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INTEGRAL p-ADIC ETALE COHOMOLOGY OF DRINFELD SYMMETRIC
SPACES

PIERRE COLMEZ, GABRIEL DOSPINESCU, AND WIESLAWA NIZIOL

ABsTrACT. We compute the integral p-adic étale cohomology of Drinfeld symmetric spaces of any di-
mension. This refines the computation of the rational p-adic étale cohomology from [9]. The main
tools are: the computation of the integral de Rham cohomology from and the integral p-adic com-
parison theorems of Bhatt-Morrow-Scholze and Cesnavicius-Koshikawa which replace the quasi-integral
comparison theorem of Tsuji used in [9].
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1. INTRODUCTION

Let p be a prime number, K a finite extension of Q,, and C' the p-adic completion of an algebraic
closure K of K. Drinfeld’s symmetric space of dimension d over K is the rigid analytic variety

H =P \ Unen H,

where .77 is the space of K-rational hyperplanes in K4+1. It is equipped with an action of G = GLg41(K).
One of the main results of [9] is the description of the G x ¥x-modules Hf, (HE, Q, (i), where HE, := HY
and 9k = Gal(K/K). The analogous result for (-adic étale cohomology, ¢ # p, is a classical result of
Schneider and Stuhler [19]. Tt relies on the fact that ¢-adic étale cohomology satisfies a homotopy property
with respect to the open ball (a fact that is false for p-adic étale cohomology).

The goal of this paper is to refine our result, by describing the integral p-adic étale cohomology groups
H (HZ, Z,(i)). Recall that, for i > 0, there is a natural generalized Steinberg representation Sp;(Z,) of
G (see Section E.T] for the precise definition). We endow it with the trivial action of ¥, and we write
Sp;(Zy)* for its Z,-dual.

This research was partially supported by the project ANR-14-CE25 and the NSF grant No. DMS-1440140.
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The main result of this paper is the following:

Theorem 1.1. Let i > 0. There are compatible topological isomorphisms of G X 9 -modules
Hét(Hfé, Z,(i)) ~ Sp;(Zp)", Hét(Hcé‘va(i)) ~ Sp;(Fy)*,

compatible with the isomorphism Hi (HE, Qp(i)) ~ Spy(Zy)* ®z, Qp from [9]. In particular, for i > d
these cohomology groups are trivial.

If d =1 and ¢ = 1, this result is due to Drinfeld [I0] (with a shaky proof corrected in [12]; see also [8]
Th. 1.7]).

Etale cohomology and Ajne-cohomology. We will describe now the key ideas and difficulties occurring in
the proof of Theorem [[Il As in [9], a key input is the pro-ordinarity of the standard semistable formal
model X ¢, of H%, a result due to Grosse-Klénne [13]. More precisely, he proved that

(1.2) Hi(aeﬁK,QgeﬁK)zo, i>1,j>0,

where Q;eﬁK is the logarithmic de Rham complex of Xz, over Ok (for the canonical log-structures of
Xe, and Ok). One easily infers from this that X4, is ordinary in the usual sense [9]. The strongest
(and easiest) integral p-adic comparison theorems are available for ordinary varieties, making it natural
to try to adapt them to Xg,. Nevertheless, the fact that X4, is not quasi-compact seems to be a
serious obstacle in implementing the usual strategy [3, Ch. 7] to our setup. The syntomic method,
suitably adapted [9], works well only up to some absolute constants, and reduces the computation of
H{ (HL, Qp(i)) to that of the (integral) Hyodo-Kato cohomology of the special fiber of X ¢, , which was
done in [9]. The latter computation can be done integrally and also shows that the de Rham cohomology
of Xg, is p-torsion-free.

The results of Bhatt-Morrow-Scholze [5] (adapted to the semistable reduction setting by Cesnavicius-
Koshikawa [7]) show that, for proper rigid analytic varieties with semistable reduction, if the de Rham
cohomology of the semistable integral model is p-torsion free (equivalently, if the integral Hyodo-Kato
cohomology of the special fiber is p-torsion free) so is the p-adic étale cohomology of the generic fiber.
Combined with [9] and with the rigidity of G-invariant lattices in Sp,;(Q,) (a result due to Grosse-Klénne
[16]), this would yield our main result. The problem is that the proofs in [5] and [7] rely on the properness
of the varieties and it is not clear how to adapt them to our context. However, the key actor in loc. cit.
makes perfect sense: the Ajps-cohomology. One then needs a way to read the p-adic étale cohomology
in terms of the Ajys-cohomology, which can be done even for non quasi-compact varieties thanks to a
remarkable (especially due to its simplicity!) formula in [6] (the way p-adic étale cohomology and Ajp¢-
cohomology are related in [5] is rather different and does not seem to be very useful in our case). This
reduces the proof of our main theorem to the computation of the Aj,¢-cohomology.

More precisely, let Ay, = W(ﬁg) be Fontaine’s ring associated to C. The choice of a compatible
system of primitive p-power roots of unity ((yn»), gives rise to an element p = [g] — 1 € Ay (Where €
corresponds to ({yn ), under the identification 02, = fm O¢). This, in turn, induces a modified Tate
twist M — M{i} := M ®a,,, Ains{i}, i > 0, on the category of Ajpr-modules, where Ajpe{1} := %Ainf(l),
Aie{i} == Aine{1}%% Let X = Hdc and X = X, ®gy Oc. Using the projection from the pro-étale site of
X to the étale site of X and a relative version of Fontaine’s construction of the ring Aj,¢, one constructs
in [B], [7] a complex of sheaves of Ajps-modules A2y on the étale site of X, which allows one to interpolate
between étale, crystalline, and de Rham cohomology of X and X.

The technical result we prove is then:

1

Theorem 1.3. Let i > 0. There is a topological ¢~ -equivariant isomorphism of G X Yx-modules

H{ (%, AQx{i}) ~ Ainr®2z,p;(Zy)"
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Theorem [Tl is now obtained from this and the description of p-adic nearby cycles in [6] in terms of
AQzx (a twisted version of the Artin-Schreier exact sequence): an exact sequence

(1.4) 0 — Hj (X, AQx{i})/(1 — 1) = Hi(X, Zy (i) — Hiy (X, AQx{i})* =" —0.

Proof of Theorem [L3. We end the introduction by briefly explaining the key steps in the proof of
Theorem [[3l Fix i > 0 and write for simplicity M = H*(X, AQx{i}). This is an Aj,;-module, which is
derived &-complete, for € = p(u)/pu.

In the first step, we interpret (following Schneider-Stuhler [I9] and Iovita-Spiess [17]) Sp,(Z,)* as a
suitable quotient of the space of Z,-valued measures on J#**1 (recall that 7 is the space of K-rational
hyperplanes in K9t1). This allows us to construct an étale regulator (an "integration of étale symbols")
map

re : Sp;(Zp)" — Hey (X, Zp (i)
which induces a regulator map
(1.5) Ting © Aint®z,5p;(Zp)* — Hi (X, AQx{i}).

To prove that riy¢ is an isomorphism we use the derived Nakayama Lemma: since both sides of (L5
are derived ¢-complete it suffices to show that ri,¢ is a quasi-isomorphism when reduced modulo £ (in the
derived sense). That is, that the morphism

ring @V 1d, e (Aine®z,9p(Zp)") ©f,,, (Aine/€) = Hi (X, AQ2{i}) @}, (Aint/E)

is a quasi-isomorphism. To compute the naive reduction 7; s modulo é of (LH) we use the Hodge-Tate
specialization of AQx, which identifies H(AQzx /€) with the (twisted) sheaf of i’th logarithmic differential
forms on X. And, globally, those are well controlled by the acyclicity result (I2). Combined with a
compatibility between the étale and the Hodge-Tate Chern class maps and the Hodge-Tate specialization

this implies that 7;,¢ is isomorphic to the Hodge-Tate regulator
rat 1 Oc®7,5p;(Zyp)* — Ho (X, Q%).

And this we have shown to be an isomorphism in [9].

Along the way we also compute that the target HZ (X, AQx{i}) of rint is E-torsion free. Since the
domain Ainf@)zp Sp;(Zy,)* of ring is also é—torsion free this shows that ris @ IdAinf/é ~ Tin¢ and hence, by
the above, it is a quasi-isomorphism, as wanted.

Acknowledgments. W.N. would like to thank MSRI, Berkeley, for hospitality during Spring 2019 semester
when parts of this paper were written. We would like to thank Bhargav Bhatt for suggesting that derived
completions could simplify our original proof (which they did !). We thank Kestutis Cesnavicius and
Matthew Morrow for helpful discussions related to the subject of this paper.

Notation and conventions. Throughout the paper p is a fixed prime. K is a finite extension of Q, with
the ring of integers Ox; C is the p-adic completion of an algebraic closure K of K.

All formal schemes are p-adic. A formal scheme over O is called semistable if, locally for the Zariski
topology, it admits étale maps to the formal spectrum Spf(Ox{X1,..., X }/(X1-- X, —w)), 1 <r < n,
where w is a uniformizer of K. We equip it with the log-structure coming from the special fiber.

If Ais aring and f € A is a regular element (i.e., nonzero divisor) and T € D(A), we will often write
T/f for T @4 A/f if there is no confusion.

2. PRELIMINARIES

2.1. Derived completions and the décalage functor.
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2.1.1. Derived completions. We will need the following derived version of completiorﬂ:

Definition 2.1. (|22, 091S]) Let I be an ideal of a ring A. We say that M € D(A) is derived I-complete
ifforall fel

holim(--- — M 5 M % M %y =o.

Let A be aring and let I C A be an ideal. We list the following basic properties of derived completions
[22, 091N]:
(1) Let M be an A-module. If M is classically I-complete, i.e., the map M — @M/I” is an

isomorphism, then M is also derived I-complete; the converse is true if M is I -adicgdly separated.

(2) The collection of all derived I-complete A-complexes forms a full triangulated subcategory of
D(A).

(3) M € D(A) is derived I-complete if and only if so are its cohomology groups H'(M), i € Z.

(4) (Derived Nakayama Lemma) A derived I-complete complex M € D(A) is 0 if and only if M @4
AJI ~ 0.

(5) If I is generated by z1,...,2, € A, then M € D(A) is derived I-complete if and only if M is
derived (z;)-complete for 1 < i < n.

(6) If f is a morphism of ringed topoi, the functor R f. commutes with derived completions [22 0944].

2.1.2. The Berthelot-Deligne-Ogus décalage functor. For any ring A and any regular element f € A there
is a functor Ly : D(A) — D(A) (which is not exact) with the key property |5, Lemma 6.4] that there is
a functorial isomorphis

H'(Lng(T)) = H'(T)/(H"(T)[f]),
where M([f] := {z € M| fx = 0}. Concretely, choose a representative T'® of T' € D(A) such that T?[f] = 0
for all ¢, and consider the sub-complex ny(T*) C T*[1/f] defined by

np(T*) ={z € f'T"|dx € fH T}

Its image Ln¢(T') in D(A) depends only on 7.
We list the following properties of the above construction (sometimes extended naturally to ringed
topoi):
(1) Lns commutes with truncations and with restriction of scalard]. Moreover, Lng(Lny(T)) ~
Lng(T) for f,g € A regular elements and T' € D(A).
(2) For all T € D(A), we have Lns(T)[1/f] ~ T[1/f] and there is a canonical isomorphism

Lng(T)/ f =Ly (T) @5 A/ f = (H*(T/ ), By),
where (H*(T/f),B¢) is the Bockstein complex equal to H (T @Y (f'A/f*1A)) in degree i, the
differential being the boundary map associated to the triangle
T % (FH1A/f2A) = T @i (fPA/f2A) = T &% (F1A/fHA).
This is discussed in [5, Chapter 6] and [4, Lemma 5.9].

IThe terminology here is misleading. The derived I-completion is not given by M +— holim,, (M ®% A/I™), as one would
naturally guess.
2Depending on f, not only on the ideal fA. If we want to avoid this, the "correct" isomorphism is

H'(Lng (T)) = (H'(T)/H'(T)[f]) ®a (),

where (f?) C A[1/f] is the fractional A-ideal generated by f*.
3The latter means that a. (Lna(fy(M)) = Lns(ax M) for M € D(B) and « : A — B a map of rings such that a(f) € B

is regular.
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(3) T — L — M is an exact triangle in D(A), then Lns(T) — Lns(L) — Lns(M) is also an exact
triangle if the boundary map H*(M/f) — H'TY(T/f) is the zero map for all i. For a regular
element g € A and T € D(A), the natural map Lns(T)/g — Lns(T/g) is an isomorphism if
H*(T/f) has no g-torsion.

(4) If I C A is a finitely generated ideal and T € D(A) is derived I-complete, then so is Ln(T) [5],
[4, Lemma 5.19].

(5) If T € DI%(A) and H(T) is f-torsion-free then there are natural maps Lns(T) — T and
T — Lns(T) whose compositions are f¢. More precisely, if T® is a representative concentrated
in degrees 0,...,d and with f-torsion-free terms, then the first map is induced by n¢(T*) C T°.
Multiplication by f¢ on each of the two complexes factors over this inclusion map. When T €
D=9(A), we will refer to the map Lns(T) — T as the canonical map.

2.2. The complexes AQx and Ox.

2.2.1. Fontaine rings. Let
ﬁg = ]&n ﬁcﬁ ]&n ﬁc/p

TP r—xP
be the tilt of Oc (so that C° = Frac(€?) is an algebraically closed field of characteristic p). Let
Aipns = W(ﬁg) and choose once and for all a compatible sequence (1,(p,(p2,...) of primitive p-power
roots of 1, giving rise to € = (1,{p,(p2,...) € ﬁé. Letting ¢ be the natural Frobenius automorphism of
Ajpng, define
po -1

=M w) eV -1
The natural surjective map ﬁg — Oc¢/p lifts to a map 0 : Aiyr — Oc with kernel generated by &; the

pr=l -1, &= € Aint.

map 6, in turn, lifts to a map O : Ainr — W(O¢) with kernel generated by p (however, contrary to 6,
0~ is not always surjective, see [5, Lemma 3.23]). The kernel of the twisted map 6 := 0p~1 : Ajy — Oc
is generated by

We have 0(u) = ¢, — 1.
We list the following properties [4, 2.25]
(1) € modulo y is equal to p.
(2) Since Ajns and its reduction mod p are integral domains and since &, &, 1 are not 0 modulo p,

(p, &), (p, &), (p, ) are regular sequences, and so is the sequence (€, u).
(3) The ideals (p,&), (p,£€), and (£, 1) define the same topology on Ajys.

The above constructions naturally generalize to the case when O¢ is replaced by a perfectoid ring.

2.2.2. Modified Tate twists. The compatible sequence of roots of unity ((yn )y, gives a trivialization Z,(1) ~
Z,, and we will write ¢ = ((pn), for the corresponding basis of Z,(1). By Fontaine’s theorem [IT], the
Oc-module

Oc{1} =T, /z,)
is free of rank 1 and the natural map dlog : jipe — Qé’c /Z, induces an O¢-linear injection
dlog : Oo(1) = Oc{1},  dlog(¢) = (dlog(Gpn))n>1-
The Oc-module Oc{1} is generated by

1
wi= oy dion(0)
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thus the annihilator of coker(dlog) is ({, — 1). For any Oc-module M, let M{1} := M ®¢, Oc{1}, and
we will often write m{1} for the element of M {1} corresponding to m € M (in particular, a{l1} = a-w
in Oc{1}).

Finally, define

1
Ainf{l} = ;Ainf(l)a
and let a{l1} = %a(l) € Aint(1), if a € Ajpe. The Frobenius ¢ on W(C?)(1) induces an isomorphism
¢ Ame{1} S (1/6) Aine{1}.

Its inverse defines a map
(p71 : Ainf{l} — Ainf{l}.
There is a natural map
0:=00p " : Apne{l} —» Oc{1}

sending a{1}, for a € Aiug, to (" (a)) w.

If M is an Ajy-module, let M{i} := M ®a4,, Ains{1}%, i € Z. The map 6 : Ajn¢{1} — Oc{1} induces
amap 0 : M{1} — (M/£){1} of Ajye-modules (via the map Ajnr — Aing/€).
2.2.3. The compleres AQx and (NZx Let X be a flat formal scheme over O, with smooth generic fibre
X, seen as an adic space over C. There is a natural morphism of sites

v Xproét — xétv

as well as a sheaf Aj,r 1= Ajppx = W(@n@ ﬁ; /p) of Aing-modules on Xprs, Obtained by sheafifying
Fontaine’s construction R — Ajn¢(R) on the basis of affinoid perfectoids of Xpross. This sheaf is endowed
with a bijective Frobenius ¢ as well as with a surjective map
0: Aint = OF :=lim O /p",
with kernel generated by the non-zero divisor &.
Define
AQx = L, (RviAing x) € D=°(X, Aing),

a commutative algebra object, as well as
Qx = anp,l(RV*ﬁ;) € D(X4),
a commutative Ox-algebra object in D(Xet).

2.3. The Hodge-Tate and de Rham specializations.

2.3.1. The smooth case. Suppose first that X is smooth over &¢. The following result is proved in [5]
(for the Zariski site, but the proof is identical in our case).

Theorem 2.2. (Bhatt-Morrow-Scholze, [5, Th. 8.3]) There is a natural isomorphism of Ox-modules on
Xet N
H'(Qx) ~ Qg/ﬁc{—i}.
We will recall the key relevant points since we will need some information about the construction of
this isomorphism.
Let R be a formally smooth &c-algebra, such that Spf(R) is connected, together with an étale map
A= 0T, ... 7T;’El} — R. We will simply say that R is a small algebra and call the map A — R

a framing. Let R be the (perfectoid) completion of the normalization R of R in the maximal pro-finite
étale extension of R[1/p], and let A := Gal(R[1/p]/R[1/p]). Define

Ao i= OcATEP™ T}, R = R&aA.
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We have I' := Gal(Roo/R) ~ Zy(1)? = &L, Z,v;, where v; sends T,/ to (,nT}/"" and fixes le/pn
for j # 4. By the almost purity theorem of Faltings, the natural map (group cohomology is always

continuous below) RT(T', Ry,) — RI(A, R) is an almost quasi-isomorphism. We have the following more
precise results:

Theorem 2.3. (Bhatt-Morrow-Scholze, [, Cor. 8.13, proof of prop. 8.14|) Let R be a small algebra
together with a framing, as above, and let X = Sp(R[1/p]) and X = Spf(R).
a) The natural maps

Lie, 1RT(T, Roo) —= L, -1RT(Xprost, O%) — RT(X, Qx)

are quasi- isomorphz'sms
b) Writing Qr for any of these objects, the map Qr ®r Ox = Qx is a quasi- zsomorphzsm in D(Xet).
¢) If R — S is a formally étale map of small algebras, the natural map Qr @k S — Qs is a quasi-
isomorphism.

Note that ‘
H'(T', R)
HY(T, Roo)[Cp — 1]

the last isomorphisnE being a standard decompletion result ([5, Prop. 8.9]).

H'(Qg) ~ H(Lne,—1RT(T, Re)) ~ H'(T, R),

The key result (not obvious since one needs to define the isomorphisms canonically, independent of
coordinates!) is then:

Theorem 2.4. (Bhatt-Morrow-Scholze, [5, Chapter 8]) Let R be a small algebra.

a) There is a natural R-linear isomorphism H(Qpg) ~ Q}%/ﬁc{_l}' N N

b) The cup-product maps induce natural R-linear isomorphisms AN'H(Qg) ~ H'(Qg) and hence iso-
morphisms H'(Qg) ~ Qé%/ﬁc{_i}‘

The isomorphism in a) is constructed in [5, Prop. 8.15] using completed cotangent complexes. We
will make it explicit, as follows: consider a framing A — R (recall that A = Oc{T*', ..., T'}). B
compatibility with base change from A to R of all objects involved, it suffices to construct the isomorphism
for R = A. Moreover we may reduce to describing the isomorphism for A = Oc{T*'}, i.e., for d = 1.
Then the twisted map

HY(T, Ry)
HY(T, Reo)[¢p — 1]
is an isomorphism, described explicitly by

dr

a(?) :(7H1®d10g(<7)):(7H(Cp_1)®<p1_1

where (., = ({y,n)n, for v € I, is defined by the formula ¢, ,, := (TP /TP

= (Cp—1)w

@: Qg = H' (Qr){1} = {1} (G = DH' (T, Roo){1}

dlog(C’Y))7

2.3.2. The semistable case. Suppose now that X is semistable. This means that, locally for the étale
topology, X = Spf(R), where R admits an étale morphism of O¢-algebras

A= 0c{Ty,....T,,TE,, ..., T (T - T, —p?) - R

for some d > 0, r € {0,1,...,d} and some rational number ¢ > 0 (we fix once and for all an embedding
pQ C O). Equip Oc with the log-structure ¢ \ {0} — €c and X with the canonical log-structure,
i.e. given by the sheafification of the subpresheaf Ox ¢ N (Ox ¢t[1/p])* of Ox ¢ Let Qx /6, be the finite
locally free x-module of logarithmic differentials on X. We have the following result:

4Induced by the natural map H*(T', R) — H!(T', Roo).
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Theorem 2.5. (éesnaviéius—Koshikawa, [T, Th. 4.2, Cor. 4.6, Prop. 4.8, Th. 4.11])

a) There is a natural Ox g -module isomorphism Hl(ﬁx) ~ Q;/ﬁc{—l} whose restriction to the smooth
locus X™ is the one given by Theorem [22.

b) The natural map N'(H'(Qx)) — H'(Qx) is an isomorphism and so there is a natural Ox st-module
isomorphism

Hi(Qx) ~ Q)0 {—i}-

Remark 2.6. 1) A few words about a). The same arguments as in [5] (using completed cotangent com-
plexes) give a map Q;;lﬁc{—l} — Ry, (07%), where we denoted by the superscript (—)°! the classical,
non logarithmic, differential forms. The results in [5] ensure that the resulting map (the second map

being the natural projection)
Rlv.(0F)

— ~ gt S~)
Rn@hiG -1

(2.7) Q5o -1} = Rl (6F) —

restricts to an isomorphism Q%esm/ﬁc{—l} ~ ((p — 1)H'(Qx)|x==. Moreover, one shows that H*(Qz) is
a vector bundle. Hence one can divide the map (Z71) by (, — 1 to obtain a map
Q%/00{-1} = H'(Qx)

which is an isomorphism over X¥. One shows that this extends to the isomorphism in a).
2) A few words about the maps in b). Letting K = Rv.(07) and using the identifications

~ HY K H{(K
Hl(Qx) ~ - ( ) - ( ) ,
HY(K)[G —1] HY(K)[Gp —1]
they are induced by the product maps H'(K)®" — H?(K), which, in turn, are induced by the product
maps

, Hi(Qx) ~

H/(K) ®¢y ., HY(K) » HMK @p, , K) = H™(K).
We continue assuming that X is semistable. Recall that the map 6=0o Ot A — ﬁA;g is surjective,
with kernel generated by & = (&), and it sends p to ¢, — 1, inducing therefore a morphism
AQx /€= AQx @Y 5 0c — Qx.

Theorem 2.8. (Cesnavi¢ius-Koshikawa, [7, Th. 4.2, Th. 4.17, Cor. 4.6])
(1) The above morphism AQx /€ — Qx is a quasi-isomorphism.
(2) There is a natural quasi-isom?rphism AQx /€S Q%60
(3) The complex AQy is derived {-complete. Hence so is RT'¢ (X, AQx) (and its cohomology groups).
For ¢ > 0, (using the above theorems) we define

e the Hodge-Tate specialization map
(1) (on sheaves) as the composition

(2) (on cohomology) tur : H} (X, AQx) — HY (X, Q;/ﬁc{—i}) as the composition
i HEy (X, AQ2) "5 Hy (X, Q) — HE(X, H'(Q2)) = H (X, Q. {1},
where the second map is the edge morphism in the spectral sequence
E;j = Hét(xa H](Q}:)) = Hgt(xv Q%)

e the de Rham specialization map as the composition igr : AQx — AQx /& = Q;/ﬁc yielding on
cohomology a map )
Lar @ HE (X, AQx) 5 Hig (X).
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2.4. p-adic nearby cycles and Aj,s-cohomology. We review here a result from [6], which describes
integral p-adic étale cohomology in terms of the complex AQx. Let X be a smooth adic space over C
and let X be a flat formal model of X (not necessarily semistable !). Fix an integer ¢ > 0. Recall that
there is a natural endomorphism (as abelian sheaf, not as Aj,s-module !)

€i<p71 : TSiAQx — TSiAQx
defined as the composition
1 i
TSiAQx = Ln#TSiRV*AmeL’mpfl(#)TSiRV*Ainf £—> LnELngpfl(,u)TSiRV*Ainf = TSiAQx.

The following result is proved in [6] in the good reduction case. As we show below the proof goes
through in a more general setting.

Theorem 2.9. (Bhatt-Morrow-Scholze, [6 Chapter 10]) Let X be a smooth adic space over C with a
flat formal model X. Let i > 0. There is a natural quasi-isomorphism

. “~ i -1
p' s T<iRviZy — 7<4[1<i AQx e, T<i AQx],

where 2,, :=1imZ/p" and [-] denotes the homotopy fiber.

Remark 2.10. We warn the reader that this quasi-isomorphism is not Galois equivariant (in the case X
is defined over K'). For an equivariant version see Corollary T3] below.

Proof. We follow [6] faithfully, but work directly on the p-adic level. Let ¢; = £'¢~!, seen as an endo-
morphism of 7<;AQx (as explained above) or of T' := Ru,Ain¢ (defined in the obvious way). These two
endomorphisms are compatible with the canonical map can : AQyx — T.

We start with the following simple fact:

Lemma 2.11. a) Fori > j, 1 —; induces an automorphism of the sheaf Ains/ 1.
b) There is an exact sequence of sheaves on Xprost

0 — Zp 2 A 17 Aje = 0.

Proof. a) This is proved by Morrow in [I8, Lemma 3.5 (iii)].

b) Clearly, this is a sequence. For surjectivity use a) to deduce surjectivity modulo p and then use the
fact that A, is p-adically complete. To describe ker(1 — v;), note that we have ,uizp C ker(1 — ;). Tt
suffices thus to show that ker(1 — ;) C mi,,. But by part a) we have

s o ot o~ i
ker(Ainf ﬂ Ainf) < ;ﬁ ker(Ainf L) Ainf) < uZZp.
The last quasi-isomorphism follows from the Artin-Schreier exact sequence [I8, Lemma 3.5 (ii)]
—~ .1
0= Zp — Aint —2— Ajns — 0.
This finishes the proof of the lemma. O

Write U%:=! for the homotopy fiber of 1); — 1: U — U for U € {AQx, T}. The above lemma gives an
exact triangle

T/ gy
inducing a quasi-isomorphism R
p' s <Rz, St TV
To finish the proof of our theorem, it remains to show (and this is the hard part) that the natural map
(induced by the natural maps can : AQx — T and 7<;AQx — AQx)

T<i (TSiAQ;{)wizl — TSiTwizl
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is a quasi-isomorphism.

By easy homological algebra, this happens if 1); acts bijectively on the kernel and cokernel of can; :
HI(AQyx) — HI(T) for j < i, bijectively on the kernel for j = i, and injectively on the cokernel for
j = i. This is clear for j = 0: the map cang is then bijective as HY(AQx) = H%(T) since H°(AQy) ~
HO(T)/H®(T)[u] and HO(T)[u] = 0 as Ajyy is pu-torsion-free.

Assume now that j > 0. For i > 0, write M; = H(T). Recall [5, Lemma 6.4] that the map
w s M;/M;[p] — H7(AQx) is an isomorphism. It follows that, for 0 < j < i, the canonical map can; fits
into a natural exact sequence

0 — M;[u] = M;[?] — HI (AQx)—5 M, — M;/p? — 0.

This sequence is compatible with the operators 1;_;, ¥;—j, ¥;, ¥;, ¥, respectively. Thus it suffices to
show that v;_; is bijective on M;[p?]/M;[u], that v; is bijective on M;/u? for j < i, and is injective for
4 =14. This follows from Lemma 2.12] below. O

Lemma 2.12. (|6, Lemma 10.5]) Let j > 1, ¢ > 0.
o Uy is bijective on M;/u? for 1 > 0 and is injective for | = 0.
e iy is bijective on M;[u’] for | > 0, surjective for | = 0.
e iy is bijective on M;[u]/M;[u], for 1 > 0.

Proof. We prove first that v; is injective on M;[u’] for [ > 0. If ¢;(x) = 0 and g’z = 0, then 1 (ux) = 0
and px € M;[p/~1], thus, arguing by induction on j, we may assume that j = 1. Suppose that yz = 0
and (z) = 0, i.e., v — &~ (x) = 0. Since £ = p (mod ¢~ () in Ajnr and ¢~ (u) kills ¢~ 1(x), we
deduce that (1 — p&~tp=1)(z) = 0, which forces = = 0, since 1 — p&!~1p~! is an automorphism of A;,¢
(as Ayt is p-adically complete), thus also of T = Ry Ajys and M;. This proves the first step.

Next, the commutative diagram of distinguished triangles

J .
T T T/

\Ld)z _ \Llerj ¢¢l+a‘
J

TL>-T—>T/,uj

gives a commutative diagram

0 ——= Mi/pi) —= H(T/p) —= Mg ] —= 0

\L"/}Prj \Lwl+j Wl

0 —— My ——= H(T/ ) —— Misa[p?] —0

Since 4, is bijective on H*(T/p’) (Lemma 2.1 shows that 1,4, is an automorphism of T/u/), we
deduce that ;4 is injective on M;/u?, 1 is surjective on M; 1[u?] and the cokernel of ;1 ; on M;/u
identifies with the kernel of ¢, on M, 1[?]. This last kernel is 0 for [ > 0 (by the first step), thus 1 is
bijective on M;1[u] (this holds trivially on My[u?] = 0) and ¥4 ; is bijective on M;/u? for | > 0.
Finally, we need to show that 1); is an automorphism of M;[u?]/M;[u). Surjectivity follows from that
of ¢, on M;[p?]. For injectivity, note that if ua;(x) = 0, then 1,1 (ux) = 0 and, since 41 is injective
on M;[u?~1], we obtain z € M;[u], as needed.
O

Using the modified Tate twists we can write the statement of the above theorem in the following way:

Corollary 2.13. Let X be a smooth adic space over C with a flat formal model X. Let i > 0. There is
a natural quasi-isomorphism

v TSiRI/*Zp(i) :> Tgi[TSiAQ%{i} i> TSlAQx{Z}]
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It is Galois equivariant in the case X is defined over K.

Proof. Immediate from Theorem [Z0] and the following commutative diagram (which also defines the
1

operator ¢~ on 7<;AQx{i} in the corollary):
N i 1—gip—1
TSiRI/*Zp " TSiAQI{ % TSiAQ%

llufi
~ y=can 17@71

TSiRV*Zp(Z') —_— TSZAQx{’L} —_— TSZAQx{’L}

3. Ainr-SYMBOL MAPS

Let X be a smooth adic space over C' and let X be a flat p-adic formal model of X over O¢. Let
v : Xprost — X¢¢ be the natural map.

3.1. The construction of symbol maps. We will define compatible continuous pro-étale and Aj,¢-
symbol map

(3.1) Torost : O(X)*®" — H!

proét

(X.Zp(@).  7in : O(X) — Hiy (X, AQx{i}).
For i = 1, we will construct below compatible maps of sheaves
(3.2) K (RuGon[-1]) = 71 Zy(1), & ret (RLGon[—1]) = 7<1 AQx {1},
Applying H}, (X, —) and observing that
Hi (X, 7<1(RsG[—1])) 5 Hg (X, RisGp[—1]) = HY (X, RsGy) =~ O(X)*,

we get that the maps ¢, ¢ induce global symbol maps
Tprost : O(X)* = HY (X, Zy(1)),  7ing - O(X)* — HE (X, AQx{1}).

For i > 1, we define the symbol maps [B.I]) using cup product: 21 ® - - @ z; > ro(x1) U+ Uri(z;).
The construction of the first map in (3:2]) uses the Kummer exact sequence on Xpro6t
O—>2p(1)—> Im G — G — 0,
TP

inducing, by projection to X¢;, the Chern class map
&A% R Gy [—1] — RV*ZP(I).

The construction of the second map in ([B:2)) uses the above Kummer exact sequence and the twisted
Artin-Schreier exact sequence@ on Xprost

0= Zy(1)—Apme{1} =2 Ape{1} — 0,

where the map = is defined by (1) — px{l},z € Zp. Pushing down to X¢ we obtain a map

~

v TglRV*Zp(l) — TSlRV*Ainf{l}.

5We refer the reader to [9} Sec. 2.2] for a discussion of topology on cohomologies of rigid analytic varieties and formal
schemes. Integrally, we work in the category of pro-discrete modules, rationally — in the category of locally convex topological
vector spaces over Q. But, in this paper, we work with the naive topology on cohomology groups, i.e., the quotient topology,
as opposed to the refined cohomology groups (denoted Hin [9]) taken in the derived category of pro-discrete modules.
6 Note that, for z € Ay,
(1— ™D @{1}) = [(1 - €o~ (@)1}

and this is 0 precisely when z = py with y € Zp.
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On the other hand, Corollary 213l gives us a natural map

~

v 1<1RviZy (1) — <1 AQx{1}.

It is easy to check that the above two maps are compatible via the canonical map 7<1AQx{1} —
T<1Rv Aine{1} and that the composition

~

-1
TR Zy (1)~ ra 1 AQx {1} =2 70 AQ {1}

is the zero map.
Now, our symbol map is simply the composition

proét

s T<1Rv. Gy [—1] L TSlRV*Zp(l) - T<1AQx{1}.

3.2. Compatibility with the Hodge-Tate symbol map. Let X4, be a semistable formal schemes

over Ok. Let M be the sheaf of monoids on X4, defining the log-structure, M2P its group completion.

This log-structure is canonical, in the terminology of Berkovich [2, 2.3|, i.e., M(U) = {z € Ox,, (U)|lzk €

0%, (Uk)}. This is shown in [2, Th. 2.3.1], [I, Th. 5.3] and applies also to semistable formal schemes

with self-intersections. It follows that Me&P(U) = ﬁ;K(UK). Set X :=Xpox 1k, X :=%Xp,,X =Xk ,c.
For ¢ > 1, the Hodge-Tate symbol maps

rar: O(Xg)"® — HY (X, Q%)
are defined by taking cup products of the Chern class maps
At O0(Xg) = <1 (RiGo[—1]) = Qx[-1], 2z — dlog(z).
The purpose of this section is to prove the following fact:

Proposition 3.3. Let ¢ > 1. The symbol maps rins and rgr are compatible under the Hodge-Tate
specialization map tyr, i.e., tnrrint|O (XK )*®" = rgr.
Proof. The case i = 1. Consider the composition tyrci:

O(Xk)" = O0(X)" ~ Hélt(%,Tg(RV*Gm[—l]))ﬂHét(%,AQx{l})m—T>H§t(3€,Q%e)-
We need to show that
Lemma 3.4. The above composition tyrci™ is equal to the map T = dlog : 0(Xk)* — HY (X, 0%).
Proof. From the definitions, it suffices to check that the composition

e —— R 7, (1) H (AQe (1) —2 s H (02 {1}) ~ QL

is the map dlog. To do this we will study the diagram

R! s« Ain 4 R! *ﬁ+
RlVilAinf[fN]{l} Rlu*é,*[Cp*l]{l}

71 ll 72 \Ll
proét

0% ——= R'.Z,(1) — = H'(AQx{1}) —— H'(Qx{1}) —=— 0}

Rlv,Apne{1} Rlv,0+{1} Ry, 0(1) —= .0k

Here € : X¢y — X¢ is the canonical map. A few words about this diagram:
e the map R'v, 07 {1} — R!'v,0(1) is induced by the natural map &+ — & and the map Oc{1} —

C(1) is given by z{1} — (px_l(l)-
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o let vx : X060 — X be the canonical projection. There is an isomorphism
(3.5) as i Rlux.0(1) 3 QY
due to Scholze (|21, Lemma 3.24]). It is uniquely characterized by the property that its inverse is the
unique Ox-linear map a; 1, QL — Rlvx .0(1) making the following diagram commute

proét

(3.6) 0% ——=Rlvx.Z,(1) ,

aos| |

a2 ~
QL ——=Rlvx.0(1)
the right vertical map being the obvious one.
e The map s : R'v,0(1) — .0k is defined as the composition

(3.7) R'v,0(1) ~ R (evx ). 0(1) = E*Rluxﬁ*ﬁ(l) ~e.0%,

where the last map is the isomorphism (B.5]). Recall that this last isomorphism generalizes to isomorphisms
[21, Prop. 3.23]:

Rivy.0(i) ~ Q. i>0.
This combined with Tate’s acyclicity theorem allows us to infer that the second map in @B7) is an

isomorphism.
We claim that the composite

0% = R'wx.Z,(1) = Rlux Ame{1} = Rlux .07 {1} = Rlvyx . 0(1) — Q)

is the dlog map. Using the characterization of Scholze’s isomorphism ([B.3)), this comes down to checking
that the map Rlvyx .Z,(1) = Rlvx  Aine{l} = Rlvx .07{1} — Rlvx .0(1) is the obvious one. But,
by construction, this map is induced by the map

Z,(1) = Ame{1} = 0T {1} > 6(1)

sending z(1) to zu{1}, then to (xu{1}) = x(¢, — 1){1}, then to z(1), as wanted.

To finish the proof of the lemma, it remains to check that the above big diagram commutes. The only
nonobvious commutativity is that of the right-bottom trapezoid, i.e., we need to check the compatibility
of the maps a7 and ay. Call

(3.8) p QL Y Qe (1)) S RU, G {1} — R, 6(1)—225e, QL.

We want to show that p = ¢. It suffices to check this on the smooth locus of X, which reduces us to
the case when X is smooth. Note that the maps p,: are Ox-linear. This is clear for ¢; for p we look at
the individual maps in the composition (B8] that defines it: the second and the third map are clearly
Ox-linear, for the first map we use Theorem 2.5l and for the last map we use the discussion above. Now,
the claim that p = ¢ is local, so we way assume that X is associated to a small algebra R with a framing
A= 0c{T*'} — R. By functoriality, we may reduce to the case when R = A and A = Oc{T+'}.

Now, the desired compatibility follows from the very construction of the isomorphism «;. More
precisely, since can o vz is the multiplication by ¢, — 1, we have

(Gp = D72 (g (dT/T)) = can(ay ' (dT/T)).
As we have already seen (cf. discussion after Theorem [2Z4)) this corresponds to the element (v — (¢, —
1) ® Tlfl dlog(¢y)) in (¢ — 1)H (T, Ao){1}. Now the compatibility of the map as with the Kummer
map (see the diagram (30))) shows that p(dT/T) = dT/T, as wanted. O
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The case © > 1. Take now the symbol maps
ing : O(X)"® = Hiy (X, AQx{i})
and consider the composition tygT7ins:
O(X)"' — Hy (%, AQx{i}) — Hiy (%, Qu{i}) — HY (X, H'(Q2{i})) = HG (X, Q).

To finish the proof of our proposition, in view of Lemma [3.4] it suffices to check that this composition
is compatible with products. But, the third map in the composition is clearly compatible with products
and the first map is compatible with products by definition. The second map is induced by the map
6:AQx — ?235 hence it is also compatible with products. Finally, the last map is the isomorphism given
by Theorem hence is compatible with products by its very definition. 0

4. THE A;n-COHOMOLOGY OF DRINFELD SYMMETRIC SPACES
Let 7 = P((K%1)*) ~ PY(K) be the space of K-rational hyperplanes in K+, Let
H =P \ UnenrH

be the Drinfeld symmetric space of dimension d. It is a rigid analytic space. Let X4, be the standard
semistable formal model over O of H% (see [14, Section 6.1]). Let X := X4, Qg Oc, let X 1= HE R C
be the rigid analytic generic fiber of X, and let Xx = H%. The group G = GLg41(K) acts naturally on
all these objects.

The main goal of this section is to prove the following (here and elsewhere in the paper, the completed
tensor product is taken in the category of pro-dicrete modules):

Theorem 4.1. Let i > 0. There is a G X Y -equivariant isomorphism of topological Aing-modules
Aint®z,5p;(Zp)" =~ Hi (X, AQx{i}),

where Sp;(Zy,)* is the Z,-dual of a generalized Steinberg representation (see Section[{.1] for a definition,).

This isomorphism is compatible with the operator ¢~ *'.

4.1. Generalized Steinberg representations and their duals.

4.1.1. Generalized Steinberg representations. Let B be the upper triangular Borel subgroup of G and
A ={1,2,...,d}, identified with the set of simple roots associated to B. For each subset J of A we let
Pj be the corresponding parabolic subgroup of G and set X; = G/Pj, a compact topological space.

If A is an abelian group and J C A, let

LC(X,,A)
Yieavs LC(X oy, 4)
where LC means locally constant (automatically with compact support). This is a smooth G-module over

A and we have a canonical isomorphism Sp ;(A) ~ Sp;(Z) ® A. For J = & we obtain the usual Steinberg
representation with coefficients in A, while for J = A we have Sp ;(A) = A. For r € {0,1,...,d} we use

SPJ(A) =

the simpler notation
Sp, == SP1,2,....d—r}-
We will need the following result:

Theorem 4.2. (Grosse-Klonne, [16, Cor. 4.3]) If A is a field of characteristic p then Sp;(A) (for
varying J) are the irreducible constituents of LC(G/B, A), each occurring with multiplicity 1.
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4.1.2. Duals of generalized Steinberg representations. If A is a topological ring, then Sp;(A) has a natural
topology: the space X; being profinite, we can write X; = lgln X, s for finite sets X, ; and then
LC(Xj,A) = lim LC(X,, s, A), each LC(X,, 5, A) being a finite free A-module endowed with the natural
topology.

Let M* := Homcont(M, A) for any topological A-module M, and equip M* with the weak topology.
Then Sp;(A)* is naturally isomorphic to lim LC(X,,s,A)*, i.e. a countable inverse limit of finite free
A-modules. In particular, suppose that L is a finite extension of Q,. Then Sp;(0r)* is a compact
O'r-module, which is torsion-free.

If S is a profinite set and A an abelian group, let

D(S, A) = Hom(LC(S, Z), A) = LC(S, A)*

be the space of A-valued locally constant distributions on S. We recall the interpretation of Sp;(Z,)* in
terms of distributions. Recall that 7 denotes the compact space of K-rational hyperplanes in Kt If
H € 5, let £y be a unimodular equation for H (thus /g is a linear form with integer coefficients, at least
one of them being a unit). Let LC®(#t1, Z) be the space of locally constant functions f : #Tt — Z
such that, for all Hy, ..., H;41 € 5,

f(Hy,...,H;iy1) — f(Ho, Hy, ..., Hiy 1) + -+ (=1)" T f(Hy, ..., H;) =0

and, moreover, if £y,, 0 < j <4, are linearly dependent, then f(Ho, ..., H;) = 0. The work of Schneider-
Stuhler [I9] gives a G-equivariant isomorphism

Sp;(Z) ~ LC(#"1 Z).
It follows that the inclusion LC¢(#+ Z) C LC(s#T1, Z) gives rise to a strict exact sequence
(4.3) 0 — D(A", A)geg — D(#1, A) — Hom(Sp;(Z), A) — 0,

where D(J#1, A)geq is the space of degenerate distributions (which is defined via the exact sequence
above).

4.2. Integral de Rham cohomology of Drinfeld symmetric spaces. Recall the following acyclicity
result of Grosse-Klonne, which played a crucial role in [9].

Theorem 4.4. (Grosse-Klonne, [I3, Th. 4.5|, [15, Prop. 4.5]) Fori >0, j > 0, we have H (X, Qge) =0
and d =0 on Hgt (X,9%). In particular, we have a natural quasi-isomorphism

RIag (X) ~ R (X, Q%) ~ EP Te (X, Q%) [ 1.
i>0

Using it and some extra work, we have obtained the following description of H éR(f{ﬁK):

Theorem 4.5. (Colmez-Dospinescu-Niziot, [9, Th. 6.26]) There are natural de Rham and Hodge-Tate
regulator maps

TdR - D(%Prl, ﬁ}() — HéR(xﬁK)a
THT : D(%H_lv ﬁK) — H%T(xlﬁkv ;{,;K)
that induce topological G X Yy -equivariant isomorphisms in the commutative diagram:

Sp;(Ok)*

HciiR(xlﬁK)

~
TdR
~
THT !
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Proof. (Sketch) Our starting point was the computation of Schneider-Stuhler [19]: a G-equivariant topo-
logical isomorphism

Sp,(K)" —= Hip (Xx).
Tovita-Spiess [I7] made this isomorphism explicit: they have proved that there is a commutative diagram

0—— D(f%ﬁi“'l,K)deg —— D(#* K) —— Sp,;(K)* ——=0

TdR
llas

Hjr(Xk)

With a help from a detailed analysis of the integral Hyodo-Kato cohomology of the special fiber of X4,
and some representation theoryﬁ this computation can be lifted to O . |

The following computation follows immediately:

Corollary 4.6. (1) The de Rham regulator rqr induces a topological G-equivariant isomorphism
rar 1 SPi(Ok)* ®oy, Oc = Hip (X6, )® 6, Oc = Hig(X).
(2) The Hodge-Tate regulator rur induces a topological G-equivariant isomorphism
rar 2 Spi(OK ) @, Oc = Hg (Xoyc, Vx, )00, Oc = Hg (X, Q).
4.3. Integrating symbols. Let ¢ > 1. In this section, our goal is to construct natural compatible
regulator maps
ree : Spi(Zp)" — Hi (X, Zp(0)),  rine : Spy(Zy)" — H (X, AQx{i})

that are compatible with the classical étale and Aj,s-regulators. We will show later that (the linearizations
of) both regulators are G X ¥k-equivariant isomorphisms. The maps rg, rint are constructed by inter-
preting elements of Sp;(Z,)* as suitable distributions (see the discussion in Section I.1.2), and integrating
étale and Aj,g-symbols of invertible functions on H% against them. This idea appears in Iovita-Spiess
[I7] and was also heavily used in [9].

4.3.1. Integrating étale symbols. We start with the construction of the étale regulator map
rew s Spi(Zp)* — Hi (X, Zy(0)).
Fix a cohomological degree i and set M := H{ (X, Z,(i)). For Hy, ..., H; € 5, let

¢ ly
Veo(Ho, oo Hy) =1 [ 22 ® ... 22 ) € M,
7% 7%

where 1¢ : O (H‘é)*@i — M is the étale regulator map. It is clear that this definition is independent of
the choice of the unimodular equations for Hy, ..., H;.

Proposition 4.7. Leti > 1.
(1) Let 6, denote the Dirac distribution at . There is a unique continuous Zy-linear map
rew s DA Zy) — H (X, Zy(0))

such that rst(d(m,,....m,)) = Vet (Ho, ..., Hy) for all Hy,...,H; € .
(2) The map r¢ factors through the quotient Sp;(Z,)* of D(A,Z,) and induces a natural map
of Zy,-modules
ree : Spi(Zp)" —Hi (X, Zp(i)).

"We used here two facts: (a) Sp;(0k) is, up to a K*-homothety, the unique G-stable lattice in Sp;(K); (b) Sp; (k) is
irreducible.
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Proof. Uniqueness in (1) is clear since the Z,-submodule of D(#*1 Z,) spanned by the Dirac distri-
butions is dense.

Existence claim in (1) requires more work. Let {U,, },>1 be the standard admissible affinoid covering of
X. Let II(n) be the fundamental group of U,,. Denote by RI'(II(n), Z,(¢)) the complex of nonhomogenous
continuous cochains representing the continuous group cohomology of II(n). By the K (m, 1)-Theorem of
Scholze [20, Th. 1.2] this complex also represents RI'¢,(Up, Z,(i)). Since the action of II(n) on Z,(1) is
trivial the local étale Chern class map factors as

i : 0(Uy)" = Hom(II(n), Z,(1)) — RT(II(n), Z,(1))[1].
The global étale Chern class is represented by the composition

c‘ftn 1 0(X)" = lim 6(Uy)* — holimy, Hom(II(n), Z(1)) — holim, RT'(I(n), Z,(1))[1] & Rle (X, Zp(1))[1].

The étale regulator r¢ @ O(X)*®" — RT¢t (X, Zp(7))[i] is then represented by the cup product: r¢; =
ét ét
g U---Uct.
The composition
(4.8) U, AT 0(X)O R (X, Zp (1)) [d]
represents the map 1g;. We claim that it is continuous. Indeed, it suffices to show that so are the induced

maps ¥, ,, : A1 — RI(I(n), Zy(i))[i], for n > 1. Or, by continuty of the cup product that so are the
maps ¥ . Or, simplifying further, that so are the maps

(4.9) Uy, A2 — O(X)* " Hom(II(n), Z,y(1)).

To show this, write J# = l'glm I, where 2, is the set of m-equivalence classes of K-rational
hyperplanesﬁ and set M, := Hom(II(n), Z,(1)). It suffices to show that, for each k > 1, there is an m
such that the map

Uy i s A% 25 M, — M, /p*M,
factors through the projection 2 — 2. Taking into account the construction of Wy ,, it suffices to
show that, for m large enough, if two hyperplanes Hy, H; are m-equivalent, then re (€5, /€5, ) € p*M,.
But this is clear, since in this case g, /¢p, has a p™™’th root in €(U,)*, for some constant r, > 0
depending only on U, and since 74 is a homomorphism, we have ¢t (¢gr, /fr,) € p™ M.

Since Hom(II(n),Z,(1)) is a Banach space and the map ¥y, from (LJ) is continuous on 1 it
defines, by integration against distibutions, a continuous map

Tevn 2 D(ATZy) — R (Un, Zyp(4))]i]

such that e n(0(a,,.... ) = Yet,n(Ho, - .., Hy), for all Hy, ..., H; € S, where )4 ,, is the analog of 1
for U,,. The construction being compatible with the change of n we get the existence of the map in (1)
by setting r¢; := @Tétyn and passing to cohomology.

n

For (2) we need to check the factorization of the regulator r¢ from (1) through the quotient by the
degenerate distributions. That is, we need to show that, for any u € D(H#, Z,)deg, we have re (1) = 0.
For that, by the construction of 74 (1), it suffices to check that:

(1) for all Hy, ..., Hi11 € 5, we have
(4.10) Vet (Hi, ..., Hiv1) — Ya(Ho, Ha, ..., Hiz1) + ... + (1) e (Ho, ..., H;) = 0
(2) and, if the £g;, 0 < j <14, are linearly dependent, then s (Ho, ..., H;) = 0.

8Recall that two hyperplanes Hy, Hs are called m-equivalent (i.e., [H1] = [H2] € #n) if they have unimodular equations
01,02 such that £; = £2 modulo w™, where w is a uniformizer of K.
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To see (1) note that (a) if one permutes H; with H;41 in the expression in ([ALI0) the latter will change
its sign, (b) the coefficient of 7¢((dp, ..., m,,,) in the development of the expression in (@I0) is zero.

(2) follows from the fact that the étale regulator satisfies the Steinberg relations. More precisely, if
xj =4;/ly, 0 < j <i, where {y,...,¢; are linear equations of K-rational hyperplanes, it suffices to show
that the symbol

{z1,...,z;, 1+ a1+ +a;z;} =0, a; €K,

in the Milnor K-theory group K, (0(X)*). Note that the symbol {z1,...,z;, 1} = 0. We will reduce to
this case by the following algorithm. Step 1: up to reordering we may assume that y; := (1 + a121) # 0
(otherwise we are done). Then, using the Steinberg relations {z,1 — z} = 0 and the fact that {z,a} =0,
for a € K*, we compute

{zn, 20, ..z, L+ a1y + - +ages ) = {x, 22/y1, - @i /yn, L+ asxe /yn + - - + @iz fyn )

Note that this makes sense since z;/y1 € O(X)*. In fact, z;/y1 = ¢;/(lo + a1¢1) is again a quotient
of two linear equations of K-hyperplanes. Step 2: reorder the terms in the last symbol to make xs/y;

appear first and repeat.
0

4.3.2. Integrating Aing-symbols. Let i > 1. We pass now to the Aj,s-regulator map
Tin * Aint®z,5p;(Zp)" — Hi (X, AQx{i})
that is compatible with the classical A ¢-regulator as well as with the étale regulator
rev : Spi(Zp)* — Hiy (X, Zy(3))
defined above. To start, we define the regulators
Tint 2 D(ATYZ) — HL (X, AQx{i}),  Tint 2 Sp;(Zp)* — Hi (X, AQx{i})

by setting rint := Yre, where v : H. (X, Z,(i)) — HE (X, AQx{i}) is the canonical map and the étale
regulator

(4.11) rep 2 D(ATZ,) — HL (X, 2y (1))
is the map defined above.

Corollary 4.12. Let i > 1. The above requlators extend uniquely to compatible continuous Ains-linear
maps

Pin t Aint®z, D(AT Zy) — Hi (X, AQx{i}),  Tine : Aint®z, 5D, (Zp)*—HE (X, AQx{i})
that are compatible with the étale regulators.

Proof. Uniqueness is clear. To show the existence, let {U,},en be the standard admissible affinoid
covering of X. For n € N, set

Tintn : DA Zy) — RTeo (U, A, {iY)[i],  Tintn := YTéton,
where %, is the standard semistable formal model of U,, and the map
retn : D(AT Zy) — Rlet (U, Zy (i) [d]
was constructed above. The map 7int , factors as
Tinen © DA Zy) — My, — RUet (%, AQy, {i})]i],
where M, := Hom(II(n),Z,(¢)) for the fundamental group II(n) of U,.
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Since rg; = holim,, 74t,,, we have the factorization

holim,, r¢¢,n

rey : D(ATZ,) — lim M, ——" holim,, RT ¢t (Un, Zy ())[i] = RTe(X, Z,p(i))[2].

This induces the following factorization

Tinf = hOhmn Tinfn * Ainf@)ZpD(%H_lu Zp) — JAimf@)Zp @Mn :> @Ainf@)szn

— holimy, RTe¢(%, AQx{i})[i] & RDe(X, AQx{i})[i].

The existence of the first map is clear and so is the following isomorphism. The third map exists because
both Ainf@)zp M,, and RT¢(%,, AQx{i}) are derived (p, p)-adically complete. This proves the existence
of the first regulator in the corollary. The existence of the second follows immediately from the fact that
the map (£I1)) factors through Sp;(Z,)* once we know that the sequence

0— Ainf@ZpD(%i—i_la Zp)deg — Ainf@)ZpD(%i—i_la Zp) — Ainf@ZpSpi(Zp)* —0

is strict exact. This sequence is obtained from the strict exact sequence (3] by tensoring with Ajus.
Hence the only question is the strict surjection on the right, which follows from the fact that the sequence
([@3) is actually split (since all modules are duals of free modules). O

4.4. The A r-cohomology of Drinfeld symmetric spaces. We are now ready to prove Theorem
EI Let i > 0. We will show that the map ri,¢ induces a ¢~ '-equivariant topological isomorphism of
A;ne-modules

Tint © Aint®z,5p;(Zp)" = HE (X, AQx{i}).

Compatibility with the operator ¢! follows from the fact that ri,¢ is Ajne-linear and it is induced
from 74, hence maps D(A#T Z,) to Hi, (X, AQx{i})? =L For the rest of the claim, first, we show that
the induced map

Tint : (Aint @z, 5p;(Zp)") /€ = Hi (X, AQx{i}) /&
is a topological isomorphism. But this map fits into the following commutative diagram (of Aj,¢-linear
continuous maps, where Aj,; acts on O¢ via é)

Tinf

(Ainf@ZpSpi(Zp)*)/g - Héit (%7 AQ%{’})/g

o

Oc®z,50:(Zy)* Hi (X, AQx{i}/€) )

THT
= t

Hegt (%, Q?{)

The map « is the change-of-coefficients map; it is clearly injective. The right vertical map is an isomor-
phism because we have the local-global spectral sequence

Ey' = H (X, H'(AQx{i}/€)) = Hi' (X, AQx{i} /)
and, by Theorem 28 and Theorem 25| the isomorphisms H*(AQx{i}/€) ~ H!(Qx{i}) ~ QL.{i — t}.
Hence, by Theorem [£.4]
Ey' = Hy(X,Qi—1}) =0, s>1.
The above diagram commutes by Proposition [333 The slanted arrow is a topological isomorphism by
Corollary It follows that the map « is surjective, hence it is an isomorphism and so is, by the above

diagram, the map 7i,¢. The latter is also a topological isomorphism because so is the map 6 and the map
gk is a continuous isomorphism.
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Next, we will show that 7.+ being a topological isomorphism implies that so is the original map 7.
Let T be the homotopy fiber of ri ;. We claim that the complex

(4.13) T ®%, . At/ ~0.

Indeed, since Tyt is an isomorphism, it suffices to show that the domain and the target of ri,¢ are g—torsion
free. This is clear for the domain. For the target, note that the exact triangle

AQe (i} — 5 AQx {i} — AQx{i}/E
yields an exact sequence
0 — HE (X, AQx{i}) /6" H} (X, AQx /€) — HLFH (X, AQx{i})[§] — 0.

By the above, the first map is an isomorphism, hence H%™ (%, AQx{i})[¢] = 0. Since i > 0 was arbitrary,
we deduce that, for all j > 1 and all i, H, (X, AQx{i}) has no é-torsion, and this is clearly true for j = 0
as well.

Since T is derived é—complete (because so are the domain and the target of ri,¢, the latter using the
derived &-completeness of AQx and the preservation of this property by derived pushforward and passage
to cohomology), by the derived Nakayama Lemma (see Section 2.T.1]) we have T' ~ 0 as well. This finishes
the proof that 7, is an isomorphism.

Since the domain and the target of ri,¢ are é—torsion—free and the reduction Ti,¢ is a topological
isomorphism so is 7i,¢. This finishes the proof.

5. INTEGRAL p-ADIC ETALE COHOMOLOGY OF DRINFELD SYMMETRIC SPACES

We are now ready to compute the étale cohomology. Let X := H% be the Drinfeld symmetric space
of dimension d over K and let X4, be its standard semistable formal model over k. Let X := X x g C.

Theorem 5.1. Let i > 0.

(1) There is a G X Yk -equivariant topological isomorphism
Ter 1 Sp;(Zp)” = Héit(Xa Z,(i)).

It is compatible with the rational isomorphism re; : Sp;(Zy)* ® Qp = HL (X, Qp(i)) from [9).
(2) There is a G X Yk -equivariant topological isomorphism

e Sp;(Fp)* = Hi (X, Fp(i)).

Proof. Set X := X¢.. For i > 0, using the natural isomorphism Hf (X, Z,(i)) = H} e (X, Zp(z)) [
proof of Cor. 3.46], we pass to pro-étale cohomology. Now, by Corollary [Z13] we have a natural short

exact sequence

(52) 0= HiN (X AQe{i})/(1 — o71) = Hiou (X, Zy (i) — Hi (X, AQx{i})¢ ~! = 0.

p
By Theorem I, we have a topological isomorphism H} (X, AQx{i}) ~ Aint®z,Sp;(Zp)* and this iso-
morphism is compatible with the action of ¢ ~!. We get topological isomorphisms

1_

Hy (%, A0 {i})? =" = (Ain®2,90:(Z,))7 ~' = AL, =82, 90:(Z,)" ~ Spi(Z,)",

inf
Hi ' (X, AQx{i}) /(1 = ¢71) = (Aint®2, 50, 1(Z,)") /(1= 97") = (Aint/(1 = ¢71))®2,Spi(Z,)" = 0.

Hence, by the exact sequence (5.2), we get a natural continuous isomorphism rprest : Sp;(Zp)* —

; - . ~ 1 . —1_
Héroét (X7 ZZD(Z)) - H(l:t (%, AQ}:{Z})@ =1
is a topological isomorphism so is the map rproet itself, as wanted in claim (1).

The last sentence of claim (1) of the theorem is clear.

For claim (2), we define the regulator T¢; in an analogous way to its integral version 74, (with which it

is compatible by construction). Since Sp;(F,)* ~ Sp,;(Z,)* ® F, and H} (X, F, (1)) ~ H (X, Z,(i) @ F,

(X, Z,(i)). Since its composition with the natural map H ot
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(the latter isomorphism by claim (1)), we have T¢; ~ 7¢:®@Idr,. Hence, by claim (1), T¢; is an isomorphism,

as wanted. g
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