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In the recent years the lattice Boltzmann (LB) methodology has been fruitfully extended to include
the effects of thermal fluctuations. So far, all studied cases pertain equilibrium fluctuations, i.e.
fluctuations with respect to an equilibrium background state. In this paper we take a step further and
present results of fluctuating LB simulations of a binary mixture confined between two parallel walls
in presence of a constant concentration gradient in the wall-to-wall direction. This is a paradigmatic
set-up for the study of non-equilibrium (NE) fluctuations, i.e. fluctuations with respect to a non-
equilibrium state. We analyze the dependence of the structure factors for the hydrodynamical fields
on the wave vector q in both the directions parallel and perpendicular to the walls, highlighting the
long-range (∼ |q|−4) nature of correlations in the NE framework. Results at the small scales (high
wavenumbers) quantitatively agree with the predictions of fluctuating hydrodynamics without fitting
parameters. At larger scales (low wavenumbers), however, results show finite-size effects induced by
confinement and call for further studies aimed at controlling boundary conditions in the fluctuating
LB framework as well as compressibility effects. Moreover, in presence of a non-ideal (NI) equation
of state of the mixture, we also observe that the (spatially homogeneous) average pressure changes,
due to a genuinely new contribution triggered by NE fluctuations. These NE pressure effects are
studied at changing the system size and the concentration gradient. Taken all together, we argue
that the results of this article are useful and instrumental to boost the applicability of the fluctuating
LB methodology in the framework of NE fluctuations, possibly in conjunction with experiments.

I. INTRODUCTION

The equations of fluctuating hydrodynamics supple-
ment the deterministic equations of hydrodynamics with
the effect of thermal fluctuations [1]. In a nutshell, the
key idea is that whenever scales of observations are small
enough, thermal fluctuations cannot be ignored anymore
and the non-equilibrium (NE) fluxes in the conservation
equations (i.e. diffusion, viscous, etc) need to be pro-
moted to stochastic variables. By linearizing with re-
spect to a homogeneous background and applying the
fluctuation dissipation theorem (FDT), one obtains the
structure factors for the hydrodynamical fields in agree-
ment with the corresponding statistical mechanics pre-
dictions [2]. Away from criticality, correlations of hy-
drodynamical fields such as mass density and ve-
locity come out to be short-ranged, and the experimental
observations with light scattering and neutron scattering
techniques confirm such predictions [3–5]. The assump-
tion of full (thermodynamic) equilibrium of the back-
ground system greatly simplifies the theoretical approach
to the study of thermal fluctuations, but is actually inap-
propriate in many situations where we have mechanical
equilibrium even in presence of temperature or concen-
tration gradients. This may be the case of a Rayleigh-
Bénard cell [6, 7] or the case of a binary mixture under
the effect of an external field [8–12]. For such systems,
the theory of equilibrium thermal fluctuations can be ex-
tended [13] to predict fluctuations with respect to a non-

equilibrium steady state. In general, NE effects are pro-
moted by two sources: one source is the “mode” coupling
between the fluctuating velocity and the background in-
homogeneous scalar field under consideration, the tem-
perature in single-component fluids [14–19], and both the
temperature and the concentration for mixtures [20–22].
Another source can be identified in the spatial inhomo-
geneity of the thermal noise, due to the proportional-
ity of the noise correlations to the temperature [23–26],
as stated by FDT. Typically, the effects induced by in-
homogeneity in the noise are negligible with respect to
the mode coupling effect [27]. The mode coupling effect
causes the small-scale behaviour of scalar fluctuations to
be divergent as ∼ |q|−4, with q being the Fourier wave
vector. This was first obtained in [14] in the framework of
non-equilibrium statistical mechanics and later assessed
in the framework of fluctuating hydrodynamics [15, 19].
Experimental confirmations followed [6–9, 12, 28]. We
emphasize that NE fluctuations cause long-range corre-
lation effects; similar long-range correlation effects are
absent in equilibrium situations, except close to critical-
ity [29]. Moreover, the long-range nature of the NE ef-
fects causes fluctuation-induced forces. This feature has
been extensively discussed in the literature [30–35]. Sim-
ilar NE pressure effects have also been studied in the
non-linear Navier-Stokes equations with imposed shear
rate [36–39], where the NE effects are triggered by the
non linear coupling between the imposed shear rate and
the flow itself.
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Figure 1. Setup for the numerical simulations. The wall-to-wall distance is L and we take the convention that z = 0 indicates
the center of the channel. A linear concentration background profile c0(z) = 1/2+z∇c0 is imposed, corresponding to a constant
concentration gradient ∇c0 in the vertical direction. The vectors v1−8, together with v0 ≡ 0, act as lattice links in the D2Q9
LB simulations.

Thermal fluctuations become relevant at mesoscales,
where many complex hydrodynamic phenomena occur,
like for example the motion of non-ideal (NI) inter-
faces [40], the coupling between colloidal particles and
the fluid [41, 42], the rheology of vesicles and red blood
cells [43–45], the acoustic-magnetic effect in magnetic
fluids [46]. The need of understanding complex hy-
drodynamic phenomena at mesoscales naturally sets a
compelling case for the development of suitably de-
signed numerical methods. Beyond the numerical sim-
ulations based on the continuum equations of hydro-
dynamics [47, 48], in the recent years mesoscale sim-
ulations based on the lattice Boltzmann (LB) [49, 50]
have been proposed [51–53]. The LB method stands
out due to its remarkable capability of handling com-
plex boundary conditions and NI fluids with phase tran-
sitions/segregation [54–58]; hence the LB coupled with
thermal fluctuations is a promising pathway for realiz-
ing powerful mesoscale simulation methods. The idea
of including noise in LB, in fact, has constituted an ac-
tive research field of the recent years [51–53, 59–62]. All
these implementations, however, consider hydrodynam-
ical systems fluctuating around a state in full equilib-
rium. The aim of the present paper is to explore the
applicability of the fluctuating LB in the context of NE
fluctuations. While none of the approaches proposed in
the literature [51–53, 59–62] can be trivially extended to
the case with temperature gradients in the background,
in [62] it is discussed how to formulate noise in multicom-
ponent systems, even in presence of an inhomogeneous
background concentration c0(r). Numerical simulations
showed convincing agreement between the numerically
evaluated equilibrium structure factors and the theoret-
ical predictions. The latter, which can be obtained di-
rectly in the kinetic framework (see [62]), coincide with
the predictions of fluctuating hydrodynamics. However,
this is obviously not enough to prove convergence of fluc-

tuating LB towards fluctuating hydrodynamics. Indeed,
the stochastic noise terms break one of the basic as-
sumptions of Chapman-Enskog theory (i.e. having fields
slowly varying in space and time). Hence, the coinci-
dence of theoretical results (kinetic framework vs. hy-
drodynamics framework) seems like a lucky case, possi-
bly valid in homogeneous cases. Hence, investigating NE
in LB simulations, is also a further way to highlight the
convergence of fluctuating LB towards fluctuating hydro-
dynamics. The article is organized as follow. In section
II the system and its governing equations are presented.
The used methodology is described in section III. The
numerical results, both in equilibrium and out of equi-
librium, are discussed and compared with the theoretical
predictions in section IV. We conclude in section V. The
appendix recalls some relevant definitions and results
on the structure factors.

II. SYSTEM

In this paper we study the problem of NE fluctuations
by considering a two dimensional binary mixture confined
between two walls in presence of a constant concentration
gradient ∇c0 in the wall-to-wall direction (see Figure 1).
The reference fluctuating hydrodynamical equations for
density δρ = ρ− ρ̄, concentration δc = c−c0 and velocity
δU = (Ux, Uz) fluctuations are

∂tδρ+ ρ̄∇ · δU = 0, (1)

ρ̄(∂tδc+ Uz∇c0) = ρ̄D∇2δc−∇ · J , (2)

ρ̄∂tδU = −∇δP + ρ̄ν(∇2δU + ∇∇ · δU)−∇ ·Π, (3)

where δP is the pressure fluctuation, while ρ̄, D and ν are
reference values for total mass density, mass diffusion co-
efficient and kinematic viscosity, respectively. Equations
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a Tal ma m
eq

a (ρ,U) λa
0 1 ρ ρ λ0

1 (vl)x jx ρUx λd

2 (vl)z jz ρUz λd

3 3|vl|2 − 2 e 3ρ|U |2 λe
4 (vl)

2
x − (vl)

2
z Σww ρ(U2

x − U2
z ) λs

5 (vl)x(vl)z Σxz ρUxUz λs

6 (3|vl|2 − 4)(vl)x Qx 0 λQ
7 (3|vl|2 − 4)(vl)z Qz 0 λQ
8 9|vl|4 − 15|vl|2 + 2 ε 0 λε

Table I. Moments set for the D2Q9 model used in the LB
simulations. The index S of the species has been omitted. As
the set of velocities is finite, the set of Tal forms a basis. The
moments ma are computed according to Eq. (7). They relax
toward their respective asymptotic values according to a time
scale 1/λa. The first three rows cover the conserved moments.

(1), (2) and (3) describe respectively conservation of total
mass, diffusion of one species into the other and momen-
tum balance, in their linearized form (see Eqs. (17)-(19)
below). The terms J and Π are the stochastic contri-
butions to the deterministic equations of hydrodynamics
in a Langevin-like approach [63–66]. Specifically, J is a
stochastic flux and Π is a stochastic stress tensor satis-
fying FDT:

〈Ji(r, t)Jj(r′, t′)〉 = 2kBT ρ̄Dχδijδ(r − r′)δ(t− t′), (4)

〈Πij(r, t)Πkl(r
′, t′)〉 = 2kBT ρ̄ν∆ijklδ(r−r′)δ(t−t′), (5)

where δij is the Kronecker delta, ∆ijkl = δikδjl + δilδjk,
kB the Boltzmann constant and T the temperature,
while χ indicates the inverse osmotic susceptibility:
χ−1 = (∂µ/∂c)P,T , with µ the chemical potential and P

the fluid pressure. If Eqs. (1)-(3) are integrated in time,
the construction of the noise ensures that the proper
thermal stationary state, characterized by some average
properties, is reached in the limit of large times. Such a
characterization will be given in section IV. We remark
that, in the context of Langevin-type equations, the term
“average” refers to the ensemble average over all the
possible trajectories and is equivalent to the canonical
ensemble average, provided that Eqs. (4) and (5) are
satisfied. The very same technique is used to introduce
fluctuations in the LB algorithm, as explained in the
next section.

III. METHODOLOGY

The basic idea behind the LB methodology is to de-
rive the equations of hydrodynamics from the more fun-
damental kinetic theory [67]. In this section we briefly
review the fluctuating multicomponent LB model that we
use. Extensive details are reported in [62]. The model

does not consider directly the hydrodynamic fields, but
considers a kinetic description of a multicomponent fluid
with two species, say A and B, having mass densities
ρA and ρB. The corresponding total mass density is in-
dicated with ρ = ρA + ρB, while mass concentration is
conventionally taken as c = ρA/ρ.

A. General Framework

The LB method makes use of a set of Q distribution
functions fS

l (r, t) (l = 0, . . . , Q − 1), representing the
number of particles of the species S = A,B at time t in an
elementary lattice cell of unit volume around the position
r moving with velocity vl. Mass densities are recovered
as ρS =

∑
l f

S

l [68]. One then introduces the (isotropic)
lattice spacing ∆r and the time interval ∆t to rescale
positions and times, respectively. Coherently, velocities
are rescaled by ∆r/∆t. Dimensionless variables will be
noted in the same way as the variables themselves. In
this way, while t varies on the natural set, the velocities
vl act as links connecting the lattice points r (see Fig-
ure 1). The LB evolution is described by the following
algorithm:

f
S

l (r + vl, t+ 1) = f
S

l (r, t) +R
S

l (r, t). (6)

Here, RS

l is the responsible for the change of fS

l when
moving along the link vl in a time step. It is better
written in terms of the moments mS

a (a = 0, . . . , Q− 1),
which are defined by the following invertible transforma-
tion [62]:

m
S

a =
∑
l

Talf
S

l , f
S

l = wl
∑
a

Tal
Na

m
S

a. (7)

In table I it is reported the chosen set of Tal for the D2Q9
lattice used in the simulations. This is a 2-dimensional
lattice with Q = 9 velocities (see Figure 1): v0 = (0, 0),
v1 = (1, 0) = −v3, v2 = (0, 1) = −v4, v5 = (1, 1) = −v7,
v6 = (−1, 1) = −v8, the associated weights being w0 =
4/9, w1−4 = 1/9 and w5−8 = 1/36. The normalization
constants are obtained as Na =

∑
l wlT

2
al. In particular,

lattice mass and momentum densities are given by

ρ
S

= m
S

0 =
∑
l

f
S

l

and

j
S

= (j
S

x, j
S

z) = (m
S

1,m
S

2) =
∑
l

vlf
S

l ,

respectively. While the lattice mass densities coincide
with their physical counterpart, the physical baricentric
velocity U is constructed as [62]

ρU = (ρUx, ρUz) = j
A

+ j
B

+
1

2
ρa. (8)
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The additional term is a correction related to the time
discretization and involves the effective body-force den-
sity ρa acting on the fluid. We can write ρa = ρAaA +
ρBaB, and decompose each term in the sum of non-ideal
(NI) and non-equilibrium (NE) contributions by writing
for each species aS = aS

NI+aS

NE. The former is constructed
on the lattice and takes the form [69–73]

a
A

NI(r, t) = −G
∑
l

wlvlρ
B
(r + vl, t), (9)

and an analogous expression holds for aB

NI, having B re-
placed by A on the rhs. The positive constant G is the
same for both the species and is a tunable parameter in
the model [74]. It regulates the intensity of interactions
between the two fluids, which are assumed to be sepa-
rately ideal (in the expression of aA

NI only ρB appears).
This produces a NI contribution in the equation of state
(see Eq. (16) below). The NE contribution is chosen
in such a way that it imposes a concentration gradient
∇c0 = (0,∇c0) in the steady state, which is important
for the study of NE effects:

a
A

NE =
1

3
(0,∇c0/c), (10)

where the prefactor has been conveniently chosen equal
to the lattice speed of sound for the D2Q9 model, that
is 1/3 [67]. The analogous expression for aB

NE is obtained
by replacing ∇c0/c with −∇c0/(1 − c) = ∇c0/(c − 1).
Notice that the momentum balance and consequently the
pressure are unaffected by the NE forcing, since

ρ
A
a

A

NE + ρ
B
a

B

NE = 0. (11)

In this way, the NE acceleration (10) gives a contribu-
tion in the diffusion current proportional to ρ∇c0 (see
Eq. (18) below), thus fixing ∇c = ∇c0 in the stationary
steady state [75]. Moments for a = 3, . . . , 5 are related
to the viscous stress tensor, while higher order moments
have no hydrodynamical counterpart and constitute the
so-called “ghost” sector (see table I). Close to a local
equilibrium state only the first moments contribute, as
we can write mS

a = m
eq

a (ρS,U), with the equilibrium hy-
drodynamical moments m

eq

a (ρ,U) given in table I. With
these ingredients, the last term in (6) can be written as

R
S

l = wl
∑
a

Tal
Na

(C
S

a + F
S

a + ξ
S

a). (12)

The first term in the round brackets models the relax-
ation towards the local equilibrium:

C
S

a = λ
S

a[m
eq

a (ρ
S
,U)−mS

a]. (13)

The dimensionless constants λS

a are the lattice relax-
ation frequencies, 1/λS

a being the corresponding lattice
relaxation times. This is the multiple relaxation times
(MRT) generalization of the celebrated BGK (for Bhat-
nagar, Gross and Krook [76]) form of the Boltzmann

collision integral. All the λS

a are tunable parameters
of the model, with some restrictions imposed by the
request of mass and momentum conservations. Since
m

eq

0 (ρS,U) = mS

0 = ρS, mass conservation is ensured for
each species separately, independently on the actual value
of λS

0. Instead, the second argument of the equilibrium
distribution in (13) is the baricentric velocity U of equa-
tion (8), allowing in this way the diffusion of one species
into the other. Conservation of total momentum is then
enforced by conveniently choosing

λ
S

1,2 = λd,

where the lattice diffusion relaxation frequency λd is the
same for both the species. Similarly, the lattice relax-
ation frequencies associated to the shear moments Σww
and Σxz (a = 4, 5, see table I) are chosen as

λ
S

4,5 = λs,

with the lattice shear relaxation frequency λs being the
same for both the species.
The second term in the round brackets of equation (12)
models the action of the interactions between the fluid
particles. The first order moments (a = 1, 2) are given
by

(F
S

1 , F
S

2 ) = ρ
S
a

S
.

We omit the expression of the moments of order higher
than one, for shortness, by remarking that they must be
included for a proper simulation of a non-homogeneous
fluctuating system [62].
The last term in the round brackets of (12) accounts
for thermal fluctuations. These are modelled with zero-
mean Gaussian random variables, uncorrelated in time
and with constant covariances (which can however de-
pend on r). The derivation of the precise expression of
the noise covariances has been achieved in [62]. It makes
use of the FDT directly applied at the kinetic level. The
covariance matrix appears to be diagonal in both mo-
ments [77] and space, as well as in time by construction,
allowing us to write

〈ξS

a(r, t)ξ
S′

a′(r
′, t′)〉 = 〈ξS

ξ
S′〉aδa,a′δr,r′δt,t′ .

The quantities ξS

a are arranged in the same way as the
moments mS

a. In particular, the stochastic injections of
mass and momentum densities are ρS

ξ = ξS

0 and jS

ξ =

(ξS

1, ξ
S

2), respectively. As a direct consequence of mass
conservation for each species it results that

〈ξS
ξ
S′〉0 = 0,

coherently with an identically vanishing ρS

ξ. Momentum,
instead, is not conserved separately for each species, due
to diffusion effects. However, total momentum in con-
served, so that jA

ξ + jB

ξ must be identically vanishing.
Coherently, it is found that

〈ξS
ξ
S〉1,2 = −〈ξA

ξ
B〉1,2 = (2− λd)λdkBT

ρAρB

ρ
. (14)
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Higher order noise correlations have also to be taken into
account. The only non vanishing are for S = S′:

〈ξS
ξ
S〉a = 3(2− λS

a)λ
S

aNakBTρ
S

for a = 3, . . . , 8. (15)

The factors 〈ξSξS′〉a would depend on space through their
dependence on the background fields ρS. However, in
order to focus on the mode coupling effects [27], we
mainly performed simulations by keeping the ρS in (14)-
(15) equal to their reference values. The effect of inho-

mogeneities in the 〈ξSξS′〉a will also be highlighted in
this study. Of central role in the derivation of the pre-
vious noise covariances are the properties of the noise-
less (ξS

a ≡ 0) stationary state reached by the system.
This is assumed to have the local equilibrium form mS

a =
m

eq

a (ρS,0) = ρSδa,0, so that CS

a = 0. Thus, by sum-
ming (6) over the species, using (11) and (9), and per-
forming the continuum limit (formally, vl → 0), we get
∇ρ = −G∇(ρAρB). This can be written in the form
∇P = 0, allowing us to deduce the equation of state
P = P (ρ, c) for the system at hand:

P =
1

3
(ρ

A
+ ρ

B
) +

1

3
Gρ

A
ρ

B

=
1

3
ρ+

1

3
Gρ2c(1− c).

(16)

The ideal equation of state P = ρ/3 is recovered by set-
ting G = 0; recall that the factor 1/3 equals the D2Q9
lattice speed of sound [67]. By applying the Chapman-
Enskog procedure and treating the stochastic terms as
generic external forces, one can prove [78] that the fluc-
tuating hydrodynamic equations of a binary mixture with
total mass density ρ, baricentric velocity U and mass con-
centration c are recovered [79] (the superscript ᵀ denotes
transposition):

∂tρ+ ∇ · (ρU) = 0, (17)

ρ(∂tc+ U ·∇c) = ∇ · [ρD∇(c− c0)− J ], (18)

ρ(∂tU + U ·∇U) = −∇P

+∇·[ρν(∇U + ∇Uᵀ)−Π],
(19)

where J and Π are the noise fields whose variances are
fixed by the Chapman-Enskog procedure, and thus satis-
fying FDT at kinetic level. The mass diffusion coefficient

D =
1

3

(
1

λd

− 1

2

)
(20)

and the kinematic viscosity

ν =
1

3

(
1

λs

− 1

2

)
(21)

respectively regulate the intensity of the diffusion fluxes
and the viscous stresses [78] and are tunable in the model,

by specifying λd and λs independently. Notice that the
total mass density here is a dynamical variable. However,
compressibility effects result to be small for the average
profile, within an error of 1–2 %, hence by linearizing the
equations around the background state one ends up with
Eqs. (1)-(3), with a reference total mass density ρ̄ suit-
ably chosen (see the end of next subsection).
Summarizing, we use the LB solver described in [62] to
simulate the hydrodynamical equations of a binary mix-
ture in presence of a background stationary concentra-
tion gradient. If we trust the hydrodynamical limit of
the LB model, we can then assess the properties of fluc-
tuations by changing the background gradient ∇c0, the
geometry used, the transport coefficients D and ν, and
the interaction strength G that regulates the NI charac-
ter of the mixture. We again remark that the fluctuating
terms violate one of the basic assumptions of Chapman-
Enskog theory (i.e. having fields slowly varying in space
and time). We can only formally obtain Eqs. (17)-(19).
Rather, the convergence towards the fluctuating hydro-
dynamical equations must be assessed via numerical sim-
ulations and a careful comparisons with the predictions
of fluctuating hydrodynamics [32, 80, 81].

B. Set-up

We consider a two dimensional system with dimen-
sions Lx × L, with periodic boundary conditions in the
stream-flow (x) direction and two solid walls located at
z = ±L/2. The two dimensional choice is done to make
the many computations affordable at changing L up to
few tens of grid points. Indeed, the solutions of fluc-
tuating hydrodynamics assume infinitely long parallel
walls [13]; hence, for a given L, the stream-flow length-
scale Lx needs to be large enough to prevent spurious
effects induced by periodicity. Regarding the boundary
conditions, we choose the mid-way bounce back rule for
the LB kinetic populations [82]: apart from small dis-
crete effects, these provide a no-slip boundary condition
for the tangential velocity (Ux = 0) in absence of fluctu-
ations. We also enforced exactly a zero normal velocity
at the wall (Uz = 0) at every time-step by properly read-
justing the rest population at the wall. Regarding the
boundary conditions on the concentration field, we im-
pose that the densities of both components at the wall are
equal to the neighboring fluid nodes [83]. Both the no-
slip boundary condition and the conditions on the species
densities (hence the boundary condition on concentra-
tion) are obviously changed by thermal fluctuations. To
the best of the authors’ knowledge there is no system-
atic study on the effects induced by thermal fluctuations
on the LB boundary conditions and their hydrodynamic
manifestations. A systematic study is surely warranted
for the future. However, for the purposes of the present
paper, we remark that boundary conditions affect the NE
spectra only at large scales [32, 80, 81], while the small-
scale behaviour is rather independent of the boundary
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conditions used. Moreover, regarding the large-scales,
there are various solutions of fluctuating hydrodynamics
that report the effects of hydrodynamic boundary condi-
tions [32, 80, 81]. Thus, if from one side we can assess
the universality in the small-scale behaviour, as a bonus
we can also explore the importance of the boundary
conditions by direct comparisons against analytical so-
lutions available.
From now on, when writing ρ̄ we will mean that refer-
ence value for the total mass density such that, for given
values of Lx and L, the product ρ̄LxL gives the total
mass, which is exactly conserved by the algorithm. All
the simulations are performed in such a way that

c̄0 ≡ c0(z = 0) =
1

2

and we take c̄0 as the reference value for the concentra-
tion.

IV. RESULTS AND DISCUSSIONS

All the numerical results discussed in the following sec-
tions will be reported in LB units. In particular, in those
units we set ρ̄ = 1. We then set the other relevant phys-
ical parameters, such as concentration gradient, wall-to-
wall separation, thermal energy and kinematic viscosity,
to some “reference” base values in all the simulations,
unless when explicitly varied. In both Sections IV A
and IV B the reference values are ∇c0 = 0.01, L = 32,
kBT = 10−4, ν = 0.16667, D = 0.00427 as well as G = 0
(ideal binary mixture). The choice Lx = 4L is enough
to obtain negligible spurious effects for wavenumbers as
small as 1/L. In Section IV C, to better highlight the NE
effects induced to the average pressure, which increase
with both the wall-to-wall distance and temperature (see
Figure 10 below), we change L and kBT into L = 64 and
kBT = 5×10−4. We also switch on non-ideal interactions,
when needed, by setting G = 0.3; this guarantees that
phase separation never occurs.

A. Equilibrium Fluctuations (∇c0 = 0)

The model that we use has already been extensively
validated in unconfined homogeneous situations in [62].
Equilibrium fluctuations can be studied in Fourier space
through the structure factors of the velocity and concen-
tration fluctuations, respectively SUx,z

(q) and Sc(q) (see
Appendix), where

q = (qx, qz)

is the wave vector. It is well known [13] that for equi-
librium fluctuations in unbounded domains the structure
factors of both velocity and concentration fluctuations
are independent of the wave vector. More quantitatively,

SUx,z
(q) = 〈|Ux,z(q)|2〉 =

kBT

ρ̄
, (22)

Sc(q) = 〈|δc(q)|2〉 = 3
kBT

ρ̄
c̄0(1− c̄0). (23)

This corresponds to delta-like correlations in real space:

〈Ux,z(z)Ux,z(0)〉 =
kBT

ρ̄
δz,0, (24)

〈δc(z)δc(0)〉 = 3
kBT

ρ̄
c̄0(1− c̄0)δz,0. (25)

However, we will use confined simulations with wall
boundary conditions for the NE fluctuations (∇c0 6= 0),
it is therefore important to conduct a preliminary char-
acterization of the equilibrium fluctuations (∇c0 = 0) in
such confined situations. We thus considered a homoge-
neous system (∇c0 = 0) confined in a channel with fixed
wall-to-wall separation L, and performed simulations at
changing kBT in the range 10−6–10−4. The measured
structure factors in both the streamflow, q = (q, 0), and
the wall-to-wall, q = (0, q), directions are shown in Fig-
ure 2 on varying dimensionless wavenumbers

q̃ = qL, (26)

whose smallest acceptable value for the wall-to-wall direc-
tion is 2π, by construction, while such a limitation is
absent for the streamflow direction. The measured
structure factors are close to the reference theory values
in unconfined situations given in Eqs. (22)-(23). Notice
that the velocity structure factors reported in Figure 2
do not exhibit the anisotropy typical of a divergenceless
field. In particular, for a divergenceless velocity the scalar
product q·δU(q) = qxUx(qx, qz)+qzUz(qx, qz) identically
vanishes, and consequently Ux(q, 0) = Uz(0, q) = 0 iden-
tically. This is not the case here, since the fluid at hand
is not exactly incompressible. Some underestimates and
anisotropy are observed, that we attribute to the presence
of walls, which are not contemplated in Eqs. (22)-(23).
Results reported in Figure 2 will serve as a reference case
to quantify the importance of non equilibrium fluctua-
tions. As shown in the following section, these properties
are maintained by the velocities even in presence of a non
zero concentration gradient, while the concentration itself
exhibits long-range spatial correlations (see Figure 4).

B. Non-equilibrium fluctuations (∇c0 6= 0)

In this section we start by describing the NE fluctu-
ations. In Figure 3 we report results for the structure
factors for the velocity and concentration fluctuations.
We observe that the structure factors for the velocities
Ux,z (top and central panels) do not show any substan-
tial change with respect to the corresponding equilib-
rium situation reported in Figure 2. For the fluctua-
tions in the concentration field δc (bottom panel), in-
stead, the structure factors are strongly anisotropic and
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Figure 2. Spectra of fluctuations of hydrodynamical fields
around an equilibrium background (∇c0 = 0). Top panel:
Velocity in the streamflow (x) direction; theoretical prediction
in Eq. (22). Central panel: Velocity in the wall-to-wall (z)
direction; theoretical prediction in Eq. (22). Bottom panel:
Concentration fluctuations; theoretical prediction in Eq. (23).
All the theoretical predictions refer to unbounded fluids. In
all cases, the viscosity and diffusivity have been fixed to their
reference values (cfr. Section IV).

mode-dependent, which markedly contrasts the observa-
tions in the equilibrium situation. Correspondingly, the
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Figure 3. Spectra of fluctuations of hydrodynamical fields
around a NE background (∇c0 6= 0). Top panel: Velocity in
the streamflow (x) direction; equilibrium theoretical predic-
tion in Eq. (22). Central panel: Velocity in the wall-to-wall
(z) direction; equilibrium theoretical prediction in Eq. (22).
Bottom panel: Concentration fluctuations; equilibrium the-
oretical prediction in Eq. (23). In all cases, the simulation pa-
rameters have been fixed to their reference values (cfr. Section
IV).
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Figure 4. Real space NE correlations of velocity and con-
centration fluctuations. They are obtained by subtracting to
the measured correlations the equilibrium values reported in
Eqs. (24)-(25). The simulation parameters have been fixed to
their reference values (cfr. Section IV).

effect on the correlations in real space is highlighted in
Figure 4: the two-point correlation function for the ve-
locity (data shown only for the stream-flow velocity Ux)
does not show any net NE contribution; in contrast, the
NE contribution of the two-point correlation for the con-
centration highlights a correlation length that essentially
spans the whole system size. To characterize such NE
fluctuations on a more quantitative basis, we therefore
continue our analysis for the concentration field c in a
“parallel flow approximation”, i.e. by taking the Fourier
mode along the stream-flow direction, q = (q, 0). To
facilitate a comparison with the existing literature on
NE fluctuations we adopt the commonly used decompo-
sition [13]

Sc(q, 0) = 3
kBT

ρ̄
c̄0(1− c̄0)

[
1 + φS̃NE(qL)

]
, (27)

where

φ =
1

3

L4

c̄0(1− c̄0)

(∇c0)2

(ν +D)D
. (28)

Starting from the data reported in Figure 3 and the
decomposition (27), we extracted the function φS̃NE(q̃).
The results are reported in Figure 5. At small scales
(q̃ � 1) we observe the power-law scaling S̃NE(q̃) ∼ q̃−4.
This is perfectly in agreement with the expected power-
law behaviour S̃NE(q̃) = q̃−4 predicted by the theory of
NE fluctuations, which can be obtained from the equa-
tions of hydrodynamics linearized around a constant con-
centration gradient profile, i.e. Eqs. (1)-(3). We empha-
size that we just used the decomposition (27) and added
no additional fitting parameters. We checked the good-
ness of the asymptotic behavior by separately changing
the concentration gradient ∇c0, the wall-to-wall sepa-
ration L and the kinematic viscosity ν, while keeping
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Figure 5. Non-equilibrium structure factor contribution (see
Eqs. (27)-(28)) as a function of the dimensionless wavenum-
ber q̃ (see Eq. (26)); the theoretical prediction, corresponding

to S̃NE(q̃) = q̃−4, is obtained from Eqs. (1)-(3) for unbounded
systems. Top panel: NE structure factor contribution for
different concentration gradients ∇c0. Central panel: NE
structure factor contribution for different wall-to-wall separa-
tions L. Bottom panel: NE structure factor contribution
for different kinematic viscosities ν. The simulation parame-
ters not given in the legends are detailed in Section IV.
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the diffusion coefficient D unvaried. This can be done
in the simulations thanks to the MRT generalization of
the BGK model (see Eq. (13)), which allows to set dif-
ferent relaxation frequencies for different moments (see
Eqs. (20)-(21)). The plots reported in Figure 5 show
changes in agreement with the corresponding change of
φ in Eq. (28). We also checked that the product φS̃NE(q̃)
does not depend on kBT in the range 10−6–10−4, thus
confirming the linear dependence of Sc(q, 0) on temper-
ature in the factorization (27). These results provide a
very strong indication that the fluctuating LB methodol-
ogy is quantitatively able to reproduce the small scale be-
haviour of NE correlations obtained from fluctuating hy-
drodynamics in presence of NE fluctuations at the small
scales [30–35].
At the small scales where the prediction of fluctuating
hydrodynamics well matches the results of the simula-
tions (cfr. Figure 5), we inspected the effect of the
spatial dependence of the noise correlations in Eq. (14)-
(15). Some authors before investigated the relative im-
portance of mode-coupling effects and non-homogeneity
in noise [27, 84]. In particular, they show that for a case
with temperature (with thermal diffusivity DT in place
of diffusivity D) the importance of the mode coupling
effect with respect to the inhomogeneity in noise scales
inversely proportional to the quantity (ν + DT )DT . In
other words, if the inhomogeneous noise is switched-on
in the simulations, the diffussivity and the viscosity need
to be properly chosen to guarantee that results of fluctu-
ating hydrodynamics with homogeneous noise hold. To
highlight this, we conducted various numerical simula-
tions at changing both ν and D, from small values to
larger values. In Figure 6 we reported the ratio between
φS̃(hom)

NE (q̃) and φS̃(loc)
NE (q̃), i.e. the non-equilibrium struc-

ture factors computed by implementing the noise accord-
ing to (14)-(15) and using constant reference values for
the mass densities (hom) and those obtained using the
local (loc) values. We see that when both the transport
coefficients (ν and D) are very small, the two simula-
tions provide the same results. Instead, by increasing
both transport coefficients different results are observed.
This is just a qualitative statement, as a quantita-
tive study requires further numerical, as well as the-
oretical analysis. We remark, however, that the effects
induced by inhomogeneity in the noise are typically neg-
ligible with respect to the mode coupling effect for many
practical purposes (details are given in [27]).

Going at smaller q̃ we observe in Figure 5 that the
power-law scaling ∼ q̃−4 becomes progressively under-
estimated by the numerically computed S̃NE(q̃). This is
attributed to finite-size effects induced by confinement.
Indeed, due to the long-range nature of NE spatial corre-
lations, NE structure factors are necessarily affected by
the boundary conditions. There are various papers aimed
at the quantitative characterization of S̃NE(q̃) in presence
of boundary conditions [32, 80, 81]. The results of these
calculations share the common feature that the power-
law behaviour ∼ q̃−4 is approached only at very small
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Figure 6. We report the ratio between the non-equilibrium
structure factors computed by implementing the noise accord-
ing to (14)-(15) and using the constant reference value for the
mass densities (hom) and local space-dependent (loc) density.
Different transport coefficient are considered. The simulation
parameters not given in the legends are detailed in Section
IV.

scales, i.e. S̃NE(q̃) ∼ q̃−4 only for q̃ → ∞. The small-
q̃ behaviour strongly depends on the boundary condi-
tions used for both velocity and concentration. In what
follows, we discuss three analytical (or semi-analytical)

expressions for S̃NE(q̃) that can be gathered from the lit-
erature. All of them treat the wall as impenetrable:

Uz|z=±L/2 = 0.

This condition is strictly imposed in all the simulations
performed. One can then impose either no-slip (NS) or
free-slip (FS) boundary conditions for Ux, and indepen-
dently either insulating (I) or conducting (C) boundary
conditions for δc:

(NS,I) : (Ux, ∂zδc)|z=±L/2 = 0,

(FS,C) : (∂zUx, δc)|z=±L/2 = 0,

(NS,C) : (Ux, δc)|z=±L/2 = 0,

(29)

Depending on the boundary conditions in (29),

different expressions for S̃NE(q̃) can be found in lit-
erature, as reported explicitly in Appendix. The
solution that better fits the data reported in Figure 7 is
(NS,C). This is reasonable: we use a bounce-back for the
kinetic population, thus reproducing the no-slip condi-
tion in the hydrodynamical limit; moreover, since fluctu-
ations in the concentration are triggered by kBT � 1, one
may also say that the conducting boundary condition fits
well in those conditions where the concentration fluctu-
ations are much smaller than the average concentration.
However, we hasten to remark that a quantification of
the boundary conditions with LB in presence of noise is
currently missing in the literature. This surely stimulates
further work in the future.
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Figure 7. Non-equilibrium structure factor contribution as a
function of the dimensionless wavenumber q̃ (see Eq. (26)).
Different analytical formulas are checked, dependently on the
boundary conditions (29). The choice of the simulation pa-
rameters is detailed in Section IV.

Before closing this section, some remarks on the issue
of compressibility are needed. All the reported analyti-
cal results [32, 80, 81] are derived in the incompressible
regime. The fluid velocity in our system is not diver-
genceless (see the discussion on the velocity structure
factors reported in Figure 2). Thus, one could wonder
if compressibility plays a role. To this aim, recall that
in the incompressible case the equation for Ux can be
decoupled by taking the double curl of Eq. (3) and us-
ing ∇ · δU = 0. The resulting equations for Uz and c
are the starting point for the computations performed
in [32, 80, 81]. By following the same procedure, in our
case we would get additional contributions in the momen-
tum balance involving ∇(∇ · δU), whose z-component
in Fourier space reads −qzq · δU(q). These contribu-
tions are identically vanishing for q = (q, 0), thus giving
the same bulk equations as in the incompressible case.
Notice, however, that the incompressibility condition is
routinely used in formulating a “closed” boundary con-
dition in terms of the velocity component Uz [32, 80, 81]
and to the best of our knowledge, there is no analytical
result for confined flows involving compressibility effects
in the imposition of the boundary conditions. Therefore,
at this stage, it is not clear how much of the observed
behaviour at large scales depends on compressibility ef-
fects. This point surely stimulates further research for
the future.
Summarizing, the LB solver described in [62] generates a
fluctuating hydrodynamical system that under the pres-
ence of a constant concentration gradient and homoge-
neous noise develops the typical long-range correlations
characterizing NE fluctuations. Remarkably, neither fit-
ting parameters nor corrective factors are needed to
match numerics and analytical results at the sall scales.
Confinement effects also seem captured, although a more
systematic study of the boundary conditions emerging in

the simulations is needed.

C. Non-Equilibrium Pressures

Recent papers of the literature [30–35] supported the
fact that the long-range effects deriving from NE fluc-
tuations (see Figure 4) cause a NE “Casimir” pressure.
The rationale behind this effect hinges on the connection
between the pressure and concentration fluctuations. In
a nutshell, the local equilibrium assumption relates mass
density and concentration to pressure through an equa-
tion of state P = P (ρ, c) satisfying ∇P = 0 (see equation
(16) for the case at hand), which is expected to be still
valid in average. Fluctuations of ρ and c are then ac-
companied by fluctuations of P that one expects to be
vanishing at linear order [33, 35, 85]. By keeping the first
non vanishing terms, one gets [33, 35]

PNE(z) =
1

2
Ac〈|δc(z)|2〉NE, (30)

where the vanishing of the linear order is used to express
δρ in terms of δc. The constant Ac plays the role of a
second order coefficient, and is a function of the back-
ground fields computed at their respective reference val-
ues. Two important comments are in order. First, based
on the prediction for the NE pressure in (30), one would
expect NE Casimir pressures to be triggered by the non-
ideality of the mixture (see Eq. (16)): an ideal equation
of state (G = 0) would just deliver Ac = 0 and hence
PNE = 0. Second, the NE correlation 〈|δc(z)|2〉NE may
be non homogeneous in space, depending on the choice
of the boundary conditions [32, 33, 35]. Thus, the re-
sulting NE pressure in (30) is space-dependent and one
may wonder how this could be reconciled with an av-
erage mechanical balance. Indeed, the mode coupling
effect triggers NE effects only in the concentration fluc-
tuations, while velocity fluctuations are unchanged (see
Figure 3); thus, one would expect the equilibrium con-
dition of a constant (average) pressure to be recovered.
As already pointed out [35], the mechanism of compen-
sation is a NE renormalization of the background profile
which provides a zero derivative of the total pressure.
In other words, the pressure may be seen as the sum of
an equilibrium contribution and the NE contribution of
Eq. (30); z-dependency in the latter causes the former to
be z-dependent in such a way that the total pressure has
zero derivative.
Based on the numerical model that we used, we are in
a condition to test directly these properties. The set-
up to measure the NE “Casimir” pressure is the same
used for the measure of the NE structure factors with
the same boundary conditions. In practice, the total
pressure is evaluated by its mechanical definition, that
is as half of the trace of the pressure tensor [73], whose
bulk behaviour is expected to coincide with (16) in the
hydrodynamical limit. Results are reported in Figures 8-
9 and fully confirm the above views. Specifically, we
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Figure 8. Average total pressure. Top panel: Average to-
tal pressure for an ideal binary mixture (G = 0). Bottom
panel: Average total pressure for a non-ideal binary mixture
(G > 0). The choice of the simulation parameters is detailed
in Section IV.
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Figure 9. Deviation of the average total mass density from
it noiseless value in both the ideal (G = 0) and non-ideal
(G > 0) cases. The choice of the simulation parameters is
detailed in Section IV.

fixed a non-zero concentration gradient ∇c0 = 0.01, and
we performed simulations with kBT > 0 and kBT = 0
for an ideal mixture (G = 0, Figure 8, top panel) and
for a non-ideal mixture (G > 0, Figure 8, bottom panel).
We observed that the total pressure profiles are homoge-
neous in z and that the pressure receives a correction by
thermal fluctuations only when G > 0. Only when the
pressure receives a correction, the average density profile
slightly changes with thermal fluctuations. This can be
seen in Figure 9, where we reported the deviation ∆ρ(z)
of the average density profile with respect to its values
in the noiseless case. Note that the effect on the density
is quite small, and to point it out in the simulations we
had to use large L and kBT to maximize it (see later
discussion on the scaling laws of NE pressure).
These facts said, we wanted to further characterize the
NE Casimir pressure from our simulations, hence we
sticked with a non-ideal mixture with fixed G > 0. The
spatial average pressure will then depend on kBT , L and
∇c0, i.e. P = P (kBT, L,∇c0). To make progress we
wanted to study the scaling properties of the NE Casimir
pressure as a function of the system size L, concentration
gradient ∇c0 and kBT . We emphasize that fluctuations
are expected to induce pressure effects also in equilib-
rium conditions (∇c0 = 0), and that the latter effects
are particularly large close to the critical point (critical
“Casimir” pressure) and decay to zero at large L [29]. For
the parameters chosen [86] the critical point corresponds
to G = 2, while we kept G = 0.3 in all the non-ideal sim-
ulations. In such conditions thermal fluctuations only
trigger some small effects in equilibrium conditions, that
we detect only at the smallest L considered; however,
aiming at characterizing the NE pressure at changing L,
we needed to remove such small contributions. We pro-
ceeded as follows. For a given system size L, we first
performed a numerical simulation in equilibrium condi-
tions (∇c0 = 0) without thermal fluctuation (kBT = 0);
we then repeated the simulation with the desired kBT .
In both simulations we have computed the average pres-
sure and we estimated the pressure difference induced by
thermal fluctuations as [87]

∆P
eq

(kBT, L) = P (kBT, L, 0)− P (0, L, 0).

Then, for the desired ∇c0 > 0, we performed two other
simulations without thermal fluctuations (kBT = 0) and
with the desired kBT . The NE contribution to the spatial
average pressure has been identified as

PNE(kBT, L,∇c0) = P (kBT, L,∇c0)− P (0, L,∇c0)

−∆P
eq

(kBT, L).

(31)

In Figure 10 we plot the measured PNE as a function of
∇c0, L and kBT . While the scalings PNE ∼ (∇c0)2 and
PNE ∼ kBT are in agreement with the theoretical predic-
tions [30–35], the behavior of PNE ∼ L2 reflects the two
dimensional character of the system. This can be under-
stood by looking at the unbounded behavior ∼ |q|−4 of
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Figure 10. Scaling laws for the NE contribution to the spa-
tial average pressure computed according to Eq. (31). Top
panel: NE pressure contribution as a function of the concen-
tration gradient ∇c0. Central panel: NE pressure contribu-
tion as a function of the wall-to-wall separation L. Bottom
panel: NE pressure contribution as a function of the ther-
mal energy kBT . The choice of the simulation parameters not
given in the legends is detailed in Section IV.

〈|δc(q)|2〉NE in Fourier space. Indeed, the computation of
the NE average pressure from Eq. (30) requires the inte-
gration of |q|−3 in a two dimensional system, in contrast
with the integration of |q|−2 for a three dimensional sys-
tem, as those considered in [30–35]. Consequently, if an
infrared cutoff proportional to L−1 is introduced, then
a two dimensional system furnishes ∼ L2, while a three
dimensional system gives ∼ L. Predicting the offsets re-
quires the complete control of the boundary conditions.

V. CONCLUSIONS

We applied the fluctuating lattice Boltzmann (LB)
methodology described in [62] to a system out of thermo-
dynamic equilibrium. Specifically, we considered a binary
mixture confined between two parallel walls in presence
of a constant concentration gradient in the wall-to-wall
direction. We studied structure factors and spatial corre-
lations of the velocity and concentration fluctuations, and
found good agreement with the theoretical predictions of
fluctuating hydrodynamics [13]. We further inspected
the behavior of the resulting NE pressure as a function
of both the concentration gradient and the wall-to-wall
distance, and verified the correctness of the correspond-
ing expected scaling laws [32, 33, 35], in agreement with
a constant average total pressure. The results here re-
ported naturally warrant other future quantitative stud-
ies, both numerical and theoretical. In the context of
the LB methodology, the analysis of the structure factors
revealed the necessity of a better control in implement-
ing the boundary conditions in presence of thermal fluc-
tuations. Furthermore, the extension of the Chapman-
Enskog procedure to the fluctuating case is missing. In
this sense, the results of this paper support the conver-
gence of fluctuating LB towards fluctuating hydrodynam-
ics. In the context of finite size effects in the NE fluc-
tuations, it would be interesting to further inspect the
importance of compressibility effects for analytical solu-
tions in presence of confinement, with the aim of com-
paring with the LB simulations.
On a more general perspective, we remark that NE ef-
fects are continuously invoked in a variety of situations of
experimental interest involving complex hydrodynamics.
These include studies with colloidal suspensions [88–91],
transient and enhanced diffusion effects [92–95], driven
active matter [96], complex polymeric fluids [97], finite
Reynolds numbers fluids [98]. In particular, for the fu-
ture, it could be insightful to design experiments involv-
ing colloidal particles exhibiting a mechanical-chemical
coupling with the fluid [99], in such a way that NE fluctu-
ations effects can be indirectly reconstructed and studied
from the particles trajectories. The LB methodology has
proven capable of remarkable versatility in the simulation
of colloidal particles [54–58], hence results of the present
paper are instrumental for the use of LB as a validated
methodology to support and complement experimental
studies in the aforementioned direction.



13

Appendix: Structure factors

In this appendix we report the essential technical de-
tails for the computations of the structure factors of a
generic scalar field ϕ = Ux, Uz, c. Given the wave vector
q = (qx, qz), we started from the partial Fourier trans-
form around a z-dependent background ϕ0(z):

δϕ(qx, z, t) =
1√
Lx

∫ Lx

0

dx(ϕ(x, z, t)− ϕ0(z))e−iqxx.

Based on Eq. (6.30) in [13], we defined the quantity
Cϕ(qx, z, z

′) through the equal-time mixed correlation:

〈δϕ(qx, z, t)
∗δϕ(q′x, z

′, t)〉 = Cϕ(qx, z, z
′)2πδ(qx − q′x),

where 〈. . .〉 indicates the ensemble average computed
via the equal time average in the statistically station-
ary state. We then Fourier-transformed in z and z′ to
define the structure factor (see Eq. (31) in [80]):

Sϕ(q) =
1

L

∫ +L/2

−L/2
dzdz′e−iqz(z−z

′)Cϕ(qx, z, z
′).

We can also write

〈δϕ(q, t)∗δϕ(q′, t)〉 = Sϕ(q)(2π)2δ(q − q′),

which gives Sϕ(q) = 〈|δϕ(q, t)|2〉 on a two dimensional
lattice, where (2π)2δ(q − q′) is replaced by δq,q′ .
The decomposition (27) for the structure factor
of the concentration field ϕ = c, computed in the
stream-flow direction, q = (q, 0), can then be used

to extract the NE contribution S̃NE(q̃), where q̃ =
qL. Depending on the boundary conditions at
z = ±L/2 (see Eq. (29)), different expressions for

S̃NE(q̃) are obtained. The (NS,I) solution found in
Eq. (30) of [32] is valid for ν � D. It predicts

S̃
(NS,I)

NE (q̃) =
1

q̃4

(
1 +

4

q̃

1− cosh q̃

q̃ + sinh q̃

)
, ν � D. (A.1)

For the (FS,C) boundary conditions one can get
an exact solution (see Eq. (35) in [80]):

S̃
(FS,C)

NE (q̃) =
1

q̃4
(1 +H(q̃, 0)) , (A.2)

where

H(q̃, 0) =
1− cosh q̃

4q̃ sinh q̃

(
15− 7q̃

sinh q̃
+ q̃2

1− cosh q̃

sinh2 q̃

)
.

(A.3)
Details for (NS,C) are found in Eq. (20) of [81]
(see also (7.36) in [13]). In particular, this solu-
tion comes from a Galerkin truncation of exact
equations. Hence it is a semi-analytical estimate
[100]. Quantitatively, it reads

S̃
(NS,C)

NE (q̃) =
30

36

Sc + 1

Sc + Ã(q̃)

27q̃2

28(q̃2 + 10) [(q̃2 + 12)2 + 360]
,

(A.4)
where

Ã(q̃) =
(q̃2 + 12)(q̃2 + 10)

q̃4 + 24q̃2 + 504
. (A.5)
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