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Revisiting the performance of PCA versus FDA versus Simple 
Projection for Image Recognition  

Fahad B. Mostafa  

Department of Mathematics and Statistics 

The Texas Tech University, Lubbock, USA 

Abstract 

By the advancement of technology, people are using internet for interchanging millions of photos 

every day from one to another part of the world, where data reductions are used to send file long 

distance with in minimum period of time. In the medical science physicians are detecting body 

organs, tumor cells and complex physical phenomena by optical fibers and where image 

processing is quite useful. One of another important sector of image processing is meteorology 

where it processes satellite sending images to do daily weather forecasting or finding climate 

change. There are many other sectors such as military surveillances, underwater search, satellite 

navigation etc. Suppose there are millions of images in the database of NSA, but they do not have 

clear image of the suspect (or suspects). Their main aim is to find the image (or multiple images) 

of particular scene and identify object of interest in the image (or images). In this study, we will 

set a very well-known paradigm of analysis using PCA, FDA and simple projection to recognize 

people from their facial images. We will consider that we have some images of known people that 

can be used to compare and recognize new images (of the same set of face images). Moreover we 

will show graphical and tabular representation for average performance of correct recognition as 

well as analyze the effectiveness of three projections.  

Keywords  

SVD, orthogonal matrix, orthogonal linear transformation, orthogonal projection, PCA, FDA 

Methodology  

As images are very high dimensional, it is not easy to analyze them directly. Some common 

approaches are to reduce their diminution using principal component analysis (PCA), Fisher’s 

discriminant analysis (FDA), and other similar methods. Both PCA and LDA are linear 

transformation methods. PCA yields the directions (principal components) that maximize the 

variance of the data, whereas LDA also aims to find the directions that maximize the separation 
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(or discrimination) between different classes, which can be useful in pattern classification problem 

such as image recognition.  

Our main problem is arising from 𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀  where 𝑌𝑌 𝑖𝑖𝑖𝑖 𝑛𝑛 × 1 column matrix, 𝑋𝑋 𝑖𝑖𝑖𝑖 𝑛𝑛 × 𝑝𝑝 matrix 

and 𝜀𝜀 is 𝑛𝑛 × 1 matrix. If we ignore the error term and compare it with system of linear equation of 

the standard form 𝐴𝐴𝑋𝑋 = 𝑏𝑏 then for 𝑛𝑛 > 𝑝𝑝, the system is overdetermined and we consider it as 

Linear least square problems (to solve it, we us Gram Schmidt process, QR factorization, 

Householder, etc), but when 𝑛𝑛 < 𝑝𝑝 then the system becomes underdetermined and we use singular 

value decomposition shortly SVD to reduce the dimension of column of matrix 𝑋𝑋 from 𝑝𝑝 to smaller 

dimension (say,‘d’ for our case). PCA is one of the central uses of SVD. 

In our study, the main aim of a PCA analysis is to identify patterns in data; PCA aims to detect the 

correlation between variables. If a strong correlation between variables exists, the attempt to 

reduce the dimensionality only makes sense. In a sense PCA is all about finding the directions of 

maximum variance in high-dimensional data and project it onto a smaller dimensional subspace 

while retaining most of the information. 

Mathematically, PCA is defined as an orthogonal linear transformation that transforms the data to 

a new coordinate system such that the greatest variance by the projection of the data comes to lie 

on the first coordinate (called the first principal component), the second greatest variance on the 

second coordinate and do on. Let’s say 𝑋𝑋 as,  

 

For any matrix 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×𝑝𝑝, there exists an orthogonal matrices 𝑈𝑈 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 and 𝑉𝑉 ∈ 𝑅𝑅𝑝𝑝×𝑝𝑝 such 

that  𝑈𝑈𝑇𝑇𝑋𝑋𝑉𝑉 = ∑ 

Where sigma= ∑ = diagonal (𝜎𝜎1,𝜎𝜎2 … ,𝜎𝜎𝑛𝑛) ∈ 𝑅𝑅𝑛𝑛×𝑝𝑝  

𝜎𝜎1 ≥ 𝜎𝜎2 ≥ 𝜎𝜎3 ≥ ⋯ ≥ 𝜎𝜎𝑛𝑛 ≥ 0. The 𝜎𝜎𝑖𝑖′𝑖𝑖 are called the singular values of 𝑋𝑋 and the columns of 𝑈𝑈   

and 𝑉𝑉 are called left and right singular vectors of 𝑋𝑋 rexpectively.  
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For 𝑛𝑛 singular values, 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ 𝜎𝜎3 ≥ ⋯ ≥ 𝜎𝜎𝑑𝑑 ≥ 𝜎𝜎𝑑𝑑+1 = 𝜎𝜎𝑑𝑑+2 …𝜎𝜎𝑛𝑛 = 0. Where 𝑑𝑑 is positive 

singular value, others are zero. Now the rank of our original marix 𝑋𝑋 is 𝑑𝑑 (Figure-1). Range of X 

is the span of 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑑𝑑 which is equal to 𝑑𝑑. Originally we had the dimension of 𝑋𝑋 was 𝑛𝑛 × 𝑝𝑝 

and now it is 𝑛𝑛 × 𝑑𝑑. Statistically, number of date is reduced from 𝑝𝑝 to 𝑑𝑑. Now, 𝑈𝑈𝑇𝑇𝑋𝑋𝑉𝑉 = ∑  

becomes  

𝑋𝑋 = 𝑈𝑈∑𝑉𝑉𝑇𝑇, that’s meaning, in original data we had 𝑝𝑝 columns and now after SVD, we obtain 𝑑𝑑 

columns.  

 

 

Figure-1: Full singular value decomposition to reduced singular value decomposition 

Now we can use principal component analysis (PCA) using this SVD technique. Originally, our 

𝑋𝑋 is like a column form 

𝑋𝑋 = �

𝑋𝑋1
𝑋𝑋1
⋮
𝑋𝑋𝑛𝑛

� ∈ 𝑅𝑅𝑝𝑝 

With mean zero and covariance 𝐾𝐾. But now it is reduced by 𝑋𝑋 ∈ 𝑅𝑅𝑑𝑑 which is our principal 

component. Please note, if 𝑋𝑋  is not 0 then we should use 𝑋𝑋 − 𝐸𝐸(𝑋𝑋) for normalization. 

Now the covariance matrix is 𝐾𝐾 which looks like 

𝐾𝐾 = �
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋1,𝑌𝑌1) ⋯ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋1,𝑌𝑌𝑛𝑛)

⋮ ⋱ ⋮
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑛𝑛,𝑌𝑌1) … 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛)

� 

Covariance matrix is obtained by 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋) = 𝐾𝐾.  
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Suppose 𝑈𝑈 be the 𝑝𝑝 × 𝑝𝑝 orthogonal matrix such that the elements of the vectors 𝑍𝑍 = 𝑈𝑈𝑇𝑇𝑋𝑋 are 

uncorrelated. The uncorrelated elements of the vector 𝑍𝑍 = 𝑈𝑈𝑇𝑇𝑋𝑋 are called the component of 𝑋𝑋. 

So, our moto is to find this  𝑈𝑈 which can be obtained from the SVD of covariance matrix 𝐾𝐾. 

Precisely, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑍𝑍) = 𝑈𝑈𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)𝑈𝑈 = 𝑈𝑈𝑇𝑇𝐾𝐾𝑈𝑈 = ∑. Now we can compare this SVD.  

Thus 𝑍𝑍𝑖𝑖 = 𝑈𝑈𝑖𝑖𝑇𝑇𝑋𝑋 is the principal component. More elaborately (𝑍𝑍1,𝑍𝑍2, … ) and (𝑈𝑈1,𝑈𝑈2, … ) are the 

principal components and directions respectively. Here, 𝑍𝑍1is the largest variance and 𝑍𝑍2is the 

second largest and so on. So, we can reduce the algorithm of PCA of given data as bellows where 

𝑋𝑋 denotes an independent observation vector ′𝑋𝑋′. Finding the sample covariance 𝐾𝐾 ∈ 𝑅𝑅𝑝𝑝×𝑝𝑝 then 

compute the SVD of  𝐾𝐾 to obtain orthogonal matrix 𝑈𝑈 ∈ 𝑅𝑅𝑑𝑑×𝑛𝑛. Then we define principal directions 

by choosing first column of 𝑈𝑈. Thus the principal component is  

𝑍𝑍𝑑𝑑×1 = 𝑈𝑈𝑑𝑑×𝑛𝑛
𝑇𝑇 𝑋𝑋𝑛𝑛×1 

Note that, if we have more correlated data then 𝑑𝑑 will be very smaller than  𝑛𝑛.  

-  

Figure-2: Principal component analysis 

One of the most useful demonstration of PCA is the so-called Eigen faces example. There are two 

sets of images considered for this particular study. One is known as training set; these images are 

already identified and labeled by some experts, say humans and the second one is test images; 

these are new images which are need to be identified and labeled. Our aim is to use the similarities 

between the test and training images to label the test images. 

Linear Discriminant Analysis (LDA) is a handful technique for dimensionality reduction technique 

in the pre-processing step for pattern-classification and machine learning applications. It will 
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project a dataset onto a lower-dimensional space with good class-reparability in order avoid 

overfitting (“curse of dimensionality”) and also reduce computational costs. Ronald A. Fisher 

formulated the Linear Discriminant in 1936 (The Use of Multiple Measurements in Taxonomic 

Problems), and it also has some practical uses as classifier. The original linear discriminant was 

described for a 2-class problem, and it was then later generalized as “multi-class Linear 

Discriminant Analysis” or “Multiple Discriminant Analysis” by C. R. Rao in 1948. The general 

LDA technique is congruent to a PCA, but in addition to finding the component axes that maximize 

the variance of our data (PCA), we are additionally interested in the axes that maximize the 

separation between multiple classes (LDA). 

In LDA, the goal is to separate and characterize the observation after the projection. Similar 

observation should be closer and un-similar observation should be separated. In case of multiple 

class, let us take 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑚𝑚 be m sets that partition. 𝑅𝑅� into 𝑚𝑚 classes. 

 

Figure-3: Linear Discriminant Analysis for 2- class 

We are given, 𝑁𝑁𝑗𝑗 observations from class labeled by 𝐶𝐶𝑗𝑗. That is 𝑋𝑋𝑖𝑖
𝑗𝑗 𝜖𝜖 𝐶𝐶𝑗𝑗 for 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑗𝑗  & 𝑗𝑗 =

1,2, … ,𝑚𝑚 

Suppose, we have 𝐶𝐶𝑗𝑗 class  

𝐶𝐶1 = 𝑋𝑋11,𝑋𝑋21, … ,𝑋𝑋𝑁𝑁1
1 → 𝜇𝜇1 𝜖𝜖 𝑅𝑅𝑛𝑛 

𝐶𝐶2 = 𝑋𝑋12,𝑋𝑋22, … ,𝑋𝑋𝑁𝑁1
2 → 𝜇𝜇2 𝜖𝜖 𝑅𝑅𝑛𝑛 

… 

𝐶𝐶𝑚𝑚 = 𝑋𝑋11,𝑋𝑋21, … ,𝑋𝑋𝑁𝑁1
1 → 𝜇𝜇𝑚𝑚 𝜖𝜖 𝑅𝑅𝑛𝑛 
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Each 𝑋𝑋𝑖𝑖
𝑗𝑗  ∈  𝑅𝑅𝑛𝑛 , the 𝑖𝑖𝑡𝑡ℎ observation in the 𝑗𝑗𝑡𝑡ℎ class. Let, 𝜇𝜇𝑗𝑗 be the mean of observation in class 

𝐶𝐶𝑗𝑗.  

𝜇𝜇𝑗𝑗 =
1
𝑁𝑁𝑗𝑗
�𝑋𝑋𝑖𝑖

𝑗𝑗

𝑁𝑁𝑗𝑗

𝑖𝑖=1

 ∈  𝑅𝑅𝑛𝑛 

A matrix captures the separation between the classes in the between class scatter matrix.  

𝑆𝑆𝐵𝐵 = ��𝜇𝜇𝑗𝑗 − 𝜇𝜇��𝜇𝜇𝑗𝑗 − 𝜇𝜇�𝑇𝑇
𝑚𝑚

𝑗𝑗=1

 ∈  𝑅𝑅𝑛𝑛×𝑛𝑛 

Where 𝜇𝜇 = 1
𝑚𝑚
∑ 𝑢𝑢𝑗𝑗𝑚𝑚
𝑗𝑗=1  

A matrix captures the average separate between elements within same class is captured by the 

within class scatter matrix.  

𝑆𝑆𝑤𝑤 = � ���𝑋𝑋𝑖𝑖
𝑗𝑗 − 𝜇𝜇𝑗𝑗��𝑋𝑋𝑖𝑖

𝑗𝑗 − 𝜇𝜇𝑗𝑗�
𝑇𝑇

𝑁𝑁𝑗𝑗

𝑖𝑖=1

�
𝑚𝑚

𝑗𝑗=1,𝑖𝑖=1

 ∈  𝑅𝑅𝑛𝑛×𝑛𝑛 

Now our goal is to find the projection,  𝑍𝑍 = 𝑈𝑈𝑇𝑇𝑋𝑋. The between class scatter matrix because 

𝑆𝑆𝐵𝐵𝑍𝑍 = 𝑈𝑈𝑇𝑇𝑆𝑆𝐵𝐵𝑈𝑈 

The within class scatter matrix becomes  

𝑆𝑆𝑤𝑤𝑍𝑍 = 𝑈𝑈𝑇𝑇𝑆𝑆𝑤𝑤𝑈𝑈 

Now the goal is to choose 𝑈𝑈 that maximizes the following function 

𝑓𝑓(𝑈𝑈) =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑(𝑆𝑆𝐵𝐵𝑍𝑍)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑(𝑆𝑆𝑤𝑤𝑍𝑍 )

     

                                     =
det (𝑈𝑈𝑇𝑇𝑆𝑆𝐵𝐵𝑈𝑈)
det (𝑈𝑈𝑇𝑇𝑆𝑆𝑤𝑤𝑈𝑈)

 
↑
↓

 ; therefore 𝑓𝑓(𝑈𝑈) ↑ 

The optimal projection is  𝑈𝑈� = 𝑑𝑑𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑𝑎𝑎�𝑓𝑓(𝑈𝑈)�;𝑤𝑤𝑖𝑖𝑑𝑑ℎ 𝑈𝑈 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑. Now, we have to find 𝑈𝑈 that the 

quantity 𝑈𝑈� maximize. 𝑈𝑈� can be solved as the generalized eigenvalue problem where we calculate 

𝑆𝑆𝐵𝐵𝑈𝑈�𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑆𝑆𝑤𝑤𝑈𝑈�𝑖𝑖; 𝑑𝑑𝑖𝑖 represents the eigenvalues of the transformation matrix 𝑈𝑈. If 𝑆𝑆𝐵𝐵 is nonsingular 

then we can find corresponding eigenvector by calculating 𝑈𝑈 = 𝑆𝑆𝐵𝐵−1𝑆𝑆𝑤𝑤. In our case we will use 

building MATLAB code to find eigenvector.  
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In this study, we compute the principal component (PCA) of training images and project them 

down to the smaller size. That is, each training image is now represented by a small vector size 𝑘𝑘. 

For the test image, we can project them down to a 𝑘𝑘 vector, using the same projection and then we 

find the nearest image in the training set by computing 𝑘𝑘 vectors. In case of FDA, the low 

dimensional projection is determined by using scatter matrices.   

We will assume 𝑛𝑛2 training images each for 𝑛𝑛1 people in our database. The size of each image is 

𝑖𝑖1 × 𝑖𝑖2. These images are taken at different orientations, different facial expressions etc.  

There are two parts to the procedure. One is to analyze the training images and compute a 

projection to their principal 𝑘𝑘 −dimensional subspace and comparing with training data. In this 

work we will start from the following.  

Let us consider vector in a matrix size (𝑖𝑖1 × 𝑖𝑖2) × (𝑛𝑛1 × 𝑛𝑛2) is the arrangement of training images 

and we call it 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛. First 𝑛𝑛2 columns are images of person  1, and next 𝑛𝑛2 columns are images of 

person  2, and so on, with a total of 𝑛𝑛1 × 𝑛𝑛2 columns. Then we use PCA, FDA and Simple 

projection and we compare these three procedure.  

To perform PCA from our dataset 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛, we need to calculate SVD and designate 𝑈𝑈1 be the first 

𝑘𝑘 columns of the orthogonal matrix 𝑈𝑈. The size of 𝑈𝑈 is now (𝑖𝑖1 × 𝑖𝑖2) × 𝑘𝑘. 

Now we will use FDA, where we still consider PCA to reduce the size of our data 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 from 

(𝑖𝑖1 × 𝑖𝑖2) × (𝑛𝑛1 × 𝑛𝑛2) to 𝑑𝑑 × (𝑛𝑛1 × 𝑛𝑛2), where 𝑑𝑑 = 𝑛𝑛1×𝑛𝑛2
2

. So, we get a new matrix and let us call 

it  𝑌𝑌�𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 and call the (𝑖𝑖1 × 𝑖𝑖2) × 𝑑𝑑 projection matrix 𝑈𝑈0. Use all the vectors from the same person 

as observations from the same cluster. In 𝑌𝑌�𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛, the first 𝑛𝑛2 columns designate the first person, the 

second 𝑛𝑛2 columns designate the second person, and so on. We have two scatter matric, one is 

between class and another is with-in class scatter matrices, and use the generalized eigen 

decomposition to find 𝑘𝑘 eigen vectors that correspond to the largest eigen values. So, we get this 

result as a matrix form and say it submatrix 𝑉𝑉. Now we find the orthogonal columns 𝑑𝑑 × 𝑘𝑘 matrix. 

Define a (𝑖𝑖1 × 𝑖𝑖2) × 𝑘𝑘 orthogonal matrix 𝑈𝑈1 = 𝑈𝑈0𝑉𝑉. 

We will use simple projection for comparison with PCA and FDA. In this case, we will take 

another projection where 𝑈𝑈1 is simply first 𝑘𝑘 columns of (𝑖𝑖1 × 𝑖𝑖2) identity matrix.  
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Now, we will repeat the followings for upper three cases one by one. We will use the 

projection 𝑌𝑌1 = 𝑈𝑈1𝑇𝑇 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 with size 𝑘𝑘 × (𝑛𝑛1 × 𝑛𝑛2), which simplify each image in  𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 in a 

reduced form of 𝑘𝑘 −dimensional vector. After using this procedure for each cases we can perform 

classification. We have 𝑛𝑛2 test images per person and the test data set 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is in the same form as 

the training data set  𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛. We will take an image 𝐼𝐼 randomly from the test set which represents 

a random column from 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 actually. Projection of 𝐼𝐼 can be found from 𝐼𝐼1 = 𝑈𝑈1𝑇𝑇𝐼𝐼 where 𝐼𝐼1 is a 

𝑘𝑘 × 1 vector. Using 𝑙𝑙2 norm we can find the distance between 𝐼𝐼1 and each column of  𝑌𝑌1. Now, to 

find the label of the column that has the smallest distance to 𝐼𝐼1. If this label matches the true label 

then our recognition is successful otherwise it is a failure. For computing the percentage of 

successful recognition 𝐹𝐹(𝑘𝑘), we perform the above procedure 500 times, which will also give us 

the average performance of upper three methods. After plotting 𝑘𝑘 against each of the three 

projection we can easily discuss the performance.  

 

Figure-4: Paradigm of 5 different Eigen faces for test and train datasets 
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For these image the image size is 𝑖𝑖1 = 28 and 𝑖𝑖2 = 23 where 𝑛𝑛1 = 40 which is the number of 

people. The number of training images per person is 𝑛𝑛2 = 5. So we have the matrix size of  𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 

is (𝑖𝑖1 × 𝑖𝑖2) × (𝑛𝑛1 × 𝑛𝑛2), i.e. (28 × 23) × (40 × 5). We take  5 different training as well as test 

images from data set and compare them with each other. 

Result discussion: 

We have summarized the result by using table and graphs. Then we will show an example of sets 

of images when the dimensionality parameter 𝑘𝑘 changes then the performance 𝐹𝐹(𝑘𝑘) becomes 

improved so that the quality of image gets better.  We demonstrate it by few examples using test 

images and the closest images in the training set finally.  

 

Table 1: Representation of average performance of correct recognition 𝐹𝐹(𝑘𝑘) versus the number 𝑘𝑘 
for three cases. 

𝑘𝑘 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘) 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃(𝑘𝑘) 𝐹𝐹𝑆𝑆𝑃𝑃(𝑘𝑘) 𝑘𝑘 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘) 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃(𝑘𝑘) 𝐹𝐹𝑆𝑆𝑃𝑃(𝑘𝑘) 

1 0.114 0.12 0.162 21 0.876 0.836 0.45 
2 0.414 0.228 0.19 22 0.872 0.868 0.462 
3 0.554 0.438 0.248 23 0.86 0.816 0.464 
4 0.608 0.54 0.214 24 0.86 0.862 0.486 
5 0.648 0.614 0.246 25 0.862 0.858 0.48 
6 0.676 0.622 0.334 26 0.864 0.824 0.46 
7 0.752 0.666 0.38 27 0.864 0.872 0.514 
8 0.752 0.746 0.398 28 0.882 0.868 0.52 
9 0.81 0.782 0.41 29 0.896 0.892 0.566 
10 0.846 0.778 0.426 30 0.87 0.9 0.584 
11 0.83 0.778 0.408 31 0.872 0.886 0.584 
12 0.834 0.792 0.476 32 0.9 0.888 0.578 
13 0.818 0.84 0.474 33 0.868 0.876 0.574 
14 0.868 0.838 0.504 34 0.884 0.878 0.602 
15 0.862 0.85 0.484 35 0.868 0.902 0.572 
16 0.832 0.818 0.45 36 0.872 0.912 0.602 
17 0.81 0.828 0.474 37 0.854 0.888 0.598 
18 0.842 0.856 0.48 38 0.878 0.878 0.534 
19 0.844 0.868 0.478 39 0.846 0.894 0.598 
20 0.842 0.852 0.484 40 0.888 0.916 0.662 
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Observation we wish to make from Table-1 is that regarding our training datasets has to do with 

relative behavior of Simple projection (SP), FDA and PCA as the dimensionality parameter 𝑘𝑘 

becomes larger. The performance of these transforms gets better as the value of 𝑘𝑘 increases. What’s 

the difference between the three is that while the recognition rate with PCA  

saturates around 11.4% to 88.8% when 𝑘𝑘 varies from 1 to 40 while the performance of simple 

projection vary widely from PCA and FDA. For the experiments under discussion, the average 

performance of correct recognition best for 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘) = 90% when 𝑘𝑘 = 32, 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃(𝑘𝑘) =

91.6% when 𝑘𝑘 = 40, and 𝐹𝐹𝑆𝑆𝑃𝑃(𝑘𝑘) = 66.2% when 𝑘𝑘 = 40. From the table we can conclude that 

the values of 𝐹𝐹(𝑘𝑘) is increasing with the increment of 𝑘𝑘 where FDA shows relatively best 

performance and SP reflects weaker performance. However the performance of PCA is quite 

similar to FDA. To understand the result more clearly, we have added a graph of 𝑘𝑘 vs.𝐹𝐹(𝑘𝑘) below. 

 

Figure-5: Variation between percentage of successful recognition 𝐹𝐹(𝑘𝑘) and the number 𝑘𝑘 

Here we calculate the average performance. After performing PCA, FDA and Simple projection 

500 times and computing the percentage of successful recognition, we draw the graph of 

𝑘𝑘 versus  𝐹𝐹(𝑘𝑘). Figure-5 shows LDA is the most proficient technique compared to other two 

techniques. In fact, LDA > PCA > SimPro in our experiment. The performance of FDA is strictly 

increasing up to almost 55% when 𝑘𝑘  runs up from 0 to 3 continuously, then there are some 
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fluctuations of performances with some small ups and downs.  FDA achieves almost 91.6% 

accuracy when dimensionality parameter 𝑘𝑘 becomes 40 which shows best performance in our 

analysis. In case of PCA, 𝐹𝐹(𝑘𝑘) represents 90%  efficiency when 𝑘𝑘 is 32 and then it again declines 

a little and fluctuates close to  88.8% till 𝑘𝑘  becomes 40. Performance graph of FDA and PCA 

intersect each other as they both show similar performances. FDA and PCA both shows most of 

its up grading performance when dimensionality 𝑘𝑘 lays in the interval form 0 to 10 and then they 

stay in a constant rate almost in the rest of the interval. Hence Simple Projection (SimPro) does 

not represent good performance compared to other two method. However, Simple projection 

method also reveals a upward trend of the performance with dimensionality.  

To validate our numerical results in table and graphical results with real image, as we want to use 

our method (PCA, FDA and SP) to recognize new images and compare them with some images of 

known people. For this case, we have chosen different 𝑘𝑘   values such as 4, 32, 40 and take a person 

(say person 2) from test image and compare with our experiment. Figure-6 is indicating the 

perfection of our study.  

 

Figure-6: Comparison of Eigen faces using test images with PCA, FDA and SP performed 
images 
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Conclusion 

In this study, PCA, FDA and simple projection have been executed for face recognition. LDA 

always outperform PCA since LDA deals directly with class separation, empirical evidence 

supports our mathematical methods. PCA might outperform LDA when the number of samples 

per class is small or when the training data non-uniformly sample the underlying distribution. As 

FDA based on maximizing the ratio between the with-in class and between class variance and this 

analysis we report validate our claim. That is, FDA is relatively better performing than PCA. 

However both has good performance under this experiment. In addition, simple projection is easy 

to compute but which shows quite less performance than PCA and FDA.  

Appendix 

Used codes 
close all; 
clear all; 
  
load TrainImages.mat; 
  
load TestImages.mat; 
  
% Computing the PCA of Ytrain 
  
[U S V]=svd(Ytrain);   %SVD of Ytrain 
  
[~,Index]=classifier(Ytrain,Ytest); % labeling the testing dataset 
  
    for k=1:40  
        tm=0; 
        fm=0; 
        for m=1:500 
         
            U1=U(:,1:k); % U1 is the 1st k columns of the orthogonal matrix U 
            Y1=U1'*Ytrain;  % Ytrain reduced to a k-dimensional vector using 
the projection 
            %randomly choosing an image from the Ytest 
            idx=randsample(200,1); 
            I=Ytest(:,idx); 
            I1=U1'*I;   % projection of I 
            T_index=Index(idx); %index of our desired image in Ytrain data 
            [~,ridx]=classifier(Y1,I1); % index of the recognized image 
            if ridx==T_index 
                tm=tm+1; 
            else 
                fm=fm+1; 
            end  
        end  
        tm; 
        F_PCA(k)=tm/500; 
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    end   
figure(1); 
plot(F_PCA,'r--'); 
%Computing the FDA of Ytrain 
  
d=200/2;  % define d acording to our problem given 
  
U0=U(:,1:d); % computation of the projection matrix 
  
Ytrain_new=U0'*Ytrain;  % constructing the new training matrix 
  
[V,lambda]=lda(Ytrain_new); %calculation of the matrix V 
  
V=orth(V);  %to make the column orthogonal 
  
for k=1:40  
        tm=0; 
        fm=0; 
        for m=1:500  
            V1=V(:,1:k); 
            
            U1=U0*V1; %orthogonal matrix 
            
            Y1=U1'*Ytrain;  %projected reduced Ytrain data 
            
            idx=randsample(200,1);  %randomly selecting image from test data 
set  
            I=Ytest(:,idx); 
            I1=U1'*I;   % projection of I 
            T_index=Index(idx); %index of our desired image in Ytrain data 
            [~,ridx]=classifier(Y1,I1); % index of the recognized image 
            if ridx==T_index 
                tm=tm+1; 
            else 
                fm=fm+1; 
            end  
        end  
        tm; 
        F_FDA(k)=tm/500; 
end 
hold on; 
plot(F_FDA,'g'); 
function [minval,index]=classifier(Ytr,Yts)  
    [k,m]=size(Ytr);  
    [l,n]=size(Yts);  
    d=zeros(n,m); 
    for i=1:n 
        for j=1:m 
            d(i,j)=(Yts(:,i)-Ytr(:,j))'*(Yts(:,i)-Ytr(:,j));  
        end 
    end 
    [minval,index]=min(d,[],2); 
end 
 
 
close all; 
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clear all; 
  
load TrainImages.mat; 
  
load TestImages.mat; 
X=Ytrain; % consider it 
  
[~,Index]=classifier(Ytrain,Ytest); % get the labels of the testing set 
  
subplot(2,5,1) 
%reshaping the images 
I=reshape(Ytest(:,1),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Test Eigenface-1'); 
  
subplot(2,5,2) 
%reshaping the images 
I=reshape(Ytest(:,11),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Test Eigenface-2'); 
  
subplot(2,5,3) 
%reshaping the images 
I=reshape(Ytest(:,21),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Test Eigenface-3'); 
  
subplot(2,5,4) 
%reshaping the images 
I=reshape(Ytest(:,31),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Test Eigenface-4'); 
  
subplot(2,5,5) 
%reshaping the images 
I=reshape(Ytest(:,41),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
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title ('Test Eigenface-5') 
%%%%%%%%%%%% Ytrain Images %%%%%%%%%%%%%%%%%%%%%%% 
  
subplot(2,5,6) 
%reshaping the images 
I=reshape(Ytrain(:,Index(1)),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Train Eigenface-1'); 
  
subplot(2,5,7) 
%reshaping the images 
I=reshape(Ytrain(:,Index(11)),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Train Eigenface-2'); 
  
subplot(2,5,8) 
%reshaping the images 
I=reshape(Ytrain(:,Index(21)),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Train Eigenface-3'); 
  
subplot(2,5,9) 
%reshaping the images 
I=reshape(Ytrain(:,Index(31)),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Train Eigenface-4'); 
  
subplot(2,5,10) 
%reshaping the images 
I=reshape(Ytrain(:,Index(41)),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('Train Eigenface-5'); 
subplot(3,4,1) 
%reshaping the images 
I=reshape(Ytest(:,6),28,23); 
%constructing the images 
figure(1); 



                                                                                                                                                                               Machine learning applications 

16 
 

imagesc(I); 
colormap gray; 
axis equal off; 
title ('test image'); 
  
subplot(3,4,2) 
%reshaping the images 
I=reshape(Ytrain(:,73),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('PCA'); 
  
subplot(3,4,3) 
%reshaping the images 
I=reshape(Ytrain(:,63),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('FDA'); 
  
subplot(3,4,4) 
%reshaping the images 
I=reshape(Ytrain(:,137),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('SP'); 
  
subplot(3,4,5) 
%reshaping the images 
I=reshape(Ytest(:,6),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('test image'); 
  
subplot(3,4,6) 
%reshaping the images 
I=reshape(Ytrain(:,7),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('PCA'); 
  
subplot(3,4,7) 
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%reshaping the images 
I=reshape(Ytrain(:,7),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('FDA');  
subplot(3,4,8) 
%reshaping the images 
I=reshape(Ytrain(:,10),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('SP'); 
subplot(3,4,9) 
%reshaping the images 
I=reshape(Ytest(:,6),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('test image'); 
  
subplot(3,4,10) 
%reshaping the images 
I=reshape(Ytrain(:,7),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('PCA');  
subplot(3,4,11) 
%reshaping the images 
I=reshape(Ytrain(:,7),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('FDA');  
subplot(3,4,12) 
%reshaping the images 
I=reshape(Ytrain(:,10),28,23); 
%constructing the images 
figure(1); 
imagesc(I); 
colormap gray; 
axis equal off; 
title ('SP'); 
 

End 


