

Noise Mapping based on OpenStreetMap data

 $\label{eq:chernel} \begin{array}{l} {\sf Erwan} \ {\sf Bocher}^1, \ \underline{{\sf Gwenaël} \ {\sf GuillAume}^2}, \ {\sf Sébastien} \ {\sf Guyon}^1, \ {\sf Nicolas} \ {\sf Fortin}^3 \\ {\sf and} \ {\sf Pierre} \ {\sf Aumond}^3 \end{array}$

 1 Lab-STICC - CNRS UMR 6285 - Université de Bretagne Sud (UBS) - $_{\rm LORIENT}$ (France)

² Cerema, Ifsttar - UMRAE - STRASBOURG (France)

³ Ifsttar, Cerema - UMRAE - NANTES (France)

15 Mai 2019

G. GUILLAUME Noise Mapping based on OpenStreetMap data

Introduction

- Context
- Objectives and methodology

Framework

- Noise modelling tool
- OSM data integration chain

Case study

- Study area
- Input data

Results

- Long-term noise levels
- Comparison reference/OSM results

Conclusion

Introduction

- Context
- Objectives and methodology

- Noise modelling tool
- OSM data integration chain

- Input data

- Comparison reference/OSM results

umr

Input data for noise mapping

buildings + roads/traffic + land use and topography + population distribution + ...

Data origin

- data provided by the state services (ex: IGN^a or Insee^b in France) ...
- ... and sometimes unavailable
- open data sources OpenStreetMap^c (OSM)

^aNational Institute of Geographic and Forest Information, formerly National Geographic Institute ^bNational Institute of Statistics and Economic Studies

 c OpenStreetMap: collaborative project to create a free editable map of the world. Crowdsourced data are made available under the Open Database License (ODbL).

Imr

Objectives

Creation of noise maps based on OSM data

- open-access database available with worldwide coverage and regularly updated
- automation of the data access and formatting, and of the noise maps production

Methodology

Evaluation of the relevance of the noise maps built with OSM data in comparison with sovereign and consistent data

- in terms of noise levels
- in terms of population exposure

MADRID inter.noi/e 2019 June 16 - 19 NOISE CONTROL FOR A BETTER ENVIRONMENT

Introduction

- Context
- Objectives and methodology

Framework

- Noise modelling tool
- OSM data integration chain

Case stud

- Study area
- Input data

Results

- Long-term noise levels
- Comparison reference/OSM results

Conclusion

Imr

Noise modelling tool

NoiseModelling^a

- free and open-source software
- integrated in OrbisGIS^b
- CNOSSOS-EU implemented (road traffic emissions+noise propagation calculation)

^ahttp://noise-planet.org/noisemodelling.html ^bhttp://orbisgis.org/

MADRID inter.noi/e 2019 June 16 - 19 ISE CONTROL FOR A BETTER ENVIRONMENT

OSM data model

- nodes: basic elements
- geographical information (points)
- ways: set of nodes (2→2000)

roads, rails, avenues, etc.
 areas, buildings, etc. (« closed lines »)

- relations: link between nodes/lines/relations
 - group of objects (ex: airport)
 - complex geometries (ex: buildings' inner yards)
- tags: semantic information
- key=value (building, highway, etc.)

OSM model (A. Hombiat, PhD Thesis, 2017) OSM data layers (https://www.nationalgeographic.org, 2018)

Processing chain of OSM data

* for major highways: AADT from counts database of 2015 (source: Ministry of Ecological and Solidarity Transition)

else: recommendations of the European Commission Working Group Assessment of Exposure to Noise (WG-AEN, 2006)

Introduction

- Context
- Objectives and methodology
- 2 F

Framework

- Noise modelling tool
- OSM data integration chain

Case study

- Study area
- Input data

Results

- Long-term noise levelsComparison reference/OSM results
- Conclusion

umr

Study Area

- case study in the city of Lorient^a (France)
- area of about 2 km²
- 503 receivers randomly selected in the area
- 50 buildings assessed (\rightarrow 491 inh.)

 $^a \mbox{CENSE}$ project (« Characterization of urban sound environments using a comprehensive approach combining open data, measurements and modeling »)

umr

Input data

Data sources: state services vs. OSM buildings \clubsuit roads/traffic (LV+HV) \clubsuit land use and topography \clubsuit population distribution

Only taken into account for reference data

Issued from the reference database

MADRID inter.noi/e 2019 June 16 - 19 NOISE CONTROL FOR A BETTER ENVIRONMENT

Introduction

- Context
- Objectives and methodology

Framework

- Noise modelling tool
- OSM data integration chain

Cas

- Study area
- Input data

Results

- Long-term noise levels
- Comparison reference/OSM results

Conclusion

[dB(A)] • > 50 • 50 - 55 • 55 - 60 • 60 - 65 • 65 - 70 • 70 - 75 • > 75

OSM data

Comparison in terms of noise levels

Comparison in terms of exposed population

Range	$L_{\rm den,ref}$	$L_{ m den,osm}$	$L_{n,ref}$	$L_{\rm n,osm}$
<45 dB(A)	0.0%	0.0%	0.4%	0.4%
45-50 dB(A)	0.0%	0.0%	17.3%	0.0%
50-55 dB(A)	0.4%	0.4%	17.1%	17.3%
55-60 dB(A)	16.9%	0.0%	65.2%	79.6%
60-65 dB(A)	15.9%	17.3%	0.0%	2.6%
65-70 dB(A)	66.8%	79.6%	0.0%	0.0%
70-75 dB(A)	0.0%	2.6%	0.0%	0.0%
>75 dB(A)	0.0%	0.0%	0.0%	0.0%

- Context
- Objectives and methodology

- Noise modelling tool
- OSM data integration chain

- Input data

- Comparison reference/OSM results

Conclusion

Imr

Conclusion

- open-source framework for noise mapping with open input data
- comparison of long-term noise indicators and exposed population based on state services and OpenStreetMap data
- discrepancies observed due to different road traffic input and to the non-inclusion of land use and topography

Perspectives

- integration of the land use issued from the OSM database
- improvement of traffic input data (classification of road sections, coupling with a traffic model)

umr

Thank you for your attention

Gwenaël GUILLAUME Cerema, Ifsttar, UMRAE 11, rue Jean Mentelin - BP 9 -67035 Strasbourg Cedex 2 Tél. : +33(0)3 88 77 46 07 gwenael.guillaume@cerema.fr

