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We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric)
instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric
resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable
switching dynamics is dramatically affected by the competition between the two instability mech-
anisms, which dictates two completely novel scenarios. At low detunings from resonance switching
occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas
at high detunings we observe the crossover between the Turing and Faraday periodic structures.
The results are well explained in terms of the universal Lugiato-Lefever model.

PACS numbers: 42.60.Da, 42.65.Ky, 42.65.Pc, 42.65.Sf

Introduction.– Dissipative spatial (localized and pat-
terned) structures are ubiquitous in nonlinear extended
biological, chemical and physical systems operating far
from equilibrium [1–4]. A universal triggering mechanism
is the Turing (modulational) instability, which, owing to
a symmetry breaking bifurcation, favors the growth of
modulations against the homogeneous solutions [5, 6].
This growth eventually saturates, giving rise to patterns
with intrinsic wavenumbers which attract the dynamics.
On a completely different basis, in systems forced at fre-
quency ωd, the characteristic wavenumber k is selected
via the dispersion relationship and a 2:1 parametric res-
onance to fulfill the relation ω(k) = ωd/2 (generally also
multiple 2m : 1 resonances, m integer, are possible in un-
stable regions known as Arnold tongues [7]). This phe-
nomenon, discovered by Faraday in a vertically vibrating
fluid [8] and explained much later [9, 10], is at the origin
of Faraday waves observable in different areas of physics
[11–15]. While the Turing and Faraday mechanisms have
different physical origins, they can in principle coexist.
However, the observation of the effects of their competi-
tion is surprisingly lacking.

In this letter, we consider a bistable system and report
experimental evidence for the fact that such competition
drastically changes its switching dynamics. We employ a
passive fiber resonator where such instabilities manifest
themselves in time domain [16–19]. Passive microres-
onators and fiber rings, all described by transpositions of
the universal Lugiato-Lefever equation (LLE) introduced
in the spatial case [6], have indeed proven extremely effec-
tive for the observation of temporal dissipative structures
such as solitons and primary frequency combs [20–27].
In our experiments, we engineer the resonator to have
periodic group velocity dispersion (GVD) with normal
average value. The GVD management acts as a spatial
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forcing, while the normal GVD guarantees high gain for
the Faraday branch [28], even though it makes the exci-
tation of Turing structures much more critical [19, 29].
This regime allows us to give spectral evidence for the
spontaneous formation of periodic structures, which fol-
lows two different novel scenarios: (i) at relatively small
detunings from resonance, switching occurs from homo-
geneous state to Faraday structures, with the Turing in-
stability only acting as a trigger; (ii) crossover from pe-
riodic structures of the Turing and Faraday types can
occur at large detunings by controlling the pump power.
Such results pave the way towards the control and tam-
ing of the instabilities via induced periodicity in a variety
of different settings [28, 30, 31].
General behaviour.– We consider the passive fiber ring

cavity sketched in Fig. 1(a) with varying dispersion [Fig.
1(b)], which is well modeled by the LLE [6, 28]:
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2 , and γ is the fiber nonlinearity. Z, T and E denote

real-world distance, group velocity delayed time, and the
intracavity field envelope respectively. S is the driving
term such as S =

√
P = θuin, where θ is the coupler

transmission coefficient (ρ2 + θ2 = 1) and uin =
√
γLEin

is the normalized input field. δ is the cavity detuning
and α describes the total losses (output coupling, linear
and splicing losses). In the following, we will refer to the
normalized detuning defined as ∆ = δ/α.

The steady-state homogeneous solutions (i.e., ∂z =
∂t = 0) of Eq. (1) can become unstable against the
growth of optical modulations at frequency ω, following
either a Turing mechanism [16, 17], or a Faraday mech-
anism when forcing is present [28]. The most unstable
frequency and the relative gain in the Turing case are
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[16, 17, 32]

ωT =

√
2

βav
(δ − 2Pu), g(ωT ) = Pu − α. (2)

where βav = βav
2 /|βav

2 | = 1 and Pu = |u|2 are the normal-
ized average GVD and intracavity power, respectively.
Conversely, when forcing with period Λ (periodicity of
β2(z) in units of cavity length L) is present, it follows
from Floquet theory that parametric (Faraday) instabil-
ities set in around multiple frequencies [28, 32]
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u

]
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m = 1, 2, .... (m = 1 in the experiments), which repre-
sent the tips of Arnold tongues. Importantly, at frequen-
cies ωm in Eq. (3), the perturbation wavenumber equals
an integer multiple m of half the forcing wavenumber
π/Λ, which corresponds indeed to the parametric reso-
nance condition [28, 32] (with inverted role of k and ω
with respect to the spatial case mentioned before). The
large difference of frequency between the sidebands of
Turing (ωT ) and Faraday (ωm) types is the distinctive
trait which allows us to unequivocally identify the differ-
ent regimes of instability in our experiments. Note that
Turing instabilities are of different physical origin with
respect to the ones in the normal GVD regime observed
in conservative settings which do require the periodic-
ity [33–35]. In order to understand how the controlling
parameters, namely power and detuning, affect the be-
havior of the system, we summarize in Fig. 1(d) the do-
mains of the different instabilities in the parameter plane
(∆, Pu). For better clarity, we also report in Fig. 1(c)
the steady-state response for different values of detun-
ing, namely ∆ = 1, 4 and 6.25. For ∆ ≥

√
3, the cavity

is bistable [6, 16], and exhibits an unstable negative slope
branch for P−

u < Pu < P+
u , where P±

u (∆) stand for the
bistability knees, delimiting the domain labelled “Inac-
cessible” in Fig. 1(d).

Below such domain, the green area corresponds to the
region where temporally modulated Turing structures
can be excited. This region has been computed numer-
ically and corresponds to the tiny domain where Turing
structures, which bifurcate subcritically, can be sponta-
neously formed [36]. We emphasize that this regime re-
quires to drive the cavity with a detuning ∆ > 4.25, and
with powers belonging to a small portion of the lower
branch of the bistable response (highlighted in green over
the bistable curve for ∆ = 6.25 in Fig. 1(c)). It is im-
portant to emphasize that this regime only depends on
the average GVD and not on its periodic modulation and
would thus also appear in uniform cavities. On the con-
trary, Faraday structures only develop when the cavity
is driven over the upper branch and the periodic longi-
tudinal variations are effective. As a result, the stable
excitation of Faraday structures requires to operate in
the blue domain of Fig. 1(d). At higher powers, such
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FIG. 1. (a) Schematic illustration of a non-uniform passive
fiber ring cavity. (b) Piecewise constant dispersion map over
one period of the GVD. (c) Normalized steady-state curves for
detuning values ∆ = 1, 4 and 6.25. (d) Instability domains in
a cavity with dispersion map as in (b) in the plane (∆,Pu).
The “Inaccesible” region corresponds to the negative-slope
branch of the steady-state. The green and blue domains rep-
resent the regions where Turing and Faraday modulated struc-
tures can be excited (at higher powers the Faraday structures
destabilize giving rise to chaotic spatio-temporal evolutions).
The bullets labelled 1,2,3 and 4 indicate the corresponding
experimental results of Fig. 3 and 4. Parameters: Λa = 0.97,
Λb = 0.03, βa = 1.5, βb = −14, α = 0.157, θ2 = 0.1, Λ = 1:
the period of the GVD equals the length of the resonator

structures destabilize leading to chaotic states (see up-
per portion of Fig. 1(d)). Note that the Faraday branch
(unlike the Turing one) extends also to the monostable

regime ∆ <
√

3. However, in this letter, we focus on the
bistable regime where the two instabilities can compete
thereby drastically changing the bistable switching dy-
namics. In particular, Fig. 1(d) allows to envisage two
distinct regimes that we experimentally address: (i) at
low detuning (∆ < 4.25, see vertical line A) switching oc-
curs between the steady-state lower branch and an upper
branch which is Faraday-unstable. In this case the Tur-
ing instability can only favour such switching, whereas
no stable Turing structures can be created; (ii) at high
detunings (∆ > 4.25, see vertical line B), switching be-
tween Turing and Faraday structures can be controlled
by the power. A careful stabilization of the cavity al-
lows us to accurately control the detuning and observe
the scenarios (i) and (ii).

Experiments.– We built a fiber ring cavity presenting
the piecewise constant dispersion profile shown in Fig.
2(b). The ring has a total length of 51.6 m, and is
composed of a 50 m long, specially designed dispersion
shifted fiber (DSF, with GVD β2 = 2 ps2/km) directly
spliced to the two pigtails (total length 1.6 m) of the
input/output coupler made of a standard single-mode
fiber (SMF-28 with GVD β2 = −19 ps2/km). The av-
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FIG. 2. (a) Experimental setup [32]. (b) GVD map of the
cavity over one roundtrip, centered on the 90/10 SMF cou-
pler. The gray horizontal line gives the average GVD βav

2 at
pump wavelength 1550 nm (arrow on the right vertical axis,
calibrated in terms of wavelengths). (c) Normalized transfer
functions of the cavity for the Control beam (dashed red) and
the Nonlinear beam in the linear regime (blue).

erage nonlinear coefficient is γ = 5.5 /W/km. The cav-
ity is pumped at 1550 nm (well below the average zero
dispersion wavelength of 1562 nm), where the values of
GVD reported above gives a normal average dispersion
βav
2 ≈ 1.35 ps2/km. The experimental setup is sketched

in Fig. 2(a).
In order to validate the general behavior depicted in

Fig. 1(d), we contrast experiments made at relevant val-
ues of the normalized detuning, namely ∆ = 4 and 6.25.

Figure 3 shows the results obtained for ∆ = 4 (vertical
dashed line labelled A in Fig. 1(d)). For input powers
below 1.7 W we do not observe any spectral signature of
periodic structures in the output spectrum. Indeed the
system is stable and simply follows the lower branch of
the steady-state response shown in Fig. 3(a). However,
when the power exceeds the threshold for the unstable
region (hatched region in Fig. 3(a,b)), the system jumps
on the upper branch. The latter is unstable owing to
m = 1 parametric (Faraday) resonance as shown by the
gain blue tongues in Fig. 3(b). Consistently, we observe
stable generation of Faraday (primary and harmonics)
sideband pairs, as shown by the spectra reported in Fig.
3(c,d), corresponding to two specific points (labelled 1
and 2) on the upper branch. These are in excellent agree-
ment with spectra (dashed red curves) calculated from
numerical simulations of the LLE (1). Moreover, the
sidebands appear at 1.24 and 1.22 THz, for case 1 and 2,
respectively, thus confirming the expected downshift for
increasing power [see close-up inset in Fig. 3 (d)], in good

agreement with the estimate from Eq. (3) which gives
1.26 and 1.23 THz, respectively (vertical grey lines). We
also notice a strong amplitude asymmetry between the
harmonics, which numerical simulations of the extended
LLE allow us to attribute to the third-order dispersion
that induces further symmetry breaking, as pointed out
in uniform passive cavities [23]. Finally notice that in
this regime (i.e., ∆ < 4.25), periodic Turing structures
cannot be observed because they bifurcate subcritically,
remaining unstable in the relevant range of powers [36].
Yet, the Turing instability still plays a crucial role, be-
ing responsible for inducing the upswitching at the input
power ∼ 1.8 W [obtained from the dimensionless thresh-
old Pu = α arising from g = 0 in Eq. (2)], thus lowering
the threshold for the formation of Faraday structures be-
low the knee point P−

u [∼ 2.1 W, see Fig. 3(a)].

A similar experiment is presented in Fig. 4 for ∆ =
6.25 (vertical dashed line labelled B in Fig. 1(d)). At
variance with previous case, the measured spectrum ex-
hibits the stable formation of sidebands over the lower
branch. An example is shown in Fig. 4(d), where the pri-
mary sidebands are located at 0.70 THz. This is consis-
tent with the fact that, while the periodic solutions corre-
sponding to Turing structures continue to bifurcate sub-
critically, a stable branch exist for a finite range of input
powers, as shown by the green curve in Fig. 4(a). Note
that this range is quite limited despite the fact that the
lower branch is significantly more extended in terms of
input powers (compared with ∆ = 4 case). Then, when
the power exceeds the value where the Turing branch
merge on the stationary response, the Turing instabil-
ity induces up-switching towards the upper branch. As
described above, however, this branch presents narrow-
band Faraday instability [see Fig. 4(b)] and hence two
sidebands are still observed in the spectra [see Fig. 4(b)],
though at much larger frequency (1.16 THz). As can be
seen, experimental spectra (blue curves) in Fig. 4(c) and
4(d) are in excellent agreement with numerical simula-
tions (dashed red curves) and with the analytical pre-
dictions of the positions for the sidebands (vertical grey
lines, 0.69 THz and 1.15 THz respectively). The large
difference of frequency shifts between Fig. 4(c) and 4(d)
allows us to claim that we have unambiguously observed
the crossover between the two instabilities.

Figure 5 shows how the steady-state output spectrum
changes when we adiabatically increase the input power.
It clearly illustrates the two distinct scenarios of switch-
ing dynamics. In Fig. 5(a), for ∆ = 4, we observe
the abrupt appearance of the Faraday instability side-
bands when the input power exceeds 1.7 W, which is in
good agreement with the predicted switching threshold
of 1.8 W [Fig. 3(a)]. Conversely, for ∆ = 6.25, Fig. 5(b)
first shows the power-induced tuning of the low-frequency
Turing sidebands, until eventually the abrupt switching
to higher frequency sidebands which is the clear signa-
ture of the crossover to the Faraday branch. The Turing
sidebands over the lower branch are observed in the range
of input powers 3.4− 3.9 W, which is slightly lower than
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FIG. 3. (a) Bistable response of the cavity calculated for ∆ = 4 (δ = π/4.5 rad, α = 0.175); the hatched region is inaccessible.
(b) Pseudo-color level plot of the gain spectrum as a function of the intracavity power calculated from Floquet analysis [28].
(c-d) Comparison of experimental spectra (solid blue), spectra obtained from numerical integrations of the periodic LLE (1)
(dashed red), and analytical estimates (vertical line, Theory) from Eq. (3) with m = 1 for two different powers labelled 1 and
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the theoretical expectation 3.9 − 5 W [see Fig. 4(a)].
We attribute such larger discrepancy to the fact that the
bistable response of the system is increasingly sensitive
to environmental fluctuations because of the large detun-
ing. Indeed, in this case, we consistently observe typically
up to 15% variations in the power threshold between re-
peated runs of the experiment.

It is important here to emphasize that all these spec-
tra can remain stationary for about ten minutes which
correspond to a few billion roundtrips. Until now, the
evidence for the sidebands due to the Turing instabil-
ity in a uniform passive fiber cavity were only given in
the transient regime [36, 37] or associated with period-
doubling dynamics [18]. Our results thus constitutes the
first experimental observation of stationary modulational
instability spectra on both the lower and upper branches
of the bistable response of a passive cavity.

Conclusions.– We have reported the first example of a
bistable system which dynamics is dramatically affected

by the excitation of modulated structures due to compet-
ing Turing and Faraday branches. As our experiments
unambiguously show, either the system can exhibit di-
rect up-switching to Faraday 1D temporal patterns or
crossover from Turing to Faraday modulated structures.
These results demonstrate the feasibility of controlling
the dynamics of a bistable system via periodic modula-
tions. Besides being of interdisciplinary interest for non
equilibrium systems, this could find immediate applica-
tion for mode-locking, frequency comb and soliton gener-
ation in normally dispersive microresonators [27, 38, 39].
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