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INTRODUCTION

This supplementary information is organised as follows. In the first section, we give the details of the stability
analysis for both the Turing and the Faraday instabilities. In particular we show how to arrive at Eq. (2) and (3)
in the paper. Although these results are already reported in the literature for both the Turing [1] and Faraday [2]
mechanism, respectively, it is useful to show how they derive from the same starting point. Moreover we propose
a different (more general) approach to look at the onset of the Faraday instability. In the second section we show
examples of the temporal traces corresponding to the spectra shown in the paper. In the third section we give details
concerning the experimental setup. In the last section we show additional experimental results concerning bistability
and hysteresis in the system.

STABILITY ANALYSIS

We consider the Lugiato-Lefever equation (LLE) in non-dimensional form [Eq. (1) of the manuscript], that we
repeat here for convenience:
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where the periodic dispersion profile is of the form β(z) = βav + βmf(z), βav being the average dispersion, βm the
amplitude of the modulation and f(z) a periodic function of normalized period Λ (the spatial frequency is kg = 2π

Λ )
with zero average and peak-to-peak amplitude equal to two [e.g. f(z) = sin(kgz)]. Since the distance z is measured
in units of the cavity length, for consistency the period must be chosen as a fraction, namely Λ = 1/N (N = 1, 2, . . .).

The stationary solution of Eq. (S1), u0(z, t) =
√
Pu, which can be assumed real without loss of generality, follows

from the steady state response P = P (Pu), explicitly P = Pu[(Pu − δ)2 + α2], where P = |S|2 is the input power and
Pu = u2

0 is the intracavity power. The steady state response is bistable whenever δ2 > 3α2. In this case the function
Pu(P ) is multivalued in the range P (P+

u ) ≤ P ≤ P (P−
u ) where P±

u = (2δ ±
√
δ2 − 3α2)/2 stands for the knees of the

bistable response. In the multivalued region, out of the three possible solutions, only the lower and the higher ones
are stable. The intermediate one, associated to a negative slope, is dynamically unstable so it is not reachable in the
experiments.

The cavity steady states can destabilize through the exponential growth of modulations which can be due to a Turing
(modulation instability, MI) or Faraday (parametric instability) mechanism, respectively. The Turing instability is
characteristic of a uniform cavity (in a periodic case it is affected only by the average quantities), whereas the
Faraday instability is a consequence of the parametric resonance due to the forcing, and hence the characteristics of
the instability are affected by the period and the strength of the perturbation. However both follows from a linear
stability analysis of the steady solution u0, which at some point needs to be specialized to describe the two mechanisms.
To this end, we start by considering the evolution of a perturbed solution u(z, t) =

√
Pu + [u(z, t) + iv(z, t)], where

we assume the real functions u, v � u0.
By linearization of Eq. (S1), we obtain a linear system of PDE ruling the evolution of the perturbation:
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Taking the Fourier transform in time [û(z, ω) =
∫
u(z, t)eiωtdt] of this system leads, for each frequency, to a second

order ODE system

d
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] [
û
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]
, (S4)

where g(z) = β(z)
2 ω2 + Pu − δ and h(z) = β(z)

2 ω2 + 3Pu − δ.

Uniform cavity: Turing instability

We start to consider a uniform cavity, where βm = 0, β(z) = βav. System (S4) is similar to a damped harmonic
oscillator, whose oscillation spatial frequency (wavenumber) is

kav =
√
havgav =

√(
βav
2
ω2 + 2Pu − δ

)2

− (Pu)
2
. (S5)

Its eigenvalues, which rule the z evolution, read −α± ikav. When the detuning δ is sufficiently high, kav can become
imaginary in a certain range of ω, and the solution of Eqs. (S4) involves two exponentials with real argument. In this
range, if |kav| > α the perturbations û, v̂ grows exponentially ∝ exp[g(ω)z] with growth rate g(ω) = −α+

√
−havgav,

entailing MI (Turing) of the stationary solution [1]. The most unstable Turing frequency ω = ωT and its corresponding
gain, can be easily calculated from the eigenvalues to be

ωT =
√

2
βav

(δ − 2Pu), g(ωT ) = Pu − α. (S6)

We recall that, unlike the cavityless fiber configuration, where MI occurs only in the anomalous GVD regime and
without threshold, in the cavity MI occurs also with normal GVD and has a threshold Pu = α, obtained by imposing
g = 0 in Eq. (S6).

The linear stability analysis presented here allows to determine the conditions of instability with respect to small
perturbations but does not provide any information on the dynamics of large amplitude modulated states. In other
words, MI is the generating mechanism of the Turing pattern but only in a subset of the unstable region, the growth
of the sideband can generate a stable pattern. This has been analyzed in details in [4]. The region of parameter where
MI can lead to the generation of a stable Turing pattern is highlighted in green in Fig. 1(d) of the manuscript.

Periodically modulated cavity: Faraday instability

Before proceeding with the analysis, it is useful to factorize the effect of the losses through the transformation
[û, v̂] = [ũ, ṽ] exp(−αz), that transforms Eqs. (S4) into a one degrees of freedom Hamiltonian system with canonical
coordinates [ũ, ṽ]:
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Since the coefficients in the equation are z-periodic with period Λ, Floquet theory applies. This amounts to study the
evolution over one period Λ, to obtain the Floquet map Φ which is the two by two real matrix defined by [ũ(Λ), ṽ(Λ)]T =
Φ[ũ(0), ṽ(0)]T . As a result [ũ(nΛ), ṽ(nΛ)]T = Φn[ũ(0), ṽ(0)]T . Note that Φ necessarily has determinant one, since it
is obtained by integrating a Hamiltonian dynamics, which preserves phase space volume. As a consequence, the two
eigenvalues of Φ are constrained to lie either both on the unit circle, or both on the real axis. Only in the latter case
the system can be unstable, the instability being associated with |λ| > 1 according to Floquet theory.

Since the system (S7) is not autonomous, it cannot be solved analytically in general. Nevertheless, the above obser-
vations will allow us to obtain some information about its (in)stability for (relatively) small βm, which, importantly,
hold valid regardless of the specific shape of the forcing f(z) [3].

To see this, let us start from the unperturbed limit βm = 0, β(z) = βav. It is then straightforward to integrate the
system (S7). The Floquet map is then given by
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kav

sin(kavΛ)

kav
gav

sin(kavΛ) cos(kavΛ)

 . (S8)
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FIG. S1. Sketch illustrating, in the complex plane, the effect of the forcing term f(z) on the eigenvalues of the Floquet map
(S8). Black dots correspond to the unperturbed eigenvalues lying on the unit circle (dashed line). Colored dots show the new
position of the eigenvalues after switching on the perturbations, leading to a stable regime when k 6= mπ

Λ
(left sketch) and an

unstable one when k = mπ
λ

(right sketch).

The eigenvalues of Φav can be easily computed as

λ±av = exp(±ikavΛ). (S9)

We assume that kav(ω) is real, i.e. the uniform cavity is stable with respect to perturbations at frequency ω, and ask
ourselves what happens by switching on the periodic dispersion described by f(z). The system (S7) becomes non-
autonomous and hence it is no longer possible, in general, to give a simple closed form expression of the eigenvalues.
Nevertheless, we do know that, for sufficiently small βm, the eigenvalues of Φ must be close to the eigenvalues λ±av.
We then distinguish two cases:
1. Off-resonant case kav 6= mπ

Λ . Since kavΛ 6= mπ, it follows from Eq. (S9) that λ−av = (λ+
av)

∗, are distinct and
they both lie on the unit circle, away from the real axis. They then must remain on the unit circle under perturbation
since, for the reasons explained above, they cannot move into the complex plane away from the unit circle. A pictorial
description of this situation is shown in the left panel of Fig. S1. In this case, the stationary solution is linearly stable
under a sufficiently small perturbation βmf(z) and this statement does not depend on the precise form of f(z).
2. On-resonant case kav = mπ

Λ . It follows from Eq. (S9) that λ+
av = λ−av = ±1 (upper or lower sign holds for

m even or odd, respectively) is a doubly degenerate eigenvalue of Φav. Under a small perturbation, the degeneracy
can be lifted and two real eigenvalues can be created, one greater than one, one less than one in absolute value. The
system has then become unstable! A pictorial description of this situation is shown in the right panel of Fig. S1.
In principle, under very peculiar perturbations, the eigenvalues might also move along the circle implying that the
system remain stable. However, for the most common perturbations (sinusoidal, square wave, sawtooth, comb, ...),
the system destabilizes under an arbitrarily small perturbation, following the split of the eigenvalues on the real axis
at the degenerate points ±1.

We recap by saying that, when the forcing is switched on, the instability sets in under the resonant condition
kav = mπ

Λ . Recalling the expression of kav = kav(ω) in Eq. (S5), it is straightforward to show that the m−th order
resonance is fulfilled at frequency ω = ωm, where

ωm =

√{
2
βav

(δ − 2Pu)
}
±
[

2
βav

√(
mπ
Λ

)2
+ P 2

u

]
, (S10)

which is therefore the frequency at which the system destabilizes for an infinitely small Hamiltonian perturbation of
Φav.

In Eq. (S10) it is possible to recognize the contribution of the periodic dispersion in the term in the square bracket.

We emphasize that the resonance condition

kav(ωm) = m π
Λ = m

kg
2 (S11)
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FIG. S2. Color level plot of growth rate g(ω). (a) Uniform cavity βav = 1, βm = 0, Λ = 1. The dashed green curve indicates
the peak gain calculated from Eq. (S6). (b) Modulated cavity βav = 1, βa,b = 1± 1.5, Λa = Λb = 0.5. The dashed black curves
indicates the peak gain calculated from Eq. (S10) for m = 1, 2, 3, 4. (c) Modulated cavity βav = 1, Pu = 1, Λa = Λb = 0.5. In
all three plots, δ = π/5, α = 0.15.

is the condition of parametric resonance, i.e. the natural spatial frequency of the unperturbed harmonic oscillator
(kav) is equal to a multiple of half the forcing spatial frequency (π/Λ).

Note that in the case of extended systems exhibiting spatial pattern formation, the role of ω and k is interchanged,
and one can say that, under forcing of the system at frequency ωd, the system develops a parametric instability char-
acterized by wavenumbers km, selected through the dispersion relation ω = ω(k) (seen by the linearized perturbation
of the steady-state) in such a way that the resonance conditions ω(km) = mωd/2 are fulfilled.

We return now to the original (damped) system for the perturbations [û, v̂]. The Floquet map is simply given by
Ψav = exp(−αΛ)Φav, whose eigenvalues read as:

σ±
av = exp(−αΛ)λ±av = exp[(−α± ikav)Λ]. (S12)

That means that the eigenvalues σ±
av lie in the complex plane either on a circle of radius exp(−αΛ) (case 1), or

on the real axis (case 2). Now the perturbation can grow only if the forcing βm is sufficient to push one of the
eigenvalues outside the unit circle. In this case, the perturbations û, v̂ will experience an exponential growth with
rate g(ω) = ln(max |σ±|)/Λ. This means that there is a threshold on βm for the onset of the parametric instability.
On the same footing, for a fixed βm, there exist a power threshold for the parametric instability to appear.

To summarize, the Faraday instability appears in general at multiple frequencies ωm given by Eq. (S10) which
depend on the period of the forcing and represent the tips of the unstable regions known as Arnold tongues, whereas
a threshold in the strength of the forcing (or intracavity power) exists which depends on the losses (the higher the
losses, the higher the threshold) and on the specific shape of the perturbation (though no general analytical formulas
can be given for the threshold).

The stability analysis presented here allows to determine the conditions of parametric instability with respect to
small perturbations but does not provide any information on the dynamics of large amplitude modulated states. In
other words, parametric instability is the generating mechanism of the Faraday pattern but only in a subset of the
unstable region the growth of the sideband can generate a stable pattern. The region where parametric instability
can lead to the generation of a stable Faraday pattern is highlighted in blue in Fig. 1(d) of the manuscript, and it
was calculated from numerical simulation of LLE. Above this region, the Faraday pattern becomes unstable and the
behavior of the cavity chaotic.

Piecewise constant dispersion

An example of practical interest where the Floquet analysis can be performed analytically is a cavity with a piecewise
constant dispersion [2]. This case corresponds to the experimental set-up we used, where the intracavity loop is made
of two pieces of different fibers spliced together. The Floquet map is given by

Ψ = exp(−αΛ)ΦaΦb, (S13)

where Φa,b has the expression (S8) calculated for a dispersion β(z) = βa,b, where the two pieces of fiber has length
Λa,b, such that Λa + Λb = Λ and the average dispersion is βav = (βaΛa + βbΛb)/Λ.
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The eigenvalues of Ψ are given by

σ± =
∆

2
±
√

∆2

4
−W, (S14)

where

∆ = e−αΛ

[
2 cos(kaΛa) cos(kbΛb)−

gahb + gbha
kakb

sin(kaΛa) sin(kbΛb)

]
, (S15)

and W = e−2αΛ. We have parametric instability if |∆| > (1 +W ), with gain g(ω) = ln(max |σ±|)/Λ.

In Fig. S2 we report some examples of analytically calculated instability gain. Figure S2(a) shows the gain as
a function of perturbation frequency and intracavity power for a homogeneous cavity. In this case, we observe a
branch located around zero frequency, that can generate a stable Turing pattern. Figure S2(b) shows the gain for
a modulated cavity in the same operating conditions. The Turing branch survives, and we see the generation of
several branches due to the periodic forcing. This parametric instability branches (also called Arnold tongues) are
the generating mechanism for the Faraday patterns. The existence of both Turing and Faraday branches in the same
device allows us to observe the competition between the two phenomena. Figure S2(c) shows the Arnold tongues as a
function of the forcing amplitude βm for a fixed power. Due to nonzero losses α, there exist a threshold for the onset
of the instability (as discussed above), which is generally different for each tongue.

SIMULATED TEMPORAL TRACES

Four typical temporal profiles corresponding to our experiments are displayed in Fig. S3. These figures have been
obtained from numerical simulations of the LLE since their characteristic time scale lies in the ps regime, and it is
thus impossible to measure it experimentally even with ultra-fast oscilloscopes.

In all cases, a stable pattern is obtained after a few hundred roundtrips consisting in a periodic modulation of the
power on top of a constant background. We emphasize that the large difference of period between panels (c) and
(d) reflects the diversity in frequencies of the sidebands of Turing and Faraday patterns, respectively, which is the
distinctive trait which allows us to unequivocally identify the transition in Fig. 5(b) of the paper.
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FIG. S3. Temporal traces corresponding to the input powers and detunings of our experiments (Figs. 3 and 4 in the paper).
The insets show the corresponding workpoint over the bistable response.
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EXPERIMENTAL SETUP

In our experiments the fiber resonator is pumped by a cw-laser which is intensity-modulated using an electro-
optic modulator (EOM) to generate 4 ns long pulses, which are few thousands time longer that the typical period
of the modulated structure to observe. This allows suppression of Brillouin scattering effects and reaching large
peak powers after passage through two erbium-doped fiber amplifiers (EDFAs) combined with fiber Bragg gratings
(FBGs) to minimize the impact of amplified spontaneous emission from the EDFAs. The repetition rate is set to
4.14 MHz corresponding to the roundtrip time of the 51.6 m long cavity (only one pulse circulates inside the cavity
per roundtrip). This “Nonlinear beam” is launched inside the cavity through the 90/10 SMF coupler (i.e., at each
roundtrip, 10% of external and intracavity powers are coupled in and out, respectively). The spectrum at the output
of the cavity is recorded by an optical spectrum analyser (OSA). We estimate the total cavity losses from the relation
α = π/F , where F is the finesse of the cavity, which we measure from cavity transmission [Fig. 2(c) of the manuscript]
to be F ≈ 20, yielding typically α ≈ 0.157.

In order to operate at constant detuning δ we extract a small fraction of the pump power in the “Control beam”,
which is launched inside the cavity in the counterpropagating configuration with respect to the “Nonlinear beam”.
We control the linear phase accumulation of light during a roundtrip by finely tuning the wavelength of the laser.
The output of the “Control beam” is launched into a servo controlled system (PID) to be compared to a reference
level related to the desired detuning. It then generates an error signal that finely tunes the pump wavelength to
compensate for the environmental fluctuations, and thus locks the value of the detuning. The maximum duration of
the locking is strongly linked to the environment fluctuations for they eventually lead to a failure of the PID system.
The interested reader may find additional informations concerning the operation of the cavity and the cavity-detuning
control scheme in [5]. In this reference, the authors were able to stabilize the detuning by finely stretching the fiber
inside the cavity, which is somehow equivalent to the method used here.

We also point out that since the dispersion map is made by splicing together two different fibers, we have also an
effective map in the nonlinearity due to the different nonlinear coefficients, namely 1.2 (W km)−1 for the SMF28 and
5.6 (W km)−1 for the DSF. This can be easily accounted for in the theory. However, our numerical check reveals
that the contribution of the periodicity of the nonlinearity is negligible compared to the dispersion contribution.
Therefore, for the sake of simplicity, the theory in the paper was presented by referring to the dispersion map, which
is the dominant contribution to the Faraday instability.

EXPERIMENTAL OBSERVATION OF HYSTERESIS
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FIG. S4. (a) Bistable response of the cavity calculated for ∆ = 6.25, along with a sketch of the hysteresis loop.(b) Experimental
spectra at the output of the cavity when progressively increasing the input power [blue path in panel (a)]. (c) Experimental
spectra at the output of the cavity when progressively decreasing the input power starting from the upper branch [red path in
panel (a)]. The white arrows give the direction of changes in power.

In the manuscript we focus our attention on the evolution of the spectrum when increasing the power at the
input of the cavity. In this section we report additional experimental results showing that the system experiences
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unconventional hysteresis (provided that the pumping of the cavity fulfills sufficient synchronicity conditions [4]).
The hysteresis is the only measurable consequence of the existence of the negative slope branch of the stationary
response of the cavity, and manifests itself in a diversity of the power threshold corresponding to up-switching and
down-switching, respectively. This behavior is qualitatively illustrated in the theoretical sketch in Fig. S4(a). In our
case the hysteresis loop involves (in sequence) the lower stable branch, the onset of Turing instability on this branch,
the jump to the parametrically (Faraday) unstable upper branch, and the return to the lower stable branch. Indeed, in
the experiment, when we increase the power, we first observe the sidebands characteristic of the Turing instability up
to the point where the system jumps on the upper branch, thus exhibiting sidebands with higher frequency (Faraday
instability) [see Fig. S4(b), identical to Fig. 5(b) of the manuscript]. From this point, if we decrease the power, we
observe the spectral evolution illustrated in Fig. S4(c). The system follows the upper branch and Faraday instabilities
are sustained to input powers below the primary (Turing) threshold on the lower branch. The system then falls back
to the modulationally stable part of the lower branch. Note the slight narrowing of the sidebands when decreasing
the input power in agreement with the prediction of the Floquet theory [see Fig. 4(b) of the manuscript]. The result
in Fig. S4 further proves the bistable nature of our system.
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