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A B S T R A C T

Parasite genetic diversity can provide information on disease transmission dynamics but most mathematical and
statistical frameworks ignore the exact combinations of genotypes in infections. We introduce and validate a new
method that combines explicit epidemiological modelling of coinfections and regression-Approximate Bayesian
Computing (ABC) to detect within-host interactions. Using a susceptible-infected-susceptible (SIS) model, we
show that, if sufficiently strong, within-host parasite interactions can be detected from epidemiological data. We
also show that, in this simple setting, this detection is robust even in the face of some level of host heterogeneity
in behaviour. These simulations results offer promising applications to analyse large datasets of multiple in-
fection prevalence data, such as those collected for genital infections by Human Papillomaviruses (HPVs).

1. Introduction

Hosts are known to often be simultaneously infected by multiple
genotypes of the same parasite species or even by multiple parasite
species. Here, we use the generic definitions for parasite, which refers
to both micro- and macroparasites, and genotype, which refers to any
genetic variant. Over the last decades, the gap between our ability to
detect this parasite within-host diversity and its use in epidemiological
inference model has widened. Indeed, the affordability and applic-
ability of sequencing technologies have progressed much more rapidly
than the ability for epidemiological models to account for within-host
microbial diversity. Here, we introduce and validate an approach to
detect within-host interaction from equilibrium prevalence data even in
the presence of another source of heterogeneity, namely differences in
host behaviour. This method relies on the exact combination of parasite
genotypes in each host, which we from here on refer to as the ‘genotype
combination’. We use the spread of genital infections by different types
of human papillomaviruses (HPVs) as an example because these are
known to cause many multiple infections and are closely monitored
because of their potential carcinogenicity (Thomas et al., 2000;
Rousseau et al., 2001; Chaturvedi et al., 2011). However, this method is
applicable to many other host-parasite systems with high prevalence of
multiple infections and dense sampling.

1.1. Binary or rank models

Most epidemiological models with parasite genotype coexistence
within hosts only allow for up to two genotypes per host and do not
allow for cotransmission, although there are exceptions for both (May
and Nowak, 1995; Lion, 2013; Alizon, 2013; Sofonea et al., 2015).
These ‘binary’ models have been instrumental in epidemiology but are
by definition inappropriate as soon as parasite diversity exceeds two
genotypes.

Conversely, studies on macro-parasites have long been in-
corporating the multiplicity of infection in their models (Anderson and
May, 1978). They showed that the distribution of the number of macro-
parasites per host can provide information regarding the contact
structure within the host population. In absence of heterogeneity of any
kind, one would expect to detect Poisson distributions. Interestingly, in
many populations, the number of macro-parasites per host is best ex-
plained by a negative-binomial distribution, which is often interpreted
as evidence for some sort of host population structure (Shaw and
Dobson, 1995; Wilber et al., 2017). This aggregation pattern then
shapes the functional response between parasitism and host death rate
in ways that can critically affect population dynamics (Anderson and
May, 1978).

For microparasites, similar studies have been developed, where the
number of macroparasites per host corresponds to the number of gen-
otypes detected in a host, which we refer to as the infection ‘rank’. For
example, Chaturvedi et al. (2011) showed that a Poisson distribution
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can be rejected for HPV genital infections suggesting that there is an
excess of coinfections compared to what would be expected in a stan-
dard Susceptible-Infected (SI) model. Additional analyses of ours show
that a negative binomial distribution helps capture the tail of this dis-
tribution (Fig. 1A). This is consistent with the fact that the ‘number of
lifetime partners’ was the cofactor the most strongly associated with
being infected by multiple HPV types instead of a single HPV type in the
study by Chaturvedi et al.

Fenton et al. (2014) compared several techniques using a dataset
involving two species for which real within-host interactions were
known from laboratory experiments. They concluded that correlation
techniques performed worse and that the best method required time
series and not just cross-sectional data (see Shrestha et al., 2011 on how
to infer interaction parameters from time series using particle filtering
techniques). In general, longitudinal data allows for more detailed
epidemiological inference than equilibrium data (Rohani and King,
2010). However, the restricted number of strains they used also po-
tentially limited the power of their conclusion (3 ranks and 2 total
prevalences versus 4 combinations).

1.2. Parasite combination prevalences

Intuitively, there should be more information in the prevalence of
each combination of genotypes than in the rank prevalence. With 5
circulating genotypes, there are only 6 possible ranks but 32 genotype
combinations (Fig. 1C). Earlier studies have already thought about
using this data to compensate for the lack of longitudinal data. In
particular, Vaumourin et al. (2014) considered systems with a larger

number of genotypes using a variety of existing techniques (generalised
chi-square, network models and multinomial GLM approaches) and
developed a new association screening approach that has the advantage
to identify and sort combinations based on their deviation from the
expectation (see Section 2). Essentially, their methods consists in
testing whether the observed genotype combination prevalence dis-
tribution significantly differs from the ‘neutral’ distribution in which
parasites do not interact in their host (also referred to as ‘H0’). This
neutral distribution is built from the total prevalence of each genotype
assuming a multinomial distribution. As the Poisson distribution used
by (Chaturvedi et al., 2011), it implicitly assumes an SI model with co-
transmission.

One of the limitations of not having an explicit epidemiological
model is that any type of heterogeneity into the system may lead to a
deviation from H0. In particular, infected hosts may differ in their
phenotypes for reasons other than the nature of the genotype(s) in-
fecting them. Detecting an effect of interactions between genotypes on
equilibrium prevalences therefore requires ruling out other important
sources of host heterogeneity.

1.3. Inference using explicit modelling

Our goal in this study is twofold. First, we want to assess the ad-
ditional information that can be obtained from genotype combination
data. Second, we want to control for another source of host hetero-
geneity, namely the fact that some hosts may act as ‘super-spreaders’
(Lloyd-Smith et al., 2005). As mentioned above (Chaturvedi et al.,
2011), these hosts should be more exposed to the infection and

Fig. 1. The coinfection epidemiological setting. (A) Empirical rank distribution for HPV infections, (B) flow diagram showing the population structure with ‘normal-
spreader’ (1 in red) and ‘super-spreader’ hosts (2 in dark blue), (C) host class prevalences for n=5 genotypes, (D) combination prevalences for a scenario with weak
(k≈ 0.02) and (E) with strong interaction (k=≈−0.41). In A, black dots show data from 5412 sexually active women in the Costa Rica Vaccine Trial reported by
Chaturvedi et al. (2011) and lines show maximum likelihood fits performed using the bbmle package in R (Bolker, 2008). In B, the β and γ indicate transmission and
recovery rates. In C, each circle indicates a prevalence (per genotype, per rank or per combination) that can be used as a summary statistics. Numbers in the
combination correspond to a binary code indicating the nature of the genotypes present. In D and E, the shading indicates the infection rank (or number of coinfecting
genotypes) and the class is a binary code indicating the genotypes present. We assume that genotypes B and E are less competitive than genotypes A, C and D.
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therefore have higher infection ranks independently of any features of
the parasites themselves. Our hypothesis is that using a mathematical
model that captures the epidemiological dynamics of n parasite geno-
types (or species) in their 2n host classes allows us to address both our
goals simultaneously.

Although our approach can be applied to many systems, we focus on
modelling scenarios similar to genital infections caused by different
types of human papillomaviruses (HPVs) for reasons that are detailed in
Supplementary Information. We consider that the population contains
n=5 different genotypes, which we track individually. There are
therefore 32 host classes in the population.

Our goal is to estimate the magnitude of the interaction term be-
tween some genotypes. To this end, we adopt a mechanistic approach
and simulate epidemiological coinfection dynamics with 5 genotypes.
This is made possible by a recent analytical framework that can handle
an arbitrary number of genotypes (Sofonea et al., 2015). In order to
assess the ability to infer interactions from the observed coinfection
classes, we use a regression-based Approximate Bayesian Computing
(ABC) approach (Csilléry et al., 2012; Saulnier et al., 2017). We show
that our method performs well on simulated data and can distinguish
overall genotype interactions even in the presence of host behavioural
heterogeneity.

2. Methods

2.1. The epidemiological model

The model is based on the deterministic ODE-based framework in-
troduced by Sofonea et al., 2015Sofonea et al. (2015) that allows for an
arbitrary number of parasite genotypes to circulate in a host population
without assuming any particular infection pattern (see Sofonea et al.,
2017Sofonea et al. (2017) for the importance of this relaxation). Fur-
thermore, the framework enables cotransmission in the sense that in-
fected hosts can simultaneously transmit any subset of genotypes they
are infected with.

2.1.1. Multiple infections
Let us consider that hosts can be potentially infected by any com-

bination of n parasite genotypes and sort them in classes according to
the genotypes present (we use a binary code to map the presence/ab-
sence of the genotypes the hosts class labels). For computational rea-
sons, we assume in the simulations that n≤ 5, as the number of classes
increases geometrically with the number of genotypes.

Epidemiological dynamics follow a classical susceptible-infected-
susceptible (SIS) framework, where upon contact with an infected host,
a ‘recipient’ host can acquire any subset of the genotypes carried by this
‘donor’ host (cotransmission). In terms of recovery, we assume that
genotypes can only be cleared one at a time and independently, unless
there are within-host interactions. In the case of HPVs, the average
infection duration for acute infections is estimated to be in the order of
magnitude of a year (Insinga et al., 2007; Trottier et al., 2008). Given
that we focus on HPV infections in young adults, we neglect infection-
induced mortality.

Mathematically, the dynamics can be captured in a compact form
using the master equation (Sofonea et al., 2015):

= ⊗ − ⊙ + −t β βy Φ y y Ψy y Ξ Θ yd /d ( ) ( ) ( ) (1)

where y is the vector of densities of the 2n host classes, ⊙ denotes the
Hadamard element-wise matrix product, ⊗ the Kronecker (outer) pro-
duct, Φ is the infection input flow matrix, Ψ is the infection output flow
matrix, Ξ is the recovery input flow matrix and Θ is the recovery output
flow matrix and β is the (constant) probability of transmission per
contact that scales all infection processes. Note that all the hetero-
geneity in infections comes from the recovery matrix. Each genotype
has its own recovery rate (di), which can be impacted by the presence of
other genotypes in the host. Further details about this equation can be

found in Supplementary Information and in Sofonea et al. (2015).
Equation (1) allows us to track all the flows going in and out of host

compartments through time. For simplicity, we neglect host demo-
graphy (births and deaths) and assume that the host population size is
constant. HPV infected hosts do not always sero-convert and natural
immunity is lower than vaccine-induced immunity (Beachler et al.,
2016) so we neglect immunisation in the model. We also neglect vac-
cination, but it could be readily considered by either assuming that one
of the host types is vaccinated or by doubling the number of host types.

2.1.2. Population structure
The model was enhanced by splitting the host population into two

sub-populations that differ in their contact rates (‘super-spreader’
versus ‘normal-spreader’ hosts) as shown in Fig. 1B (Keeling and
Rohani, 2008). With 5 genotypes, we therefore have 64 host classes
instead of 32 in a homogeneous population. Contacts between the two
sub-populations follow a classical pattern based on the assortment (a)
within host types, the proportion of each host type (p1= p and
p2= 1− p) and their activity rates (equal to c1= 1 and c2= h, with
h≥ 1). Overall, the contact rate between a ‘recipient’ individual from
sub-population j and a ‘donor’ individual from sub-population i is

= −
+ −
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where δij is the Kronecker delta and h is the difference in activity be-
tween the two host types. The two terms of the right hand side indicate
that contacts between i and j can be due to random contacts (the first
term) or driven by assortment if i= j (the second term).

This population structure implies that we have two vectors of host
classes (y1 and y2). If we denote the combined vector =y y y( , )• 1 2 , the
master equation can be written similarly to (1) by updating the matrices
in the following way:
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where 1 denotes the 2n-dimensional column vector with unit elements,
and Φ′ is obtained by repeating each 2n×2n block Φ[i] of the original
2n×22n matrix = = …Φ Φ( )i

i
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[ ] [ ]
1, , 2n.

2.1.3. Model simulations
The model equations were implemented in R and 50,001 simula-

tions were run, each with different parameter combinations to use as a
training dataset for the ABC. The script can be found in Supplementary
Information along with the raw data on simulated prevalences.

The equilibrium prevalences from the deterministic model were
used to generate datasets in finite populations of 1000, 5000 and
10,000 hosts assuming a multinomial distribution, where the prob-
ability to draw a host with a given genotype combination was equal to
this combination's prevalence.

2.1.4. Genotype interactions
In our epidemiological model, we neglected the temporal dynamics

of the within-host processes and summarised them into constant para-
meters. This absence of within-host component means that we are un-
able to detect a specific interaction (e.g. discriminating between cross-
immunity and resource competition) and only analyse the overall effect
of all within-host interactions between genotypes.

We assumed that genotype transmission rates were identical and
unaffected by the presence of other genotypes. This was motivated by
the very high transmission probability of HPV per contact (Winer et al.,
2006). We therefore assumed that interactions between genotypes
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occurred through the recovery rates.
Even with 5 genotypes, this could mean introducing 20 unknown

interaction parameters (e.g. how the presence of genotype 1 affect the
clearance rate of genotype 2). To reduce this complexity, we sorted
genotypes into two groups with different competitive abilities.
Whenever a genotype from to the least competitive group coinfects a
host with a genotype from to the most competitive group, its individual
recovery rate (di) is multiplied by a factor 1+ k, with k∈ [−0.5, 0.5].
Recovery rates are unaffected (k=0) if all the genotypes in the host
belong to the least competitive group. Genotypes from the most com-
petitive group are always unaffected by the presence of other geno-
types. If k > 0, host classes containing genotypes from the least com-
petitive group to be under-represented. The reverse is true if k < 0. We
assumed that one of the groups contained 3 genotypes and the other 2.
Biologically speaking, the two groups could correspond to High-Risk
(HR) and Low-Risk (LR) HPV types. Another possibility would be to
compare HPV16 and HPV18, which together account for the vast ma-
jority of HPV-driven cancers, to the other HPV types.

2.2. Inference from distributions

In order to compare our framework to existing methods, we used the
techniques implemented by Vaumourin et al. (2014) in R. Three of
these, which are the less computationally intensive, are briefly de-
scribed here but readers interested in more details should refer to the
original publication. For each of these techniques, we analysed a da-
taset with two host types (normal-spreaders and super-spreaders) and a
dataset with a unique host type. Our hypothesis is that these methods
should not be able to distinguish between the heterogeneity caused by
the genotype within-host interactions and that caused by host beha-
viour.

2.2.1. Association screening
This approach involves simulating datasets of occurrence count of

each combination of genotype based on the genotype prevalences
(Vaumourin et al., 2014). From these simulations, a 95% confidence
envelope is calculated for each combination, thus allowing to detect
deviation from the expected distribution in the dataset (also referred to
as H0).

2.2.2. Multinomial GLM
This model consists in calculating the deviance from a statistical

distribution obtained with a Generalised Linear Model and a multi-
nomial family. Practically, the multinomial logistic regression model
was performed using the vglm function from the VGAM package in R
(Yee, 2015).

2.2.3. Generalised chi-square
This test does not involve any simulations and is based on the ex-

pected chi-square distribution of the prevalence of each combination of
genotype given the total prevalence of each genotype. Note that com-
binations found only in 5 hosts or less are grouped together.

2.3. Regression-ABC

This method follows that developed for application to phylody-
namic datasets introduced in (Saulnier et al., 2017). In short, Approx-
imate Bayesian Computation (ABC) is a likelihood-free method to infer
parameter values from a given dataset (Beaumont, 2010). It consists in
simulating many datasets, for which by definition the underlying
parameters are known, and comparing them to the target dataset, the
parameters of which we want to estimate. This comparison is often
done by breaking the datasets into summary statistics. We use regres-
sion-ABC (Csilléry et al., 2012), which is divided into two steps. First, in
the rejection step, only the simulated runs that are close enough from
the target are kept. Second, a regression model is built on the remaining

runs. Once we know how to map summary statistics to the parameter
space, we can infer the parameters from any target dataset from which
the same summary statistics can be extracts.

Using equation system (1), we ran numerical simulations to find the
equilibrium prevalences of each of the 64 host classes (32 classes for
each host type) for 50,001 parameter sets. We used large and uniform
priors for the parameters (shown in Fig. S1). More specifically, we
varied the competition intensity (our parameter of interest, k∈ [−0.5,
0.5]) the transmission rate (β∈ [0.5, 1.5]), the assortativity (a∈ [0, 1]),
the activity difference between host types (h∈ [2, 20]) and the modi-
fiers for the genotype-specific infection durations (di∈ [0.6, 1]). The
rate at which an infected host recovers from an infection by i is either di
or di(1+ k), if i is a LR-HPV in a coinfection with a HR-HPV. Since we
assume an SIS model and estimate β, we renormalise our system by
assuming that d1= 1.

We compare three sets of summary statistics:

• the RANKS set, which includes the 5 rank prevalences and the 5 total
prevalence of each genotype, that is 10 summary statistics

• the COMB set, which includes the rank set and the prevalences of the
32 combinations of genotypes, that is 42 summary statistics

• the ALL set, which includes the comb set for each of the two types of
hosts, that is 84 summary statistics.

The first set is intended to mimic an approach that would ignore
both the combinations of genotypes and the host groups (normal or
superspreader). The second set is based on the type of data that could
readily be accessed. The third is for a most optimistic scenario in which
we would know which group each host belongs to. Importantly, we are
using the same information used by earlier methods based on the pre-
valences of the genotype combinations.

Our regression-ABC algorithm, described in details in Saulnier et al.
(2017), has two separate steps: first we reject a percentage of the si-
mulated runs that are too far from the target, second we perform a
regression on the remaining runs to obtain adjusted posterior dis-
tributions. We compared several levels of tolerance using a preliminary
run of the model (with narrower priors) and identified 50% as an op-
timal cut-off for the rejection: lowering the tolerance did not improve
the inference (measured via the fraction of runs where the target value
ended up in the 95% Highest Posterior Density), whereas increasing it
decreased the inference quality.

Still following our previous study (Saulnier et al., 2017), we then
used a LASSO regression to adjust the posterior distribution. Although it
performs a linear regression, it has the advantage to be less prone to
over-fitting than more elaborate non-linear regressions, such as Support
Vector Machines, neural networks or random forests. The LASSO ad-
justment was implemented using the glmnet R package and the ABC
itself was performed using the abc package. In practice, one of the
50,001 runs was removed and used as a target, whereas the remaining
runs were used to build the regression model (after performing a re-
jection step). We repeated the operation 100 times to generate 100
target datasets. For completeness, we also analysed 100 runs with only
a single host type to compare our method to existing ones and in-
vestigate the robustness of the ABC to a mismatch between the model
used to simulate the target model and the one used to build the re-
gression model.

3. Results

3.1. Associations and competition intensity

We hypothesised that current methods, which implicitly assume a
simple SI epidemiological model with cotransmission, may have diffi-
culties to detect within-host competition between HPVs if there is an-
other source of host heterogeneity than coinfection status. To test this
hypothesis, we used our model to simulate target sets of genotype
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combination prevalences for known parameter values.
Fig. 2 shows the performance of the association screening approach

conceived by Vaumourin et al. (2014). With two host types, ‘normal-
spreaders’ and ‘super-spreaders’, the number of significant interactions,
i.e. the number of host types that show a prevalence that departs from
the neutral expectation (H0), is independent from the intensity of the
competitive interactions, |k| (Fig. 2A). Furthermore, the fraction of
these predictions that correspond to what the analytical model would
predict based on the nature of the interaction, i.e. the sign k (see Fig.
S2), is always close to 50% (Fig. 2C). On the contrary, if we assume that
there are no super-spreaders, then the number of significant interac-
tions increases with competition intensity (Fig. 2B). The proportion of
correct predictions also increases with competition intensity to reach a
maximum estimated median of above 75% (Fig. 2D). This suggests that
this method can be appropriate to detect strong competitive interac-
tions in homogeneous host populations.

The Chi-square and GLM approaches are more qualitative: they ei-
ther detect a difference with H0 or not. In Supplementary Fig. S5, we
show that the GLM fails in both cases. For the chi-square approach, we

do detect an increasing probability that the test is significant with in-
creasing competition intensities (|k|) with a maximum of approximately
70%. As we will see later on, analysing the same target datasets with
the ABC approach yields very different patterns.

3.2. Epidemiological model: single runs

We first show the prevalences of combination of genotypes in two
scenarios: one with moderate interactions (parameter set #2 with the
competition intensity parameter k≈ 0.02, Fig. 1D) and another with
strong interactions (parameter set #7 with k≈−0.41, Fig. 1E). When
the interactions are weak, we clearly see the different ranks: uninfected
hosts are on the top, then there is a row with the five singly infected
host types, etc. When competition intensity increases, these ranks be-
come impossible to distinguish. Fig. 1D also illustrates that each para-
site genotype in this model has its own infection duration, since they do
not all have the same prevalence in single infection (see rank 1 point
data). We only show the total prevalence of each combination. How-
ever, for a given combination, the prevalence could be different in the

Fig. 2. Total number of interactions detected with the association screening method (A and B) and fraction of these interactions that are consistent with model
predictions (C and D). This analysis is ran for a model with two host types (A and C) or a single host type (B and D). The blue lines show the result of a linear model fit
(A and B) and generalised linear model fit assuming a Poisson distribution of the outcome variable (C and D). Grey areas are prediction confidence intervals based on
the standard error of the fit. These methods do not correct for multiple hypothesis testing, which could lower the number of interactions detected. In panels A and C,
h=1 and a=0. We assume that there are N=5000 hosts in the population.
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two types of hosts (e.g. in the ‘super-spreader’ population, combinations
of higher rank tend to be more prevalent).

Our goal is to infer the intensity and sign of the interaction between
HR and LR genotypes (parameter k) in such a heterogeneous host po-
pulation. To this end, we applied an ABC approach. As any Bayesian
method, this means searching a prior distribution in the parameter
space. This distribution is shown for all the key parameters in Fig. S1.
We drew 50,001 parameter sets in this prior, used them to simulate
equilibrium densities similar to the ones shown in Fig. 1D and E.

Fig. 3 shows the results for parameter set #3 and illustrates how
using more summary statistics helps to narrow the distribution from the
prior for a dataset with 10,000 individuals. If we only use the ranks, we
do narrow the prior distribution but its width remains large enough
such that 0 (no interaction) cannot be ruled out from the 95% Highest
Posterior Density (HPD), which can be seen as a credibility interval
(Fig. 3B). Using the prevalence of the genotype combinations in addi-
tion to the prevalence of the infection ranks as summary statistics for
the ABC allows us to narrow this interval and to exclude 0 from the 95%
confidence interval (Fig. 3C). Using additional information, for example
being able to distinguish between the two host types, would narrow it
even more as we will see below.

3.3. Epidemiological model: cross-validation

The previous analysis was based on a single set of target parameters.
Since all parameters may vary in a relatively large prior distribution
(Fig. S1) and since kmay be easier to infer in some settings, we assessed
the performance of the ABC approach following a leave-one-out cross-
validation procedure, where we treated one simulation as observed
data and the remaining as learning data. We varied the number of
sampled individuals and used 100 targets for each. Furthermore, we
analyse a third set of summary statistics involving the prevalences of
infection ranks and genotype combinations for the two hosts sub-po-
pulations (see the Methods).

As expected, the width of the 95% HPD for the estimate of

competition intensity decreased with the number of host sampled
(Fig. 4A). On the same figure, we see that including more summary
statistics also decreased the width of this interval, especially when the
exact prevalence is known (infinite population size assumption).

In terms of the relative error made when estimating the competition
intensity parameter (k), we found a similar effect with a lower error
when more hosts were sampled or more summary statistics were in-
volved (Fig. 4B). This effect is the clearest when using all the summary
statistics and the exact prevalences (the ‘inf’ population size). In gen-
eral, we see that increasing the number of summary statistics does not
help when few hosts are sampled (all three sets are similar when
N=1000) and that using the prevalences of the genotype combinations
only improves the analysis if enough hosts are sampled (5000 or more).
The relative error also tended to decrease with competition intensity.

If we focus on the runs for which we could not exclude an absence of
interaction (i.e. k=0 lied within the 95% HPD), we see that the
number of such runs decreased as the number of summary statistics
increased (Fig. S3). We also see that, in these runs, competition in-
tensity decreased with the sample size and with the number of summary
statistics involved (Fig. 4C). Notice that for large sample sizes, 95%
HPD are narrower, which makes it more difficult to exclude an absence
of competitive interactions.

Finally, the probability to make an error in the inference, which we
define as having the target value outside the 95% HPD, was close to the
expected 5% (6.25% with the ranks and 5% with the comb sets). This
probability slightly increased with competition intensity, especially
when the genotype combination prevalences were ignored in the ABC
(Fig. 4D). Therefore, we have the somewhat unexpected result that
genotype combination data is more important to analyse datasets where
competitive interactions are particularly strong. This could be due to
the fact that extreme scenarios with parameter values at the edge of the
prior are more difficult to infer because there is less data to train the
regression model.

Fig. 3. Inferring competition intensity (k). Prior (A) and posterior distributions using the RANKS (B) or the COMB set (C) of summary statistics. The dashed blue line
shows the target value (k≈−0.13) and the red lines the 95% Highest Posterior Density (HPD).
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3.4. Removing host heterogeneity

We next used the ABC approach to reanalyse the target sets with a
single host type shown in Fig. 2B. This allowed us to do more than
simply compare methods. Indeed, in our prior for the ABC, the het-
erogeneity parameter is greater than 2. This means there is a mismatch
between the model we assumed for the ABC (2 host types with some
heterogeneity between them) and that used to generate the target data
(1 host type). We can therefore evaluate the robustness of the inference
method to a small error in model specification.

We investigated the relationship between genotype competition
intensity (k) and our ability to reject an absence of interaction (k=0)
from the 95% HPD in a situation with two host types and one host type
in the target dataset. Priors were identical to the other analyses and
shown in Fig. S1. In both situations, cases where the true competition
value was not in the 95% HPD interval were close to 5% as in the other
runs. We then investigated how often an absence of competition (that is
k=0) could be rejected. This is similar to the H0 tested by Vaumourin
et al. (2014). We found that we could detect competition for 55% of the
target values in a model with super-spreaders and for 63% of the target
values in model with only a single host type. In the latter we also made
one error, i.e. inferred a positive interaction for a negative target. This
is because in this specific parameter set, the modifiers for the infection
duration of the two LR genotypes (d2 and d5) were low, whereas that of
the HR were all high, therefore perfectly mimicking a competition in-
teraction. Fig. 5 also shows that, as expected, the ability to reject H0

increased with competition intensity. Overall, removing the

heterogeneity in the data due to differences in host behaviour does
increase our ability to detect competitive interactions.

4. Discussion

Multiple infections are known to affect the virulence of an infection
(Griffiths et al., 2011), the spread of infectious diseases (Abu-Raddad
et al., 2006) and their evolution (Alizon et al., 2013). This is due to the
fact that when sharing a host, parasites can interact in various ways
such as competing for host resources, exploiting molecules they pro-
duce or even indirectly via cross-reactive immune response (Mideo,
2009). The goal of this study was to determine to what extent the
prevalence of specific genotype combinations can inform us on the net
effect of all these interactions.

By generating prevalence data from a mechanistic epidemiological
model, we were able to first test the power of existing heuristic methods
based on neutral distributions that implicitly assume a Susceptible-
Infected (SI) model with co-transmission and only a single type of hosts.
We showed that introducing host heterogeneity into the model can
modify the distribution of genotype combination prevalences in a way
that makes within-host interactions between genotypes largely un-
detectable. This therefore corroborates a limitation often mentioned in
such studies, as departures from ‘neutral’ distributions (H0) may not
necessarily be due to interaction between parasite genotypes.

We then used an ABC approach to infer parameters from the model.
We showed that this yields more consistent results than existing
methods. As expected, the accuracy of the method increases with the

Fig. 4. ABC inference precision over 100 runs. (A) 95% Highest Posterior Density (HPD), (B) absolute value of the relative error, (C) average of the absolute value of
competition intensity in runs where 0 is in the 95% HPD and (D) runs for which the target value lies outside the 95% HPD. Colours indicate the summary statistics
used for the ABC. In D, the lines show the results of generalised linear models assuming a binomial distribution of the outcome variable.
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number of hosts sampled. We also showed that using the prevalence of
all the combinations of host classes tends to decrease the error made
compared to using only the prevalence of infection ranks. Finally,
adding information in the target data about host type (‘super-spreader’
or ‘normal-spreader’) can further improve the power of the inference.

The fact that decent results can be obtained by only using infection
ranks may seem surprising considering the difficulty from existing
models to infer interactions. This could mean that accounting for host
behavioural heterogeneity is more important than adding additional
information via the genotype combinations. Another reason could be
that we here use the same model to generate the target dataset and the
learning datasets, which facilitates the ABC inference. However, we do
show that our inference method performs very well to infer competitive
interactions when there is a slight mismatch between the true model
and that used in the ABC. Finally, this could also mean that there is
room for inference improvement in our choice of summary statistics.
Indeed, as shown in Saulnier et al. (2017), designing specific summary
statistics can help improve the inference of a given parameter.

As illustrated by Fig. S4, our ability to extract information from the
data varied widely across parameters. For the interaction parameter (k),
the inference reduced the initial 95% HPD of the prior by 66%. In
comparison, this was less than for the transmission probability (β,
75%), but much better than for the assortativity parameter (a, 45%),
host heterogeneity (h, 38%) or the individual recovery rates of each
genotype i (di, 13%).

There are several ways to extend this framework. One would be to
use more powerful non-linear machine learning regression techniques,
such as neural networks. However, these may be more difficult to
parameterise than the linear one we used here. Furthermore, even
though it contains several parameters, our model remains relatively
simple compared to the power of these algorithms.

Here, we have also generally assumed that the epidemiological
model is known. There are two ways to extend this. One can be to
perform rigorous model comparison to see whether a simpler model
(for instance with a single host type), might not fit the data better. This
could be done readily using regression-ABC, for instance with random
forests (Pudlo et al., 2016). Another extension would be to use an agent-
based model with sophisticated agent behaviours to generate a richer
dataset. This would be useful in itself to generate test runs with known
parameter values to further test the power of our method on more noisy
data. It would also allow to control for biases related to the contact
network structure between hosts and the dynamical aspect of sexual
partnerships that have been shown to interfere with the detection of
coinfection interactions (Malagón et al., 2016).

Finally, the next step is, of course, to test this model using actual
epidemiological data. Even in the case of HPV, analysing real data will
require to add several processes we chose to ignore here. First, HPV

detection tests may exhibit cross-reactivity between HPV types, thus
inflating the prevalence of some genotype combinations. This effect if
well described and can be handled for each detection test (Eklund et al.,
2014). Second, when hosts are infected by many HPV types, some of
these may not be detected, thus decreasing the prevalence of high-rank
infections. This effect is more subtle and would require to be inferred in
the model. Finally, one of the advantages of the ABC is that it can ac-
commodate different types of dataset. In the case of coinfections, on
possibility could be to include information about virus loads (Xi et al.,
2009), which would also help explore the within-host compartment
(Sofonea et al., 2015). Furthermore, allowing for longitudinal follow-
ups would also open the door to many more summary statistics (Man
et al., 2019). In general, these studies could have a strong impact due to
the debate on potential for HPV type replacement following mass
vaccination (Murall et al., 2015; Tota et al., 2016; Man et al., 2019)

We mainly referred to HPV but other systems could be studied, in
particular coinfections between different parasite species and wild host
species such as mice (Knowles et al., 2013; Råberg et al., 2017) or sheep
(Hayward et al., 2014). However, it is important to stress that the un-
derlying epidemiological model must be consistent with the life-history
of the parasite(s). Indeed, these could generate sources of heterogeneity
similar to the one we introduced via host behaviour.

Overall, ABC and machine learning allow us to extract the in-
formation from the equilibrium prevalence values of all genotype
combinations. Therefore, combining coinfection modelling with epi-
demiological data can bring new elements to the controversy regarding
the importance of interactions between HPV types.
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