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INTEGRAL p-ADIC ÉTALE COHOMOLOGY OF DRINFELD SYMMETRIC

SPACES

PIERRE COLMEZ, GABRIEL DOSPINESCU, AND WIESŁAWA NIZIOŁ

Abstract. We compute the integral p-adic étale cohomology of Drinfeld symmetric spaces of any di-
mension. This refines the computation of the rational p-adic étale cohomology from [9]. The main
tools are: the computation of the integral de Rham cohomology from [9] and the integral p-adic com-
parison theorems of Bhatt-Morrow-Scholze and Česnavičius-Koshikawa which replace the quasi-integral
comparison theorem of Tsuji used in [9].
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1. Introduction

Let p be a prime number, K a finite extension of Qp, and C the p-adic completion of an algebraic
closure K of K. Drinfeld’s symmetric space of dimension d over K is the rigid analytic variety

H
d
K := P

d
K \ ∪H∈H H,

where H is the space ofK-rational hyperplanes in Kd+1. It is equipped with an action of G = GLd+1(K).
One of the main results of [9] is the description of the G×GK-modules Hi

ét(H
d
C ,Qp(i)), where HdC := HdK,C

and GK = Gal(K/K). The analogous result for ℓ-adic étale cohomology, ℓ 6= p, is a classical result of
Schneider and Stuhler [19]. It relies on the fact that ℓ-adic étale cohomology satisfies a homotopy property
with respect to the open ball (a fact that is false for p-adic étale cohomology).

The goal of this paper is to refine our result, by describing the integral p-adic étale cohomology groups
Hi

ét(H
d
C ,Zp(i)). Recall that, for i ≥ 0, there is a natural generalized Steinberg representation Spi(Zp) of

G (see Section 4.1 for the precise definition). We endow it with the trivial action of GK and we write
Spi(Zp)

∗ for its Zp-dual.

This research was partially supported by the project ANR-14-CE25 and the NSF grant No. DMS-1440140.
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The main result of this paper is the following:

Theorem 1.1. Let i ≥ 0. There are compatible topological isomorphisms of G× GK-modules

Hi
ét(H

d
C ,Zp(i)) ≃ Spi(Zp)

∗, Hi
ét(H

d
C ,Fp(i)) ≃ Spi(Fp)

∗,

compatible with the isomorphism Hi
ét(H

d
C ,Qp(i)) ≃ Spi(Zp)

∗ ⊗Zp
Qp from [9]. In particular, for i > d

these cohomology groups are trivial.

If d = 1 and i = 1, this result is due to Drinfeld [10] (with a shaky proof corrected in [12]; see also [8,
Th. 1.7]).

Étale cohomology and Ainf-cohomology. We will describe now the key ideas and difficulties occurring in
the proof of Theorem 1.1. As in [9], a key input is the pro-ordinarity of the standard semistable formal
model XOK

of HdK , a result due to Grosse-Klönne [13]. More precisely, he proved that

(1.2) Hi(XOK
,Ωj

XOK

) = 0, i ≥ 1, j ≥ 0,

where Ω•
XOK

is the logarithmic de Rham complex of XOK
over OK (for the canonical log-structures of

XOK
and OK). One easily infers from this that XOK

is ordinary in the usual sense [9]. The strongest
(and easiest) integral p-adic comparison theorems are available for ordinary varieties, making it natural
to try to adapt them to XOK

. Nevertheless, the fact that XOK
is not quasi-compact seems to be a

serious obstacle in implementing the usual strategy [3, Ch. 7] to our setup. The syntomic method,
suitably adapted [9], works well only up to some absolute constants, and reduces the computation of
Hi

ét(H
d
C ,Qp(i)) to that of the (integral) Hyodo-Kato cohomology of the special fiber of XOK

, which was
done in [9]. The latter computation can be done integrally and also shows that the de Rham cohomology
of XOK

is p-torsion-free.
The results of Bhatt-Morrow-Scholze [5] (adapted to the semistable reduction setting by Česnavičius-

Koshikawa [7]) show that, for proper rigid analytic varieties with semistable reduction, if the de Rham
cohomology of the semistable integral model is p-torsion free (equivalently, if the integral Hyodo-Kato
cohomology of the special fiber is p-torsion free) so is the p-adic étale cohomology of the generic fiber.
Combined with [9] and with the rigidity of G-invariant lattices in Spi(Qp) (a result due to Grosse-Klönne
[16]), this would yield our main result. The problem is that the proofs in [5] and [7] rely on the properness
of the varieties and it is not clear how to adapt them to our context. However, the key actor in loc. cit.
makes perfect sense: the Ainf -cohomology. One then needs a way to read the p-adic étale cohomology
in terms of the Ainf -cohomology, which can be done even for non quasi-compact varieties thanks to a
remarkable (especially due to its simplicity!) formula in [6] (the way p-adic étale cohomology and Ainf -
cohomology are related in [5] is rather different and does not seem to be very useful in our case). This
reduces the proof of our main theorem to the computation of the Ainf -cohomology.

More precisely, let Ainf = W (O♭
C) be Fontaine’s ring associated to C. The choice of a compatible

system of primitive p-power roots of unity (ζpn)n gives rise to an element µ = [ε] − 1 ∈ Ainf (where ε
corresponds to (ζpn)n under the identification O♭

C = lim
←−x 7→xp

OC). This, in turn, induces a modified Tate
twist M →M{i} :=M ⊗Ainf

Ainf{i}, i ≥ 0, on the category of Ainf -modules, where Ainf{1} :=
1
µAinf(1),

Ainf{i} := Ainf{1}
⊗i. Let X = HdC and X = XOK

⊗OK
OC . Using the projection from the pro-étale site of

X to the étale site of X and a relative version of Fontaine’s construction of the ring Ainf , one constructs
in [5], [7] a complex of sheaves of Ainf -modules AΩX on the étale site of X, which allows one to interpolate
between étale, crystalline, and de Rham cohomology of X and X.

The technical result we prove is then:

Theorem 1.3. Let i ≥ 0. There is a topological ϕ−1-equivariant isomorphism of G× GK-modules

Hi
ét(X, AΩX{i}) ≃ Ainf⊗̂Zp

Spi(Zp)
∗.
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Theorem 1.1 is now obtained from this and the description of p-adic nearby cycles in [6] in terms of
AΩX (a twisted version of the Artin-Schreier exact sequence): an exact sequence

(1.4) 0→ Hi−1
ét (X, AΩX{i})/(1− ϕ

−1)→ Hi
ét(X,Zp(i))→ Hi

ét(X, AΩX{i})
ϕ−1=1 → 0.

Proof of Theorem 1.3. We end the introduction by briefly explaining the key steps in the proof of
Theorem 1.3. Fix i ≥ 0 and write for simplicity M = Hi(X, AΩX{i}). This is an Ainf -module, which is
derived ξ̃-complete, for ξ̃ = ϕ(µ)/µ.

In the first step, we interpret (following Schneider-Stuhler [19] and Iovita-Spiess [17]) Spi(Zp)
∗ as a

suitable quotient of the space of Zp-valued measures on H i+1 (recall that H is the space of K-rational
hyperplanes in Kd+1). This allows us to construct an étale regulator (an "integration of étale symbols")
map

rét : Spi(Zp)
∗ → Hi

ét(X,Zp(i))

which induces a regulator map

(1.5) rinf : Ainf⊗̂Zp
Spi(Zp)

∗ → Hi
ét(X, AΩX{i}).

To prove that rinf is an isomorphism we use the derived Nakayama Lemma: since both sides of (1.5)
are derived ξ̃-complete it suffices to show that rinf is a quasi-isomorphism when reduced modulo ξ̃ (in the
derived sense). That is, that the morphism

rinf ⊗
L IdAinf/ξ̃

: (Ainf⊗̂Zp
Spi(Zp)

∗)⊗L
Ainf

(Ainf/ξ̃)→ Hi
ét(X, AΩX{i})⊗

L
Ainf

(Ainf/ξ̃)

is a quasi-isomorphism. To compute the naive reduction rinf modulo ξ̃ of (1.5) we use the Hodge-Tate
specialization of AΩX, which identifies Hi(AΩX/ξ̃) with the (twisted) sheaf of i’th logarithmic differential
forms on X. And, globally, those are well controlled by the acyclicity result (1.2). Combined with a
compatibility between the étale and the Hodge-Tate Chern class maps and the Hodge-Tate specialization
this implies that rinf is isomorphic to the Hodge-Tate regulator

rHT : OC⊗̂Zp
Spi(Zp)

∗ → H0
ét(X,Ω

i
X
).

And this we have shown to be an isomorphism in [9].
Along the way we also compute that the target Hi

ét(X, AΩX{i}) of rinf is ξ̃-torsion free. Since the
domain Ainf⊗̂Zp

Spi(Zp)
∗ of rinf is also ξ̃-torsion free this shows that rinf ⊗L IdAinf/ξ̃

≃ rinf and hence, by
the above, it is a quasi-isomorphism, as wanted.

Acknowledgments. W.N. would like to thank MSRI, Berkeley, for hospitality during Spring 2019 semester
when parts of this paper were written. We would like to thank Bhargav Bhatt for suggesting that derived
completions could simplify our original proof (which they did !). We thank Kęstutis Česnavičius and
Matthew Morrow for helpful discussions related to the subject of this paper.

Notation and conventions. Throughout the paper p is a fixed prime. K is a finite extension of Qp with
the ring of integers OK ; C is the p-adic completion of an algebraic closure K of K.

All formal schemes are p-adic. A formal scheme over OK is called semistable if, locally for the Zariski
topology, it admits étale maps to the formal spectrum Spf(OK{X1, . . . , Xn}/(X1 · · ·Xr−̟)), 1 ≤ r ≤ n,
where ̟ is a uniformizer of K. We equip it with the log-structure coming from the special fiber.

If A is a ring and f ∈ A is a regular element (i.e., nonzero divisor) and T ∈ D(A), we will often write
T/f for T ⊗L

A A/f if there is no confusion.

2. Preliminaries

2.1. Derived completions and the décalage functor.
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2.1.1. Derived completions. We will need the following derived version of completion1:

Definition 2.1. ([22, 091S]) Let I be an ideal of a ring A. We say that M ∈ D(A) is derived I-complete
if for all f ∈ I

holim(· · · →M
f
→M

f
→M

f
→M) = 0.

Let A be a ring and let I ⊂ A be an ideal. We list the following basic properties of derived completions
[22, 091N]:

(1) Let M be an A-module. If M is classically I-complete, i.e., the map M → lim←−n
M/In is an

isomorphism, then M is also derived I-complete; the converse is true if M is I-adically separated.
(2) The collection of all derived I-complete A-complexes forms a full triangulated subcategory of

D(A).
(3) M ∈ D(A) is derived I-complete if and only if so are its cohomology groups Hi(M), i ∈ Z.
(4) (Derived Nakayama Lemma) A derived I-complete complex M ∈ D(A) is 0 if and only if M ⊗L

A

A/I ≃ 0.
(5) If I is generated by x1, ..., xn ∈ A, then M ∈ D(A) is derived I-complete if and only if M is

derived (xi)-complete for 1 ≤ i ≤ n.
(6) If f is a morphism of ringed topoi, the functor Rf∗ commutes with derived completions [22, 0944].

2.1.2. The Berthelot-Deligne-Ogus décalage functor. For any ring A and any regular element f ∈ A there
is a functor Lηf : D(A)→ D(A) (which is not exact) with the key property [5, Lemma 6.4] that there is
a functorial isomorphism2

Hi(Lηf (T )) ≃ H
i(T )/(Hi(T )[f ]),

where M [f ] := {x ∈M | fx = 0}. Concretely, choose a representative T • of T ∈ D(A) such that T i[f ] = 0

for all i, and consider the sub-complex ηf (T •) ⊂ T •[1/f ] defined by

ηf (T
•)i = {x ∈ f iT i| dx ∈ f i+1T i+1}.

Its image Lηf (T ) in D(A) depends only on T .
We list the following properties of the above construction (sometimes extended naturally to ringed

topoi):

(1) Lηf commutes with truncations and with restriction of scalars3. Moreover, Lηf (Lηg(T )) ≃

Lηfg(T ) for f, g ∈ A regular elements and T ∈ D(A).
(2) For all T ∈ D(A), we have Lηf (T )[1/f ] ≃ T [1/f ] and there is a canonical isomorphism

Lηf (T )/f = Lηf (T )⊗
L
A A/f ≃ (H∗(T/f), βf),

where (H∗(T/f), βf) is the Bockstein complex equal to Hi(T ⊗L
A (f iA/f i+1A)) in degree i, the

differential being the boundary map associated to the triangle

T ⊗L
A (f i+1A/f i+2A)→ T ⊗L

A (f iA/f i+2A)→ T ⊗L
A (f iA/f i+1A).

This is discussed in [5, Chapter 6] and [4, Lemma 5.9].

1The terminology here is misleading. The derived I-completion is not given by M 7→ holimn(M ⊗L
AA/In), as one would

naturally guess.
2Depending on f , not only on the ideal fA. If we want to avoid this, the "correct" isomorphism is

Hi(Lηf (T )) ≃ (Hi(T )/Hi(T )[f ]) ⊗A (f i),

where (f i) ⊂ A[1/f ] is the fractional A-ideal generated by f i.
3The latter means that α∗(Lηα(f)(M)) ≃ Lηf (α∗M) for M ∈ D(B) and α : A → B a map of rings such that α(f) ∈ B

is regular.
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(3) If T → L→M is an exact triangle in D(A), then Lηf (T )→ Lηf (L)→ Lηf (M) is also an exact
triangle if the boundary map Hi(M/f) → Hi+1(T/f) is the zero map for all i. For a regular
element g ∈ A and T ∈ D(A), the natural map Lηf (T )/g → Lηf (T/g) is an isomorphism if
H∗(T/f) has no g-torsion.

(4) If I ⊂ A is a finitely generated ideal and T ∈ D(A) is derived I-complete, then so is Lηf (T ) [5],
[4, Lemma 5.19].

(5) If T ∈ D[0,d](A) and H0(T ) is f -torsion-free then there are natural maps Lηf (T ) → T and
T → Lηf (T ) whose compositions are fd. More precisely, if T • is a representative concentrated
in degrees 0, . . . , d and with f -torsion-free terms, then the first map is induced by ηf (T •) ⊂ T •.
Multiplication by fd on each of the two complexes factors over this inclusion map. When T ∈

D≥0(A), we will refer to the map Lηf (T )→ T as the canonical map.

2.2. The complexes AΩX and Ω̃X.

2.2.1. Fontaine rings. Let

O
♭
C := lim

←−
x 7→xp

OC ≃ lim
←−
x 7→xp

OC/p

be the tilt of OC (so that C♭ = Frac(O♭
C) is an algebraically closed field of characteristic p). Let

Ainf = W (O♭
C) and choose once and for all a compatible sequence (1, ζp, ζp2 , ...) of primitive p-power

roots of 1, giving rise to ε = (1, ζp, ζp2 , ...) ∈ O♭
C . Letting ϕ be the natural Frobenius automorphism of

Ainf , define

µ := [ε]− 1, ξ :=
µ

ϕ−1(µ)
=

[ε]− 1

[ε1/p]− 1
∈ Ainf .

The natural surjective map O♭
C → OC/p lifts to a map θ : Ainf → OC with kernel generated by ξ; the

map θ, in turn, lifts to a map θ∞ : Ainf → W (OC) with kernel generated by µ (however, contrary to θ,
θ∞ is not always surjective, see [5, Lemma 3.23]). The kernel of the twisted map θ̃ := θϕ−1 : Ainf → OC

is generated by

ξ̃ := ϕ(ξ) =
ϕ(µ)

µ
=

[εp]− 1

[ε]− 1
.

We have θ̃(µ) = ζp − 1.
We list the following properties [4, 2.25]

(1) ξ̃ modulo µ is equal to p.
(2) Since Ainf and its reduction mod p are integral domains and since ξ, ξ̃, µ are not 0 modulo p,

(p, ξ), (p, ξ̃), (p, µ) are regular sequences, and so is the sequence (ξ̃, µ).
(3) The ideals (p, ξ), (p, ξ̃), and (ξ̃, µ) define the same topology on Ainf .

The above constructions naturally generalize to the case when OC is replaced by a perfectoid ring.

2.2.2. Modified Tate twists. The compatible sequence of roots of unity (ζpn)n gives a trivializationZp(1) ≃

Zp, and we will write ζ = (ζpn)n for the corresponding basis of Zp(1). By Fontaine’s theorem [11], the
OC -module

OC{1} := Tp(Ω
1
OC/Zp

)

is free of rank 1 and the natural map dlog : µp∞ → Ω1
OC/Zp

induces an OC -linear injection

dlog : OC(1)→ OC{1}, dlog(ζ) = (dlog(ζpn))n≥1.

The OC -module OC{1} is generated by

ω :=
1

ζp − 1
dlog(ζ),
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thus the annihilator of coker(dlog) is (ζp − 1). For any OC -module M , let M{1} :=M ⊗OC
OC{1}, and

we will often write m{1} for the element of M{1} corresponding to m ∈ M (in particular, a{1} = a · ω

in OC{1}).
Finally, define

Ainf{1} :=
1

µ
Ainf(1),

and let a{1} = 1
µa(1) ∈ Ainf(1), if a ∈ Ainf . The Frobenius ϕ on W (C♭)(1) induces an isomorphism

ϕ : Ainf{1}
∼
→ (1/ξ̃)Ainf{1}.

Its inverse defines a map
ϕ−1 : Ainf{1} → Ainf{1}.

There is a natural map
θ̃ := θ ◦ ϕ−1 : Ainf{1} → OC{1}

sending a{1}, for a ∈ Ainf , to θ(ϕ−1(a))ω.
If M is an Ainf -module, let M{i} :=M ⊗Ainf

Ainf{1}
⊗i, i ∈ Z. The map θ̃ : Ainf{1} → OC{1} induces

a map θ̃ :M{1} → (M/ξ̃){1} of Ainf -modules (via the map Ainf → Ainf/ξ̃).

2.2.3. The complexes AΩX and Ω̃X. Let X be a flat formal scheme over OC , with smooth generic fibre
X , seen as an adic space over C. There is a natural morphism of sites

ν : Xproét → Xét,

as well as a sheaf Ainf := Ainf,X := W (lim
←−ϕ

O
+
X/p) of Ainf -modules on Xproét, obtained by sheafifying

Fontaine’s construction R→ Ainf(R) on the basis of affinoid perfectoids of Xproét. This sheaf is endowed
with a bijective Frobenius ϕ as well as with a surjective map

θ : Ainf → Ô
+
X := lim

←−
O

+
X/p

n,

with kernel generated by the non-zero divisor ξ.
Define

AΩX := Lηµ(Rν∗Ainf,X) ∈ D
≥0(X, Ainf),

a commutative algebra object, as well as

Ω̃X := Lηζp−1(Rν∗Ô
+
X) ∈ D(Xét),

a commutative OX-algebra object in D(Xét).

2.3. The Hodge-Tate and de Rham specializations.

2.3.1. The smooth case. Suppose first that X is smooth over OC . The following result is proved in [5]
(for the Zariski site, but the proof is identical in our case).

Theorem 2.2. (Bhatt-Morrow-Scholze, [5, Th. 8.3]) There is a natural isomorphism of OX-modules on
Xét

Hi(Ω̃X) ≃ Ωi
X/OC

{−i}.

We will recall the key relevant points since we will need some information about the construction of
this isomorphism.

Let R be a formally smooth OC -algebra, such that Spf(R) is connected, together with an étale map
A := OC{T

±1
1 , . . . , T±1

d } → R. We will simply say that R is a small algebra and call the map A → R

a framing. Let R̂ be the (perfectoid) completion of the normalization R of R in the maximal pro-finite
étale extension of R[1/p], and let ∆ := Gal(R[1/p]/R[1/p]). Define

A∞ := OC{T
±1/p∞

1 , . . . , T
±1/p∞

d }, R∞ = R⊗̂AA∞.
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We have Γ := Gal(R∞/R) ≃ Zp(1)
d = ⊕di=1Zpγi, where γi sends T 1/pn

i to ζpnT
1/pn

i and fixes T 1/pn

j

for j 6= i. By the almost purity theorem of Faltings, the natural map (group cohomology is always

continuous below) RΓ(Γ, R∞)→ RΓ(∆, R̂) is an almost quasi-isomorphism. We have the following more
precise results:

Theorem 2.3. (Bhatt-Morrow-Scholze, [5, Cor. 8.13, proof of prop. 8.14]) Let R be a small algebra
together with a framing, as above, and let X = Sp(R[1/p]) and X = Spf(R).

a) The natural maps

Lηζp−1RΓ(Γ, R∞)→ Lηζp−1RΓ(Xproét, Ô
+
X)→ RΓ(X, Ω̃X)

are quasi-isomorphisms.
b) Writing Ω̃R for any of these objects, the map Ω̃R ⊗R OX → Ω̃X is a quasi-isomorphism in D(Xét).
c) If R → S is a formally étale map of small algebras, the natural map Ω̃R ⊗

L
R S → Ω̃S is a quasi-

isomorphism.

Note that

Hi(Ω̃R) ≃ H
i(Lηζp−1RΓ(Γ, R∞)) ≃

Hi(Γ, R∞)

Hi(Γ, R∞)[ζp − 1]
≃ Hi(Γ, R),

the last isomorphism4 being a standard decompletion result ([5, Prop. 8.9]).
The key result (not obvious since one needs to define the isomorphisms canonically, independent of

coordinates!) is then:

Theorem 2.4. (Bhatt-Morrow-Scholze, [5, Chapter 8]) Let R be a small algebra.
a) There is a natural R-linear isomorphism H1(Ω̃R) ≃ Ω1

R/OC
{−1}.

b) The cup-product maps induce natural R-linear isomorphisms ∧iH1(Ω̃R) ≃ Hi(Ω̃R) and hence iso-
morphisms Hi(Ω̃R) ≃ ΩiR/OC

{−i}.

The isomorphism in a) is constructed in [5, Prop. 8.15] using completed cotangent complexes. We
will make it explicit, as follows: consider a framing A → R (recall that A = OC{T

±1
1 , . . . , T±1

d }). By
compatibility with base change from A to R of all objects involved, it suffices to construct the isomorphism
for R = A. Moreover we may reduce to describing the isomorphism for A = OC{T

±1}, i.e., for d = 1.
Then the twisted map

α : Ω1
R/OC

≃ H1(Ω̃R){1} ≃
H1(Γ, R∞)

H1(Γ, R∞)[ζp − 1]
{1}

x 7→(ζp−1)x
−−−−−−−→ (ζp − 1)H1(Γ, R∞){1}

is an isomorphism, described explicitly by

α

(
dT

T

)
= (γ 7→ 1⊗ dlog(ζγ)) = (γ 7→ (ζp − 1)⊗

1

ζp − 1
dlog(ζγ)),

where ζγ = (ζγ,n)n, for γ ∈ Γ, is defined by the formula ζγ,n := γ(T 1/pn)/T 1/pn .

2.3.2. The semistable case. Suppose now that X is semistable. This means that, locally for the étale
topology, X = Spf(R), where R admits an étale morphism of OC -algebras

A := OC{T0, . . . , Tr, T
±1
r+1, . . . , T

±1
d }/(T0 · · ·Tr − p

q)→ R

for some d ≥ 0, r ∈ {0, 1, . . . , d} and some rational number q > 0 (we fix once and for all an embedding
pQ ⊂ C). Equip OC with the log-structure OC \ {0} → OC and X with the canonical log-structure,
i.e. given by the sheafification of the subpresheaf OX,ét ∩ (OX,ét[1/p])

∗ of OX,ét. Let ΩX/OC
be the finite

locally free OX-module of logarithmic differentials on X. We have the following result:

4Induced by the natural map Hi(Γ, R) → Hi(Γ, R∞).
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Theorem 2.5. (Česnavičius-Koshikawa, [7, Th. 4.2, Cor. 4.6, Prop. 4.8, Th. 4.11])
a) There is a natural OX,ét-module isomorphism H1(Ω̃X) ≃ Ω1

X/OC
{−1} whose restriction to the smooth

locus X
sm is the one given by Theorem 2.2.

b) The natural map ∧i(H1(Ω̃X))→ Hi(Ω̃X) is an isomorphism and so there is a natural OX,ét-module
isomorphism

Hi(Ω̃X) ≃ Ωi
X/OC

{−i}.

Remark 2.6. 1) A few words about a). The same arguments as in [5] (using completed cotangent com-
plexes) give a map Ω1,cl

X/OC
{−1} → R1ν∗(Ô

+
X), where we denoted by the superscript (−)cl the classical,

non logarithmic, differential forms. The results in [5] ensure that the resulting map (the second map
being the natural projection)

(2.7) Ω1,cl
X/OC

{−1} → R1ν∗(Ô
+
X)→

R1ν∗(Ô
+
X)

R1ν∗(Ô
+
X)[ζp − 1]

≃ H1(Ω̃X)

restricts to an isomorphism Ω1
Xsm/OC

{−1} ≃ (ζp − 1)H1(Ω̃X)|Xsm . Moreover, one shows that H1(Ω̃X) is
a vector bundle. Hence one can divide the map (2.7) by ζp − 1 to obtain a map

Ω1
X/OC

{−1} → H1(Ω̃X)

which is an isomorphism over X
sm. One shows that this extends to the isomorphism in a).

2) A few words about the maps in b). Letting K = Rν∗(Ô
+
X) and using the identifications

H1(Ω̃X) ≃
H1(K)

H1(K)[ζp − 1]
, Hi(Ω̃X) ≃

Hi(K)

Hi(K)[ζp − 1]
,

they are induced by the product maps H1(K)⊗i → Hi(K), which, in turn, are induced by the product
maps

Hj(K)⊗OX,ét
Hk(K)→ Hj+k(K ⊗LOX,ét

K)→ Hj+k(K).

We continue assuming that X is semistable. Recall that the map θ̃ = θ ◦ϕ−1 : Ainf → Ô
+
X is surjective,

with kernel generated by ξ̃ = ϕ(ξ), and it sends µ to ζp − 1, inducing therefore a morphism

AΩX/ξ̃ := AΩX ⊗
L
Ainf ,θ̃

OC → Ω̃X.

Theorem 2.8. (Česnavičius-Koshikawa, [7, Th. 4.2, Th. 4.17, Cor. 4.6])

(1) The above morphism AΩX/ξ̃ → Ω̃X is a quasi-isomorphism.
(2) There is a natural quasi-isomorphism AΩX/ξ

∼
→ Ω•

X/OC
.

(3) The complex AΩX is derived ξ̃-complete. Hence so is RΓét(X, AΩX) (and its cohomology groups).

For i ≥ 0, (using the above theorems) we define

• the Hodge-Tate specialization map
(1) (on sheaves) as the composition

ι̃HT : AΩX → AΩX/ξ̃ → Ω̃X.

(2) (on cohomology) ιHT : Hi
ét(X, AΩX)→ H0

ét(X,Ω
i
X/OC

{−i}) as the composition

ιHT : Hi
ét(X, AΩX)

ι̃HT−−→Hi
ét(X, Ω̃X)→ H0

ét(X, H
i(Ω̃X)) ≃ H

0
ét(X,Ω

i
X/OC

{−i}),

where the second map is the edge morphism in the spectral sequence

Ei,j2 = Hi
ét(X, H

j(Ω̃X))⇒ Hi
ét(X, Ω̃X).

• the de Rham specialization map as the composition ι̃dR : AΩX → AΩX/ξ
∼
→ Ω•

X/OC
yielding on

cohomology a map
ιdR : Hi

ét(X, AΩX)
ι̃dR−−→Hi

dR(X).
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2.4. p-adic nearby cycles and Ainf-cohomology. We review here a result from [6], which describes
integral p-adic étale cohomology in terms of the complex AΩX. Let X be a smooth adic space over C
and let X be a flat formal model of X (not necessarily semistable !). Fix an integer i ≥ 0. Recall that
there is a natural endomorphism (as abelian sheaf, not as Ainf -module !)

ξiϕ−1 : τ≤iAΩX → τ≤iAΩX

defined as the composition

τ≤iAΩX = Lηµτ≤iRν∗Ainf
ϕ−1

−−→Lηϕ−1(µ)τ≤iRν∗Ainf
ξi

→ LηξLηϕ−1(µ)τ≤iRν∗Ainf = τ≤iAΩX.

The following result is proved in [6] in the good reduction case. As we show below the proof goes
through in a more general setting.

Theorem 2.9. (Bhatt-Morrow-Scholze, [6, Chapter 10]) Let X be a smooth adic space over C with a
flat formal model X. Let i ≥ 0. There is a natural quasi-isomorphism

µi : τ≤iRν∗Ẑp
∼
→ τ≤i[τ≤iAΩX

1−ξiϕ−1

−−−−−−→ τ≤iAΩX],

where Ẑp := lim←−n
Z/pn and [·] denotes the homotopy fiber.

Remark 2.10. We warn the reader that this quasi-isomorphism is not Galois equivariant (in the case X
is defined over K). For an equivariant version see Corollary 2.13 below.

Proof. We follow [6] faithfully, but work directly on the p-adic level. Let ψi = ξiϕ−1, seen as an endo-
morphism of τ≤iAΩX (as explained above) or of T := Rν∗Ainf (defined in the obvious way). These two
endomorphisms are compatible with the canonical map can : AΩX → T .

We start with the following simple fact:

Lemma 2.11. a) For i ≥ j, 1− ψi induces an automorphism of the sheaf Ainf/µ
j.

b) There is an exact sequence of sheaves on Xproét

0→ Ẑp
µi

−→ Ainf
1−ψi
−−−→ Ainf → 0.

Proof. a) This is proved by Morrow in [18, Lemma 3.5 (iii)].
b) Clearly, this is a sequence. For surjectivity use a) to deduce surjectivity modulo µ and then use the

fact that Ainf is µ-adically complete. To describe ker(1 − ψi), note that we have µiẐp ⊂ ker(1 − ψi). It
suffices thus to show that ker(1− ψi) ⊂ µ

iẐp. But by part a) we have

ker(Ainf
1−ψi
−−−→ Ainf)

∼
← µi ker(Ainf

1−ϕ−1

−−−−→ Ainf)
∼
← µiẐp.

The last quasi-isomorphism follows from the Artin-Schreier exact sequence [18, Lemma 3.5 (ii)]

0→ Ẑp → Ainf
1−ϕ−1

−−−−→ Ainf → 0.

This finishes the proof of the lemma. �

Write Uψi=1 for the homotopy fiber of ψi − 1 : U → U for U ∈ {AΩX, T }. The above lemma gives an
exact triangle

Rν∗Ẑp
µi

−→ T
ψi−1
−−−→ T,

inducing a quasi-isomorphism
µi : τ≤iRν∗Ẑp

∼
→ τ≤iT

ψi=1.

To finish the proof of our theorem, it remains to show (and this is the hard part) that the natural map
(induced by the natural maps can : AΩX → T and τ≤iAΩX → AΩX)

τ≤i(τ≤iAΩX)
ψi=1 → τ≤iT

ψi=1
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is a quasi-isomorphism.
By easy homological algebra, this happens if ψi acts bijectively on the kernel and cokernel of canj :

Hj(AΩX) → Hj(T ) for j < i, bijectively on the kernel for j = i, and injectively on the cokernel for
j = i. This is clear for j = 0: the map can0 is then bijective as H0(AΩX) = H0(T ) since H0(AΩX) ≃

H0(T )/H0(T )[µ] and H0(T )[µ] = 0 as Ainf is µ-torsion-free.
Assume now that j > 0. For i ≥ 0, write Mi = Hi(T ). Recall [5, Lemma 6.4] that the map

µj : Mj/Mj [µ]→ Hj(AΩX) is an isomorphism. It follows that, for 0 < j ≤ i, the canonical map canj fits
into a natural exact sequence

0→Mj[µ]→Mj [µ
j ]→ Hj(AΩX)

canj

−−→Mj →Mj/µ
j → 0.

This sequence is compatible with the operators ψi−j , ψi−j , ψi, ψi, ψi, respectively. Thus it suffices to
show that ψi−j is bijective on Mj [µ

j ]/Mj[µ], that ψi is bijective on Mj/µ
j for j < i, and is injective for

j = i. This follows from Lemma 2.12 below. �

Lemma 2.12. ([6, Lemma 10.5]) Let j ≥ 1, i ≥ 0.
• ψl+j is bijective on Mi/µ

j for l > 0 and is injective for l = 0.
• ψl is bijective on Mi[µ

j ] for l > 0, surjective for l = 0.
• ψl is bijective on Mi[µ

j ]/Mi[µ], for l ≥ 0.

Proof. We prove first that ψl is injective on Mi[µ
j ] for l > 0. If ψl(x) = 0 and µjx = 0, then ψl+1(µx) = 0

and µx ∈ Mi[µ
j−1], thus, arguing by induction on j, we may assume that j = 1. Suppose that µx = 0

and ψl(x) = 0, i.e., x − ξlϕ−1(x) = 0. Since ξ ≡ p (mod ϕ−1(µ)) in Ainf and ϕ−1(µ) kills ϕ−1(x), we
deduce that (1 − pξl−1ϕ−1)(x) = 0, which forces x = 0, since 1 − pξl−1ϕ−1 is an automorphism of Ainf

(as Ainf is p-adically complete), thus also of T = Rν∗Ainf and Mi. This proves the first step.
Next, the commutative diagram of distinguished triangles

T
µj

//

ψl
��

T //

ψl+j
��

T/µj

ψl+j��
T

µj

// T // T/µj

gives a commutative diagram

0 // Mi/µ
j //

ψl+j��

Hi(T/µj) //

ψl+j��

Mi+1[µ
j ] //

ψl��

0

0 // Mi/µ
j // Hi(T/µj) // Mi+1[µ

j ] // 0

Since ψl+j is bijective on Hi(T/µj) (Lemma 2.11 shows that ψl+j is an automorphism of T/µj), we
deduce that ψl+j is injective on Mi/µ

j, ψl is surjective on Mi+1[µ
j ] and the cokernel of ψl+j on Mi/µ

j

identifies with the kernel of ψl on Mi+1[µ
j ]. This last kernel is 0 for l > 0 (by the first step), thus ψl is

bijective on Mi+1[µ
j ] (this holds trivially on M0[µ

j ] = 0) and ψl+j is bijective on Mi/µ
j for l > 0.

Finally, we need to show that ψl is an automorphism of Mi[µ
j ]/Mi[µ]. Surjectivity follows from that

of ψl on Mi[µ
j ]. For injectivity, note that if µψl(x) = 0, then ψl+1(µx) = 0 and, since ψl+1 is injective

on Mi[µ
j−1], we obtain x ∈Mi[µ], as needed.

�

Using the modified Tate twists we can write the statement of the above theorem in the following way:

Corollary 2.13. Let X be a smooth adic space over C with a flat formal model X. Let i ≥ 0. There is
a natural quasi-isomorphism

γ : τ≤iRν∗Ẑp(i)
∼
→ τ≤i[τ≤iAΩX{i}

1−ϕ−1

−−−−→ τ≤iAΩX{i}].
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It is Galois equivariant in the case X is defined over K.

Proof. Immediate from Theorem 2.9 and the following commutative diagram (which also defines the
operator ϕ−1 on τ≤iAΩX{i} in the corollary):

τ≤iRν∗Ẑp
µi

// τ≤iAΩX

1−ξiϕ−1

//

µ−i≀

��

τ≤iAΩX

µ−i≀

��
τ≤iRν∗Ẑp(i)

γ=can // τ≤iAΩX{i}
1−ϕ−1

// τ≤iAΩX{i}

�

3. Ainf -symbol maps

Let X be a smooth adic space over C and let X be a flat p-adic formal model of X over OC . Let
ν : Xproét → Xét be the natural map.

3.1. The construction of symbol maps. We will define compatible continuous pro-étale and Ainf -
symbol maps5

(3.1) rproét : O(X)∗,⊗i → Hi
proét(X, Ẑp(i)), rinf : O(X)∗,⊗i → Hi

ét(X, AΩX{i}).

For i = 1, we will construct below compatible maps of sheaves

(3.2) cproét1 : τ≤1(Rν∗Gm[−1])→ τ≤1Ẑp(1), cinf1 : τ≤1(Rν∗Gm[−1])→ τ≤1AΩX{1}.

Applying H1
ét(X,−) and observing that

H1
ét(X, τ≤1(Rν∗Gm[−1]))

∼
→ H1

ét(X,Rν∗Gm[−1]) = H0
ét(X,Rν∗Gm) ≃ O(X)∗,

we get that the maps cproét1 , cinf1 induce global symbol maps

rproét : O(X)∗ → H1
proét(X, Ẑp(1)), rinf : O(X)∗ → H1

ét(X, AΩX{1}).

For i ≥ 1, we define the symbol maps (3.1) using cup product: x1 ⊗ · · · ⊗ xi 7→ r∗(x1) ∪ · · · ∪ r∗(xi).

The construction of the first map in (3.2) uses the Kummer exact sequence on Xproét

0→ Ẑp(1)→ lim
←−
x 7→xp

Gm → Gm → 0,

inducing, by projection to Xét, the Chern class map

cproét1 : Rν∗Gm[−1]→ Rν∗Ẑp(1).

The construction of the second map in (3.2) uses the above Kummer exact sequence and the twisted
Artin-Schreier exact sequence6 on Xproét

0→ Ẑp(1)
γ
−−→Ainf{1}

1−ϕ−1

−−−−→ Ainf{1} → 0,

where the map γ is defined by x(1) 7→ µx{1}, x ∈ Ẑp. Pushing down to Xét we obtain a map

γ : τ≤1Rν∗Ẑp(1)→ τ≤1Rν∗Ainf{1}.

5We refer the reader to [9, Sec. 2.2] for a discussion of topology on cohomologies of rigid analytic varieties and formal
schemes. Integrally, we work in the category of pro-discrete modules, rationally – in the category of locally convex topological
vector spaces over Qp. But, in this paper, we work with the naive topology on cohomology groups, i.e., the quotient topology,
as opposed to the refined cohomology groups (denoted H̃ in [9]) taken in the derived category of pro-discrete modules.

6 Note that, for x ∈ Ainf ,
(1 − ϕ−1)(x{1}) = [(1− ξϕ−1)(x)]{1}

and this is 0 precisely when x = µy with y ∈ Ẑp.
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On the other hand, Corollary 2.13 gives us a natural map

γ : τ≤1Rν∗Ẑp(1)→ τ≤1AΩX{1}.

It is easy to check that the above two maps are compatible via the canonical map τ≤1AΩX{1} →

τ≤1Rν∗Ainf{1} and that the composition

τ≤1Rν∗Ẑp(1)
γ
−−→τ≤1AΩX{1}

1−ϕ−1

−−→ τ≤1AΩX{1}

is the zero map.
Now, our symbol map is simply the composition

cinf1 : τ≤1Rν∗Gm[−1]
cproét1−−−→ τ≤1Rν∗Ẑp(1)

γ
−→ τ≤1AΩX{1}.

3.2. Compatibility with the Hodge-Tate symbol map. Let XOK
be a semistable formal schemes

over OK . Let M be the sheaf of monoids on XOK
defining the log-structure, Mgp its group completion.

This log-structure is canonical, in the terminology of Berkovich [2, 2.3], i.e., M(U) = {x ∈ OXOK
(U)|xK ∈

O∗
XK

(UK)}. This is shown in [2, Th. 2.3.1], [1, Th. 5.3] and applies also to semistable formal schemes
with self-intersections. It follows that Mgp(U) = O∗

XK
(UK). Set XK := XOK,K ,X := XOC

, X := XK,C .
For i ≥ 1, the Hodge-Tate symbol maps

rHT : O(XK)∗,⊗i → H0
ét(X,Ω

i
X)

are defined by taking cup products of the Chern class maps

cHT
1 : O(XK)∗ → τ≤1(Rν∗Gm[−1])→ ΩX[−1], x 7→ dlog(x).

The purpose of this section is to prove the following fact:

Proposition 3.3. Let i ≥ 1. The symbol maps rinf and rHT are compatible under the Hodge-Tate
specialization map ιHT, i.e., ιHTrinf |O(XK)∗,⊗i = rHT.

Proof. The case i = 1. Consider the composition ιHTc
inf
1 :

O(XK)∗ → O(X)∗ ≃ H1
ét(X, τ≤1(Rν∗Gm[−1]))

cinf1−−→H1
ét(X, AΩX{1})

ιHT−−→H0
ét(X,Ω

1
X
).

We need to show that

Lemma 3.4. The above composition ιHTc
inf
1 is equal to the map cHT

1 = dlog : O(XK)∗ → H0
ét(X,Ω

1
X
).

Proof. From the definitions, it suffices to check that the composition

O
∗
X−−→R1ν∗Ẑp(1)

γ
−−→H1(AΩX{1})

θ̃
−−→H1(Ω̃X{1}) ≃ Ω1

X

is the map dlog. To do this we will study the diagram

R1ν∗Ainf

R1ν∗Ainf [µ]
{1}

θ̃ //

≀γ1

��

R1ν∗Ô
+

R1ν∗Ô+[ζp−1]
{1}

≀γ2

��

O∗
X

cproét1 // R1ν∗Ẑp(1)
γ //

β

''◆◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

H1(AΩX{1})
θ̃ //

can

��

H1(Ω̃X{1})
∼

α1

//

can

��

Ω1
X

ι

$$■
■

■

■

■

■

■

■

■

■

R1ν∗Ainf{1}
θ̃ // R1ν∗Ô

+{1} // R1ν∗Ô(1)
∼

α2

// ε∗Ω1
X

Here ε : Xét → Xét is the canonical map. A few words about this diagram:
• the map R1ν∗Ô

+{1} → R1ν∗Ô(1) is induced by the natural map Ô+ → Ô and the map OC{1} →

C(1) is given by x{1} → x
ζp−1 (1).
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• let νX : Xproét → Xét be the canonical projection. There is an isomorphism

(3.5) α2 : R1νX,∗Ô(1)
∼
→ Ω1

X

due to Scholze ([21, Lemma 3.24]). It is uniquely characterized by the property that its inverse is the
unique OX -linear map α−1

2 : Ω1
X → R1νX,∗Ô(1) making the following diagram commute

(3.6) O∗
X

cproét1 //

dlog
��

R1νX,∗Ẑp(1)

��

Ω1
X

α−1
2 // R1νX,∗Ô(1)

,

the right vertical map being the obvious one.
• The map α2 : R1ν∗Ô(1)→ ε∗Ω

1
X is defined as the composition

(3.7) R1ν∗Ô(1) ≃ R1(ενX)∗Ô(1)
∼
→ ε∗R

1νX,∗Ô(1) ≃ ε∗Ω
1
X ,

where the last map is the isomorphism (3.5). Recall that this last isomorphism generalizes to isomorphisms
[21, Prop. 3.23]:

RiνX,∗Ô(i) ≃ ΩiX , i ≥ 0.

This combined with Tate’s acyclicity theorem allows us to infer that the second map in (3.7) is an
isomorphism.

We claim that the composite

O
∗
X → R1νX,∗Ẑp(1)→ R1νX,∗Ainf{1} → R1νX,∗Ô

+{1} → R1νX,∗Ô(1)→ Ω1
X

is the dlog map. Using the characterization of Scholze’s isomorphism (3.5), this comes down to checking
that the map R1νX,∗Ẑp(1) → R1νX,∗Ainf{1} → R1νX,∗Ô

+{1} → R1νX,∗Ô(1) is the obvious one. But,
by construction, this map is induced by the map

Ẑp(1)→ Ainf{1} → Ô
+{1} → Ô(1)

sending x(1) to xµ{1}, then to θ̃(xµ{1}) = x(ζp − 1){1}, then to x(1), as wanted.
To finish the proof of the lemma, it remains to check that the above big diagram commutes. The only

nonobvious commutativity is that of the right-bottom trapezoid, i.e., we need to check the compatibility
of the maps α1 and α2. Call

(3.8) ρ : Ω1
X

α−1
1−−→H1(Ω̃X{1})

can
−−→ R1ν∗Ô

+{1} → R1ν∗Ô(1)
α2−−→ε∗Ω

1
X .

We want to show that ρ = ι. It suffices to check this on the smooth locus of X, which reduces us to
the case when X is smooth. Note that the maps ρ, ι are OX-linear. This is clear for ι; for ρ we look at
the individual maps in the composition (3.8) that defines it: the second and the third map are clearly
OX-linear, for the first map we use Theorem 2.5, and for the last map we use the discussion above. Now,
the claim that ρ = ι is local, so we way assume that X is associated to a small algebra R with a framing
A = OC{T

±1
i } → R. By functoriality, we may reduce to the case when R = A and A = OC{T

±1}.
Now, the desired compatibility follows from the very construction of the isomorphism α1. More

precisely, since can ◦ γ2 is the multiplication by ζp − 1, we have

(ζp − 1)γ−1
2 (α−1

1 (dT/T )) = can(α−1
1 (dT/T )).

As we have already seen (cf. discussion after Theorem 2.4) this corresponds to the element (γ 7→ (ζp −

1) ⊗ 1
ζp−1 dlog(ζγ)) in (ζp − 1)H1(Γ, A∞){1}. Now the compatibility of the map α2 with the Kummer

map (see the diagram (3.6)) shows that ρ(dT/T ) = dT/T , as wanted. �
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The case i ≥ 1. Take now the symbol maps

rinf : O(X)∗,⊗i → Hi
ét(X, AΩX{i})

and consider the composition ιHTrinf :

O(X)∗,⊗i → Hi
ét(X, AΩX{i})→ Hi

ét(X, Ω̃X{i})→ H0
ét(X, H

i(Ω̃X{i})) ≃ H
0
ét(X,Ω

i
X
).

To finish the proof of our proposition, in view of Lemma 3.4, it suffices to check that this composition
is compatible with products. But, the third map in the composition is clearly compatible with products
and the first map is compatible with products by definition. The second map is induced by the map
θ̃ : AΩX → Ω̃X hence it is also compatible with products. Finally, the last map is the isomorphism given
by Theorem 2.5 hence is compatible with products by its very definition. �

4. The Ainf-cohomology of Drinfeld symmetric spaces

Let H = P((Kd+1)∗) ≃ Pd(K) be the space of K-rational hyperplanes in Kd+1. Let

H
d
K := P

d
K \ ∪H∈H H

be the Drinfeld symmetric space of dimension d. It is a rigid analytic space. Let XOK
be the standard

semistable formal model over OK of HdK (see [14, Section 6.1]). Let X := XOK
⊗̂OK

OC , let X := HdK⊗̂KC

be the rigid analytic generic fiber of X, and let XK = HdK . The group G = GLd+1(K) acts naturally on
all these objects.

The main goal of this section is to prove the following (here and elsewhere in the paper, the completed
tensor product is taken in the category of pro-dicrete modules):

Theorem 4.1. Let i ≥ 0. There is a G× GK-equivariant isomorphism of topological Ainf-modules

Ainf⊗̂Zp
Spi(Zp)

∗ ≃ Hi
ét(X, AΩX{i}),

where Spi(Zp)
∗ is the Zp-dual of a generalized Steinberg representation (see Section 4.1 for a definition).

This isomorphism is compatible with the operator ϕ−1.

4.1. Generalized Steinberg representations and their duals.

4.1.1. Generalized Steinberg representations. Let B be the upper triangular Borel subgroup of G and
∆ = {1, 2, . . . , d}, identified with the set of simple roots associated to B. For each subset J of ∆ we let
PJ be the corresponding parabolic subgroup of G and set XJ = G/PJ , a compact topological space.

If A is an abelian group and J ⊂ ∆, let

SpJ(A) =
LC(XJ , A)∑

i∈∆\J LC(XJ∪{i}, A)
,

where LC means locally constant (automatically with compact support). This is a smooth G-module over
A and we have a canonical isomorphism SpJ(A) ≃ SpJ(Z)⊗A. For J = ∅ we obtain the usual Steinberg
representation with coefficients in A, while for J = ∆ we have SpJ(A) = A. For r ∈ {0, 1, . . . , d} we use
the simpler notation

Spr := Sp{1,2,...,d−r}.

We will need the following result:

Theorem 4.2. (Grosse-Klönne, [16, Cor. 4.3]) If A is a field of characteristic p then SpJ(A) (for
varying J) are the irreducible constituents of LC(G/B,A), each occurring with multiplicity 1.
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4.1.2. Duals of generalized Steinberg representations. If Λ is a topological ring, then SpJ(Λ) has a natural
topology: the space XJ being profinite, we can write XJ = lim

←−n
Xn,J for finite sets Xn,J and then

LC(XJ ,Λ) = lim
−→n

LC(Xn,J ,Λ), each LC(Xn,J ,Λ) being a finite free Λ-module endowed with the natural
topology.

Let M∗ := Homcont(M,Λ) for any topological Λ-module M , and equip M∗ with the weak topology.
Then SpJ (Λ)

∗ is naturally isomorphic to lim
←−n

LC(Xn,J ,Λ)
∗, i.e. a countable inverse limit of finite free

Λ-modules. In particular, suppose that L is a finite extension of Qp. Then SpJ(OL)
∗ is a compact

OL-module, which is torsion-free.
If S is a profinite set and A an abelian group, let

D(S,A) = Hom(LC(S,Z), A) = LC(S,A)∗

be the space of A-valued locally constant distributions on S. We recall the interpretation of Spi(Zp)
∗ in

terms of distributions. Recall that H denotes the compact space of K-rational hyperplanes in Kd+1. If
H ∈H , let ℓH be a unimodular equation for H (thus ℓH is a linear form with integer coefficients, at least
one of them being a unit). Let LCc(H i+1,Z) be the space of locally constant functions f : H i+1 → Z

such that, for all H0, ..., Hi+1 ∈H ,

f(H1, ..., Hi+1)− f(H0, H2, ..., Hi+1) + · · ·+ (−1)i+1f(H0, ..., Hi) = 0

and, moreover, if ℓHj
, 0 ≤ j ≤ i, are linearly dependent, then f(H0, ..., Hi) = 0. The work of Schneider-

Stuhler [19] gives a G-equivariant isomorphism

Spi(Z) ≃ LCc(H i+1,Z).

It follows that the inclusion LCc(H i+1,Z) ⊂ LC(H i+1,Z) gives rise to a strict exact sequence

(4.3) 0→ D(H i+1, A)deg → D(H i+1, A)→ Hom(Spi(Z), A)→ 0,

where D(H i+1, A)deg is the space of degenerate distributions (which is defined via the exact sequence
above).

4.2. Integral de Rham cohomology of Drinfeld symmetric spaces. Recall the following acyclicity
result of Grosse-Klönne, which played a crucial role in [9].

Theorem 4.4. (Grosse-Klönne, [13, Th. 4.5], [15, Prop. 4.5]) For i > 0, j ≥ 0, we have Hi
ét(X,Ω

j
X
) = 0

and d = 0 on H0
ét(X,Ω

j
X
). In particular, we have a natural quasi-isomorphism

RΓdR(X) ≃ RΓét(X,Ω
•
X
) ≃

⊕

i≥0

Γét(X,Ω
i
X
)[−i].

Using it and some extra work, we have obtained the following description of Hi
dR(XOK

):

Theorem 4.5. (Colmez-Dospinescu-Nizioł, [9, Th. 6.26]) There are natural de Rham and Hodge-Tate
regulator maps

rdR : D(H i+1,OK)→ Hi
dR(XOK

),

rHT : D(H i+1,OK)→ H0
HT(XOK

,ΩiXOK
)

that induce topological G× GK-equivariant isomorphisms in the commutative diagram:

Spi(OK)∗

∼

rHT ''❖❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

∼

rdR
// Hi

dR(XOK
)

H0(XOK
,Ωi

XOK
)

≀

OO
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Proof. (Sketch) Our starting point was the computation of Schneider-Stuhler [19]: a G-equivariant topo-
logical isomorphism

Spr(K)∗
αS

∼
// Hi

dR(XK).

Iovita-Spiess [17] made this isomorphism explicit: they have proved that there is a commutative diagram

0 // D(H i+1,K)deg // D(H i+1,K) //

rdR

'' ''◆◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

Spi(K)∗ //

αS≀

��

0

Hi
dR(XK)

With a help from a detailed analysis of the integral Hyodo-Kato cohomology of the special fiber of XOK

and some representation theory7 this computation can be lifted to OK . �

The following computation follows immediately:

Corollary 4.6. (1) The de Rham regulator rdR induces a topological G-equivariant isomorphism

rdR : Spi(OK)∗⊗̂OK
OC

∼
→ Hi

dR(XOK
)⊗̂OK

OC
∼
→ Hi

dR(X).

(2) The Hodge-Tate regulator rHT induces a topological G-equivariant isomorphism

rHT : Spi(OK)∗⊗̂OK
OC

∼
→ H0

ét(XOK
,ΩiXOK

)⊗̂OK
OC

∼
→ H0

ét(X,Ω
i
X).

4.3. Integrating symbols. Let i ≥ 1. In this section, our goal is to construct natural compatible
regulator maps

rét : Spi(Zp)
∗ → Hi

ét(X,Zp(i)), rinf : Spi(Zp)
∗ → Hi

ét(X, AΩX{i})

that are compatible with the classical étale and Ainf -regulators. We will show later that (the linearizations
of) both regulators are G × GK-equivariant isomorphisms. The maps rét, rinf are constructed by inter-
preting elements of Spi(Zp)

∗ as suitable distributions (see the discussion in Section 4.1.2), and integrating
étale and Ainf -symbols of invertible functions on H

d
K against them. This idea appears in Iovita-Spiess

[17] and was also heavily used in [9].

4.3.1. Integrating étale symbols. We start with the construction of the étale regulator map

rét : Spi(Zp)
∗ → Hi

ét(X,Zp(i)).

Fix a cohomological degree i and set M := Hi
ét(X,Zp(i)). For H0, ..., Hi ∈H , let

ψét(H0, ..., Hi) := rét

(
ℓH1

ℓH0

⊗ ...⊗
ℓHi

ℓH0

)
∈M,

where rét : O(HdC)
∗,⊗i → M is the étale regulator map. It is clear that this definition is independent of

the choice of the unimodular equations for H0, ..., Hi.

Proposition 4.7. Let i ≥ 1.

(1) Let δx denote the Dirac distribution at x. There is a unique continuous Zp-linear map

rét : D(H i+1,Zp)→ Hi
ét(X,Zp(i))

such that rét(δ(H0,...,Hi)) = ψét(H0, ..., Hi) for all H0, ..., Hi ∈H .
(2) The map rét factors through the quotient Spi(Zp)

∗ of D(H i+1,Zp) and induces a natural map
of Zp-modules

rét : Spi(Zp)
∗→Hi

ét(X,Zp(i)).

7We used here two facts: (a) Spi(OK) is, up to a K∗-homothety, the unique G-stable lattice in Spi(K); (b) Spi(k) is
irreducible.
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Proof. Uniqueness in (1) is clear since the Zp-submodule of D(H i+1,Zp) spanned by the Dirac distri-
butions is dense.

Existence claim in (1) requires more work. Let {Un}n≥1 be the standard admissible affinoid covering of
X . Let Π(n) be the fundamental group of Un. Denote by RΓ(Π(n),Zp(i)) the complex of nonhomogenous
continuous cochains representing the continuous group cohomology of Π(n). By the K(π, 1)-Theorem of
Scholze [20, Th. 1.2] this complex also represents RΓét(Un,Zp(i)). Since the action of Π(n) on Zp(1) is
trivial the local étale Chern class map factors as

cét1,n : O(Un)
∗ → Hom(Π(n),Zp(1))→ RΓ(Π(n),Zp(1))[1].

The global étale Chern class is represented by the composition

cét1,n : O(X)∗ → lim←−n
O(Un)

∗ → holimnHom(Π(n),Zp(1))→ holimn RΓ(Π(n),Zp(1))[1]
∼
← RΓét(X,Zp(1))[1].

The étale regulator rét : O(X)∗,⊗i → RΓét(X,Zp(i))[i] is then represented by the cup product: rét :=

cét1 ∪ · · · ∪ c
ét
1 .

The composition

(4.8) Ψi : H
i+1 → O(X)∗,⊗i

rét−−→RΓét(X,Zp(i))[i]

represents the map ψét. We claim that it is continuous. Indeed, it suffices to show that so are the induced
maps Ψi,n : H i+1 → RΓ(Π(n),Zp(i))[i], for n ≥ 1. Or, by continuty of the cup product that so are the
maps Ψ1,n. Or, simplifying further, that so are the maps

(4.9) Ψ1,n : H
2 → O(X)∗

rét−−→Hom(Π(n),Zp(1)).

To show this, write H = lim
←−m

Hm, where Hm is the set of m-equivalence classes of K-rational
hyperplanes8 and set Mn := Hom(Π(n),Zp(1)). It suffices to show that, for each k ≥ 1, there is an m

such that the map

Ψ1,n,k : H
2 Ψ1−−→Mn →Mn/p

kMn

factors through the projection H 2 → H 2
m. Taking into account the construction of Ψ1,n, it suffices to

show that, for m large enough, if two hyperplanes H0, H1 are m-equivalent, then rét(ℓH1
/ℓH0

) ∈ pkMn.
But this is clear, since in this case ℓH1

/ℓH0
has a prnm’th root in O(Un)

∗, for some constant rn > 0

depending only on Un, and since rét is a homomorphism, we have rét(ℓH1
/ℓH0

) ∈ prnmMn.
Since Hom(Π(n),Zp(1)) is a Banach space and the map Ψ1,n from (4.8) is continuous on H i+1, it

defines, by integration against distibutions, a continuous map

rét,n : D(H i+1,Zp)→ RΓét(Un,Zp(i))[i]

such that rét,n(δ(H0,...,Hi)) = ψét,n(H0, . . . , Hi), for all H0, . . . , Hi ∈ H , where ψét,n is the analog of ψét

for Un. The construction being compatible with the change of n we get the existence of the map in (1)
by setting rét := lim←−n

rét,n and passing to cohomology.

For (2) we need to check the factorization of the regulator rét from (1) through the quotient by the
degenerate distributions. That is, we need to show that, for any µ ∈ D(H i+1,Zp)deg, we have rét(µ) = 0.
For that, by the construction of rét(µ), it suffices to check that:

(1) for all H0, ..., Hi+1 ∈H , we have

(4.10) ψét(H1, ..., Hi+1)− ψét(H0, H2, ..., Hi+1) + ...+ (−1)i+1ψét(H0, ..., Hi) = 0

(2) and, if the ℓHj
, 0 ≤ j ≤ i, are linearly dependent, then ψét(H0, ..., Hi) = 0.

8Recall that two hyperplanes H1,H2 are called m-equivalent (i.e., [H1] = [H2] ∈ Hm) if they have unimodular equations
ℓ1, ℓ2 such that ℓ1 = ℓ2 modulo ̟m, where ̟ is a uniformizer of K.
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To see (1) note that (a) if one permutes Hj with Hj+1 in the expression in (4.10) the latter will change
its sign, (b) the coefficient of rét(δH1,...,Hi+1

) in the development of the expression in (4.10) is zero.
(2) follows from the fact that the étale regulator satisfies the Steinberg relations. More precisely, if

xj = ℓj/ℓ0, 0 ≤ j ≤ i, where ℓ0, . . . , ℓi are linear equations of K-rational hyperplanes, it suffices to show
that the symbol

{x1, . . . , xi, 1 + a1x1 + · · ·+ aixi} = 0, aj ∈ K,

in the Milnor K-theory group KM
i+1(O(X)∗). Note that the symbol {x1, . . . , xi, 1} = 0. We will reduce to

this case by the following algorithm. Step 1: up to reordering we may assume that y1 := (1 + a1x1) 6= 0

(otherwise we are done). Then, using the Steinberg relations {z, 1− z} = 0 and the fact that {x, a} = 0,

for a ∈ K∗, we compute

{x1, x2, . . . , xi, 1 + a1x1 + · · ·+ aixi} = {x1, x2/y1, . . . , xi/y1, 1 + a2x2/y1 + · · ·+ aixi/y1}.

Note that this makes sense since xj/y1 ∈ O(X)∗. In fact, xj/y1 = ℓj/(ℓ0 + a1ℓ1) is again a quotient
of two linear equations of K-hyperplanes. Step 2: reorder the terms in the last symbol to make x2/y1
appear first and repeat.

�

4.3.2. Integrating Ainf-symbols. Let i ≥ 1. We pass now to the Ainf -regulator map

rinf : Ainf⊗̂Zp
Spi(Zp)

∗ → Hi
ét(X, AΩX{i})

that is compatible with the classical Ainf -regulator as well as with the étale regulator

rét : Spi(Zp)
∗ → Hi

ét(X,Zp(i))

defined above. To start, we define the regulators

rinf : D(H i+1,Zp)→ Hi
ét(X, AΩX{i}), rinf : Spi(Zp)

∗ → Hi
ét(X, AΩX{i})

by setting rinf := γrét, where γ : Hi
ét(X,Zp(i)) → Hi

ét(X, AΩX{i}) is the canonical map and the étale
regulator

(4.11) rét : D(H i+1,Zp)→ Hi
ét(X,Zp(i))

is the map defined above.

Corollary 4.12. Let i ≥ 1. The above regulators extend uniquely to compatible continuous Ainf -linear
maps

rinf : Ainf⊗̂Zp
D(H i+1,Zp)→ Hi

ét(X, AΩX{i}), rinf : Ainf⊗̂Zp
Spi(Zp)

∗→Hi
ét(X, AΩX{i})

that are compatible with the étale regulators.

Proof. Uniqueness is clear. To show the existence, let {Un}n∈N be the standard admissible affinoid
covering of X . For n ∈ N, set

rinf,n : D(H i+1,Zp)→ RΓét(Un, AΩUn
{i})[i], rinf,n := γrét,n,

where Un is the standard semistable formal model of Un and the map

rét,n : D(H i+1,Zp)→ RΓét(Un,Zp(i))[i]

was constructed above. The map rinf,n factors as

rinf,n : D(H i+1,Zp)→Mn → RΓét(Un, AΩUn
{i})[i],

where Mn := Hom(Π(n),Zp(i)) for the fundamental group Π(n) of Un.
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Since rét = holimn rét,n, we have the factorization

rét : D(H i+1,Zp)→ lim
←−
n

Mn
holimn rét,n
−−−−→ holimn RΓét(Un,Zp(i))[i] ≃ RΓét(X,Zp(i))[i].

This induces the following factorization

rinf = holimn rinf,n : Ainf⊗̂Zp
D(H i+1,Zp)→ Ainf⊗̂Zp

lim
←−
n

Mn
∼
→ lim
←−
n

Ainf⊗̂Zp
Mn

→ holimnRΓét(Un, AΩX{i})[i]
∼
← RΓét(X, AΩX{i})[i].

The existence of the first map is clear and so is the following isomorphism. The third map exists because
both Ainf⊗̂Zp

Mn and RΓét(Un, AΩX{i}) are derived (p, µ)-adically complete. This proves the existence
of the first regulator in the corollary. The existence of the second follows immediately from the fact that
the map (4.11) factors through Spi(Zp)

∗ once we know that the sequence

0→ Ainf⊗̂Zp
D(H i+1,Zp)deg → Ainf⊗̂Zp

D(H i+1,Zp)→ Ainf⊗̂Zp
Spi(Zp)

∗ → 0

is strict exact. This sequence is obtained from the strict exact sequence (4.3) by tensoring with Ainf .
Hence the only question is the strict surjection on the right, which follows from the fact that the sequence
(4.3) is actually split (since all modules are duals of free modules). �

4.4. The Ainf-cohomology of Drinfeld symmetric spaces. We are now ready to prove Theorem
4.1. Let i ≥ 0. We will show that the map rinf induces a ϕ−1-equivariant topological isomorphism of
Ainf -modules

rinf : Ainf⊗̂Zp
Spi(Zp)

∗ ∼
→ Hi

ét(X, AΩX{i}).

Compatibility with the operator ϕ−1 follows from the fact that rinf is Ainf -linear and it is induced
from rét hence maps D(H i+1,Zp) to Hi

ét(X, AΩX{i})
ϕ−1=1. For the rest of the claim, first, we show that

the induced map
rinf : (Ainf⊗̂Zp

Spi(Zp)
∗)/ξ̃ → Hi

ét(X, AΩX{i})/ξ̃

is a topological isomorphism. But this map fits into the following commutative diagram (of Ainf -linear
continuous maps, where Ainf acts on OC via θ̃)

(Ainf⊗̂Zp
Spi(Zp)

∗)/ξ̃
rinf //

θ̃≀

��

Hi
ét(X, AΩX{i})/ξ̃� _

α

��
ιHK

xx

OC⊗̂Zp
Spi(Zp)

∗

rHT

∼
))❙❙❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

Hi
ét(X, AΩX{i}/ξ̃)

≀

��
H0

ét(X,Ω
i
X
)

The map α is the change-of-coefficients map; it is clearly injective. The right vertical map is an isomor-
phism because we have the local-global spectral sequence

Es,t2 = Hs
ét(X, H

t(AΩX{i}/ξ̃))⇒ Hs+t
ét (X, AΩX{i}/ξ̃)

and, by Theorem 2.8 and Theorem 2.5, the isomorphisms Ht(AΩX{i}/ξ̃) ≃ Ht(Ω̃X{i}) ≃ Ωt
X
{i − t}.

Hence, by Theorem 4.4,
Es,t2 = Hs

ét(X,Ω
t{i− t}) = 0, s ≥ 1.

The above diagram commutes by Proposition 3.3. The slanted arrow is a topological isomorphism by
Corollary 4.6. It follows that the map α is surjective, hence it is an isomorphism and so is, by the above
diagram, the map rinf . The latter is also a topological isomorphism because so is the map θ̃ and the map
ιHK is a continuous isomorphism.
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Next, we will show that rinf being a topological isomorphism implies that so is the original map rinf .
Let T be the homotopy fiber of rinf . We claim that the complex

(4.13) T ⊗L
Ainf

Ainf/ξ̃ ≃ 0.

Indeed, since rinf is an isomorphism, it suffices to show that the domain and the target of rinf are ξ̃-torsion
free. This is clear for the domain. For the target, note that the exact triangle

AΩX{i}
ξ̃
−−→AΩX{i} → AΩX{i}/ξ̃

yields an exact sequence

0→ Hi
ét(X, AΩX{i})/ξ̃

α
−−→Hi

ét(X, AΩX/ξ̃)→ Hi+1
ét (X, AΩX{i})[ξ̃]→ 0.

By the above, the first map is an isomorphism, hence Hi+1
ét (X, AΩX{i})[ξ̃] = 0. Since i ≥ 0 was arbitrary,

we deduce that, for all j ≥ 1 and all i, Hj
ét(X, AΩX{i}) has no ξ̃-torsion, and this is clearly true for j = 0

as well.
Since T is derived ξ̃-complete (because so are the domain and the target of rinf , the latter using the

derived ξ̃-completeness of AΩX and the preservation of this property by derived pushforward and passage
to cohomology), by the derived Nakayama Lemma (see Section 2.1.1) we have T ≃ 0 as well. This finishes
the proof that rinf is an isomorphism.

Since the domain and the target of rinf are ξ̃-torsion-free and the reduction rinf is a topological
isomorphism so is rinf . This finishes the proof.

5. Integral p-adic étale cohomology of Drinfeld symmetric spaces

We are now ready to compute the étale cohomology. Let XK := HdK be the Drinfeld symmetric space
of dimension d over K and let XOK

be its standard semistable formal model over OK . Let X := XK×KC.

Theorem 5.1. Let i ≥ 0.

(1) There is a G× GK-equivariant topological isomorphism

rét : Spi(Zp)
∗ ∼
→ Hi

ét(X,Zp(i)).

It is compatible with the rational isomorphism rét : Spi(Zp)
∗ ⊗Qp

∼
→ Hi

ét(X,Qp(i)) from [9].
(2) There is a G× GK-equivariant topological isomorphism

rét : Spi(Fp)
∗ ∼
→ Hi

ét(X,Fp(i)).

Proof. Set X := XOC
. For i ≥ 0, using the natural isomorphism Hi

ét(X,Zp(i))
∼
→ Hi

proét(X, Ẑp(i)) [9,
proof of Cor. 3.46], we pass to pro-étale cohomology. Now, by Corollary 2.13, we have a natural short
exact sequence

(5.2) 0→ Hi−1
ét (X, AΩX{i})/(1− ϕ

−1)→ Hi
proét(X, Ẑp(i))→ Hi

ét(X, AΩX{i})
ϕ−1=1 → 0.

By Theorem 4.1, we have a topological isomorphism Hi
ét(X, AΩX{i}) ≃ Ainf⊗̂Zp

Spi(Zp)
∗ and this iso-

morphism is compatible with the action of ϕ−1. We get topological isomorphisms

Hi
ét(X, AΩX{i})

ϕ−1=1 ≃ (Ainf⊗̂Zp
Spi(Zp)

∗)ϕ
−1=1 ≃ Aϕ

−1=1
inf ⊗̂Zp

Spi(Zp)
∗ ≃ Spi(Zp)

∗,

Hi−1
ét (X, AΩX{i})/(1− ϕ

−1) ≃ (Ainf⊗̂Zp
Spi−1(Zp)

∗)/(1− ϕ−1) ≃ (Ainf/(1− ϕ
−1))⊗̂Zp

Spi(Zp)
∗ ≃ 0.

Hence, by the exact sequence (5.2), we get a natural continuous isomorphism rproét : Spi(Zp)
∗ ∼
→

Hi
proét(X, Ẑp(i)). Since its composition with the natural map Hi

proét(X, Ẑp(i))
∼
→ Hi

ét(X, AΩX{i})
ϕ−1=1

is a topological isomorphism so is the map rproét itself, as wanted in claim (1).
The last sentence of claim (1) of the theorem is clear.
For claim (2), we define the regulator rét in an analogous way to its integral version rét (with which it

is compatible by construction). Since Spi(Fp)
∗ ≃ Spi(Zp)

∗⊗Fp and Hi
ét(X,Fp(i)) ≃ H

i
ét(X,Zp(i))⊗Fp
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(the latter isomorphism by claim (1)), we have rét ≃ rét⊗IdFp
. Hence, by claim (1), rét is an isomorphism,

as wanted. �
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