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Abstract

Determination of the tridimensional structure of ribonucleic acid molecules is fundamental
for understanding their function in the cell. A common method to investigate RNA struc-
tures of large molecules is the use of chemical probes such as SHAPE (2′-hydroxyl acylation
analyzed by primer extension) reagents, DMS (dimethyl sulfate) and CMCT (1-cyclohexyl-
3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfate), the reaction of which is de-
pendent on the local structural properties of each nucleotide. In order to understand the
interplay between local flexibility, sugar pucker, canonical pairing and chemical reactivity
of the probes, we performed all-atom molecular dynamics simulations on a set of RNA
molecules for which both tridimensional structure and chemical probing data are available
and we analyzed the correlations between geometrical parameters and the chemical reac-
tivity. Our study confirms that SHAPE reactivity is guided by the local flexibility of the
different chemical moieties but suggests that a combination of multiple parameters is needed
to better understand the implications of the reactivity at the molecular level. This is also
the case for DMS and CMCT for which the reactivity appears to be more complex than
commonly accepted.

Keywords: RNA, Chemical probing, SHAPE, flexibility, Molecular Dynamics simulations

1. Introduction

Ribonucleic acid (RNA) molecules are involved in most steps of the genetic expression in-
cluding catalysis of central cellular functions [1, 2, 3]. RNA function depends crucially on the
specific tridimensional folding of the molecule which in turns depends on the sequence and on
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the way the bases pair through hydrogen bonds (secondary structure) [4, 5]. High-resolution
RNA structures can be determined experimentally by NMR spectroscopy [6], X-ray crys-
tallography [7], and more recently using cryo-electron microscopy [8]. However, obtaining
high-resolution tridimensional structures through these techniques is still a challenging task
as shown by the relatively small number of structures deposited in the Nucleic Acid Data
Bank (NDB) [9, 10]. One of the difficulties arise from the conformational flexibility of RNA
molecules that allows them to adopt distinct conformations and results in rough energy
landscapes [11]. Since high resolution structures of only a small fraction of RNA molecules
are available, methods to predict RNA structure are essential.

Based on early experiments on RNA melting [12] and more recent analysis on large ri-
bosomal molecules [13, 14], a hierarchical folding model has been proposed in which the
secondary structure precedes long range interactions and tertiary folding [12, 15]. As a
consequence, accurate modeling of the secondary structure is a crucial prerequisite to in-
vestigate tridimensional structures. Several bio-informatic secondary structure prediction
methods have been developed and the integration of experimental data have been shown to
greatly enhance their accuracy [16, 17, 18, 19, 20, 21].

Depending on the chemical reagents and their specificity to the RNA structure, distinct
types of information about RNA structures can be obtained [22]. DMS (dimethyl sulfate)
and CMCT (1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfate) are
commonly used to investigate the reactivity of the nitrogenous bases [23, 24] (see Figure 1
for their structure). The former reacts with the nitrogen in position N1 of the adenine and
in position N3 of the cytosine. The latter reacts in the position N3 of the uracil and N1 of
guanine [23]. These chemical reactions compete with the Watson-Crick (WC) base pairing,
giving a direct information on the paired or unpaired status of each base. More recently, the
selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) technology [25, 26, 16]
has been developed to measure local nucleotide flexibility and dynamics. SHAPE reagents
are small cyclic molecules which can acylate the 2′-hydroxyl group at flexible nucleotides
through a nucleophilic attack. These modifications are subsequently detected as stops in
primer extension or with mutational profiling (SHAPE-MaP) [27, 28, 29, 30]. SHAPE is
independent of the nature of nucleotide and the reactivity seems to be mostly related to the
conformation of the ribose [31]. Six different SHAPE reagents are reported in the literature
(BzCN [32], 1M7 [33], 1M6 [34], NMIA [27], NAI and FAI [35]) that differ in chemical
features and the half-time lifes, ranging from 0.25 s for BzCN to 73 min for FAI at 37 ○C. The
difference in reactivities obtained by two SHAPE reagents for the same sequence suggests
that the interaction between the reagents and the RNA molecules can slightly change and
provides complementary information [34, 36].

With the availability of high-throughput protocols, in the last decade, approaches using
both SHAPE reagents [37, 38, 39] and DMS [40, 41] allowed studies of RNA in vivo [35, 40,
42] and the detection of regions involving RNA complexed to other biomolecules [43, 44].
The number of available quantitative data-sets obtained by chemical probing techniques is
growing very rapidly and has already surpassed by two orders of magnitude the number of
RNA 3D structures obtained with high-resolution techniques. Almost half of the chemical
data-sets was obtained using SHAPE [45].
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Several experimental studies have been carried out to understand the chemical origin
of SHAPE reactivity and the relationship between SHAPE and local conformation of nu-
cleotides [20, 34, 46, 47, 48]. SHAPE reagents are described to be more reactive with flexible
nucleotides because these can sample multiple conformations, some of which enhance the
reactivity of 2′-OH of the ribose [22, 49, 46]. Some recent studies suggested that there are
three crucial structural parameters: i) the sugar pucker of the ribose; ii) the conformation
of the adjacent phosphate group and iii) the presence of an RNA functional group within a
short distance from the 2′-OH group [46, 31]. In particular, the nucleotides with C2′-endo
sugar pucker appeared to be more reactive to SHAPE reagents, highlighting the important
structural impact of the sugar pucker [46]. SHAPE reactivity seems mostly correlated with
the base pairing (cis-Watson-Crick/Watson-Crick) and base stacking [20]. CMCT and DMS
reactivity is essentially correlated with the WC base pairing status although fewer studies
have been conducted.

In order to improve the incorporation of chemical probing data in secondary structure
predictions, the link between the chemical reactivity and base-pairing has to be more ac-
curately defined. All-atom molecular dynamics (MD) simulations are a suitable tool to
investigate the flexibility of RNA molecules and attempt finding an atomistic, mechanical
explanation for SHAPE, DMS and CMCT reactivities. Under the assumption that a crystal
structure is representative of the major conformation adopted by the molecule in solution,
and sampled with chemical probing, MD simulations from a known experimental structure
can provide useful insights [47]. From a trajectory it is possible to compute local fluctua-
tions, ribose pucker and detect WC pairing, to be compared to reactivities. Following this
approach, in recent studies, SHAPE data-sets were correlated with structural fluctuations
and parameters obtained by molecular dynamics simulations using an all-atom or a sim-
plified representation for small (up to 78 nucleotides) RNA molecules [47, 50]. The best
correlation between SHAPE reactivity and structural fluctuations was observed for the dis-
tance between consecutive nucleobases, and not for the 2′-OH groups or phosphate moieties,
as one would have initially expected [47, 46]. The importance of C2′-endo sugar pucker in
the SHAPE reactivity was also pointed out [48].

Although these studies have highlighted the role of some specific structural parameters
in relation to SHAPE reactivity, some unexpected chemical reactivities remain to be under-
stood and an exhaustive analysis of the interplay between local flexibility, structural features,
WC pairing and SHAPE reactivity is still missing. Moreover, previous studies were limited
in the sizes of the molecules considered, while the complexity of RNA structures increases
dramatically with size and, with it, the difficulties to interpret chemical probing data and
model RNA structure. Finally, to the best of our knowledge, no computational studies have
been conducted to investigate the interplay between flexibility, dynamics of the hydrogen
bonds and DMS/CMCT reactivity.

The aim of this work is to understand the interplay between flexibility, ribose pucker,
canonical pairing and biochemical reactivity. We performed all-atom molecular dynamics
on six RNA molecules ranging in size from 38 to 188 nucleotides, of known structures and
chemical reactivities. In addition SHAPE, DMS and CMCT probing has been carried out
on the complex RNA structure of the lariat capping ribozyme [51]. Among the different
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SHAPE probes, we focused on 1M7 (see Figure 1 for its structure) as it is the most widely
used in recent SHAPE experiments[52]. For each trajectory, we computed the fluctuations
of a large set of geometrical parameters including distances, angles, helicoidal parameters
and ribose pucker, the probability that a given nucleotide assumes a specific pucker family
and the average number of hydrogen bonds at the WC edge of a nucleobase. To establish a
correlation between all these metrics and the chemical reactivity, we performed an extensive
statistical analysis.

Our study shows that the flexibility of individual chemical moieties is not enough to
explain all the chemical reactivities and that the combination of multiple parameters is
necessary. Moreover, we shed light on the correlation between DMS/CMCT reactivity and
the dynamics of the hydrogen bonds.
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Figure 1: Chemical structure of the more common nitrogenous bases chemical probes (DMS and CMCT)
and 1M7 SHAPE probe. DMS: dimethyl sulfate. CMCT: 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide
metho-p-toluene sulfate. 1M7: (1-methyl-7-nitroisatoic anhydride).

2. Methods

2.1. All-Atom Molecular Dynamics simulations

Molecular dynamics simulations were performed with the GROMACS 5 package [53,
54, 55, 56, 57] using the Amber ff99+parmbsc0 force field for RNA molecules [58]. To
take in account the ligand in the binding site of the RNA molecule (like adenine in the
adenine riboswitch), we performed DFT calculations to parameterize their atomic charges
using Gaussian 16 [59]. We used the RESP procedure [60], which is part of the AMBER10
package to derive atomic charges [61]. Atomic coordinates and electrostatic potential of the
ligand were obtained by DFT with the B3LYP functional and the 6-31G* basis set [59]. For
the other parameters, we used the Generalized Amber Force Field [62].

The molecular systems were placed in cubic box and solvated with TIP4P-EW water
molecules [63]. The distance between the solute and the box was set of at least 14 Å. The
solute were neutralized with potassium cations and then K+Cl− ion pairs were added to
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reach the salt concentration of 0.1 M. We also added 0.02 M of MgCl2. We used the ion
corrections of Joung et al. [64] as this force field has been shown to produce stable RNA
structures [65]. The parameters for Mg2+ are taken from [66]. We opted for this force field
for several reasons. First, this new set of parameters was developed to improve the kinetic
properties of Mg2+ ions with water and with the phosphate ion and it was implemented in
Amber99. Second, it also provided a better description of the structure of Mg-phosphate
binding than previous sets [66]. Although Allner and co-workers have not tested the Mg2+

parameters with Cl− ions, this force field is largely used in combination with the correction of
Joung et al.[64] for KCl in the RNA community to study RNA flexibility and Mg2+ binding to
RNA molecules [11, 67]. In our protocol some Mg2+ ions were placed at known binding sites
while the remaining ions randomly replaced solvent molecules [67]. Long-range electrostatic
interactions were treated using the particle mesh Ewald method [68, 69] with a real-space
cutoff of 10 Å. The hydrogen bond lengths were restrained using P-LINCS [70, 56], allowing
a time step of 2 fs [71]. Translational movement of the solute was removed every 1000 steps
to avoid any kinetic energy build-up [72]. After energy minimization of the solvent and
equilibration of the solvated system for 10 ns using a Berendsen thermostat (τT = 1 ps)
and Berendsen pressure coupling (τP = 1 ps) [71], simulations were carried out in an NTP
ensemble at a temperature of 300 K and a pressure of 1 bar using a Bussi velocity-rescaling
thermostat [73] (τT = 1 ps) and a Parrinello-Rahman barostat (τP = 1 ps) [74]. During
minimization and heating, the RNA backbone was kept fixed using positional restraints.
These restraints were relaxed slowly during the equilibration. The length of the simulations
were of 1000 ns. Table 1 summarises the number of ions and water molecules added in the
box for each system under investigation.

2.2. Characterization of RNA flexibility

The flexibility of a biomolecule can be evaluated using several parameters that refer to
different regions of the molecule. First, we calculated the atomistic Root Mean Square Fluc-
tuations values and we averaged them to obtain the average fluctuations per residues that
cannot differentiate the different contributions. In order to characterize the local flexibil-
ity, we considered distances, angles and rigid-body parameters and for each parameter we
computed its fluctuations. The flexibility of a nucleotide is evaluated by the fluctuations
exhibited by these parameters. Due to the time of our MD simulations, we can observe flex-
ibility that occurs on rapid time scales (for example puckering changes). However we cannot
observe base pair opening except on termini or where there are very weak non-WC base
pairs. For example, non-WC base pair opening may not be fully captured in simulations on
this timescale. These aspects go beyond the aim of this work.

Distance parameters. We computed the fluctuations for the following: i) the distance be-
tween consecutive C2 atoms (Figure 2); ii) the distance between consecutive C1’ atoms; iii)
the distance between consecutive P atoms and iv) the distance between O2’and O2 for the
pyrimidine and between O2’and N3 for the purine, respectively. The first three distances
are inter-base and the last one is intra-base (See Figure C.19 for all distances).
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Figure 2: Left: Distance between consecutive C2 atoms (C2i-C2i+1). Right: Angle between consecutive C2,
P and C2 atoms (C2i-Pi+1-C2i+1).

Angle parameters. We computed the fluctuations of eight angles in order to characterize
the flexibility of the different chemical moieties. We defined the following angles: C1′i-C4′i-
Pi+1, C1′i-Pi+1-C1′i+2, C2i-C1′i-Pi+1, C2i-C4′i-Pi+1, C2i-Pi+1-C2i+2 (Figure 2), O2′i-Pi+1-O5′i+1,
O3′i-Pi+1-O2′i+1,O5′i-Pi+1-O2′i+1 , where i represents the number of the nucleotide along the
sequence. The angles are between either two or three consecutive bases (See Figure C.20
for all angles). Because of their periodicity, standard statistics cannot be used to compute
the average and the fluctuations of angular values. For example, the arithmetic mean of 0°
and 360° is 180°, which is misleading because for most purposes 360° is the same thing as
0°. Hence, we have to use the directional statistics instead [75]. The average of an angular
value, α, can be defined as:

⟨α⟩ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tan−1 (⟨Cp⟩
⟨Sp⟩

) if ⟨Cp⟩ > 0. ⟨Sp⟩ > 0

tan−1 (⟨Cp⟩
⟨Sp⟩

) + π if ⟨Cp⟩ < 0

tan−1 (⟨Cp⟩
⟨Sp⟩

) + 2π if ⟨Cp⟩ > 0, ⟨Sp⟩ < 0

(1)

where ⟨Cp⟩ = ∑
Ns
i=1 cosαi

Ns
and ⟨Sp⟩ = ∑

Ns
i=1 sinαi

Ns
, αi is the value of the angle at the time i and Ns

is total number of snapshots of the trajectory. The angular fluctuation is defined as:

σα =
√
−2 ln (⟨Rp⟩) (2)

where ⟨Rp⟩ =
√

⟨Cp⟩
2
+⟨Sp⟩

2

Ns
.
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Ribose conformations. The sugar ring is well described using pseudorotation parameters.
Although there are four possible pseudorotation parameters for a five-membered ring [76],
two in particular are useful to characterize the sugar conformation: the so-called phase
(Pha) and amplitude (Amp). While the amplitude describes the degree of ring puckering,
the phase describes which atoms are most out of the mean ring plane. We calculated these
parameters using the expressions given below[77]:

Amp =
√

(a2 + b2)

Pha = cos−1 ( a

Amp
)

(3)

where a = 0.4∑5
i=1 νi cos[0.8π(i− 1)] and b = −0.4∑5

i=1 νi sin[0.8π(i− 1)] [77], with νi the ring
dihedral i. This approach has the advantage of processing the ring dihedrals ν1 (C1′-C2′-
C3′-C4′) to ν5 (O4′-C1′-C2′-C3′) in an equivalent manner.

Conventionally, sugar ring puckers are divided into 10 families described by the atom
which is most displaced from the mean ring plane (C1′, C2′, C3′, C4′ or O4′) and the
direction of such displacement (endo for displacements on the side of the C5′ atom and exo
for displacements on the other side). Using the Curves+ program [78] for each simulation
trajectory, for each nucleotide we computed the percentage of appearance for each family.
In order to understand the interplay between the sugar conformation and the chemical
reactivity, we grouped the sugar puckers into two large families. The sugar puckers C1′-exo,
C2′-endo, C3′-exo, C4′-endo belong to the B-like family, while C1′-endo,C2′-exo, C3′-endo,
C4′-exo belong to the A-like family.

Helicoidal parameters. In order to decompose the movement between two nucleotides, we
adapted the definition of inter-base parameters, as described in Curves+ [78] and largely
used for double-stranded nucleic acids, to the case of single-stranded RNA . The inter-
nucleotide parameters consist of three independent translations (shift, slide, and rise) and
three independent rotations (tilt, roll, and twist). We used eq.(1) and (2) to calculate
averages and fluctuations of rotations.

2.3. Solvent accessibility

We explicitly tested the relationship between the accessibility of 2′-OH groups and
SHAPE reactivity as well as the solvent accessibility of the nucleobases. We compared
average accessibilities from 1µs-long MD simulation with experimental SHAPE reactivities.
The solvent accessibility is computed by rolling a water probe sphere of radius 1.4 Å on the
molecular surface.

2.4. Characterization of RNA base-pairing: hydrogen bonding analysis

Unlike double-stranded complementary molecules, in single stranded RNA the canonical
Watson-Crick pairing is not the unique way to form a base-pair. A large variety of hydrogen
bonds (HB) can be formed at the Watson-Crick edge, the Hoogsten edge or the sugar edge
[79, 9, 10, 80]. Reaction of CMCT and DMS competes with the formation of HB at the WC
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edge. In order to establish a relationship between the CMCT/DMS reactivity and hydrogen
bonds, we distinguished between those hydrogen bonds that involve the WC edge and those
that do not. For each nucleotide, we computed the average number of WC and non-WC
hydrogen bonds and their fluctuations as well as the average of the total number of hydrogen
bonds and its fluctuation for a given base.

At each frame of the trajectory we identified the HB based on cutoffs for the Donor-
H...Acceptor distance and angle according to the Wernet-Nilsson criterion outlined in [81] as
implemented in mdtraj [82] which considers a hydrogen bond formed if the distance between
donor and acceptor heavy atoms is below a given distance cutoff dependent on the angle
made by the hydrogen atom, donor, and acceptor atoms (”cone” criterion).

2.5. Statistical analysis

The degree of association between two independent variables, for example the fluctua-
tions of a specific distance and the SHAPE reactivity, was first assessed through Pearson
and Spearman correlation coefficients. The commonly used Pearson correlation coefficient
(ρP ) is a measure of the strength of a linear association between two variables while the
Spearman correlation coefficient (ρS) is a non-parametric measure of rank correlation (sta-
tistical dependence between the rankings of two variables) and uses a simplified expression
for the Pearson correlation coefficient. A correlation coefficient of .10 is thought to represent
a weak or small association; a correlation coefficient of 0.30 is considered a moderate corre-
lation; and a correlation coefficient of 0.50 or larger represents a strong or large correlation.
A p-value of 0.05 is used as the cutoff for significance. If the p-value is less than 0.05, the
correlation is significant because the null hypothesis of no difference between the means is
rejected. If the p-value is larger than 0.05, we cannot conclude that a significant difference
exists.

In order to quantify the strength of the association between N independent variables
(predictor variables) and the dependent variable, we have to define the coefficient of multiple
correlation, denoted R. The square of this coefficient is given by

R2 = cTR−1
xxc (4)

where c = (rx1y, rx2y, rxNy)T with rxNy the Pearson correlation coefficient between the variable
xN and the target value y and R−1

xx the inverse of the correlation matrix between predictor
variables, defined as:

Rxx =
⎛
⎜⎜⎜
⎝

rx1x1 rx1x2 ⋯ rx1xN
rx2x1 ⋱ ⋮
⋮ ⋱

rxNx1 ⋯ rxNxN

⎞
⎟⎟⎟
⎠
. (5)

For a set of parameters, we cannot use a simple Pearson correlation coefficient, because
our data are discrete, hence we performed a test on the average values. We first discretized
our data for the reactivity by grouping them in low reactivity, medium reactivity and high
reactivity, and we built the contingency table of the modified experimental data and the
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computed quantities (for example the average number of hydrogen bonds). Then, by apply-
ing the null hypothesis for a Chi-squared independence test, we performed the Chi-squared
test to verify if our variables are independent or not. Significant contributions to Chi-squared
were detected by looking at Pearson residuals:

Xobserved−Xexpected

Xexpected
, which, for construction,

follow a N(0,1) distribution. The Chi-squared test is used to verify the independence be-
tween variables. It determines whether or not the variables are independent, but, when
independence is rejected, it does not quantify the association between the variables.

To obtain a quantitative measure of the association, we considered the Cramer coefficient,
Cramer’s V , defined by:

V =
√

Chi2

Chi2max
(6)

where Chi2 denotes the Chi-squared value obtained for the contingency table, and Chi2max
denotes the theoretical maximal Chi-squared of the contingency table, given by Chi2max =
N × min(r − 1,C − 1) with N the total count of the table, r and c the table dimensions.
Cramer’s V is, by construction, always between 0 (independence) and 1 (full dependence)
and has a clear proportional interpretation: it is the fraction of the maximal deviation from
independence that one would observe in case of full dependence [83].

Finally, in order to understand if there is a correlation between the chemical reactivity
defined as low, medium and high, the non-parametric Kruskal-Wallis H test, which de-
termines if there are statistically significant differences between two or more groups of an
independent variable on a continuous or ordinal dependent variable, is used [83]. As for
the other statistical approaches, a p-value lower the 0.05 indicates a significant correlation
between the groups.

2.6. RNA structures and experimental data used as benchmark

In our study, we considered six RNA molecules of different size and function, for which
both experimental reactivity data and 3D structures are available (see Figure 3). We per-
formed all-atom molecular dynamics (MD) simulations for each RNA molecule starting
from experimental structure and we computed the fluctuations of the parameters previously
presented and their correlation coefficients with the chemical probing reactivities. The sta-
bility of RNA structures was assessed via Root-Mean-Square-Deviation and hydrogen bond
analysis (see Appendix Appendix B for more details). SHAPE and CMCT/DMS data
for all systems except the ribozyme (PDB ID: 4P8Z) were taken from available data-sets
[84, 85, 86, 87, 88]. For the lariat capping ribozyme, the reactivity data were obtained for
this study as previously described [89] (see Appendix A for details)[52, 90, 91, 52]. Table 1
summarizes the systems under investigation and the simulation setup.

For the comparison with simulation data we used normalized SHAPE, DMS and CMCT
reactivities as explained in [84] and [86], respectively. For some nucleotides, the chemical
reactivity could not be determined, and it is reported with either -999 or -10 in experiments.
These nucleotides were excluded from our analysis.
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PDB ID Name Nb NH2O NK+ NCl+ NMg2+ Exp.Data

2L1B preQ1 Riboswitch 34 13366 57 35 5 S[84]
1Y26 add -riboswitch 72 34946 133 87 12 S[84],B[86]
1EHZ Transfer Phe-RNA 77 51664 168 131 19 S[85],B[87, 88]
3OFC 5SrRNA 119 82272 267 209 30 S[84],B[86]
3PDR M-box Riboswitch 161 96677 335 241 33 S[85]
4P8Z LC ribozyme 188 77089 314 179 26 S*,B*

Table 1: RNA molecules under investigation. The following information is given: PDB ID code, name,
number of nucleotides (Nb), number of water molecules (NH2O), K+, Cl− and Mg2+ ions in the simulation
box, and the type of probing experimental data available (S: SHAPE; B: CMCT and DMS).* See Appendix
A.

Figure 3: 3D structures of the RNA molecules under investigation and their arc diagram. 2L1B: PreQ1
Riboswitch. 1Y26: add -riboswitch. 1EHZ: Transfer Phe-RNA. 3OFC: 5SrRNA. 3PDR: M-box Riboswitch.
4P8Z: Lariat capping ribozyme.

3. Results and Discussion

In this section, we present and discuss the single and multiple correlations between
SHAPE reactivity and fluctuations of the geometric parameters. We present the relationship
between sugar pucker and 1M7 reactivity and the interplay between the former and canonical
pairing, and finally, we discuss the relation between DMS/CMCT reactivity and geometrical
parameters and the formation of hydrogen bonds at the WC edge.
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3.1. Shape reactivity

We present here the statistical analysis of SHAPE reactivities in relation to the solvent
accessibility of the 2′-hydroxyl position and the nucleobases, the fluctuation of nucleotides,
to the fluctuations of distances, angles, and helicoidal parameters, and to the sugar pucker.
We also investigate the relationship between sugar pucker and canonical pairing.

3.1.1. Solvent accessibility

First, we assessed whether SHAPE reactivity is correlated with the solvent accessibility of
the 2′-hydroxyl position. As shown also by other studies, we find essentially no correlation
between SHAPE reactivity and solvent accessibility at the 2′-hydroxyl group for five out
of six RNA molecules (see Figure 4). However, a significant correlation between solvent
accessibility of the nucleobases and SHAPE reactivity has been observed for all systems,
and its strength spans from intermediate to strong for 5 out of 6 RNA molecules. We can
speculate that the accessibility of the nucleobase to the solvent is typical of a configuration
allowing also the stacking of the chemical probe, which has been shown to enhance the
reactivity for 1M6 [34]. Further investigations are needed to better clarify this aspect by
analyzing the reactivity mechanism. For 3OFC, the correlation is low possibly due to the
fact that the 5SsRNA structure was extracted from the whole ribosome structure while our
simulation does not take into account any of the existing interactions with ribosomal protein.

2LB1 1Y26 1EHZ 3OFC 3PDR 4P8Z

RNA molecule
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Figure 4: Pearson correlation computed for each RNA molecule between the solvent accessibility of 2′-
hydroxyl position and the 1M7 reactivity (blue) and between the solvent accessibility of the nucleobase and
the 1M7 reactivity (orange).

3.1.2. Root Mean Square Fluctuations (RMSF) and local fluctuation of distances, angles and
helicoidal parameters

Previous results suggest that a key element for SHAPE reactivity is the flexibility of the
nucleotide [46, 16, 47]. To further investigate this aspect, we computed the Pearson and
Spearman correlation coefficients between the Root Mean Square Fluctuations (RMSF) and
the experimental 1M7 reactivity (see Table 3.1.2). For four systems out of six, we obtained
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a significant correlation between the two quantities while for 2L1B and 3OFC fluctuation
profiles and reactivities exhibit important differences. In order to find some general rules
linking structural properties with reactivities, these first results suggest that we need to
focus on more local parameters to quantify the flexibility of the chemical moieties.

PDB ID ρP ρS

2L1B 0.10* 0.35
1Y26 0.48 (2 ⋅ 10−5) 0.24
1EHZ 0.75 (1 ⋅ 10−14) 0.62
3OFC -0.01 (0.91) 0.02*
3PDR 0.84 0.13*
4P8Z 0.39 0.15*

Table 2: Pearson (ρP ) and Spearman (ρS) correlation coefficients between the Root Mean Square Fluctua-
tions (RMSF) and the experimental 1M7 reactivity. *: p-value higher than 0.05.

In this perspective, we extensively analyzed the correlations between local fluctuations
of the distances and angles, described in section 2.2, and SHAPE reactivity. Figure 5
shows the average over all structures of the Pearson and Spearman correlation coefficients
between distance and angular fluctuations and reactivities. In Appendix D, we report all
Pearson and Spearman correlation coefficients in details (see Table D.5-D.8). Recalling
that Pearson correlation evaluates the linear relationship between two continuous variables
while Spearman correlation evaluates the monotonic relationship, we observe that Pearson
correlation is more adequate for treating these data-sets. Hence, SHAPE reactivity changes
proportionally with the increasing of fluctuations.

Looking in more detail at the relationship between fluctuations of distances and reac-
tivity, the largest correlation is found between 1M7 reactivity and the distance C2i- C2i+1
(ρP = 0.6.). However, also the fluctuation of the distance between consecutive C1′ atoms has
a correlation value above 0.5. For several angles under investigation, the Pearson correlation
coefficient is above 0.5 and it is significant (C2i-C4′i-Pi+1, C1′i-Pi+1C1′i+1 and C2i-Pi+1C2i+1).
Although for the other angles we obtained low/moderate correlations coefficients, p-values
lower than 0.05 assure that these correlations are also significant.

To provide a full picture of the flexibility of the nucleotide, we also analyzed the helicoidal
parameters. Figure 5 shows the average of the Pearson and Spearman correlation coefficients
of helicoidal rotational parameters (Tilt, Roll, and Twist) and 1M7 reactivity. We neglected
the correlation coefficients with the translation parameters (Shift, Slide, Rise) because the
p-value was higher than 0.05. For all rotational parameters, we found a moderate Pearson
correlation while we observe a more significant Spearman correlation between Roll, Twist
and 1M7 reactivity. This suggests the existence of a monotonic relationship for helicoidal
parameters, less stringent than the linear relationship observed for distances and angles,
capturing the more global nature of helicoidal over simpler structural parameters. Finally,
the correlation coefficients between Twist and SHAPE reactivity are the least dispersed.
Table D.9 and D.10 summarize all these data.
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Figure 5: Average correlations coefficient between the 1M7 reactivity and different fluctuations of distances,
angles and helicoidal parameteters computed along the MD trajectory. From the left: fluctuations of
distances C1′i-C1′i+1 and C2i-C2i+1; fluctuations of the angles C1′i-C4′i-Pi+1, C1′i-Pi+1-C1′i+1, C2i-C1′i+1-
Pi+1, C2i-C4′i+1-Pi+1, C2i-Pi+1-C2i+1, O2′i-Pi+1-O5′i+1, O3′i-Pi+1-O2′i+1, O5′i-Pi+1-O2′i+1; fluctuations of tilt,
roll, and twist. Blue: Pearson correlation. Orange: Spearman correlation.

The correlation coefficients of each parameter and 1M7 reactivity can vary significantly
from one RNA structure to another (Table D.5-D.10). For example fluctuation of the dis-
tance between consecutive C2 atoms can range from 0.84 (strong correlation) to 0.26 (weak
correlation). The weak correlation can be due to several reasons such as a sampling problem
during the MD simulations (multiple conformations and size limit), a difference between
the crystallographic structure and the RNA molecule in solution (moreover for 3OFC the
structure were taken from the whole ribosome, so the presence of proteins and other RNA
molecules can influence the structure of the native RNA molecule), or other structural pa-
rameters having an impact on the chemical reactivity, such as stacking or accessibility.

In order to better understand the meaning of correlation coefficients in this context,
Figure 6 shows the RMSF, the fluctuation profile of the distance C2i-C2i+1 and the angle
C2i-C4′i+1-Pi+1 and the 1M7 reactivity for the M-box Riboswitch RNA (PDB ID: 3PDR)
and the 5SrRNA (PDB ID: 3OFC). For M-box Riboswitch RNA, the correlation between
the SHAPE reactivity and the fluctuations profiles is strong because when the chemical
reactivity is high, there is often a peak also in the fluctuations (high flexibility). For 5SrRNA,
on the contrary, there is no correlation between the RMSF and the SHAPE reactivity, due
a too broad RSMF profile that misses several peaks with respect to 1M7 profile. The low
correlation between the fluctuation of the distance and 1M7 is mostly due to the absence of
several peaks in the flexibility profile, that are however present in the angular fluctuation
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Figure 6: Comparison of the flexibility of the M-box Riboswitch RNA (PDB ID: 3PDR, upper panel) and the
5SrRNA (PDB ID: 3OFC lower panel). The SHAPE reactivities (black) are compared with the C2i-C2i+1
fluctuations (red), Root Mean Square Fluctuations, RMSF, (dark yellow) and C2i-C4′i+1-Pi+1 fluctuations
(blue). Pearson correlation coefficients for 3PDR: 0.84 (RMSF), 0.85 (C2i-C2i+1), 0.79 (C2-C4′-P). Pearson
correlation coefficient for 3OFC: -0.01(RMSF), 0.26 (C2i-C2i+1), 0.40 (C2i-C4′i+1-Pi+1).

(moderate correlation).
In this analysis, one problem can arise from the difference in normalization of experimen-

tal reactivities and of fluctuations from simulations which can bias the correlation coefficient.
However, to develop a predictive approach for secondary and tridimensional structures, we
need to establish a precise correspondence between the region of small, medium and high
reactivity and their equivalent in the flexibility, or structural features, computed from molec-
ular modeling. In this perspective, as a proof of concept, we analyzed the data according
to ranks. We considered all values of a specific parameter, without making distinctions be-
tween individual structures and we defined ranks for the experimental and computational
data classifying the SHAPE data into low reactivity (<0.3), medium reactivity (between 0.3
and 0.7) and high reactivity (>0.7). For simulation data, we normalized values by means of
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the highest 10% and then we created ranks of uniform spacing up to a threshold value. By
using box plots and the Kruskal-Wallis H test [83] we verified that there is a significant dif-
ference between 1M7 reactivity and the geometric parameters under investigation. In order
to quantify the degree of association we calculated the Cramer’s V from the contingency
table. Figure 7 shows the box plots for the fluctuations of the angle C2i-C4′i-Pi+1 and the
twist for all systems. Based on the Kruskal-Wallis H test, there is a significant relationship
between these variables, therefore, if the fluctuation of the parameter for a given nucleotide
increases, its reactivity increases as well. However, based on the Cramer’s V parameter this
association is moderate (between 0.3 and 0.4 for the fluctuations parameters). Although
more qualitative than what previously presented, these rank analysis allow to state with
more certainty the existence of relationship between reactivity and flexibility, which could
be misinterpreted by more simple statistics.
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Figure 7: Box plot of the fluctuation of the angle C2i-C4′i-Pi+1 (left) and of the twist (right) as a function
of the intensity of the reactivity (low, medium or high).

3.1.3. Multiple correlation approach

The previous correlation analysis suggests that several parameters play a role in the
chemical reactivity and multiple parameters at once might influence the interaction with
the probe. We therefore considered several sets of parameters for which we computed mul-
tiple correlation coefficient with SHAPE reactivity using eq.(4). Table 3 provides multiple
correlation coefficients for five sets of parameters that combine the fluctuations of distances,
angles and helicoidal parameters. Parameter sets are defined in increasing complexity as: i)
M1 fluctuations of the distance C2i-C2i+1 and the angle C1′i-Pi+1-C1′i+1; ii) M2 fluctuations of
distance C2i-C2i+1 and of the angle C1′i-C4′i-P

′

i+1; iii) M3 fluctuations of distance C2i-C2i+1
and of the angles C1′i-C4′i-P

′

i+1, C1′i-Pi+1-C1′i+1, C2i-C1′i-Pi+1, C2i-C4′i-Pi+1, C2i-Pi+1-C2i+1;
iv) M4 fluctuations of distance C2i-C2i+1, of the angle C1′i-C4′i-P

′

i+1 and the rotational heli-
coidal parameters; v) M5 the fluctuations of distance C2i-C2i+1 and C1′i-C1′i+1, of the angle
C1′i-C4′i-P

′

i+1 and the rotational helicoidal parameters.
With respect to the single correlation, the combination of several parameters in sets

increases the correlation between the flexibility and the experimental data . For example,
in the case of 3OFC, single correlation coefficients are weak (see Table D.5-D.10) while
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multiple correlation coefficients range from weak to moderate (strong) with the increasing
of the diversity of parameters included in the set of the multiple correlation. This suggests
that the SHAPE reactivity depends on the local flexibility of several chemical moieties in
agreement of what already shown in the profiles reported in Figure 6. We can observe that
for systems for which single parameter profiles mainly agree with one another, the different
multiple correlations sets give all similar correlation results, as expected, while for systems
where single sets exhibit significant discrepancies, combining them in multiple sets improves
correlations. These results are in agreement with previous attempts to understand the origin
of the SHAPE reactivity where several simple rules were proposed based on the geometry
of the ribose [46].

PDB ID M1 M2 M3 M4 M5

2L1B 0.62 0.66 0.71 0.83 0.86
1Y26 0.78 0.75 0.86 0.74 0.84
1EHZ 0.56 0.56 0.58 0.51 0.63
3OFC 0.29 0.45 0.56 0.48 0.59
3PDR 0.85 0.86 0.86 0.76 0.87
4P8Z 0.35 0.36 0.45 0.44 0.41

Table 3: Multiple correlation coefficient between a set of parameters computed along the MD simulations
and the 1M7 reactivity calculated by using eq.(4) . M1: fluctuations of distance C2i-C2i+1 and the angle
C1′i-Pi+1-C1′i+1. M2: fluctuations of distance C2i-C2i+1 and of the angle C1′i-C4′i-P

′

i+1. M3: fluctuations
of distance C2i-C2i+1 and of the angles C1′i-C4′i-P

′

i+1, C1′i-Pi+1-C1′i+1, C2i-C1′i-Pi+1, C2i-C4′i-Pi+1, C2i-
Pi+1-C2i+1. M4: fluctuations of distance C2i-C2i+1, of the angle C1′i-C4′i-P

′

i+1 and the rotational helicoidal
parameters (roll, tilt and twist). M6: fluctuations of distances C2i-C2i+1 and C1′i-C1′i+1, of the angle
C1′i-C4′i-P

′

i+1 and the rotational helicoidal parameters (roll, tilt and twist).

3.1.4. Ribose flexibility

Another important feature of the nucleotide is the pucker of the ribose and its fluctua-
tions. From molecular dynamics simualtions we computed for each nucleotide the probabil-
ity that a given pucker family is present as well as the average and the fluctuation of the
pucker phase and pucker amplitude (see eq.(3)). Figure 8 shows a stacked plot of the pucker
probabilities for 1Y26. The stacked plots for the other molecular systems are presented
in Appendix E. As expected, the C3′-endo is the most common state and the nucleotide
can also assume the rarer C2′-endo conformation [46]. However, the ribose does not only
assume the C2′-endo conformation, but also explores other transient states (for example the
C1′-exo) that are less stable. To better understand the stability and the kinetics of these
conformations, we also computed the matrix of transition probabilities for the puckering
conformations. Hence, we computed the probability of moving from state i to state j and
to stay in the same state. In this matrix, each row sums to 1. Figure 9 shows the matrix of
transition probabilities obtained in this study. This matrix can allow us to analyze the sta-
bility of each puckering conformation with respect to the transition states. For example, the
C3′-endo has a higher probability to move to either C2′-exo or C4′-exo. As expected, these
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intermediate states are not stable and their transition probabilities is comparable with the
probability to stay at the same state. In the case of C2′-endo, the most probable transition
states are C1′-exo and C3′-exo. We also observed that the exchange rate is faster for the
C3′-endo conformations than C2′-endo ones.
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Figure 8: 1M7 reactivity profile (top) and stacked bar plot of the pucker probability along MD simulation
(bottom) for 1Y26. Red: C2′-endo, Pink: C4′-endo, Orange red: C1′-exo, Magenta: C3′-exo. Blue: C3′-
endo, light blue: C1′-endo, dark blue: C2′-exo, cyan: C4′-exo. Light grey: O4′-endo, dark grey: O4′-exo.
Red scale: B-family. Blue scale: A-family.

With the aim of understanding the relationship between ribose conformations and flexi-
bility of the nucleotide, we first computed the Spearman correlation coefficient between the
fluctuations of the pucker phase and the geometric parameters. These correlations are always
significant and from moderate to strong indicating that the fluctuations of the geometric
parameters reflect quite well the flexibility of the ribose conformation without distinction
between the specific pucker families (see Table D.11-D.13). The highest correlation coeffi-
cients obtained for the three geometric classes (distance, angle and helicoidal parameters)
were found using the fluctuation of the distance O2′i − bi (0.76), the angle C1i-C4′i-Pi+1 and
roll (0.72), respectively. In order to establish a direct correlation with the ribose pucker, we
also computed the Spearman correlation coefficient between the probability that the ribose
conformation belongs to the B-like family (C2′-endo, C4′-endo, C1′-exo or C3′-exo) and the
geometric fluctuations. For the three geometric classes, the highest correlation was 0.63
for fluctuations of the distance O2′-N3/O2, the angle C1′i-Pi+1-C1′i+1 and roll, respectively.
Weeks and co-workers showed that when this distance (O2′-N3/O2) is short and the ribose
assumes 2′-endo conformations the reactivity can be enhanced [31]. Our results indicate
that C2′-endo-like conformations are correlated with a larger variability of this distance al-
lowing the system to explore short-distance conformations known to enhance reactivity. Our
findings provide a possible structural explanation for the higher reactivity and highlight that
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the C2′-endo conformation and the cognate transient states better reflect the local flexibility
of a nucleotide, than only the C2′-endo as previously suggested [31, 46].

We then analyzed the correlation between the ribose pucker, its fluctuation and the
1M7 reactivity. It is well known that C2′-endo can enhance the nucleophilicity of the 2′-
hydroxyl by allowing non-standard conformations of the nucleotide [46]. Figure 8 compares
the 1M7 reactivity with the pucker probability for each nucleotide for 1Y26: the C2′-endo
conformation together with the C2′-endo transient states are the most probable among
hyper-reactive nucleotides, as previously observed by Weeks and co-workers [46] Figure 10
shows the box plot for the probability for a given nucleotide to assume a C3′-endo pucker
and its fluctuation as a function of the 1M7 reactivity. Based on the Kruskal-Wallis H test,
the C3′-endo pucker and the 1M7 reactivity are anti-correlated: high reactivity is related
to either the C2′-endo pucker or the other transient conformations between the C2′-endo
and C3′-endo pucker. To establish the degree of association, we computed the Cramer’V
between the two sets. We obtained a value of 0.31, meaning that there is a moderate
correlation between 1M7 reactivity and ribose pucker. In Figure 10 (middle box) we can
observe that although the ribose has assumed a rare conformation, the 1M7 reactivity is
low, and this low reactivity is associated with a high flexibility of the ribose. We can
then speculate that other factors beside the sugar pucker might influence the reactivity.
For example, low reactivity might also be the consequence of a low accessibility caused by
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stacking interactions or of a modification in the distance between the base and the ribose.
Despite this, 72% of medium and high reactivities are obtained in the cases of C2′-endo
conformation and its transient states, hence we can also conclude that this states are highly
over-represented among hyper-reactive nucleotides.
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Figure 10: Box plot of the fluctuation of the sugar pucker as a function of the intensity of the reactivity (low,
medium or high) (left), of the probability for a given nucleotide to assume a C3′-endo pucker as a function
of the intensity of the reactivity (low, medium or high) (centre) and the average number of hydrogen bonds
formed at the Watson-Crick edge, NWC−HB (right).

In order to predict secondary structures taking SHAPE data into account, the common
assumption included in the algorithms [92, 16, 93, 94] is that reactive nucleotides correspond
to unpaired bases. Hence, understanding if there is a direct correlation between the sugar
pucker and the formation of hydrogen bonds at the Watson-Crick edge is fundamental.
Before displaying the results of this analysis, we would like to point out that unbiased all-
atom MD simulations do not allow to investigate secondary structures rearrangements (like
folding), but only local changes. As previously mentioned in section 2.1, we tested the
stability of our simulations by analyzing the conservation of some specific hydrogen bonds
and multiplets. We also checked that the convergence of the average number of WC hydrogen
bonds (⟨NWC-HB⟩) was reached for each molecular system (see Figure B.17). Along the MD
trajectory, ⟨NWC-HB⟩ is stable and fluctuates around an average value for each molecular
system under investigation. To better characterize the WC-HB, we also computed their
lifetimes, using the following auto-correlation function:

CHB(t) =
⟨h(0)h(t)⟩

⟨h⟩ (7)

where h(t) is equal to 1 if the H-bond exist from time 0 to time t. Figure B.18 shows some
examples of the auto-correlation function CHB(t) obtained for our molecular systems. The
lifetime of WC-HB within loops, internal bulges or at helix’s termini is around 250-300 ps.
As expected, their lifetime is longer in the helical regions where it spans from 500 ps up to
values larger than 5 ns.

Since simulations converged with respect to base pairing, we can analyze the relationship
between the sugar pucker and the average number of hydrogen bonds formed by the Watson-
Crick edge. By analyzing the box plot (see Figure 10), we can conclude that the number of
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hydrogen bonds at the Watson-Crick edge increases with the probability that a nucleotide
assumes a C3′-endo pucker. However, nucleotides with a C2-′-endo pucker can also be
involved in canonical pairing. This observation is also confirmed by a low Cramer’V value
(0.28) and a Spearman correlation coefficient of 0.42.

3.2. DMS/CMCT reactivity

Although several studies were carried out to understand the molecular implications of
SHAPE reactivity, to best of our knowledge no computational studies have been carried
out to understand the relationship between nucleotide flexibility and chemical reactivity for
DMS or CMCT. We computed Spearman correlation coefficient for each individual structure
(see Table D.14) and for all the data together between the average number of hydrogen bonds
(HB) formed at WC edge and the DMS/CMCT reactivity. For both reagents, we obtained
a significant anti-correlation with a correlation coefficient of -0.59 and -0.42 for DMS and
CMCT respectively. Calculating the Cramer’V, we also verified that there is no bias in
the correlations. The Cramer’V confirms a relatively strong and moderate correlation as
shown by Spearman coefficient. Figure 11 summarizes these correlations through box plots.
We observe instances in which the base is reactive while in the crystal structure it forms
a canonical pair as well as instances in which the base is non-reactive but unpaired in the
crystal. We can speculate that such discrepancies because crystallization stabilizes or select
for some interactions that are poorly stable in the chemical probing conditions in solution
. It is well known that some local structural differences can be observed between RNA
molecules in solution and in the crystal. Indeed, Vincens and co-workers showed that local
conformational changes that take place during crystallization can be identified by comparing
SHAPE data obtained in solution, crystallization solution and crystal [95].
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Figure 11: Box plot of the average number of hydrogen bonds formed at the Watson-Crick edge, NWC−HB ,
as function of the DMS (left) and CMCT (right) reactivity (low, medium or high).

We also computed the correlation coefficient between the DMS/CMCT reactivity and
the fluctuations of the same geometric parameters investigated for SHAPE reactivity. For all
the RNA molecules, we did not find any geometric parameter with a significant correlation
with DMS reactivity. In contrast, for CMCT reactivity, we observed a significant positive
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correlation with the fluctuation of distance C1′i-C1′i+1 (⟨ρ⟩P = 0.52) and of the angle C1′i-P
′

i+1-
C1′i+1 (⟨ρ⟩P = 0.57). Significant positive correlations were also obtained with all helicoidal
parameters (shift, slide, rise, tilt, roll, and twist, see Table Appendix D for all the details).
The highest correlation coefficient (⟨ρ⟩P = 0.57) is between the CMCT reactivity and the
twist. The presence of a significant correlation between some structural parameters and
CMCT suggests that the microscopic interpretation for CMCT is more complex than for
DMS and it may explain the weaker correlation between its reactivity and canonical pairing.

4. Conclusions

In this work we investigated the relation between RNA flexibility, described through the
fluctuations of distances, angles, helicoidal parameters and ribose pucker, and the reactivity
towards SHAPE, DMS and CMCT probes. For six RNA molecules of different sizes and
shape, we performed all-atom molecular dynamics simulations reaching the timescale of one
microsecond. We performed a statistical analysis to characterize the relationship between
SHAPE/DMS/CMCT reactivity and several geometrical parameters, including distances,
sugar pucker and hydrogen bonds. Our statistical approach allows us to study the trend
between chemical reactivity and structural parameters and to gather some mechanical un-
derstanding of the information from chemical probing.

First, we verified that there is no significant correlation between chemical reactivity
and the accessbility of 2-OH′. In contrast, a significant correlation was observed between
chemical reactivity and nucleobase solvent accessibility. We analyzed distances, angles and
inter-base helicoidal parameters and we computed their fluctuations from the MD simula-
tions. When we focus on one single structural parameter, we observe moderate correlations
with 1M7 reactivity while combining two or more geometrical parameters significantly im-
proves correlation. Hence we conclude that the flexibility of a single parameter does not
allow to fully describe SHAPE reactivity. In addition we observed for some nucleotides that
the base flexibility and therefore its pairing status is not always correlated with the ribose
flexibility. Another important feature for the SHAPE reactivity is the ribose pucker. As
expected, the C3′-endo conformation is the most common. However, the ribose can assume
not only the C2′-endo, but also the other intermediate conformations. We also observed
that the C3′-endo conformation changes faster than the C2′-endo. Based on our statistical
analysis, we observed that the fluctuations of geometrical parameters are only moderately
correlated to the pucker families and their flexibility. Our simulations confirm the general
assumption that a high SHAPE reactivity is mainly associated to high sugar flexibility, but
show a complex scenario on how this can happen. Despite this, the C2′-endo and its
transient states are highly overreprenseted among hyper-reactive nucleotides. In addition,
our results suggest the possibility for a nucleotide to react with 1M7 even though it is rigid,
highlighting that our understanding of SHAPE chemical reactivity is still incomplete and
will necessitate further chemical studies. Although current secondary structure prediction
models consider a SHAPE-reactive nucleotide as unpaired, our study suggest that there is
not a strict correlation between canonical pairing and sugar pucker flexibility.
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We also analyzed the interplay between the geometrical parameters, the canonical pair-
ing (i.e. hydrogen bonds at the WC edge) and the DMS/CMCT reactivity. Interestingly,
we found a moderate significant correlation between CMCT reactivity and the fluctuation
of distance C1′i-C1′i+1, of the angle C1′i-P

′

i+1-C1′i+1 and all helicoidal parameters. However
no significant correlation between the structural parameters and DMS reactivity was ob-
served. These findings suggest that CMCT reactivity is sensitive also to the local flexibility
of the nucleotide, and not only to its WC paired status, while DMS is less sensitive to the
local environment of the base. For both reagents, we obtained a significant anti-correlation
between their reactivity and the average number of hydrogen bonds (HB) formed at WC
edge. Their correlation are stronger than those obtained between structural parameters and
1M7 reactivity, with the correlation between canonical pairing and DMS reactivity being the
strongest. Looking at what bases are found paired in the experimental structures, we would
have expected these correlations to be even higher than what we obtained, but we detect
instances in which bases that are paired in the experimental structure, and stable in the
simulations, exhibit a high reactivity, indicating an unpaired base from chemical probing.
This result suggests the need for further investigation at experimental and computational
level of the effect of the chemical reaction on the nucleotide and its environment. Despite
these anomalies, our study highlights the intrinsic relationship between DMS/CMCT reac-
tivity and canonical pairing, which should therefore be included into 2D and 3D predictions
whenever possible.

Overall, our study suggests a complex picture of the chemical probing process where
the reactivity is influenced simultaneously by several local parameters and of which we
still do not have a full understanding. Further studies are necessary to draw a connection
of the interplay of data sharing common features, based on the flexibility propensity of
the different chemical moieties, the ribose pucker, the nucleotide accessibility and other
geometrical properties of the environment of the base, with the chemical reactivity, and
from this, draw some general rules to be exploited in secondary structure predictions. Even
if several questions on the relationship between reactivity and RNA structures remain open,
at this stage, our work has highlighted the structural features with a strong correlation
with the chemical reactivity. This information can already be harnessed in 3D molecular
modelling by introducing soft-constraints on local structural features (for example on the
sugar puckering) directly biasing simulations in agreement with the chemical probing profile.
For the 2D prediction algorithms, having a physical interpretation of the probe interaction
with the RNA, will allow a better evaluation of the pseudo-energies and pairing probabilities.
Moreover, further investigation of the relationship between local flexibility, base pairing as
well as stacking geometries, and chemical reactivity will allow to identify specific motifs and
nucleotide local geometries , thus improving the existing scoring functions of 2D algorithms.
This strategy can be used for ab initio folding as well as for refinement of experimental
structures when the molecule undergoes changes in the environment inducing rearrangements
in its secondary structure, enhancing our understanding of RNA structural plasticity.
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Appendix A. Lariat capping ribozyme from Didymium iridis probing and sec-
ondary structure prediction

SHAPE. Lariat capping ribozyme from Didymium iridis secondary structure was predicted
with SHAPE probe 1M7 (1-methyl-7 nitrosatoic anhydre). 6 pmol of RNA were resuspended
in 18µL of water, denatured at 80 ○C for 2 min and cooled down at room temperature for
10 min in a probing buffer (40 mM HEPES pH 7.5, 100 mM KCl, 5 mM MgCl2). Then,
after incubation at 25 or 37 ○C for 10 min, RNA was treated with 2 mM of 1M7 or DMSO
(negative control) and incubated for 5 min at 25 or 37 ○C. The modified or unmodified
RNA was purified by ethanol precipitation and pellets were resuspended in 10 µL of water.
Modification was revealed by reverse transcription using 5′ fluorescent primers (D2 or D4
WellRED, Sigma Aldrich) and M-MLV RNAse H-reverse transcriptase (Promega). To read
the whole sequence of lariat capping ribozyme we used this following primer: 258NP rev:
5′ CTG-TGA-ACT-AAT-GCT-GTC-CTT-TAA 3′. Briefly, RNA treated was denatured for
3 min at 95 ○C with 1 µL of DMSO and cooled in ice for 3 min. Three µL of primer were
added and samples were incubated for 5 min at 65 ○C and for 10 min at 35 ○C and subsequently
cooled on ice. Reverse transcription was performed in several steps: 2 min at 35 ○C, 30 min
at 42 ○C and 5 min at 55 ○C. cDNA were separate and detected by capillary electrophoresis
(Beckman Coulter, Ceq8000). Data were analyzed using software QuSHAPE[96]. RNA
probing was performed in triplicate for each Didymium with distinct RNA preparations.
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DMS. 6 pmol of RNA were added to the same buffer with MgCl2 used in the SHAPE ex-
periments.Then, RNA was denatured at 80°C for 2 min and 1µL of DMS was than added
(DMS:ethanol dilution of 1:12). After 5 min of incubation at 37 ○C, the reaction was stopped
and 400 mM of Tris were added at pH 7.5. The samples were then put in ice before cleaning
them via precipitation. The pellets were taken from 10µL of water.

CMCT. 6 pmol of RNA were denatured at 80 ○C for 2 min. Then, we added it to the 50 mM
of potassium borate at pH 8 and 5 mM of MgCl2, the solution was incubated at room
temperature for 5 min. Then, 10µL of CMCT (42 mg ⋅mL−1 were added and then incubated
for 10 mins at 37 ○C. The samples were put in ice to stop the reaction. The modified or
unmodified RNA was purified by ethanol precipitation and pellets were resuspended in 10µL
of water.

Appendix B. Analysis of stability of RNA structures along all-atom molecular
dynamics simulations

In this appendix, we present supplementary data to assess the stability of RNA molecules
along all-atom MD simulations. To this end, we first computed Root-Mean-Square-Deviation
(RMSD) along the trajectories by using the starting structure as reference (see Figure B.12-
B.14 and the RMSD between the average structure of the last 50 ns and the experimental
structure (Table B.4). For 4 systems out of 6, the RMSD values are equal or below 3.1 Å.
However, we would like to point out that RMSD is not always the best metric to assess the
quality of 3D RNA structures as shown in the RNA-Puzzles Rounds [97, 3]. Therefore, we
also compared the number and the type of hydrogen bonds along the MD simulations with
the ones present in the crystallographic structure and finally we analyzed if the multiplets
are conserved or not along the MD simulations.

In the two cases where the RMSD value is higher than 3.5 Å(4P8Z and 3OFC), the larger
RMSD is due to inter-domains relative movements that do not affect individual domains
structure. Chemical reactivity is influenced only by local conformations and should not
be affected by such conformational changes. For 4P8Z, a relative inter-domains motion is
responsible of the larger RMSD. Figure B.15 shows the distance time series for some relevant
hydrogen bonds involved in the multiplets for 4P8Z. Thanks to this analysis, we can better
assess the stability of 3D structure. For 3OFC, we observed than both an open (0-300 ns)
and a close (400-1000 ns) conformation are present. We would like to point out that for
3OFC the structure were taken from the whole ribosome while the chemical probing has been
performed on the naked RNA. Despite that, hydrogen bonds are mostly all conserved along
the MD simulation and the triplets are stable. Figure B.16 shows the distance time series
for some relevant hydrogen bonds involved in the triplets in 3OFC. We can observe that
for the triplet C31-G51-G53, the triplet is mostly stable along the simulations, however the
system investigates for 20 ns another unstable state and then returns to the native triplet.
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Figure B.12: Root-Mean-Square-Deviation (RMSD) time series and its marginal histogram of 2L1B (left)
and 1Y26 (right).

Figure B.13: Root-Mean-Square-Deviation (RMSD) time series and its marginal histogram of 1EHZ (left)
and 3PDR (right).

Figure B.14: Root-Mean-Square-Deviation (RMSD) time series and its marginal histogram of 3OFC (left)
and 4P8Z (right).
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PDB ID RMSD(Å)

2L1B 2.8
1Y26 2.2
1EHZ 2.9
3OFC 8.7
3PDR 3.1
4P8Z 5.7

Table B.4: RSMSD between the average structure obtained of the last 50 ns and the experimental structure.

Figure B.15: Left: Time series of the distance A146:N7-U174:N3 (blue) and A41:N3-A146:N6 (red) to assess
the stability of the triplet A41-A146-U174 in 4P8Z.Right: Time series of the distance G158:N2-A161:N7
(blue), G6:N2-A161:N1 (red) and G6:N1-A183:N1 (dark yellow) to assess the multiplet G6-G158-A161-A183
in 4P8Z.

Figure B.16: Left: Time series of the distance C38:N3-G44:N1 (blue) and G44:N2-C47:N3 (red) to assess
the stability of the triplet C38-G44-C47 in 3OFC.Right: Time series of the distance C31:O2-A53:N6 (blue)
and C31:N4-G51:O6 (red) to assess the stability of the triplet C31-G51-A53 in 3OFC.
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hydrogen bonds in our MD simulations.
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Appendix C. Definition of geometrical parameters
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Figure C.19: Definition of the distances. Left: Pi-Pi+1. Centre: C1′i-C1′i+1. Right: O2′i-bi with bi=N3 for
A,G and bi=O2 for U,C. The index i represents the number of the nucleotide.
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Figure C.20: Definition of the angles under investigation. From the left to the right: C1′i-C4′i-Pi+1, C1′i-Pi+1-
C1′i+2, C2i-C1′i-Pi+1, C2i-C4′i-Pi+1, O2′i-Pi+1-O5′i+1, O3′i-Pi+1-O2′i+1,O5′i-Pi+1-O2′i+1 , where i represents the
number of the nucleotide.
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Appendix D. Correlation coefficients

PDB ID d1 d2 d3 d4

2L1B 0.66 0.62 0.65 0.31
1Y26 0.78 0.75 0.69 0.49
1EHZ 0.38 0.54 0.19* 0.20*
3OFC 0.21 0.26 0.33 0.16*
3PDR 0.82 0.85 0.65 0.48
4P8Z 0.32 0.33 0.17 -0.04*

Table D.5: Pearson correlation coefficient between 1M7 reactivity and the fluctuation of the distances C1′i-
C1′i+1 (d1),C2i-C2i+1 (d2)k O2′i-bi with bi=N3 for A,G and bi=O2 for U,C (d3), and Pi-Pi+1 (d4). *: p-value
higher than 0.05.

PDB ID d1 d2 d3 d4

2L1B 0.70 0.73 0.51 0.07*
1Y26 0.37 0.46 0.23 0.33
1EHZ 0.59 0.71 0.56 0.44
3OFC 0.30 0.47 0.25 0.09*
3PDR 0.12* 0.43 0.09* -0.01*
4P8Z 0.23 0.36 0.29 -0.10*

Table D.6: Spearman correlation coefficient between 1M7 reactivity and the fluctuation of the distances
C1′i-C1′i+1 (d1), C2i-C2i+1 (d2), O2′i-bi with bi=N3 for A,G and bi=O2 for U,C (d3) and Pi-Pi+1 (d4).*:
p-value higher than 0.05.

PDB ID a1 a2 a3 a4 a5 a6 a7 a8

2L1B 0.66 0.54 0.43 0.45 0.66 0.31* 0.27* 0.32*
1Y26 0.43 0.77 0.60 0.59 0.69 0.40 0.69 0.64
1EHZ 0.34 0.35 0.38 0.46 0.44 0.45 0.27 0.39
3OFC 0.44 0.29 0.24 0.40 0.25 0.26 0.39 0.31
3PDR 0.59 0.81 0.76 0.79 0.85 0.55 0.61 0.81
4P8Z 0.32 0.34 0.23 0.23 0.37 0.30 0.22 0.18

Table D.7: Pearson correlation coefficient between 1M7 reactivity and the fluctuation of the angles C1′i-C4′i-
Pi+1 (a1), C1′i-Pi+1-C1′i+1 (a2), C2i-C1′i+1-Pi+1 (a3), C2i-C4′i+1-Pi+1 (a4), C2i-Pi+1-C2i+1 (a5), O2′i-Pi+1-
O5′i+1 (a6), O3′i-Pi+1-O2′i+1 (a7), O5′i-Pi+1-O2′i+1 (a8). *: p-value higher than 0.05.
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PDB ID a1 a2 a3 a4 a5 a6 a7 a8

2L1B 0.51 0.48 0.42 0.55 0.44 0.50 0.33 0.48
1Y26 0.32 0.30 0.26 0.33 0.31 0.32 0.27 0.32
1EHZ 0.41 0.40 0.48 0.54 0.48 0.42 0.34 0.45
3OFC 0.35 0.24 0.22 0.32 0.29 0.24 0.24 0.18
3PDR 0.20 0.13 0.16 0.21 0.27 0.09* 0.09* 0.17
4P8Z 0.25 0.20 0.16 0.27 0.28 0.21 0.16 0.16

Table D.8: Spearman correlation coefficient between 1M7 reactivity and the fluctuation of the angles C1′i-
C4′i-Pi+1 (a1), C1′i-Pi+1-C1′i+1 (a2), C2i-C1′i+1-Pi+1 (a3), C2i-C4′i+1-Pi+1 (a4), C2i-Pi+1-C2i+1 (a5), O2′i-
Pi+1-O5′i+1 (a6), O3′i-Pi+1-O2′i+1 (a7), O5′i-Pi+1-O2′i+1 (a8). *: p-value higher than 0.05.

PDB ID Shift Slide Rise Tilt Roll Twist

2L1B 0.24* 0.44 0.21* 0.65 0.43 0.35
1Y26 0.45 0.49 0.58 0.55 0.47 0.54
1EHZ 0.28 0.34 0.21* 0.24 0.28 0.34
3OFC 0.29 0.38 0.29 0.29 0.27 0.31
3PDR 0.62 0.60 0.41 0.69 0.67 0.71
4P8Z 0.38 0.29 0.39 0.37 0.34 0.37

Table D.9: Pearson correlation coefficient between 1M7 reactivity and the fluctuation of the translation
(Shift, Slide and Rise) and rotational helicoidal parameters (Tilt, Roll, Twist). *: p-value higher than 0.05.

PDB ID Shift Slide Rise Tilt Roll Twist

2L1B 0.57 0.59 0.39 0.52 0.70 0.61
1Y26 0.52 0.50 0.38 0.36 0.35 0.59
1EHZ 0.66 0.66 0.54 0.58 0.62 0.65
3OFC 0.35 0.40 0.38 0.41 0.36 0.42
3PDR 0.30 0.23 0.30 0.21 0.25 0.41
4P8Z 0.41 0.41 0.45 0.46 0.48 0.43

Table D.10: Spearman correlation coefficient between 1M7 reactivity and the fluctuation of the translation
(Shift, Slide and Rise) and rotational helicoidal parameters (Tilt, Roll, Twist) and 1M7 reactivity. *: p-value
higher than 0.05.

31



PDB ID d1 d2 d3 d4

2L1B 0.57 0.49 0.65 0.32
1Y26 0.52 0.41 0.74 0.30
1EHZ 0.56 0.60 0.74 0.25
3OFC 0.73 0.78 0.68 0.26
3PDR 0.70 0.71 0.79 0.47
4P8Z 0.75 0.65 0.77 0.46

Table D.11: Spearman correlation coefficient between the fluctuation of pucker phase and the fluctuation
of the distances C1′i-C1′i+1 (d1), C2i-C2i+1 (d2), O2′i-bi with bi=N3 for A,G and bi=O2 for U,C (d3) and
Pi-Pi+1 (d4).*: p-value higher than 0.05.

PDB ID a1 a2 a3 a4 a5 a6 a7 a8

2L1B 0.75 0.66 0.60 0.70 0.64 0.77 0.66 0.75
1Y26 0.58 0.61 0.66 0.66 0.49 0.64 0.54 0.63
1EHZ 0.80 0.73 0.72 0.76 0.65 0.75 0.57 0.75
3OFC 0.64 0.76 0.60 0.67 0.72 0.80 0.62 0.74
3PDR 0.74 0.75 0.74 0.71 0.73 0.75 0.72 0.77
4P8Z 0.71 0.82 0.78 0.76 0.64 0.77 0.64 0.74

Table D.12: Spearman correlation coefficient between the fluctuation of pucker phase and the fluctuation of
the angles C1′i-C4′i-Pi+1 (a1), C1′i-Pi+1-C1′i+1 (a2), C2i-C1′i+1-Pi+1 (a3), C2i-C4′i+1-Pi+1 (a4), C2i-Pi+1-C2i+1
(a5), O2′i-Pi+1-O5′i+1 (a6), O3′i-Pi+1-O2′i+1 (a7), O5′i-Pi+1-O2′i+1 (a8). *: p-value higher than 0.05.

PDB ID Shift Slide Rise Tilt Roll Twist

2L1B 0.57 0.74 0.62 0.60 0.61 0.70
1Y26 0.56 0.67 0.53 0.62 0.58 0.54
1EHZ 0.69 0.76 0.70 0.73 0.76 0.71
3OFC 0.68 0.71 0.58 0.69 0.75 0.71
3PDR 0.69 0.74 0.63 0.69 0.72 0.69
4P8Z 0.66 0.76 0.67 0.74 0.75 0.68

Table D.13: Spearman correlation coefficient between the fluctuation of pucker phase and the fluctuation
of the translation (Shift, Slide and Rise) and rotational helicoidal parameters (Tilt, Roll, Twist) and 1M7
reactivity. *: p-value higher than 0.05.
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PDB ID DMS CMCT

1Y26 -0.63 (1 ⋅ 10−4) -0.45 (4 ⋅ 10−3)
1EHZ -0.74 (2 ⋅ 10−7) -0.49 (1 ⋅ 10−3)
3OFC -0.58 (1 ⋅ 10−6) -0.35 (6 ⋅ 10−3)
4P8Z -0.51 (2 ⋅ 10−6) -0.44 (2 ⋅ 10−4)

Table D.14: Spearman correlation coefficient between the average number of HB formed at WC edge,
NWC−HB , and DMS and CMCT reactivity, respectively. In the bracket, we reported the p-value.

PDB ID C1′i-C1′i+1 C1′i-Pi+1C1′i+1 Shift Slide Rise Tilt Roll Twist

1Y26 0.49 0.52 0.34 0.45 0.41 0.45 0.49 0.46
1EHZ 0.46 0.44 0.41 0.43 0.49 0.53 0.53 0.45
3OFC 0.27 0.28 0.36 0.35 0.45 0.38 0.36 0.52
4P8Z 0.77 0.85 0.69 0.75 0.72 0.73 0.61 0.78

Table D.15: Pearson correlation coefficient between CMCT reactivity and the fluctuations of the distance
C1′i-C1′i+1, the angle C1′i-Pi+1C1′i+1, Shift, Slide, Rise, Tilt, Roll and Twist.
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Appendix E. Ribose pucker analyisis
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