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As images are very high dimensional, it is not easy to analyze them directly. Some common approaches are to reduce their diminution using principal component analysis (PCA), Fisher's discriminant analysis (FDA), and other similar methods. Both PCA and LDA are linear transformation methods. PCA yields the directions (principal components) that maximize the variance of the data, whereas LDA also aims to find the directions that maximize the separation (or discrimination) between different classes, which can be useful in pattern classification problem such as image recognition.

Our main problem is arising from 𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀 where 𝑌𝑌 𝑖𝑖𝑖𝑖 𝑛𝑛 × 1 column matrix, 𝑋𝑋 𝑖𝑖𝑖𝑖 𝑛𝑛 × 𝑝𝑝 matrix and 𝜀𝜀 is 𝑛𝑛 × 1 matrix. If we ignore the error term and compare it with system of linear equation of the standard form 𝐴𝐴𝑋𝑋 = 𝑏𝑏 then for 𝑛𝑛 > 𝑝𝑝, the system is overdetermined and we consider it as Linear least square problems (to solve it, we us Gram Schmidt process, QR factorization, Householder, etc), but when 𝑛𝑛 < 𝑝𝑝 then the system becomes underdetermined and we use singular value decomposition shortly SVD to reduce the dimension of column of matrix 𝑋𝑋 from 𝑝𝑝 to smaller dimension (say,'d' for our case). PCA is one of the central uses of SVD.

In our study, the main aim of a PCA analysis is to identify patterns in data; PCA aims to detect the correlation between variables. If a strong correlation between variables exists, the attempt to reduce the dimensionality only makes sense. In a sense PCA is all about finding the directions of maximum variance in high-dimensional data and project it onto a smaller dimensional subspace while retaining most of the information. Suppose 𝑈𝑈 be the 𝑝𝑝 × 𝑝𝑝 orthogonal matrix such that the elements of the vectors 𝑍𝑍 = 𝑈𝑈 𝑇𝑇 𝑋𝑋 are uncorrelated. The uncorrelated elements of the vector 𝑍𝑍 = 𝑈𝑈 𝑇𝑇 𝑋𝑋 are called the component of 𝑋𝑋.

So, our moto is to find this 𝑈𝑈 which can be obtained from the SVD of covariance matrix 𝐾𝐾.

Precisely, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑍𝑍) = 𝑈𝑈 𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)𝑈𝑈 = 𝑈𝑈 𝑇𝑇 𝐾𝐾𝑈𝑈 = ∑. Now we can compare this SVD.

Thus 𝑍𝑍 𝑖𝑖 = 𝑈𝑈 𝑖𝑖 𝑇𝑇 𝑋𝑋 is the principal component. More elaborately (𝑍𝑍 1 , 𝑍𝑍 2 , … ) and (𝑈𝑈 1 , 𝑈𝑈 2 , … ) are the principal components and directions respectively. Here, 𝑍𝑍 1 is the largest variance and 𝑍𝑍 2 is the second largest and so on. So, we can reduce the algorithm of PCA of given data as bellows where 𝑋𝑋 denotes an independent observation vector ′𝑋𝑋′. Finding the sample covariance 𝐾𝐾 ∈ 𝑅𝑅 𝑝𝑝×𝑝𝑝 then compute the SVD of 𝐾𝐾 to obtain orthogonal matrix 𝑈𝑈 ∈ 𝑅𝑅 𝑑𝑑×𝑛𝑛 . Then we define principal directions by choosing first column of 𝑈𝑈. Thus the principal component is

𝑍𝑍 𝑑𝑑×1 = 𝑈𝑈 𝑑𝑑×𝑛𝑛 𝑇𝑇 𝑋𝑋 𝑛𝑛×1
Note that, if we have more correlated data then 𝑑𝑑 will be very smaller than 𝑛𝑛.

- A matrix captures the average separate between elements within same class is captured by the within class scatter matrix.

𝐶𝐶 1 = 𝑋𝑋 1 1 , 𝑋𝑋 2 1 , … , 𝑋𝑋 𝑁𝑁 1 1 → 𝜇𝜇 1 𝜖𝜖 𝑅𝑅 𝑛𝑛 𝐶𝐶 2 = 𝑋𝑋 1 2 , 𝑋𝑋 2 2 , … , 𝑋𝑋 𝑁𝑁 1 2 → 𝜇𝜇 2 𝜖𝜖 𝑅𝑅 𝑛𝑛 … 𝐶𝐶 𝑚𝑚 = 𝑋𝑋 1 1 , 𝑋𝑋 2 1 , … , 𝑋𝑋 𝑁𝑁 1 1 → 𝜇𝜇 𝑚𝑚 𝜖𝜖 𝑅𝑅 𝑛𝑛
𝑆𝑆 𝑤𝑤 = � ���𝑋𝑋 𝑖𝑖 𝑗𝑗 -𝜇𝜇 𝑗𝑗 ��𝑋𝑋 𝑖𝑖 𝑗𝑗 -𝜇𝜇 𝑗𝑗 � 𝑇𝑇 𝑁𝑁 𝑗𝑗 𝑖𝑖=1 � 𝑚𝑚 𝑗𝑗=1,𝑖𝑖=1 ∈ 𝑅𝑅 𝑛𝑛×𝑛𝑛
Now our goal is to find the projection, 𝑍𝑍 = 𝑈𝑈 𝑇𝑇 𝑋𝑋. The between class scatter matrix because

𝑆𝑆 𝐵𝐵 𝑍𝑍 = 𝑈𝑈 𝑇𝑇 𝑆𝑆 𝐵𝐵 𝑈𝑈
The within class scatter matrix becomes

𝑆𝑆 𝑤𝑤 𝑍𝑍 = 𝑈𝑈 𝑇𝑇 𝑆𝑆 𝑤𝑤 𝑈𝑈
Now the goal is to choose 𝑈𝑈 that maximizes the following function

𝑓𝑓(𝑈𝑈) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑(𝑆𝑆 𝐵𝐵 𝑍𝑍 ) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑(𝑆𝑆 𝑤𝑤 𝑍𝑍 ) = det (𝑈𝑈 𝑇𝑇 𝑆𝑆 𝐵𝐵 𝑈𝑈) det (𝑈𝑈 𝑇𝑇 𝑆𝑆 𝑤𝑤 𝑈𝑈) ↑ ↓ ; therefore 𝑓𝑓(𝑈𝑈) ↑
The optimal projection is 𝑈𝑈 � = 𝑑𝑑𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑𝑎𝑎�𝑓𝑓(𝑈𝑈)�; 𝑤𝑤𝑖𝑖𝑑𝑑ℎ 𝑈𝑈 ∈ 𝑅𝑅 𝑛𝑛×𝑑𝑑 . Now, we have to find 𝑈𝑈 that the quantity 𝑈𝑈 � maximize. 𝑈𝑈 � can be solved as the generalized eigenvalue problem where we calculate 𝑆𝑆 𝐵𝐵 𝑈𝑈 � 𝑖𝑖 = 𝑑𝑑 𝑖𝑖 𝑆𝑆 𝑤𝑤 𝑈𝑈 � 𝑖𝑖 ; 𝑑𝑑 𝑖𝑖 represents the eigenvalues of the transformation matrix 𝑈𝑈. If 𝑆𝑆 𝐵𝐵 is nonsingular then we can find corresponding eigenvector by calculating 𝑈𝑈 = 𝑆𝑆 𝐵𝐵 -1 𝑆𝑆 𝑤𝑤 . In our case we will use building MATLAB code to find eigenvector.

In this study, we compute the principal component (PCA) of training images and project them down to the smaller size. That is, each training image is now represented by a small vector size 𝑘𝑘.

For the test image, we can project them down to a 𝑘𝑘 vector, using the same projection and then we find the nearest image in the training set by computing 𝑘𝑘 vectors. In case of FDA, the low dimensional projection is determined by using scatter matrices.

We will assume 𝑛𝑛 2 training images each for 𝑛𝑛 1 people in our database. The size of each image is 𝑖𝑖 1 × 𝑖𝑖 2 . These images are taken at different orientations, different facial expressions etc.

There are two parts to the procedure. One is to analyze the training images and compute a projection to their principal 𝑘𝑘 -dimensional subspace and comparing with training data. In this work we will start from the following.

Let us consider vector in a matrix size (𝑖𝑖 1 × 𝑖𝑖 2 ) × (𝑛𝑛 1 × 𝑛𝑛 2 ) is the arrangement of training images and we call it 𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 . First 𝑛𝑛 2 columns are images of person 1, and next 𝑛𝑛 2 columns are images of person 2, and so on, with a total of 𝑛𝑛 1 × 𝑛𝑛 2 columns. Then we use PCA, FDA and Simple projection and we compare these three procedure.

To perform PCA from our dataset 𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 , we need to calculate SVD and designate 𝑈𝑈 1 be the first 𝑘𝑘 columns of the orthogonal matrix 𝑈𝑈. The size of 𝑈𝑈 is now (𝑖𝑖 1 × 𝑖𝑖 2 ) × 𝑘𝑘. Now we will use FDA, where we still consider PCA to reduce the size of our data 𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 from

(𝑖𝑖 1 × 𝑖𝑖 2 ) × (𝑛𝑛 1 × 𝑛𝑛 2 ) to 𝑑𝑑 × (𝑛𝑛 1 × 𝑛𝑛 2 ), where 𝑑𝑑 = 𝑛𝑛 1 ×𝑛𝑛 2 2
. So, we get a new matrix and let us call it 𝑌𝑌 � 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 and call the (𝑖𝑖 1 × 𝑖𝑖 2 ) × 𝑑𝑑 projection matrix 𝑈𝑈 0 . Use all the vectors from the same person as observations from the same cluster. In 𝑌𝑌 � 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 , the first 𝑛𝑛 2 columns designate the first person, the second 𝑛𝑛 2 columns designate the second person, and so on. We have two scatter matric, one is between class and another is with-in class scatter matrices, and use the generalized eigen decomposition to find 𝑘𝑘 eigen vectors that correspond to the largest eigen values. So, we get this result as a matrix form and say it submatrix 𝑉𝑉. Now we find the orthogonal columns 𝑑𝑑 × 𝑘𝑘 matrix.

Define a (𝑖𝑖 1 × 𝑖𝑖 2 ) × 𝑘𝑘 orthogonal matrix 𝑈𝑈 1 = 𝑈𝑈 0 𝑉𝑉.

We will use simple projection for comparison with PCA and FDA. In this case, we will take another projection where 𝑈𝑈 1 is simply first 𝑘𝑘 columns of (𝑖𝑖 1 × 𝑖𝑖 2 ) identity matrix. Now, we will repeat the followings for upper three cases one by one. We will use the projection 𝑌𝑌 1 = 𝑈𝑈 1 𝑇𝑇 𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 with size 𝑘𝑘 × (𝑛𝑛 1 × 𝑛𝑛 2 ), which simplify each image in 𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 in a reduced form of 𝑘𝑘 -dimensional vector. After using this procedure for each cases we can perform classification. We have 𝑛𝑛 2 test images per person and the test data set 𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is in the same form as the training data set 𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 . We will take an image 𝐼𝐼 randomly from the test set which represents a random column from 𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 actually. Projection of 𝐼𝐼 can be found from 𝐼𝐼 1 = 𝑈𝑈 1 𝑇𝑇 𝐼𝐼 where 𝐼𝐼 1 is a 𝑘𝑘 × 1 vector. Using 𝑙𝑙 2 norm we can find the distance between 𝐼𝐼 1 and each column of 𝑌𝑌 1 . Now, to find the label of the column that has the smallest distance to 𝐼𝐼 1 . If this label matches the true label then our recognition is successful otherwise it is a failure. For computing the percentage of successful recognition 𝐹𝐹(𝑘𝑘), we perform the above procedure 500 times, which will also give us the average performance of upper three methods. After plotting 𝑘𝑘 against each of the three projection we can easily discuss the performance. 

Result discussion:

We have summarized the result by using table and graphs. Then we will show an example of sets of images when the dimensionality parameter 𝑘𝑘 changes then the performance 𝐹𝐹(𝑘𝑘) becomes improved so that the quality of image gets better. We demonstrate it by few examples using test images and the closest images in the training set finally. analysis we report validate our claim. That is, FDA is relatively better performing than PCA.

However both has good performance under this experiment. In addition, simple projection is easy to compute but which shows quite less performance than PCA and FDA. 

  Mathematically, PCA is defined as an orthogonal linear transformation that transforms the data to a new coordinate system such that the greatest variance by the projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on the second coordinate and do on. Let's say 𝑋𝑋 as, For any matrix 𝑋𝑋 ∈ 𝑅𝑅 𝑛𝑛×𝑝𝑝 , there exists an orthogonal matrices 𝑈𝑈 ∈ 𝑅𝑅 𝑛𝑛×𝑛𝑛 and 𝑉𝑉 ∈ 𝑅𝑅 𝑝𝑝×𝑝𝑝 such that 𝑈𝑈 𝑇𝑇 𝑋𝑋𝑉𝑉 = ∑ Where sigma= ∑ = diagonal (𝜎𝜎 1 , 𝜎𝜎 2 … , 𝜎𝜎 𝑛𝑛 ) ∈ 𝑅𝑅 𝑛𝑛×𝑝𝑝 𝜎𝜎 1 ≥ 𝜎𝜎 2 ≥ 𝜎𝜎 3 ≥ ⋯ ≥ 𝜎𝜎 𝑛𝑛 ≥ 0. The 𝜎𝜎 𝑖𝑖 ′𝑖𝑖 are called the singular values of 𝑋𝑋 and the columns of 𝑈𝑈 and 𝑉𝑉 are called left and right singular vectors of 𝑋𝑋 rexpectively. For 𝑛𝑛 singular values, 𝜎𝜎 1 ≥ 𝜎𝜎 2 ≥ 𝜎𝜎 3 ≥ ⋯ ≥ 𝜎𝜎 𝑑𝑑 ≥ 𝜎𝜎 𝑑𝑑+1 = 𝜎𝜎 𝑑𝑑+2 … 𝜎𝜎 𝑛𝑛 = 0. Where 𝑑𝑑 is positive singular value, others are zero. Now the rank of our original marix 𝑋𝑋 is 𝑑𝑑 (Figure-1). Range of X is the span of 𝑢𝑢 1 , 𝑢𝑢 2 , … , 𝑢𝑢 𝑑𝑑 which is equal to 𝑑𝑑. Originally we had the dimension of 𝑋𝑋 was 𝑛𝑛 × 𝑝𝑝 and now it is 𝑛𝑛 × 𝑑𝑑. Statistically, number of date is reduced from 𝑝𝑝 to 𝑑𝑑. Now, 𝑈𝑈 𝑇𝑇 𝑋𝑋𝑉𝑉 = ∑ becomes 𝑋𝑋 = 𝑈𝑈∑𝑉𝑉 𝑇𝑇 , that's meaning, in original data we had 𝑝𝑝 columns and now after SVD, we obtain 𝑑𝑑 columns.
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 1 Figure-1: Full singular value decomposition to reduced singular value decomposition
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 2 Figure-2: Principal component analysis
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 3 Figure-3: Linear Discriminant Analysis for 2-class

  Each 𝑋𝑋 𝑖𝑖 𝑗𝑗 ∈ 𝑅𝑅 𝑛𝑛 , the 𝑖𝑖 𝑡𝑡ℎ observation in the 𝑗𝑗 𝑡𝑡ℎ class. Let, 𝜇𝜇 𝑗𝑗 be the mean of observation in class 𝐶𝐶 𝑗𝑗 .A matrix captures the separation between the classes in the between class scatter matrix.𝑆𝑆 𝐵𝐵 = ��𝜇𝜇 𝑗𝑗 -𝜇𝜇��𝜇𝜇 𝑗𝑗 -
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 4 Figure-4: Paradigm of 5 different Eigen faces for test and train datasets

  becomes larger. The performance of these transforms gets better as the value of 𝑘𝑘 increases. What's the difference between the three is that while the recognition rate with PCA saturates around 11.4% to 88.8% when 𝑘𝑘 varies from 1 to 40 while the performance of simple projection vary widely from PCA and FDA. For the experiments under discussion, the average performance of correct recognition best for 𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃 (𝑘𝑘) = 90% when 𝑘𝑘 = 32, 𝐹𝐹 𝐹𝐹𝐹𝐹𝑃𝑃 (𝑘𝑘) = 91.6% when 𝑘𝑘 = 40, and 𝐹𝐹 𝑆𝑆𝑃𝑃 (𝑘𝑘) = 66.2% when 𝑘𝑘 = 40. From the table we can conclude that the values of 𝐹𝐹(𝑘𝑘) is increasing with the increment of 𝑘𝑘 where FDA shows relatively best performance and SP reflects weaker performance. However the performance of PCA is quite similar to FDA. To understand the result more clearly, we have added a graph of 𝑘𝑘 vs. 𝐹𝐹(𝑘𝑘) below.

Figure- 5 :

 5 Figure-5: Variation between percentage of successful recognition 𝐹𝐹(𝑘𝑘) and the number 𝑘𝑘 Here we calculate the average performance. After performing PCA, FDA and Simple projection 500 times and computing the percentage of successful recognition, we draw the graph of 𝑘𝑘 versus 𝐹𝐹(𝑘𝑘).Figure-5 shows LDA is the most proficient technique compared to other two

   shows LDA is the most proficient technique compared to other two techniques. In fact, LDA > PCA > SimPro in our experiment. The performance of FDA is strictly increasing up to almost 55% when 𝑘𝑘 runs up from 0 to 3 continuously, then there are some fluctuations of performances with some small ups and downs. FDA achieves almost 91.6% accuracy when dimensionality parameter 𝑘𝑘 becomes 40 which shows best performance in our analysis. In case of PCA, 𝐹𝐹(𝑘𝑘) represents 90% efficiency when 𝑘𝑘 is 32 and then it again declines a little and fluctuates close to 88.8% till 𝑘𝑘 becomes 40. Performance graph of FDA and PCA intersect each other as they both show similar performances. FDA and PCA both shows most of its up grading performance when dimensionality 𝑘𝑘 lays in the interval form 0 to 10 and then they stay in a constant rate almost in the rest of the interval. Hence Simple Projection (SimPro) does not represent good performance compared to other two method. However, Simple projection method also reveals a upward trend of the performance with dimensionality.To validate our numerical results in table and graphical results with real image, as we want to use our method (PCA, FDA and SP) to recognize new images and compare them with some images of known people. For this case, we have chosen different 𝑘𝑘 values such as 4, 32, 40 and take a person (say person 2) from test image and compare with our experiment. Figure-6 is indicating the perfection of our study.

Figure- 6 :

 6 Figure-6: Comparison of Eigen faces using test images with PCA, FDA and SP performed images

  ,'r--'); %Computing the FDA of Ytrain d=200/2; % define d acording to our problem given U0=U(:,1:d); % computation of the projection matrix Ytrain_new=U0'*Ytrain; % constructing the new training matrix [V,lambda]=lda(Ytrain_new); %calculation of the matrix V V=orth(V); %to make the column orthogonal for ); %index of our desired image in Ytrain data [~,ridx]=classifier(Y1,I1); % index of the recognized image if

Table 1 :

 1 Representation of average performance of correct recognition 𝐹𝐹(𝑘𝑘) versus the number 𝑘𝑘 for three cases.Observation we wish to make from Table-1 is that regarding our training datasets has to do with relative behavior of Simple projection (SP), FDA and PCA as the dimensionality parameter 𝑘𝑘

	𝑘𝑘	𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃 (𝑘𝑘)	𝐹𝐹 𝐹𝐹𝐹𝐹𝑃𝑃 (𝑘𝑘)	𝐹𝐹 𝑆𝑆𝑃𝑃 (𝑘𝑘)	𝑘𝑘	𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃 (𝑘𝑘)	𝐹𝐹 𝐹𝐹𝐹𝐹𝑃𝑃 (𝑘𝑘)	𝐹𝐹 𝑆𝑆𝑃𝑃 (𝑘𝑘)
	1	0.114	0.12	0.162	21	0.876	0.836	0.45
	2	0.414	0.228	0.19	22	0.872	0.868	0.462
	3	0.554	0.438	0.248	23	0.86	0.816	0.464
	4	0.608	0.54	0.214	24	0.86	0.862	0.486
	5	0.648	0.614	0.246	25	0.862	0.858	0.48
	6	0.676	0.622	0.334	26	0.864	0.824	0.46
	7	0.752	0.666	0.38	27	0.864	0.872	0.514
	8	0.752	0.746	0.398	28	0.882	0.868	0.52
	9	0.81	0.782	0.41	29	0.896	0.892	0.566
	10	0.846	0.778	0.426	30	0.87	0.9	0.584
	11	0.83	0.778	0.408	31	0.872	0.886	0.584
	12	0.834	0.792	0.476	32	0.9	0.888	0.578
	13	0.818	0.84	0.474	33	0.868	0.876	0.574
	14	0.868	0.838	0.504	34	0.884	0.878	0.602
	15	0.862	0.85	0.484	35	0.868	0.902	0.572
	16	0.832	0.818	0.45	36	0.872	0.912	0.602
	17	0.81	0.828	0.474	37	0.854	0.888	0.598
	18	0.842	0.856	0.48	38	0.878	0.878	0.534
	19	0.844	0.868	0.478	39	0.846	0.894	0.598
	20	0.842	0.852	0.484	40	0.888	0.916	0.662

Appendix