procedure
described above yielding the estimate θ̂N,l of θ0,l using data collected as shown in Figure 3 (using
the stealth or the non-stealth settings). Consider also the set Ll corresponding to Node l (see

3This estimate θinit,l is also the one with which the transfer function Tinit,l used for the stealth compensation is
constructed.

4The main differences of Proposition 2 in this paper with respect to Theorem 1 in [2] are that we here consider
the influence of refext and that we also derive the consistency for the stealth setting.
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Definition 1) and suppose that Assumption 3 holds. Then, the estimate θ̂N,l is a consistent estimate
of θ0,l if the product Kl(z)Gl(z, θ0,l) contains (at least) one delay and if one of the following two
conditions is satisfied

• the set Ll is non-empty. In this case, θ̂N,l is consistent even if the external excitation r(t)
and the external reference signal refext are equal to zero.

• The order of excitation of r (i.e. the number of frequencies at which its spectrum Φr(ω) is
nonzero in ] − π π]) and the order of excitation of the external reference signal refext are
sufficient for (23) to be consistent when the data set {yl(t), ul(t)|t = 1, . . . , N} is collected in
the following simple closed-loop system:

yl(t) = Gl(z, θ0,l)ul(t) +Hl(z, θ0,l)el(t) (24)

ul(t) = r(t) +Kl(z)(refext(t)− yl(t)) (25)

Proof. See Appendix B.1.

Let us interpret this proposition for the example of the network of Figure 1. In this network,
Ll is non-empty for all nodes l 6= 1. For all these nodes, as shown in the proof of Proposition 2,
the perturbations vi(t) = Hi(z, θi,0)ei(t) for i ∈ Ll will be sufficient to yield informative data

{yl(t), ul(t)|t = 1, . . . , N} and thus a consistent θ̂N,l (even if r(t) = refext(t) = 0). It is however
to be noted that, unless we have the luxury of performing an arbitrary long experiment, a nonzero
excitation r(t) will generally be required to obtain the desired accuracy for θ̂N,l (see later). As far as
Node 1 is concerned, we see that this node can indeed be described as in (24)-(25). Consequently,
the consistency of θ̂N,l can be checked using the data informativity result for direct closed loop

identification (see e.g. [11]). In this paper, the consistency of θ̂N,l can be checked by verifying a
condition on the excitation order of the excitation signal, which uniquely depends on the order of
the controller Kl(z) and on the respective parametrization and the orders of Gl(z, θl) and Hl(z, θl).
Note that, since refext is assumed quasi-stationary and independent of r, the orders of excitation
of r and refext just add up.

We will from now on suppose that the estimate θ̂N,l is consistent. As shown in Appendix B.2,

the estimate θ̂N,l is then also (asymptotically) normally distributed around θ0,l with a covariance
matrix Pθl that can be estimated from the data and whose inverse has the following expression:

P−1
θl

(Φr, θ0) = Mē(θ0)+

N

2πσ2
l

∫ π

−π
Fl(e

jω, θ0,l)F
∗
l (ejω, θ0,l)

(
|Rul (ejω, θ0)|2Φr(ω) + |Ruext,l(ejω, θ0)|2Φrefext(ω)

)
dω (26)

with Rul and Ruext,l the lth entry of Ru and of Ruext, respectively, and with Φrefext the power spectrum

of refext, Fl(z, θl) = H−1
l (z, θl)

∂Gl(z,θl)
∂θl

and Mē(θ0) the contribution of ē to the accuracy of the

estimate (see Appendix B.2 for more details). We observe that P−1
θl

(Φr, θ0) is an affine function
of the power spectrum Φr of the excitation signal r and of the power spectrum Φrefext of the
external reference refext (and a more complex function of θ0). Equation (26) pertains to the stealth
configuration. In the non-stealth configuration, we can use the same expression for Pθl(Φr, θ0), but

we have to replace Rul by Ru,NSl (see (20)).

We can combine the information on θ0,l contained in the estimates θ̂N,l and θinit,l using the

following estimator θ̂final,l = (P−1
θl

+ P−1
init,l)

−1
(
P−1
θl
θ̂N,l + P−1

init,lθinit,l

)
whose covariance matrix is

given by (P−1
θl

+ P−1
init,l)

−1 [22, page 464].
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The accuracy of the estimate θ̂final,l can thus be measured with P−1
θl

(Φr, θ0) + P−1
init,l. In this

paper, we will suppose that this accuracy will be deemed satisfactory if the following accuracy con-
straint P−1

θl
(Φr, θ0)+P−1

init,l > Radm is satisfied. The matrix Radm is a given strictly positive-definite
and symmetric matrix that reflects the desired accuracy [25, 13].

4 Optimal experiment design problem

As mentioned in the introduction, we will design the spectrum Φr of the excitation signal r of
the identification experiment described in the previous section in such a way that the accuracy
constraint P−1

θl
(Φr, θ0) +P−1

init,l > Radm is satisfied with the smallest cost J(Φr, θ0) (see (15)). This
optimization problem can thus be formulated as follows:

min
Φr

J(Φr, θ0) (27)

P−1
θl

(Φr, θ0) + P−1
init,l ≥ Radm (28)

This optimization problem can be considered both in the stealth and in the non-stealth setting by
using the respective expressions for J(Φr, θ0) and for P−1

θl
(Φr, θ0) in both cases. Before discussing

how this optimization problem can be solved in practice, let us formulate the following result that
illustrates the advantage of the stealth configuration.

Proposition 3 Consider an identification experiment in Node l of a network satisfying Assump-
tions 1 and 2. Consider, for this identification experiment, the optimal experiment design prob-
lem (27)-(28) in the stealth and in the non-stealth setting (i.e. using the respective expressions for
J(Φr, θ0) and for P−1

θl
(Φr, θ0) in both cases) and let us denote by ΦS

r,opt and ΦNS
r,opt the optimal spec-

tra obtained in these two settings. Then, we have that the optimal cost J(ΦS
r,opt, θ0) in the stealth

setting is strictly smaller than the cost J(ΦNS
r,opt, θ0) in the non-stealth setting if the model Tinit,l of

T0,l used in the stealth compensation (7) has the following property for all ω where ΦNS
r,opt(ω) 6= 0:

|T0,l(e
jω)− Tinit,l(ejω)|
|T0,l(ejω)|

<
|Rul (ejω, θ0)|
|Ru,NSl (ejω, θ0)|

(29)

where Rul (resp. Ru,NSl ) is the lth entry of Ru (resp. Ru,NS) defined in (12) (resp. (20)).

Proof. See Appendix C.

As shown in Proposition 3, we thus see that the stealth configuration, which can be very easily
implemented in a multi-agent network, will be, in many cases, advantageous5 to obtain the required
accuracy for the model of Sl with the smallest possible identification cost.

Let us now turn to the problem of solving the optimal experiment design problem (27)-(28).
We observe that, like many optimal experiment design problems, this optimization problem is
dependent on the unknown vector θ0 = (θT0,1, . . . , θ

T
0,Nmod

)T . Since θ0 is unknown, the optimization
problem (27)-(28) cannot be tackled as such. A commonly used approach to circumvent this
problem is to replace θ0 by an initial estimate. If we use the initial estimate θinit for this purpose

5The condition (29) on Tinit,l is more complex than (22). However, (29) will be respected if Tinit,l is not a too
poor estimate of T0,l.
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(see Section 2), this would yield an optimization problem consisting in minimizing J(Φr, θinit)
under the constraint P−1

θl
(Φr, θinit) + P−1

init,l ≥ Radm. In the stealth configuration, this approach
will have a major disadvantage since Tinit,l in (7) is also computed based on θinit. The latter has
as consequence that J(Φr, θinit) = Jl(Φr, θinit) (because Ji(Φr, θinit) = 0 for all i 6= l). In other
words, the propagation of the signal r(t) towards the nodes i with i ∈ Pl will not be taken into
account in the optimal experiment design problem if we replace θ0 by θinit. We will therefore
instead consider the following formulation where the cost constraint has been robustified using the
initial uncertainty region Uinit (see (6)):

min
Φr,γ

γ (30)

J(Φr, θ) ≤ γ ∀θ ∈ Uinit (31)

P−1
θl

(Φr, θinit) + P−1
init,l ≥ Radm (32)

This optimization problem can be considered both in the stealth and in the non-stealth settings by
using the respective expressions for J(Φr, θ) and for P−1

θl
(Φr, θinit) in both cases.

As opposed to the case where θ0 is replaced by θinit, the above formulation will also take into
account the propagation of the excitation signal in the stealth setting. In this setting, we will
also observe a robustification of the stealth compensation. Indeed, the robustified formulation will
favour spectra Φr yielding, for all θ ∈ Uinit, small perturbations Rui (z, θ)r(t) and Ryi (z, θ)r(t) for
i = l and for i ∈ Pl (see (11)-(10)). For nodes i ∈ Pl, this e.g. means that the power of the
following signal has to be made small for all θ ∈ Uinit:

Rui (z, θ)r(t) = N̄i(z, θ)
(

Gl(z, θ)

1 +Kl(z)Gl(z, θ)
− Tinit,l(z)

)
r(t)

Consequently, the robustified optimal experiment design problem will generally and among other
considerations favour spectra Φr(ω) with more contributions in the frequency ranges where the
stealth compensation will be more effective due to a small uncertainty of Tinit,l(z) (thereby robus-
tifying the stealth configuration).

In both the stealth and non-stealth settings, the robustified optimal experiment design prob-
lem (30)-(32), has also the following properties. If we denote by Φr,opt and γopt the solution of this
optimization problem, we have that γopt = supθ∈Uinit J(Φr,opt, θ). Since we assume that θ0 ∈ Uinit,
this robustified formulation ensures that the a-priori unknown cost J(Φr,opt, θ0) is guaranteed to be
smaller than γopt. This would have not been the case if, instead of the robustified constraint (31),
we would have used the non-robustified constraint J(Φr, θinit) ≤ γ.

Since the optimization problem (30)-(32) can be considered for the stealth and the non-stealth
configurations, the solution of the optimization problem in both settings can be compared to verify
whether the stealth configuration indeed yields a smaller cost. Note that this will generally be the
case since, as explained above, the robust formulation will imply a robustification of the stealth
compensation. However, in the case of (30)-(32), we do not have a condition such as (29) to
guarantee this property.

5 Tackling the robust cost constraint in a convex way

Since (32) is affine in the decision variable Φr, the optimization problem (30)-(32) will be convex
if (31) can be transformed into a constraint linear in the decision variables Φr and γ. However, as
very often in robustness analysis theory, we cannot find a tractable linear constraint that is equiva-
lent to (31), but we will show in this section that we can find one that implies (31). Consequently,
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if we solve the optimization problem with this alternative constraint, its solution γopt will be an
upper bound for supθ∈Uinit J(Φr,opt, θ). This entails a certain conservatism, but this γopt remains
an upper bound for the (unknown) cost J(Φr,opt, θ0) of an identification experiment with spectrum
Φr,opt.

In order to derive a tractable constraint implying (31), we have to take into account that we
are in the network context and thus that the vector θ can be of high dimension. Consequently,
instead of working directly on the uncertain vector θ as in [3], it is preferable to consider the
so-called hierarchical approach. The hierarchical approach has indeed been introduced in [28] to
analyze the robustness of large-scale (interconnected) systems. Consequently, our objective here
will be to determine a tractable constraint implying (31) and that can be used in the context of
the hierarchical approach.

To derive such a tractable linear constraint implying (31), we will assume that the to-be-
designed excitation signal r is a multisine i.e., r(t) =

∑L
m=1Am sin(ωmt) where the frequencies ωm

(m = 1, . . . , L) are fixed by the user (as e.g. a fine grid of the frequency range [0 π]) and where
the amplitudes Am (m = 1, . . . , L) will be optimally determined. Such parametrization of the
excitation signal is classically used in optimal experiment design and corresponds to the following
spectrum:

Φr(ω) = π

L∑
m=1

cm (δ(ω − ωm) + δ(ω + ωm)) ≥ 0 ∀ω (33)

where cm = A2
m
2 (m = 1, . . . , L) will be the decision variables of the optimization problem. The

positivity of Φr(ω) for all ω can be imposed by the constraints cm ≥ 0 (m = 1, . . . , L) on these
decision variables.

Using (33) and (15), the robust cost constraint (31) can be rewritten as follows:

L∑
m=1

cm
(
R∗(ejωm , θ)R(ejωm , θ)

)
≤ γ ∀θ ∈ Uinit (34)

In the next section, we will show that the hierarchical approach can be used to deduce, for each ω,
an accurate upper bound α(ω) for

Jwc(ω) = sup
θ∈Uinit

(
R∗(ejω, θ)R(ejω, θ)

)
(35)

i.e. Jwc(ω) ≤ α(ω). This computable upper bound α(ω) for Jwc(ω) is important since it is a
necessary ingredient to derive a tractable linear constraint implying the robust cost constraint (34)
as shown in the following proposition.

Proposition 4 Consider the robust cost constraint (34) corresponding to a spectrum of the type (33).
Then, the constraint (34) holds for a given γ if the following inequality linear in the decision vari-
ables cm (m = 1, . . . , L) holds:

L∑
m=1

cm α(ωm) ≤ γ (36)

where α(ω) (m = 1, ..., L) is an upper bound for Jwc(ω) (see(35))

Proof. For any frequency ωm, we have that:
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(
R∗(ejωm , θ)R(ejωm , θ)

)
≤ α(ωm) ∀θ ∈ Uinit

The latter relation confirms that (34) holds if (36) holds.

Let us observe that (36) is an inequality constraint linear in the coefficients cm (m = 1, . . . , L).
Moreover, since Φr is affine in cm (m = 1, . . . , L), the accuracy constraint (32) is also linear in these
coefficients. Consequently, the following Linear Matrix Inequality (LMI) optimization problem is
a convex formulation for the original robust optimal experiment design problem (30)-(32).

LMI formulation. Consider the parametrization (33) for the to-be-designed spectrum Φr. For
this parametrization, the LMI optimization problem has as decision variables a scalar γ > 0 and
coefficients cm ≥ 0 (m = 1, . . . , L) and consists in determining the smallest value of γ for which
both the LMI constraint (32) and the constraint (36) hold for some cm ≥ 0 (m = 1, . . . , L).

Let us denote by cm,opt (m = 1, . . . , L) and by γopt the solution of this LMI optimization problem
and let us also denote by Φr,opt the spectrum corresponding to the coefficients cm,opt. Then, due to
Proposition 4, we have that γopt is an upper bound of supθ∈Uinit J(Φr,opt, θ) and thus of J(Φr,opt, θ0).
Moreover, by construction, the spectrum Φr,opt is also the one yielding the smallest value of (the
upper bound of) supθ∈Uinit J(Φr,opt, θ) for which the accuracy constraint (32) is met.

Remark. The solution γopt =
∑L

m=1 cm,opt α(ωm) of the optimization problem gives an upper bound
Jub for the total cost J(Φr,opt, θ0). We can also compute an upper bound Jubi for the individual
costs Ji(Φr,opt, θ0) defined in (18). This upper bound Jubi (i = 1, ..., Nmod) is given by:

Jubi =
L∑

m=1

cm,opt αi(ωm) (37)

where, for any frequency ω, αi(ω) (i = 1, ..., Nmod) is an upper bound for

Jwc,i(ω) = sup
θ∈Uinit

(
R∗i (ejω, θ)Ri(ejω, θ)

)
(38)

Such an upper bound can also be computed using the tools that will be presented in the next section.

Remark. With respect to our earlier contribution [24], the approach that we propose in this paper
to robustify the cost constraint is not based on any approximation.

6 Computation of α(ω) using the hierarchical approach

6.1 LFT representation of R(z, θ)

To be able to use the LMI formulation of the optimal experiment design problem (30)-(32) given
in the previous section, it is necessary to determine a way to compute an (accurate) upper bound
α(ω) for Jwc(ω) at a given6 frequency ω. As mentioned before, the hierarchical approach will be
here used for this purpose. In order to use the hierarchical approach for the problem at stake (see

6We will indeed need to determine α(ω) at the L frequencies present in (33).
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e.g. [2]), we first need to rewrite s̄(t) = R(z, θ)r(t) in a Linear Fractional Transformation (LFT)
representation having a special form i.e., we have to determine vectors of signals p̄ and q̄ such that:

p̄(t) = T̄ (z, θ)q̄(t) and

(
q̄(t)
s̄(t)

)
= M(z)

(
p̄(t)
r(t)

)
(39)

where M(z) is not a function of θ and where T̄ (z, θ) is a diagonal matrix of dimension Nmod×Nmod

for which the (i, i) entry is a closed-loop transfer function related to an isolated7 loop made up of
the controller Ki and a model Gi(z, θi) of Gi(z, θi,0). In our case, this upper part will be chosen as:

T̄ (z, θ) = diag(T1(z, θ1), . . . , TNmod(z, θNmod)) (40)

where Ti(z, θi) = Gi(z, θi)/(1 + Ki(z)Gi(z, θi)). Note that, in the sequel, we will often use the
shorthand notation R(z, θ) = F(M(z), T̄ (z, θ)) for the LFT (39).

We will determine this LFT both in the stealth setting and in the non-stealth setting. Let us
start with the stealth setting and let us pose ē = 0 and refext = 0 in (3)-(8)-(9). If we express
these equations for an arbitrary θ, we obtain

ȳ(t) = Ḡ(z, θ)ū(t) (41)

ū(t) = m̄lr(t) + K̄(z) (ȳref (t)− ȳ(t)) (42)

ȳref (t) = A

ȳ(t)− m̄l Tinit,l(z)r(t)︸ ︷︷ ︸
=x(t)

 (43)

Inserting (42) in (41) yields:

ȳ(t) = T̄ (z, θ)
(
K̄(z)ȳref (t) + m̄lr(t)

)
(44)

with the definition of T̄ (z, θ) given in (40). Let us now define p̄(t) := ȳ(t) and q̄(t) := K̄ȳref (t) +
m̄lr(t) and let us notice that, using (43), q̄(t) is equal to:

q̄(t) = K̄(z)A

ȳ(t)︸︷︷︸
p̄(t)

−m̄lTinit,l(z)r(t)

+ m̄lr(t)

Using (10) and (11), let us also notice that s̄(t) = (s̄Ty (t), s̄Tu (t))T with s̄y(t) = Ry(z, θ)r(t) =
ȳ(t) = p̄(t) and s̄u(t) =

√
ηRu(z, θ)r(t) =

√
ηū(t) (when ē = 0 and refext = 0). Inserting (43) in

(42) and using the fact that ȳ(t) = p̄(t), we obtain:

ū(t) = K̄(z) (A− INmod) p̄(t) +
(
m̄l − K̄(z)Am̄lTinit,l(z)

)
r(t)

This therefore yields the following expression for M(z):

M(z) =

 K̄(z)A m̄l − K̄(z)Am̄lTinit,l(z)

INmod 0√
η K̄(z) (A− INmod)

√
η
(
m̄l − K̄(z)Am̄lTinit,l(z)

)
 (45)

7By isolated, we means that the considered loop is not connected to other loops via a network connection.
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Let us now consider the non-stealth configuration. In this configuration, Ry and Ru (see (12)-
(13)) are replaced by Ry,NS and Ru,NS (see (20)-(21)) in the above reasoning. By doing this,
R(z, θ) can also be written as an LFT F(M(z), T̄ (z, θ)) with

M(z) =

 K̄(z)A m̄l

INmod 0√
η K̄(z) (A− INmod)

√
η m̄l


6.2 Hierarchical approach

Based on the LFT representation R(z, θ) = F(M(z), T̄ (z, θ)) deduced in the previous subsection
(for both the stealth and non-stealth settings), we have now all the elements to derive the hier-
archical approach to determine an upper bound α(ω) for Jwc(ω) (see (35)). This approach is an
adaptation of the procedure proposed in Section 3 of our previous contribution [2]. The main
difference with [2] is that R(z, θ) is here a vector of transfer function while, in [2], R(z, θ) was a
scalar transfer function.

Let us first notice that, at each frequency ω, the frequency response T̄ (ejω, θ) of every transfer
matrix T̄ (z, θ) with θ ∈ Uinit lies in the following multiplicative uncertainty region [33]:

T (ω) = {T̄ (ejω) | T̄ (ejω) = (1 + ∆(ejω)) T̄ (ejω, θinit) with ∆(ejω) ∈∆(ω)} (46)

∆(ω) = {∆(ejω) = diag(∆1(ejω), ...,∆Nmod
(ejω)) | |∆i(e

jω)− c̃i(ω)| < ρi(ω) i = 1, ..., Nmod} (47)

where, for each i = 1, ..., Nmod, c̃i(ω) is a complex scalar and ρi(ω) is a real scalar determined as
follows:

min
ρi(ω), c̃i(ω)

ρi(ω)

s.t. |T̃i(ejω, θi)− c̃i(ω)| < ρi(ω) ∀θi ∈ Uinit,i (48)

with T̃i(e
jω, θi) =

Ti(e
jω ,θi)−Ti(ejω ,θinit,i)
Ti(ejω ,θinit,i)

and

Uinit,i = {θi | θ ∈ Uinit} =
{
θi|(θi − θinit,i)TP−1

init,i(θ − θinit,i) ≤ χβ
}

By virtue of (48), T (ω) is in fact the smallest multiplicative uncertainty region that contains
T (ejω, θ) for all θ ∈ Uinit. As shown in Appendix D, the quantities c̃i(ω) and ρi(ω) can be exactly
computed for each i and for each ω. Consequently, T (ω) can thus be entirely defined.

Using the LFT R(z, θ) = F(M(z), T̄ (z, θ)), the quantity Jwc(ω) at a given ω can be rewritten
as:

Jwc(ω) = sup
θ∈Uinit

(
F∗(M(ejω), T̄ (ejω, θ)) F(M(ejω), T̄ (ejω, θ)))

)
(49)

Using the multiplicative uncertainty region T (ω) defined above, we have the following property:

Jwc(ω) ≤ sup
T̄ (ejω)∈T (ω)

(
F∗(M(ejω), T̄ (ejω)) F(M(ejω), T̄ (ejω)))

)
︸ ︷︷ ︸

=α̃(ω)

(50)

Using simple transformation, the LFT F(M(ejω), T̄ (ejω)) in T̄ (ejω) can be transformed in an LFT
in ∆(ejω) i.e., F

(
M(ejω), T̄ (ejω)

)
= F

(
M∆(ejω),∆(ejω)

)
with

M∆(ejω) =

(
0 T̄ (ejω, θinit)

INmod T̄ (ejω, θinit)

)
? M(ejω)
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Using this new LFT description, α̃(ω) in (50) can be rewritten equivalently as:

α̃(ω) = sup
∆(ejω)∈∆(ω)

(
F∗
(
M∆(ejω),∆(ejω)

)
F
(
M∆(ejω),∆(ejω)

))
(51)

An accurate upper bound for this quantity α̃(ω) can be determined using the LMI optimization
problem given in the following proposition. This computable upper bound for α̃(ω) is thus also an
upper bound for Jwc(ω) and will therefore be chosen as the quantity α(ω) that is used in the LMI
formulation of Section 5.

Proposition 5 Consider a given frequency ω and the quantities ρi(ω) and c̃i(ω) (i = 1, ..., Nmod)
defining the set T (ω) (see (46)). Define Rω (resp. Cω) as a diagonal matrix of dimension Nmod

whose elements are ρ2
i (ω) (resp. c̃i(ω)) (i = 1..., Nmod). Then, an upper bound for α̃(ω) (see (51))

is given by γ̃opt(ω) where γ̃opt(ω) is the solution of the following LMI optimization problem. This
LMI optimization problem has as decision variables a real scalar γ̃(ω) > 0 and a strictly positive
definite diagonal matrix Tω ∈ RNmod×Nmod.

min
γ̃(ω), Tω

γ̃(ω)

s.t.

(
M∆(ejω)

I

)∗

N (γ̃(ω))

(
M∆(ejω)

I

)
< 0 (52)

with N (γ(ω))
∆
=


(
Tω(Rω − C∗

ωCω) 0
0 I2Nmod

) (
TωC

∗
ω 0

0 0

)
(
TωCω 0

0 0

) (
−Tω 0

0 −γ̃(ω)

)
 (53)

Proof. See Appendix E.

Remark. From a computational point-of-view, the hierarchical approach is advantageous for large
networks. Indeed, due to the embedding in a multiplicative uncertainty, the complexity of the
multiplier Tω in the above proposition remains very limited (i.e., Nmod elements in Tω). Moreover,
the quantities ρi(ω) and c̃i(ω) are computed locally in each node. In other words, the complexity
of the network does not play a role in the computation of ρi(ω) and c̃i(ω).

Remark. The quantity αi(ω) (i = 1, ..., Nmod) that can be used to determine the upper bound Jubi
on the individual cost Ji (see (37)) can also be determined using the hierarchical approach presented
above. For this purpose, we just have to replace, in the above reasoning, the LFT representation
for R(z, θ) by an LFT representation for Ri(z, θ) (this LFT representation can be easily deduced
from the one of R(z, θ)).

7 Numerical illustrations

7.1 First numerical illustration

In this first numerical illustration, we consider the network of Figure 1 made up of Nmod = 6
homogenous nodes. In other words, the true systems Si (i = 1, ..., 6) are all identical and given
by the following ARX system [21] with two resonance peaks: yi(t) = (z−3B0(z))/(A0(z))ui(t) +
(1)/(A0(z))ei(t) with B0(z) = 0.10276 + 0.18123z−1, A0(z) = 1 − 1.99185z−1 + 2.20265z−2 −
1.84083z−3 + 0.89413z−4. The variances of the white noises ei(t) are all equal to 0.5. We further

suppose that these true systems are all controlled by the same local controller K(z) = KB(z)
KA(z) with
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KB(z) = 0.03742−0.06719z−1 +0.06995z−2−0.03814z−3−0.02546z−4 +0.06323z−5−0.04707z−6 +
0.03222z−7 and KA(z) = 1− 3.348z−1 + 5.953z−2 − 7.163z−3 + 6.143z−4 − 3.705z−5 + 1.368z−6 −
0.2482z−7.

For simplicity, the initial estimate θinit and its covariance matrix Pinit is determined from a single
open-loop experiment on the ARX system (disconnected from the network) with a white input signal
of variance 19 and of duration N = 1000. This open-loop experiment yields the following identified
polynomials Bid = 0.09535z−3 +0.1769z−4 and Aid = 1−1.989z−1 +2.187z−2−1.822z−3 +0.887z−4

corresponding to the identified parameter vector θmodule,ol of dimension 6 with covariance matrix
Pmodule,ol. Based on this open-loop experiment, the initial estimates θinit,i of θ0,i (i = 1, ..., 6))
can all be chosen equal to θmodule,ol i.e. θinit = (θTmodule,ol, θ

T
module,ol, ..., θ

T
module,ol)

T and Pinit is
chosen equal to INmod ⊗ Pmodule,ol. Using these quantities, we can define the uncertainty region
Uinit corresponding to a confidence level β of 95% (χβ = 50.9985).

Our objective will be to design the spectrum Φr(ω) of the excitation signal r that has to
be added to Node 5 (i.e. l = 5) during an identification experiment of duration N = 1000 to
improve the accuracy of the model of S5 in such a way that the following accuracy constraint
is satisfied P−1

θ5
(Φr, θ0) + P−1

init,5 > Radm where Radm is chosen as the inverse of the diagonal

matrix diag((0.019)2, (0.022)2, (0.018)2, (0.009)2, (0.005)2, (0.009)2). We will furthermore suppose
that refext(t) = 0 during the identification experiment.

To determine the spectrum Φr(ω) satisfying this accuracy constraint with the smallest identi-
fication cost, we consider the optimization problem (30)-(32). We will consider this optimization
problem both in the stealth setting and in the non-stealth setting. For both settings, we define the
cost of the identification experiment as in (15) with η = 1 and we parametrize Φr(ω) as in (33) with
L = 20 frequencies distributed in the frequency range

[
10−2, π

]
. In the stealth setting, the stealth

compensation is implemented using (7) with the transfer function Tinit,5 that can be constructed
based on θinit,5 = θmodule,ol.

To solve the optimization problem (30)-(32) in both settings, we compute, for each setting,
the corresponding quantity α(ω) for each frequencies ωm (m = 1, ..., L) present in Φr(ω) (see
Section 6). The optimal spectrum Φr,opt and the optimal value γopt can then be deduced8 using
the LMI optimization problem given at the end of Section 5.

Let us first consider the stealth setting. In this case, the optimal spectrum Φr,opt corresponds
to a multisine for which all the amplitudes are negligible except at two frequencies ω = 1.35 and
ω = 1.65 and γopt is equal to 34.9466. This value is an upper bound Jub for supθ∈Uinit J(Φr,opt, θ)
as discussed in Section 4 and thus also an upper bound for the a-priori unknown cost J(Φr,opt, θ0).
As mentioned in the beginning of Section 3, our LMI approach entails a certain conservatism. Let
us thus check the extent of this conservatism in this example. For this purpose, we compute a lower
bound J lb for supθ∈Uinit J(Φr,opt, θ) by considering the maximal value of J(Φr,opt, θi) over a set of
1000 grid points θi ∈ Uinit. This procedure yields J lb = 33.92. Consequently, the conservatism
of our procedure remains limited in this example since there is only 3% of difference between J lb

and Jub. In this simulation example, we can also compute J(Φr,opt, θ0) i.e. J(Φr,opt, θ0) = 31.39.
Consequently, γopt is indeed an upper bound for J(Φr,opt, θ0). Note also that, as opposed to this,
J(Φr,opt, θinit) = 30.79 would underestimate the actual cost of the experiment.

In order to have a better idea of how this cost is distributed in each of the six modules, let us
consider the upper bound Jubi (see (37)) of the individual costs Ji(Φr,opt, θ0) for i = 5 and for all
i ∈ P5 = {2, 3, 4, 6}. These upper bounds are given in Table 1. We observe that Jub5 is almost equal
to the total cost (for i 6= 5, Jubi ≤ 3.5 10−4).

Let us now compare these results with the ones obtained in the non-stealth setting. The optimal
multisine in this setting is very similar to the one in the stealth setting and γopt = 34.9557. We

8Note that the whole procedure yielding Φr,opt and γopt takes 11 seconds using Matlab.
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observe that this value is (slightly) larger than in the stealth case where γopt = 34.9466. Moreover,
as shown in Table 1, the costs Jubi for i ∈ P5 are all at least 16 times larger than when the
stealth configuration is implemented. This shows the advantage of the stealth configuration. The
maximum of these individual costs for i 6= 5 (i.e. Jub6 = 6 10−3) remains though small with
respect to Jub5 = 34.9470. This is due to the large attenuation of this particular network. In other
networks, this attenuation could be much smaller and would even more justify the use of the stealth
configuration. This will be illustrated in the second numerical illustration.

Table 1: Upper bounds Jubi for the individual costs Ji (i = 2, ..., 6) obtained using the optimal
spectrum in the stealth and non-stealth settings (first illustration)

Jub2 Jub3 Jub4 Jub5 Jub6

STEALTH 7 10−9 8.8 10−5 8.8 10−5 34.9461 3.5 10−4

NON-STEALTH 1.2 10−7 1.5 10−3 1.5 10−3 34.9470 6 10−3

7.2 Second numerical illustration

1 2

refext y2y1

Figure 4: Graph representation of the network used in the second numerical illustration

In this second numerical illustration, we consider the network of Figure 4 made up of Nmod = 2
nodes in cascade for which we wish to identify the first node. In this network, the matrices A and
B in the interconnection (9) are given by

A =

(
0 0
1 0

)
B =

(
1
0

)
The true system S1 is equal to the ARX system used in the previous section while the true system
S2 is given by the following first-order ARX system: y2(t) = (3.6 z−1)/(1− 0.7 z−1)u2(t) + 1/(1−
0.7 z−1)e2(t) (i.e. θ0,2 = (−0.7 3.6)T ). The controller K1 is also the same as the one in the previous
subsection while K2(z) = 10. The variance of the white noises e1(t) and e2(t) are here also both
equal to 0.5. Note that the controller K2 ensures a large closed-loop bandwidth. Consequently, in
the non-stealth configuration, any perturbation due to r(t) in yref,2(t) = y1(t) will have a strong
influence on u2(t) and y2(t). A stealth configuration may thus have a large impact in this example.

For simplicity, the initial estimate θinit,1 and its covariance matrix Pinit,1 will be chosen as in
the previous section (i.e. the estimate obtained with an open-loop experiment with input variance
of 19). The initial estimate θinit,2 and its covariance matrix Pinit,2 are determined in a similar way
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(open-loop experiment with input variance of 19). This yields θinit,2 = (−0.69 3.57)T and a covari-
ance matrix Pinit,2. Based on this, the initial estimate θinit of θ0 is chosen as (θTinit,1, θ

T
init,2)T and

Pinit is chosen equal to bdiag(Pinit,1, Pinit,2). Using these quantities, we can define the uncertainty
region Uinit corresponding to a confidence level β of 95% (χβ = 15.5).

Our objective will be to design the spectrum Φr(ω) of the excitation signal r that has to be
added to Node 1 (l = 1) during an identification experiment of duration N = 1000 to improve
the accuracy of the model of S1 in such a way that the following accuracy constraint is satisfied
P−1
θ1

(Φr, θ0) +P−1
init,1 > Radm where Radm is chosen as in the previous subsection. We will here also

suppose that refext(t) = 0 during the identification experiment.
To determine the spectrum Φr(ω) satisfying this accuracy constraint with the smallest identi-

fication cost, we consider the optimization problem (30)-(32). We will consider this optimization
problem here also both in the stealth setting and in the non-stealth setting. For both settings, we
here also define the cost of the identification experiment as in (15) with η = 1 and we parametrize
Φr(ω) as in (33) with the same L = 20 frequencies as in the previous subsection. In the stealth set-
ting, the stealth compensation is implemented using (7) with the transfer function Tinit,1 that can
be constructed based on θinit,1 (Tinit,1 is here equal to the transfer function Tinit,5 in the previous
subsection)

Let us compare the value γopt obtained when solving (30)-(32) in the stealth and in the non-
stealth settings. Like in the previous subsection, the optimal cost γopt in the stealth setting is
smaller than in the non-stealth setting: the obtained γopt are respectively 33.87 and 42.38. Note
that the advantage of the stealth configuration is here very clear since the stealth configuration
allows to reduce the predicted cost by 25 %.

In order to have a better idea of how this cost is distributed in each of the two modules in both
settings, we can consider Table 2 giving the upper bound Jubi of the individual costs Ji(Φr,opt, θ0)
(i = 1, 2). By comparing Jub2 = 0.17 (in the stealth setting) and Jub2 = 8.61 (in the non-stealth
setting), we observe that the stealth configuration plays its role entirely by reducing, by a factor of
50, the propagation of the excitation signal to Node 2. This strong reduction is also observed for
the actual individual cost J2(Φr,opt, θ0) which is equal to 0.03 in the stealth setting and to 7.04 in
the non-stealth setting.

Table 2: Upper bounds Jubi for the individual costs Ji (i = 1, 2) obtained using the optimal spectrum
in the stealth and non-stealth settings in the second numerical illustration

Jub1 Jub2

STEALTH 33.70 0.17

NON-STEALTH 33.77 8.61

7.3 Case of a larger Uinit

To show the effectiveness of the stealth configuration even in the case of a larger uncertainty Uinit
(and thus a worse model Tinit,l), we repeat the above comparisons when θinit is identified with an
input signal with a variance 10 times smaller than previously. In the first numerical illustration,
this larger Uinit yields a value of γopt = 131.66 in the stealth setting and a value of γopt = 131.71 in
the non-stealth one. In the second numerical illustration, we obtain γopt = 119 in the stealth setting
and γopt = 157.84 in the non-stealth setting. Consequently, with this larger Uinit and this worse
model Tinit,l, the stealth configuration also yields a smaller identification cost than the non-stealth
configuration. Even though the obtained reduction is smaller due to the worse model Tinit,l, the
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effectiveness of the stealth setting in reducing the propagation of the influence of the excitation
signal remains confirmed when looking at Tables 3 and 4 giving, for this larger Uinit and this worse
Tinit,l, the upper bounds Jubi of the individual costs Ji(Φr,opt, θ0) for the first and second numerical
illustrations, respectively. In Table 3, we observe that Jubi for i ∈ P5 remain 4.5 times smaller
(instead of 16 times smaller in Table 1) when the stealth configuration is implemented. In Table 4,
Jub2 remains 7 times smaller (instead of 50 times smaller in Table 2) when the stealth configuration
is implemented.

Table 3: Upper bounds Jubi for the individual costs Ji (i = 2, ..., 6) obtained using the optimal
spectrum in the stealth and non-stealth settings for a larger Uinit (first numerical illustration)

Jub2 Jub3 Jub4 Jub5 Jub6

STEALTH 3 10−7 2.1 10−3 2.1 10−3 131.649 8.3 10−3

NON-STEALTH 1.3 10−6 9.4 10−3 9.5 10−3 131.656 3.8 10−2

Table 4: Upper bounds Jubi for the individual costs Ji (i = 1, 2) obtained using the optimal spectrum
in the stealth and non-stealth settings for a larger Uinit (second numerical illustration)

Jub1 Jub2

STEALTH 113.57 5.43

NON-STEALTH 118.12 39.72

It is to be noted that, for both numerical illustrations, the condition (29) is verified at all
frequencies even with the worse model Tinit,l considered in this section. Consequently, by virtue
of Proposition 3, the result presented above could have been expected. However, note that this
condition (29) cannot be verified in practice since it requires the knowledge of the unknown true
system and that Proposition 3 only pertains to the ideal optimal experiment design problem (27)-
(28) and not to (30)-(32).

8 Conclusions

This paper extends the least costly identification experiment design framework to the case of the
identification of one module in a network of locally controlled systems. The cost of the identification
experiment (that is minimized under a certain accuracy constraint) is here defined as a function of
the perturbations induced by the excitation signal on the input and output signals of each module.
The propagation of the influence of the excitation signal is further reduced by an extension of
the stealth identification paradigm. Note that the results of this paper can easily be extended to
network situation where the cost of the experiment is not related to the perturbation induced by
the excitation signal on the output of each module, but is more related to the perturbation induced
by the excitation signal on the differences between the outputs of neighbouring modules. This
situation can occur when the different agents in the network must remain as much as possible in a
given formation configuration [29].
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A Proof of Proposition 1

Let us consider the expression (19) for the individual costs Ji(Φr, θ0) (i = 1, ..., Nmod) and introduce
the following notations to distinguish them in the stealth (superscript S) and non-stealth case
(superscript NS):

JSi (Φr, θ0) =
1

2π

∫ π

−π

(
|Gi(ejω, θ0,i)|2 + η

)
|Rui (ejω, θ0)|2Φr(ω) dω (54)

JNSi (Φr, θ0) =
1

2π

∫ π

−π

(
|Gi(ejω, θ0,i)|2 + η

)
|Ru,NSi (ejω, θ0)|2Φr(ω) dω (55)

where Ru is given by (12) and Ru,NS is given by (20). Let us now observe that, for i 6= l, we have
that:

|Rui (ejω, θ0)|2Φr(ω) = |N̄i(e
jω, θ0)|2|T0,l(e

jω)− Tinit,l(ejω)|2Φr(ω)

|Ru,NSi (ejω, θ0)|2Φr(ω) = |N̄i(e
jω, θ0)|2|T0,l(e

jω)|2Φr(ω)

Let us first consider the indexes i ∈ Pl and recall Assumption 2. In this case, if Tinit,l satisfies (22)
for all frequencies ω where Φr(ω) 6= 0, we have for all these frequencies that:

|Ru,NSi (ejω, θ0)|2Φr(ω) > |Rui (ejω, θ0)|2Φr(ω)

Consequently, for all i ∈ Pl, we have that JSi (Φr, θ0) < JNSi (Φr, θ0).
Finally, for the indexes i 6= l, i 6∈ Pl, JSi (Φr, θ0) = JNSi (Φr, θ0) = 0 since N̄i(z, θ0) = 0 in this

case.

B Consistency and accuracy of (23)

B.1 Proof of Proposition 2

Let us first consider the stealth setting. To show the consistency of (23), we have to show that θ0,l

is the unique minimum of the following asymptotic identification criterion:

θ∗l = arg min
θ
Ēε2(t, θl) (56)

The prediction error ε(t, θl) in (23) can be rewritten as follows using (1) and (11):

ε(t, θl) = el(t) +
∆Gl(z, θl)

Hl(z, θl)

Rul r(t) +Ruext,l refext(t) +
∑
i∈Ll

Suli ei(t)

 (57)

+

(
∆Hl(z, θl)

Hl(z, θl)
+

∆Gl(z, θl)

Hl(z, θl)
Sull

)
el (58)
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where ∆Gl(z, θl) = Gl(z, θ0,l) − Gl(z, θl) and ∆Hl(z, θl) = Hl(z, θ0,l) − Hl(z, θl). Using now the
fact that there is at least a delay in the product KlGl (and thus in the product ∆Gl(z, θl)S

u
ll), that

Hl is monic and that r, refext and the white noises ej (j = 1, ..., Nmod) are mutually independent,
the power Ēε2(t, θl) of ε(t, θl) is given by:

Ēε2(t, θl) = σ2
el

+ Ēs2
r(t, θl) + Ēs2

refext(t, θl) + Ēs2
el

(t, θl) +
∑
i∈Ll

Ēs2
ei(t, θl) (59)

with sr = ∆Gl(z,θl)
Hl(z,θl)

Rul r, srefext = ∆Gl(z,θl)
Hl(z,θl)

Ruext,l refext, sel =
(

∆Hl(z,θl)
Hl(z,θl)

+ ∆Gl(z,θl)
Hl(z,θl)

Sull

)
el and, for

i ∈ Ll, sei = ∆Gl(z,θl)
Hl(z,θl)

Suli ei.

Since Ēε2(t, θ0,l) = σ2
el

, we thus need to have Ēε2(t, θ∗l ) = σ2
el

for all minimizers θ∗l of the
asymptotic criterion (56). Since we assume that the model structure M is globally identifiable at
θ0,l, the consistency will thus be proven if we show that Ēs2

r(t, θl) = Ēs2
refext

(t, θl) = Ēs2
ej (t, θl) = 0

(j = l and j ∈ Ll) implies ∆Gl(z, θl) = ∆Hl(z, θl) = 0.
Let us first consider the case where Ll is non-empty i.e. there is at least one path from a

node i 6= l to Node l. Due to the existence of this path, Suli is a nonzero transfer function (see
Assumption 3). Consequently, Ēs2

ei(t, θl) = 0 implies ∆Gl(z, θl) = 0. Since ∆Gl(z, θl) = 0, we have
that Ēs2

el
(t, θl) = 0 implies that ∆Hl(z, θl) = 0 and we have therefore proven the consistency of

θ̂N,l for this case (independently of the value of r and refext).
Let us now consider the case where Ll is empty (it is e.g. the case of Node 1 in the network

of Figure 1). In that particular case, yref,l must9 be equal to refext. Consequently, the data
{yl(t), ul(t) | t = 1, ..., N} are generated by the closed-loop system described by (24)-(25) and the
consistency property have to be evaluated on this loop. As shown in e.g. [11], when {yl(t), ul(t) | t =
1, ..., N} are generated by the closed-loop system described by (24)-(25), the orders of excitation
of r and/or refext will need to be sufficient to yield a consistent θ̂N,l.

Finally, let us note that the above reasoning remains exactly the same for the non-stealth setting
i.e. when Rul is replaced by Ru,NSl in the expression of sr(t, θ) in (59).

B.2 Accuracy

Since ε(t, θ0,l) = el(t) and since θ̂N,l is a consistent estimate of θ0,l, θ̂N,l is asymptotically normally
distributed around θ0,l [22] and the inverse of its covariance matrix is given by:

P−1
θl

=
N

σ2
el

Ēψl(t, θ0,l)ψ
T
l (t, θ0,l)

with ψ(t, θl) = −∂ε(t,θl)
∂θl

[22].
Let us first show that the above expression is equivalent to (26) in the stealth setting. It is

easy to show (see e.g. [4]) that ψ(t, θ0,l) = Fl(z, θ0,l)ul(t) + Ll(z, θ0,l)el(t) with Fl(θl) as defined

below (26) and with Ll(θl) = H−1
l (θl)

∂Hl(θl)
∂θl

.

Using (11) and recalling that r and refext and the white noises in ē are all mutually independent,
we obtain the expression (26) with [2]:

Mē =
N

2πσ2
el

∫ π

−π
Zl(ejω)diag(σ2

e1 , σ
2
e2 , ..., σ

2
eNmod

)Z∗
l (ejω)dω

with σ2
ei (i = 1, ..., Nmod) the variance of ei and with Zl(z) a matrix of transfer functions of

dimension nθl×Nmod whose lth column is Ll+FlS
u
ll and whose kth-column (k 6= l) is equal to FlS

u
lk

(Sulk is the entry l × k of Su in (11)).

9If it was not the case, Node l could not track refext while we have stated that the objective of the network
configuration is that each node follows refext.
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In the non-stealth setting, the above reasoning and the expression (26) remain valid, but we
have to replace Rul by Ru,NSl (see (20)).

C Proof of Proposition 3

Let us introduce the following notations to distinguish the covariance matrice Pθl(Φr, θ0) in the
stealth and non-stealth case and let us also consider the notations introduced in (54)-(55) to
distinguish the individual costs in those two cases.

P−1
θl,S

(ΦSr , θ0) = Mē(θ0)+

N

2πσ2
l

∫ π

−π
Fl(e

jω, θ0,l)F
∗
l (ejω, θ0,l)

(
|Rul (ejω, θ0)|2ΦSr (ω) + |Ruext,l(ejω, θ0)|2Φrefext

(ω)
)
dω

P−1
θl,NS

(ΦNSr , θ0) = Mē(θ0)+

N

2πσ2
l

∫ π

−π
Fl(e

jω, θ0,l)F
∗
l (ejω, θ0,l)

(
|Ru,NSl (ejω, θ0)|2ΦNSr (ω) + |Ruext,l(ejω, θ0)|2Φrefext

(ω)
)
dω

Using the optimal spectrum ΦNS
r,opt in the non-stealth case, let us define the following spectrum:

ΦS
r (ω) =

|Ru,NSl (ejω, θ0)|2

|Rul (ejω, θ0)|2
ΦNS
r,opt(ω) (60)

If an excitation signal r having that spectrum is used during an experiment where the stealth
configuration is implemented, it is clear that the obtained covariance matrix Pθl,S(ΦS

r , θ0) will be
equal to the one obtained in the non-stealth case with ΦNS

r,opt (i.e. Pθl,NS(ΦNS
r,opt, θ0)). Consequently,

an experiment with this spectrum ΦS
r will satisfy the accuracy constraint (28). Due to (60), (54)

and (55), we have also the following relation for the individual cost at Node l:

JSl (ΦS
r , θ0) = JNSl (ΦNS

r,opt, θ0)

Moreover, for i 6= l, we have that:

|Rui (ejω, θ0)|2ΦS
r (ω) = |N̄i(e

jω, θ0)|2|T0,l(e
jω)− Tinit,l(ejω)|2ΦS

r (ω)

|Ru,NSi (ejω, θ0)|2ΦNS
r,opt(ω) = |N̄i(e

jω, θ0)|2|T0,l(e
jω)|2

|Rul (ejω, θ0)|2

|Ru,NSl (ejω, θ0)|2
ΦS
r (ω)

Consequently, due to Assumption 1, for i ∈ Pl, we have that JSi (ΦS
r , θ0) < JNSi (ΦNS

r,opt, θ0) if

Tinit,l satisfies (29) for all frequencies ω where ΦS
r (ω) 6= 0 (and thus for all frequencies ω where

ΦNS
r,opt(ω) 6= 0). Moreover, for i 6= l and i 6∈ Pl, we have that JSi (ΦS

r , θ0) = JNSi (ΦNS
r,opt, θ0) = 0.

Due to (17), we have thus shown that, in the stealth case, we can find a spectrum ΦS
r leading to

the same accuracy as with ΦNS
r,opt, but with a strictly smaller cost. The result of the proposition is

therefore proven since, by definition, JS(ΦS
r , θ0) ≥ JS(ΦS

r,opt, θ0)
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D Computation of the quantities c̃i(ω) and ρi(ω)

This appendix shows how the quantities c̃i(ω) and ρi(ω) (see (48)) can be computed for a given i
and a given ω. For this purpose, let us first give an expression of T̃i(e

jω, θi) as a function of θi using

the following notation for Gi(e
jω, θi) =

Z1,i(e
jω)θi

1+Z2,i(ejω)θi
. In the last expression, Z1,i(z) and Z2,i(z) are

row vectors containing only delays or zeros (see [1]). This yields

T̃i(e
jω, θi) =

−1 + ZN,i(e
jω)θi

1 + ZD,i(ejω)θi
(61)

with ZD,i = Z2,i + KiZ1,i and ZN,i =
Z1,i

Ti(ejω ,θinit,i)
− ZD,i. Note that, compared to Section 3 in

[2], ZN,i and ZD,i have here different expression since Ti is defined differently. Based on (61), the
quantities c̃i(ω) and ρi(ω) can be exactly computed using the LMI optimization problem given in
the following proposition whose proof can be found in our previous contribution [2].

Proposition 6 Consider the notation T̃i(e
jω, θi) =

−1+ZN,i(e
jω)θi

1+ZD,i(ejω)θi
given in (61). The optimization

problem (48) at a given ω and at a given i is equivalent to the following LMI optimization problem
having as decision variables a positive real scalar µi(ω), a complex scalar c̃i(ω), a positive real scalar
ξi(ω) and a skew-symmetric matrix Xi(ω) ∈ R(nθi+1)×(nθi+1) (nθi is the dimension of θi):

min µi(ω) subject to(
−µi(ω) λi(ω)

λ∗i (ω) −Ai(ω)− ξi(ω)Bi + jXi(ω)

)
< 0 (62)

with j =
√
−1, λi(ω) =

(
ZN,i − ZD,ic̃i −1− c̃i

)
and

Ai(ω) =

(
Z∗
D,iZD,i Z∗

D,i

ZD,i 1

)
Bi =

(
P−1
init,i −P−1

init,iθinit,i
−θTinit,iP

−1
init,i θTinit,iP

−1
init,iθinit,i − χβ

)
The above optimization problem is not explicitly function of ρi(ω). However, the optimal ρi(ω) can

be obtained by taking the square root of the optimal µi(ω).

E Proof of Proposition 5

The result of Proposition 5 will be proven if we can show that the LMI (52) implies:

F∗
(
M∆(ejω),∆(ejω)

)
F
(
M∆(ejω),∆(ejω)

)
< γ̃(ω) ∀∆(ejω) ∈∆(ω) (63)

To show this, let us expand the LFT F
(
M∆(ejω),∆(ejω)

)
into

p̄ = ∆(ejω)q̄ and

(
q̄
s̄

)
= M∆(ejω)

(
p̄
1

)
(64)

where q̄, p̄ and s̄ are complex vectors and where s̄ = F
(
M∆(ejω),∆(ejω)

)
. Let us now consider this

LFT (64) for a given ∆(ejω) ∈∆(ω) and let us also consider the corresponding signals p̄, q̄ and s̄.
Let us then pre- and post-multiply the LMI constraint (52) with (p̄∗, 1) and (p̄T , 1)T , respectively.
Using (64), this yields:(

q̄
p̄

)∗(
Tω(Rω − C∗

ωCω) TωC
∗
ω

TωCω −Tω

)
︸ ︷︷ ︸

=A

(
q̄
p̄

)
+ s̄∗s̄ < γ̃(ω) (65)
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Since p̄ = ∆(ejω)q̄, we can rewrite the first term of the left hand side of (65) as follows:(
q̄
p̄

)∗

A

(
q̄
p̄

)
= q̄∗

(
INmod

∆(ejω)

)∗

A

(
INmod

∆(ejω)

)
q̄ (66)

The above reasoning can be done for any value of ∆(ejω) ∈∆(ω). In other words, for the matrix
Tω found by the optimization problem, (65) holds true for all ∆(ejω) ∈∆(ω). Let us also observe
that, when Tω is a strictly positive definite diagonal matrix, (66) is a positive quantity for all
∆(ejω) ∈ ∆(ω). Recalling that s̄ = F

(
M∆(ejω),∆(ejω)

)
, we have therefore also that (63) holds,

which is the desired result.

28


