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An Improved Control-Oriented Modeling
of the Magnetic Field

Maxime Etiévant1, Aude Bolopion1, Stéphane Régnier2, Nicolas Andreff1

Abstract—This paper proposes a new control-oriented model
to compute the magnetic field created by a coil. A major
challenge for untethered microscale mobile robotics is the control
of objects for precise and fast displacements. In this work, we
propose to use an alternative implementation of a model based
on elliptic integral functions to control magnetically actuated
micro-robots. It allows to compute, quickly and accurately, the
magnetic field even in the area close to the coil. This model
is evaluated numerically and compared to classical approaches
— dipole approximation, map-based interpolation and classical
elliptic integral models — in terms of accuracy, computation
time and memory requirement. Simulation results show that this
works allows to have an accurate model in all the workspace by
avoiding numerical issues encountered in previous works. It can
be computed in a few milliseconds, making it the right candidate
for closed-loop control of magnetically actuated micro-robots.

I. INTRODUCTION

Thanks to their size, untethered sub-millimeteric robots are
expected to perform tasks inside hard-to-reach human body
regions to do mini-invasive operations [1], cargo delivery [2]
[3] [4] or micro-manipulation [5]. Magnetic fields are com-
monly used to wirelessly actuate and control these robots [6]
[7]. Coils are good candidates to generate the magnetic fields
[8] [9]. To strengthen the field effects, since the amplitude and
direction of the field can be easily controlled by setting the
appropriate current, one can increase the current circulating
inside the coil. However, this solution presents the risk of
overheating the coil and the necessity of cooling elements.
Since the magnetic field quickly decreases as the distance to
the coil increases, a second solution is to bring the coil as close
as possible to the workspace. However, not all the classical
magnetic models predict accurately the magnetic field close
to the coil.
An accurate control of these magnetically actuated micro-

robots is often required, especially when they must perform
delicate operations in the medical domain. A closed loop
control is then implemented [10] [11]. These control loops
are based on a model to calculate the magnetic force and
torque applied on the robot by the magnetic field produced
by the coil. A key step is thus to compute the magnetic field
produced by the coil. Thanks to the exteroceptive feedback,
closed-loop control can reject model errors to some extent.
Therefore, the best control-oriented magnetic model is not
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necessarily the most accurate, but the one with the best trade-
off between speed and accuracy. Several models, based both
on numerical and analytical approaches, have been proposed
in the literature. Numerical models are based on maps of the
magnetic field obtained either from finite element methods
or from experimental measurement of the field. This first
method allows a good accuracy at the cost of an important
calculation time. Analytical methods are often based on dipole
approximation, which offers a better computation time but
constrain the spatial range of use [12], or on elliptical integrals
[13], which can be complex to calculate. Hybrid approaches,
such as in [14], can also be used: the authors use a map of the
magnetic field obtained from finite element method and fit an
analytical model based on the dipole approximation to these
numerical values of the magnetic field. A similar approach is
used in [15]. In this paper, we propose to use elliptic integral
model proposed in [16] to be fast to compute and accurate in
all the workspace, including the area close to the coil. It is
thus evaluated and compared to classicals models and other
existing elliptic integral models in term of computation time
and accuracy.

This paper is organized as follows. Section II is devoted to
the classical magnetic field modeling used in micro-robotics.
Section III presents the elliptic integral model suited for
robotic control. Models are then evaluated and compared in
Section IV. Section V concludes the paper.

II. MAGNETIC FIELD MODELLING

By modulating the magnetic field, it is possible to generate
a force and a torque on a micro-robot gien by:

~fm =

∫
Vm

∇(~m · ~B)dVm = ∇( ~M · ~B) (1)

~τm =

∫
Vm

(~m ∧ ~B)dVm = ~M ∧ ~B (2)

where Vm is the volume of the magnetic part of the robot
under an applied magnetic field ~B, ~M its magnetic moment
and ~m the volumic density of magnetic moment, considered
uniform in these equations.
The coils used to generate the magnetic field usually verify
the following assumptions. The internal resistance of the coils
being relatively small, the time constants associated with the
circuit are marginal. That is why only the magneto-static
domain is commonly studied. According to Maxwell’s laws



Fig. 1: Magnetic field generated by a coil and corresponding
magnetic force and torque applied on a particle. The magnetic
particle is represented by a green rectangle. Its magnetization
is along its main axis. Under the effect of the magnetic field
generated by the coil, the particle tends to align with the field
lines (in blue) while it also experiences a magnetic force (red
arrow).

and by splitting the magnetic field ~B into magnetization ~M
and magnetic excitation ~H it comes:

~∇∧ ~H = ~J

~∇ · ~B = ~0

~B = µ0( ~H + ~M)

(3)

where µ0 is the vacuum permeability and ~J the current density.
In addition, it is considered that the magnetic field is linear
with respect to the intensity circulating in the coil [14], often
written as ~B = ~biI , where I is the current circulating inside
the coil and bi the unit-current field.
To compute the magnetic field produced by several coils,

it is often considered that the superposition principle holds.
The magnetic field produced by n coils is then the sum of
the magnetic fields ~Bn produced by each coil. This is true
when the coils do not have core, or if they have soft magnetic
cores which magnetization stay in the linear domain and if the
hysteresis is neglected as in [17]. The total field is then:

~B =
∑

~Bn =
∑

~binIn (4)

In the following, we will thus concentrate on models able
to compute the magnetic field produced by a single coreless
coil powered by a current of 1A. In addition, assuming that
the coil is made of circular loops, the problem is axisymetric.

A. Numerical method

A first method consists in creating a unit-current field
map for each coil. The magnetic field generated by several
coils is computed thanks to simple mathematical operations
(symmetry, translation, rotation and scaling by the current)
before superposition on each ~bi.

Fig. 2: Current loop parameters

To obtain these unit-current field maps, one can either
experimentally measure the magnetic field using a hall effect
sensor or use finite-element software to compute the map.
The resulting map being discretized in a grid of points, it
is then necessary to use interpolation to evaluate the field in
an arbitrary position.

B. Dipole model

The solutions above being numerical, one can nevertheless
turns to an analytical approach to solve this problem. The
most often used is the dipolar approximation. The dipole
model is based on the Biot-Savart law (6) and consists in a
simplification of the problem by considering the coil (or each
turn) as a punctual magnetic dipole. Consider a circular current
loop as in [18] parametrized using the spherical coordinate
system as in Fig. 2 with:

r =
√
x2p + y2p + z2p ; r ≥0

φ = arctan(yp, xp) ; φ ∈ [0; 2π[
θ = arccos(zp/r) ; θ ∈ [0;π]

(5)

In this figure, the magnetic field created in point P =
(xp, yp, zp) by a circular loop of radius a centered in O is
considered. The magnetic field provided by this loop is given
by:

−−−→
B(P ) =

µ0I

4π

∮
Q

I
−→
dl ∧ (

−−→
QP )∣∣∣∣∣∣−−→QP ∣∣∣∣∣∣3 (6)

This expression is true for points P situated far away from the
coil, (located at a distance much greater than the coil radius
r � a). After simplification, the magnetic field is expressed
in spherical coordinates as follows:

Br(r, θ) =
µ0Ia

2cos(θ)

2r3

Bθ(r, θ) =
µ0Ia

2sin(θ)

4r3

Bφ = 0

(7)



C. Elliptic integral

1) Direct expression of ~B: The magnetic field given by the
Biot-Savart law (Eq. (6)) can also be solved using incomplete
elliptic integrals as in [13]. Using the parameters presented in
Fig. 2 the magnetic field in cartesian coordinates is given by:

Bx =
µ0I

2π

1√
a2 + r2 + 2ar sin(θ)

[
F(π

2
, k2)

+
a2 − r2

a2 + r2 − 2ar sin(θ)
E(π

2
, k2)

]
Bz =

µ0I

4π

1

tan(θ)
√
a2 + r2 − 2ar sin(θ)[

a2 + r2

(a2 + r2 + 2ar sin(θ))
(E(π

4
, k2) + E(3π

4
, k2))

− (F(π
4
, n2) + F(3π

4
, n2))

]
(8)

where E and F are the incomplete elliptic integral functions
of first and second kind [19]:

F(φ, k) =
sinφ∫
0

1√
(1− t2)(1− k2t2)

dt =

φ∫
0

1√
(1− k2 sin2 θ)

dθ

E(φ, k) =
sinφ∫
0

√
(1− k2t2)√
(1− t2)

dt =

φ∫
0

√
(1− k2 sin2 θ)dθ

(9)
k and n are defined in [13] by:

k2 =
4a r sin(θ)

a2 + r2 + 2a r sin(θ)

n2 =
−4a r sin(θ)

a2 + r2 − 2a r sin(θ)

(10)

2) Formulation using the magnetic potential vector: To
avoid the use of incomplete elliptic integral functions as
in Sec. II-C1 and then reduce the computing time, it is
possible to resort only to complete elliptic integral functions,
which are faster to compute since the integration bounds are
fixed. According to Maxwell’s equation, the divergence of the
magnetic field is identically null, so it can be assimilated to
the curl of a vector field called magnetic potential vector ~A.
Indeed, as the magnetic field is orthogonal to the ~∇ operator,
it can be written as the cross product between ~∇ operator and
a vector (here the magnetic potential vector).

~∇ · ~B = ~0

~∇∧ ~A = ~B
(11)

Knowing the Aφ expression, one obtains the magnetic field
~B = (Br, Bθ, Bφ)

T thanks to the expression of the curl
operator in spherical coordinates:

Br(r, φ) =
1

r sin(θ)

∂

∂θ
(sin θ Aφ)

Bθ(r, φ) =
−1
r

∂

∂r
(r Aφ)

Bφ = 0

(12)

In [18], Jackson shows that the expression of the magnetic
potential vector created by a circular loop expressed in any
point is given in spherical coordinates by:

Ar = Aθ = 0

Aφ(r, φ) =
µ0I

π

a√
a2 + r2 + 2arsin(θ)

[
(2− k2)K(k)− 2E(k)

k2

]
(13)

where K and E are respectively complete elliptic integral of
the first and second kind defined as follows:

K(k) = F(π
2
, k); E(k) = E(π

2
, k). (14)

Equation (12) allows to know the magnetic field at any point
in the space, but one of the reasons that explains its rare use
is certainly its sensitivity to digital errors as noticed in [16].
Close to the coil or along the symmetry axis (i.e. k � 1),
Aφ is badly computed which leads to a loss of accuracy. As
stated above, these regions are however of great interest for
robotic manipulation as they correspond to the center of the
workspace or to areas of high magnitude forces and torques.
To overcome this issue, Schill proposes continuity extension
when k � 1 [16].

To compute the magnetic field given in Eq. (12) the mag-
netic potential vector (Aφ component) must be differentiated.
To do so, Schill proposes in [16] to use elliptical integrals
of first and second but also third kind [19]. This solution is
recalled below.

III. PROPOSED IMPROVED ELLIPTIC INTEGRAL
FORMULATION

As noticed by Schill [16], the classical elliptic integral
models remain sensitive to numerical errors. To compute the
magnetic field given in Eq. (12) from the magnetic potential
vector (Eq. (13)) we propose here a method only based on
complete elliptic integral functions of the first and second
kind with a continuity extension for k � 1 (when r � 1,
sin(θ) � 1 or r � a). Notice that the derivation below is
slightly different from [16], as no third kind elliptic integral
function is needed, which yields different performances. This
will be shown in the next section.

As noted previously, to compute the magnetic field it is
necessary to differentiate the magnetic potential vector (Aφ
component). To do so, the derivative of the E(k) and K(k)
function with respect to k must be computed.
It is possible to demonstrate that:

∂E

∂k
(k) =

E(k)−K(k)

k
∂K

∂k
(k) =

E(k)

k(1− k2)
− K(k)

k

(15)

The magnetic field given in spherical coordinates (Eq. (12))
can be computed from the magnetic potential vector (Eq. (13))



using the derivative of the elliptic integral functions (Eq. (15)):

Br(r, θ) =
µ0I

π

a2√
a2 + r2 + 2arsin(θ)

E(k)cosθ

a2 + r2 − 2rasinθ

Bθ(r, θ) =
µ0I

π

1√
a2 + r2 + 2arsin(θ)

f(r, θ)

Bφ = 0

f(r, θ) =

[
E(k)(r2 + a2cos(2θ))

(a2 + r2 − 2rasinθ)2sinθ
− K(k)

2sinθ

]
(16)

We thus come up with an analytical expression which uses
only complete elliptic integral functions of first and second
kind.
Remark: These expressions are not defined for k = 0.
However, when k � 1, the continuity extension is done by
using:

K(k) =
π

2
+ k2

π

8
+ k4

9π

128
+ o(k4)

E(k) =
π

2
− k2π

8
− k4 3π

128
+ o(k4)

(17)

which leads to:

(2− k2)K(k)− 2E(k)

k2
= k2

π

16
+ o(k4) (18)

With this result, the magnetic potential vector Aφ (Eq.(13)) is
simplified and the magnetic field ~B (Eq. (12)) becomes:

Br(r, θ) =
µ0I a

2

4
cos(θ)

(
2 a2 + sin(θ) a r + 2 r2

)
(a2 + 2 sin(θ) a r + r2)

5/2

Bθ(r, θ) = −
µ0I a

2

4
sin(θ)

(
2 a2 + sin(θ) a r − r2

)
(a2 + 2 sin(θ) a r + r2)

5/2

Bφ = 0
(19)

Remark: When r � a, this expression is simplified into the
dipole approximation (7).

IV. COMPARISON OF THE MODELS

In this section, the models presented above are evaluated
in terms of accuracy, computation time and memory require-
ments.

A. Simulation conditions

To evaluate and compare the models, the parameters of the
simulations will be based on a classical micro-robotic system.
We consider a magnetic particle actuated by several coreless
coils. As mentionned before, the challenge to control this
particle is to compute quickly and accurately the magnetic
field produced by the coils at the position of the particle. As
explained in the previous section, this problem can be reduced
to the computation of the magnetic field produced by a single
coil for a unitary current. As the problem is axi-symetric, it is
sufficient to perform the analysis on a plane containing the axis
of the coil and the particle. A sketch of the simulated scene
is given in Fig 2. The coil is centered in [x, y, z] = [0, 0, 0]
with the main axis along the z-axis. Its dimensions are given

Parameter Value Unit
Coil mean diameter 0.1 m
Number of loops 500 (25 axially, 20 radially) -
Wire diameter 0.8 mm
Current 1 A
Coil center position [0 ; 0 ; 0] [m m m]

TABLE I: Parameters of the coil used in the simulations.

in Table I. The workspace is a 20 cm-side square centered on
the coil. The models have been implemented on a computer
equipped with an Intel Core i5-7600 processor at 3.5 GHz and
16 Go of RAM. The Matlab R2016b software has been used.

As mentioned in Sec. II-A, the mapping methods necessitate
to first get the values of the magnetic field at given points of a
mesh. In this paper these numerical values are obtained from
a finite element simulation performed on the COMSOL Multi-
Physics software. A map of the magnetic field generated by
a coil powered with a unitary current is obtained. To get the
magnetic field at any arbitrary position, an interpolation is
made. This computation step is time consuming, and a balance
must be found between fineness of the mesh (to reduce the
interpolation time) and the memory used by the computer
(and therefore the time related to the search for points of
interest). Here, a resolution 10µm was chosen, corresponding
to 1% of the length of a millimetric robot. The interpolation is
performed by the MATLAB interp2 function which performs a
2-dimensional interpolation. For the analytical methods, each
loop is considered independently and the total magnetic field
is obtained using the superposition principle.
For each of the three methods, the time needed to evaluate
the magnetic field at a given point (randomly selected in the
workspace) is measured. To have reliable statistics, all the
operation is repeated 180 times. In addition, the memory used
and the model accuracy in term of orientation and intensity
are confronted.
To be comparable, the different algorithms were fairly de-
veloped but migth still be optimized. In particular, the com-
putation time needed for the mapping method seems to be
important and should be reduced by replacing interp2 function
by a tailored method.

B. Results

The comparison between the different models in terms of
computation time and memory requirements is given in Table
II. Since all the numerical values of the magnetic field must be
stored, the mapping approach requires more storage capacity.
It is also long to compute: one can note a ratio of 95 between
the computation time of the mapping model and that of the
dipole model. This is propably due mainly to the interpolation
that must be performed to compute the magnetic field at a
given point.

All the numerical approaches present a similar memory
requirement, limited to a few kilooctet. The direct computation
of the magnetic field, as presented in [13], suffers from a huge
computing time. This is mainly due to the use of incomplete
elliptic integral. By using complete elliptic integral functions



Computation time Standard deviation Memory used
(ms/point) (ms) (ko)

Mapping 162 1.583 ≥1400
Dipole 1.7 0.163 ≤6
Wong’s formulation 1164.5 7.1 ≤7
Schill’s formulation 241.4 2.5 ≤7
Extended formulation 3.6 0.147 ≤7

TABLE II: Computational comparison of different models.

of first, second and third kind as presented in [16], the
calculation time is divided by a factor of about 5 but remains
greater than a few hundred milliseconds. The computation
time of the dipole model and of the proposed model are
limited to a few milliseconds. They are thus both compatible
real time computation of the magnetic field, and thus with
closed-loop control.

To evaluate the accuracy of each model the angular devia-
tion and norm error of the computed magnetic field are studied.
All the models that involve elliptic integrals to compute the
magnetic field (direct expression of B, formulation using
the magnetic potential vector and the proposed approach)
show very similar results in terms of accuracy, with relative
difference between these three models lower than 10−10%.
Since this is not significant and to facilitate the reading they
will thus be considered jointly for the evaluation of accuracy.
To evaluate the magnetic field computed with the different
models, a reference is necessary. As in most articles in the
robotics community, the result of the finite element method
will be considered as a reference [14] [20].

Figures 3 and 4 presents the comparison of the dipole
model and the models involving elliptic integrals compared
to finite elements in a xz plane including the coil axis. Fig. 3
gives the relative difference in terms of norm between the
results obtained by finite element and the dipole approximation
(resp the elliptic integral method) in the domain close to the
coil. Fig. 4, the angle formed between these two results is
compared. To compare the different models in term of the
magnitude of the computed magnetic field, isovalues of the
norm deviation between a given model and the reference
(values obtained from finite element simulation). As expected,
the deviation between the dipole model and the finite elements
is extremely important near the axis of the coil or for positions
close to the coil. For example, for the point located on the
axis of the coil at a distance equal to the diameter of the
coil, the dipole model presents an error of 1700% compared
to finite elements. This is due to the fact that the hypothesis
under which the dipole model is valid are not more validated.
In comparison, the models involving elliptic integrals (direct
expression of B, formulation using the magnetic potential
vector and the proposed approach) have a relative difference
of less than 5% compared to the finite element model in the
whole workspace. This latent error can notably be explained
by numerical residuals.
Another important point to evaluate the accuracy is the error
between the orientation of the computed magnetic field and

the one obtained from finite element simulation. Indeed, an
angular deviation induces an error on both the computed force
and torque applied to the robot. The bottom subfigures (Fig. 3)
compare the models. Isovalues corresponding to 5, 10, 20, 30,
45 and 90◦are represented. For the dipole model, the angular
error increases as the distance with the coil decreases. Errors
can reach 90◦, which means that the computed magnetic field
is perpendicular to the magnetic field obtained from finite
element simulation. Again, this is due to the fact the the
hypothesis under which the dipole model is true are no more
valid. The angular error between the elliptic integral model
and finite element simulations is represented in bottom-right
Figure. It is less than 5◦in most of the workspace, and less
than 20◦in all the workspace. The fact that errors increase with
the distance to the coil might be partly explained by numerical
residues.
As a conclusion, mapping-based models are costly to imple-
ment and only reveal their potential when the geometry of the
coil is complex or when cores are used. When the magnetic
field is computed far from the coil, a simplified model based

0 2 4 6 8 10

(a) Dipole model

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2

(b) Elliptic integral model

Fig. 3: Relative errors between magnitude of the computed
magnetic field w.r.t the result of a finite element simulation
(unit-less). Top: Dipole field computed w.r.t finite element
result. Bottom: Elliptic integrals method result w.r.t finite
element result.
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(a) Dipole model

0 30 60 90 120 150 180 ◦

(b) Elliptic integral model

Fig. 4: Angular errors between the computed magnetic field
w.r.t the result of a finite element simulation (◦). Top: Dipole
result w.r.t finite element result. Bottom: Elliptic integrals
method result w.r.t finite element result.

on the dipole approximation allows a significant computing
gain and a good accuracy. Models involving elliptic integral
functions are accurate in all the workspace, including areas
close to the coil. However, the models in the litterature (based
on the direct evaluation of B or using the magnetic potential
vector) remains as slow as mapping-based models. In com-
parison, the proposed approach presents a similar accuracy,
but the computing time is at least 65 times less. Based on
the computed magnetic field, the force and torque applied on
magnetically actuated robots can be computed using Eq. (16)
in Eq. (1) and (2).

Our model is thus a good compromise between accuracy and
computation time, making it the right candidate for closed-loop
control of magnetically actuated micro-robots.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new model to compute
accurately the magnetic field in all the workspace, including
in the area close to the coil. It is based on the use of elliptic
integral extended by continuity to compute the magnetic field
based on the expression of the magnetic potential vector.
Compared to existing approaches involving elliptic integral,
only complete elliptic integrals, and restrained to the first

and second kinds are used. This allows computing times
at least 65 times faster than existing elliptic integral-based
methods. It can thus be computed on a few milliseconds only
making it suitable real-time control. Contrary to the classical
dipole model, it is accurate in all the workspace, including
close to the coil. This is thus the only model compatible
with closed-loop control of magnetically actuated robot that
provides accurate results in all the workspace.

In future work, we will investigate the influence of a soft
core in the electromagnet.
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[11] A. Oulmas, N. Andreff, and S. Régnier, “Closed-loop 3d path following
of scaled-up helical microswimmers,” in 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), May 2016, pp. 1725–1730.



[12] P. Ryan and E. Diller, “Five-degree-of-freedom magnetic control of
micro-robots using rotating permanent magnets,” in Robotics and Au-
tomation (ICRA), 2016 IEEE International Conference on. IEEE, 2016,
pp. 1731–1736.

[13] D. Wong, E. B. Steager, and V. Kumar, “Independent Control of Identical
Magnetic Robots in a Plane,” IEEE Robotics and Automation Letters,
vol. 1, no. 1, pp. 554–561, Jan. 2016.

[14] M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul,
and B. J. Nelson, “OctoMag: An Electromagnetic System for 5-DOF
Wireless Micromanipulation,” IEEE Transactions on Robotics, vol. 26,
no. 6, pp. 1006–1017, Dec. 2010.

[15] E. Diller, J. Giltinan, and M. Sitti, “Independent control of
multiple magnetic microrobots in three dimensionsThe International
Journal of Robotics Research,” 2013. [Online]. Available:
http://journals.sagepub.com/doi/abs/10.1177/0278364913483183

[16] R. A. Schill, “General relation for the vector magnetic field of a circular
current loop: a closer look,” IEEE Transactions on Magnetics, vol. 39,
no. 2, pp. 961–967, Mar. 2003.

[17] A. Denasi and S. Misra, “Independent and Leader #x2013;Follower Con-
trol for Two Magnetic Micro-Agents,” IEEE Robotics and Automation
Letters, vol. 3, no. 1, pp. 218–225, Jan. 2018.

[18] J. D. Jackson, Classical Electrodynamics, 3rd ed. New York, {NY}:
Wiley, 1999.

[19] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions:
with formulas, graphs, and mathematical tables. Courier Corporation,
1965, vol. 55.

[20] J. Li, E. S. Barjuei, G. Ciuti, Y. Hao, P. Zhang, Q. Shi, A. Menci-
assi, Q. Huang, and P. Dario, “Analytical magnetic model applied to
endoscopic robots design: A ready-to-use implementation and a case of
study,” in Information and Automation (ICIA), 2016 IEEE International
Conference on. IEEE, 2016, pp. 1618–1623.


