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Abstract

We study the problem of learning the transition matrices of a set of Markov chains from a
single stream of observations on each chain. We assume that the Markov chains are ergodic
but otherwise unknown. The learner can sample Markov chains sequentially to observe their
states. The goal of the learner is to sequentially select various chains to learn transition
matrices uniformly well with respect to some loss function. We introduce a notion of loss that
naturally extends the squared loss for learning distributions to the case of Markov chains, and
further characterize the notion of being uniformly good in all problem instances. We present
a novel learning algorithm that efficiently balances exploration and exploitation intrinsic to
this problem, without any prior knowledge of the chains. We provide finite-sample PAC-
type guarantees on the performance of the algorithm. Further, we show that our algorithm
asymptotically attains an optimal loss.

1 Introduction

We study a variant of the following sequential adaptive allocation problem: A learner is given a
set of K arms, where to each arm k∈ [K], an unknown real-valued distributions νk with mean
µk and variance σ2

k > 0 is associated. At each round t ∈ N, the learner must select an arm
kt ∈ [K], and receives a sample drawn from νk. Given a total budget of n pulls, the objective
is to estimate the expected values (µk)k∈[K] of all distributions uniformly well. The quality of
estimation in this problem is classically measured through expected quadratic estimation error,
E[(µk−µ̂k,n)2] for the empirical mean estimate µ̂k,n built with the Tk,n=

∑n
t=1 I{k=kt} many

samples received from νk at time n, and the performance of an allocation strategy is the maximal
error, maxk∈[K] E[(µk− µ̂k,n)2]. Using ideas from the Multi-Armed Bandit (MAB) literature,
previous works (e.g., [1, 2]) have provided optimistic sampling strategies with near-optimal
performance guarantees for this setup.

This generic adaptive allocation problem is related to several application problems arising
in optimal experiment design [3, 4], active learning [5], or Monte-Carlo methods [6]; we refer
to [1, 7, 2, 8] and references therein for further motivation. We extend this line of work to the
case where each process is a discrete Markov chain, hence introducing the problem of active
bandit learning of Markov chains. More precisely, we no longer assume that (νk)k are real-
valued distributions, but we study the case where each νk is a discrete Markov process over
a state space S ⊂ N. The law of the observations (Xk,i)i∈N on arm (or chain) k is given by
νk(Xk,1, . . . Xk,n) = pk(Xk,1)

∏n
i=2 Pk(Xk,i−1, Xk,i), where pk denotes the initial distribution

1



of states, and Pk is the transition function of the Markov chain. The goal of the learner is to
learn the transition matrices (Pk)k∈[K] uniformly well on the chains. Note that the chains are not
controlled (we only decide which chain to advance, not the states it transits to).

Before discussing the challenges of the extension to Markov chains, let us give further com-
ments on the performance measure considered in bandit allocation for real-valued distributions:
Using the expected quadratic estimation error on each arm k makes sense since when Tk,n, k ∈ [K]
are deterministic, it coincides with σ2

k/Tk,n, thus suggesting to pull the distributions proportionally
to σ2

k. However, for a learning strategy, Tk,n typically depends on all past observations. The
presented analyses in these series of works rely on Wald’s second identity as the technical device,
heavily relying on the use of a quadratic loss criterion, which prevents one from extending the
approach therein to other distances. Another peculiarity arising in working with expectations is the
order of “max” and “expectation” operators. While it makes more sense to control the expected
value of the maximum, the works cited above look at maximum of the expected value, which is
more in line with a pseudo-loss definition rather than the loss; actually in extensions of these
works a pseudo-loss is considered instead of this performance measure. As we show, all of these
difficulties can be avoided by resorting to a high probability setup. Hence, in this paper, we deviate
from using an expected loss criterion, and rather use a high-probability control. We formally define
our performance criterion in Section 2.3.

1.1 Related Work

On the one hand, our setup can be framed into the line of works on active bandit allocation,
considered for the estimation of reward distributions in MABs as introduced in [1, 7], and further
studied in [2, 9]. This has been extended to stratified sampling for Monte-Carlo methods in [10, 8],
or to continuous mean functions in, e.g., [11]. On the other hand, our extension from real-valued
distributions to Markov chains can be framed into the rich literature on Markov chain estimation;
see, e.g., [12, 13, 14, 15, 16, 17]. This stream of works extends a wide range of results from the
i.i.d. case to the Markov case. These include, for instance, the law of large numbers for (functions
of) state values [17], the central limit theorem for Markov sequences [13] (see also [17, 18]), and
Chernoff-type or Bernstein-type concentration inequalities for Markov sequences [19, 20]. Note
that the majority of these results are available for ergodic Markov chains.

Another stream of research on Markov chains, which is more relevant to our work, investigates
learning and estimation of the transition matrix (as opposed to its full law); see, e.g., [16, 15, 21, 22].
Among the recent studies falling in this category, [22] investigates learning of the transition matrix
with respect to a loss function induced by f -divergences in a minimax setup, thus extending [23] to
the case of Markov chains. [21] derives a PAC-type bound for learning the transition matrix of an
ergodic Markov chain with respect to the total variation loss. It further provides a matching lower
bound. Among the existing literature on learning Markov chains, to the best of our knowledge,
[21] is the closest to ours. There are however two aspects distinguishing our work: Firstly, the
challenge in our problem resides in dealing with multiple Markov chains, which is present neither
in [21] nor in the other studies cited above. Secondly, our notion of loss does not coincide with
that considered in [21], and hence, the lower bound of [21] does not apply to our case.

Among the results dealing with multiple chains, we may refer to learning in the Markovian
bandits setup [24, 25, 26]. Most of these studies address the problem of reward maximization
over a finite time horizon. We also mention that in a recent study, [27] introduces the so-called
active exploration in Markov decision processes, where the transition kernel is known, and the
goal is rather to learn the mean reward associated to various states. To the best of our knowledge,
none of these works address the problem of learning the transition matrix. Last, as we target
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high-probability performance bounds (as opposed to those holding in expectation), our approach is
naturally linked to the Probably Approximately Correct (PAC) analysis. [28] provides one of the
first PAC bounds for learning discrete distributions. Since then, the problem of learning discrete
distributions has been well studied; see, e.g., [29, 30, 23] and references therein. We refer to [23]
for a rather complete characterization of learning distribution in a minimax setting under a big
class of smooth loss functions. We remark that except for very few studies (e.g., [29]), most of
these results are provided for discrete distributions.

1.2 Overview and Contributions

Our contributions are the following: (i) For the problem of learning Markov chains, we consider a
notion of loss function, which appropriately extends the loss function for learning distributions
to the case of Markov chains. Our notion of loss is similar to that considered in [22] (we refer
to Section 2.3 for a comparison between our notion and the one in [22]). In contrast to existing
works on similar bandit allocation problems, our loss function avoids technical difficulties faced
when extending the squared loss function to this setup. We further characterize the notion of a
“uniformly good algorithm” under the considered loss function for ergodic chains; (ii) We present
an optimistic algorithm, called BA-MC, for active learning of Markov chains, which is simple to
implement and does not require any prior knowledge of the chains. To the best of our knowledge,
this constitutes the first algorithm for active bandit allocation for learning Markov chains; (iii)
We provide non-asymptotic PAC-type, and asymptotic bounds, on the loss incurred by BA-MC,
indicating three regimes. In the first regime, which holds for any budget n ≥ 4K, we present (in
Theorem 1) a high-probability bound on the loss scaling as Õ(KS

2

n ), where Õ(·) hides log(log(n))
factors. Here, K and S respectively denote the number of chains and the number of states in a
given chain. This result holds for homogenous Markov chains. We then characterize a cut-off
budget ncutoff (in Theorem 2) so that when n ≥ ncutoff, the loss behaves as Õ(Λ

n + C0

n3/2 ), where
Λ =

∑
k

∑
x,y Pk(x, y)(1 − Pk(x, y)) denotes the sum of variances of all states and all chains,

and where Pk denotes the transition probability of chain k. This latter bound constitutes the second
regime, in view of the fact that Λ

n equals the asymptotically optimal loss (see Section 2.4 for more
details). Thus, this bound indicates that the pseudo-excess loss incurred by the algorithm vanishes
at a rate C0n

−3/2 (we refer to Section 4 for a more precise definition). Furthermore, we carefully
characterize the constant C0. In particular, we discuss that C0 does not deteriorate with mixing
times of the chains, which, we believe, is a strong feature of our algorithm. We also discuss how
various properties of the chains, e.g., discrepancies between stationary distribution of various states
a given chain, may impact the learning performance. Finally, we demonstrate a third regime, the
asymptotic one, when the budget n grows large, in which we show (in Theorem 3) that the loss of
BA-MC matches the asymptotically optimal loss Λ

n . All proofs are provided in the supplementary
material.

Markov chains have been successfully used for modeling a broad range of practical problems,
and their success makes the studied problem in this paper relevant in practice. There are practical
applications in reinforcement learning (e.g., active exploration in MDPs [27]) and in rested Markov
bandits (e.g., channel allocation in wireless communication systems where a given channel’s state
follows a Markov chain1), for which we believe our contributions could serve as a technical tool.

1For example, in the Gilbert-Elliott channels [31].
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2 Preliminaries and Problem Statement

2.1 Preliminaries

Before describing our model, we recall some preliminaries on Markov chains; these are standard
definitions and results, and can be found in, e.g., [32, 33]. Consider a Markov chain defined on a
finite state space S with cardinality S. Let PS denote the collection of all row-stochastic matrices
over S . The Markov chain is specified by its transition matrix P ∈ PS and its initial distribution p:
For all x, y ∈ S , P (x, y) denotes the probability of transition to y if the current state is x. In what
follows, we may refer to a chain by just referring to its transition matrix.

We recall that a Markov chain P is ergodic if Pm > 0 (entry-wise) for some m ∈ N.
If P is ergodic, then it has a unique stationary distribution π satisfying π = πP . Moreover
π := minx∈S π(x) > 0. A chain P is said to be reversible if its stationary distribution π satisfies
detailed balance equations: For all x, y ∈ S , π(x)P (x, y) = π(y)P (y, x). Otherwise, P is called
non-reversible. For a Markov chain P , the largest eigenvalue is λ1(P ) = 1 (with multiplicity
one). In a reversible chain P , all eigenvalues belong to (−1, 1]. We define the absolute spectral
gap of a reversible chain P as γ(P ) = 1 − λ?(P ), where λ?(P ) denotes the second largest (in
absolute value) eigenvalue of P . If P is reversible, the absolute spectral gap γ(P ) controls the
convergence rate of the state distributions of the chain towards the stationary distribution π. If P
is non-reversible, the convergence rate is determined by the pseudo-spectral gap as introduced
in [20] as follows. Define P ? as: P ?(x, y) := π(y)P (y, x)/π(x) for all x, y ∈ S. Then, the
pseudo-spectral gap γps(P ) is defined as: γps(P ) := max`≥1

γ((P ?)`P `)
` .

2.2 Model and Problem Statement

We are now ready to describe our model. We consider a learner interacting with a finite set of
Markov chains indexed by k ∈ [K] := {1, 2, . . . ,K}. For ease of presentation, we assume that
all Markov chains are defined on the same state space2 S with cardinality S. The Markov chain
k, or for short chain k, is specified by its transition matrix Pk ∈ PS . In this work, we assume
that all Markov chains are ergodic, which implies that any chain k admits a unique stationary
distribution, which we denote by πk. Moreover, the minimal element of πk is bounded away from
zero: πk := minx∈S πk(x) > 0. The initial distributions of the chains are assumed to be arbitrary.
Further, we let γk := γ(Pk) to denote the absolute spectral gap of chain k if k is reversible;
otherwise, we define the pseudo-spectral gap of k by γps,k := γps(Pk).

A related quantity in our results is the Gini index of the various states. For a chain k, the Gini
index for state x ∈ S is defined as

Gk(x) :=
∑
y∈S

Pk(x, y)(1− Pk(x, y)).

Note that Gk(x) ≤ 1 − 1
S . This upper bound is verified by the fact that the maximal value

of Gk(x) is achieved when Pk(x, y) = 1
S for all y ∈ S (in view of the concavity of z 7→∑

x∈S z(x)(1 − z(x))). In this work, we assume that for all k,
∑

x∈S Gk(x) > 0.3 Another
related quantity in our results is the sum (over states) of inverse stationary distributions: For a

2Our algorithm and results are straightforwardly extended to the case where the Markov chains are defined on
different state spaces.

3We remark that there exist chains with
∑

x Gk(x) = 0. In view of the definition of the Gini index, such chains
are necessarily deterministic (or degenerate), namely their transition matrices belong to {0, 1}S×S . One example is a
deterministic cycle with S nodes. We note that such chains may fail to satisfy irreducibility or aperiodicity.
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chain k, we define Hk :=
∑

x∈S πk(x)−1. Note that S2 ≤ Hk ≤ Sπ−1
k . The quantity Hk reflects

the discrepancy between individual elements of πk.

The online learning problem. The learner wishes to design a sequential allocation strategy to
adaptively sample various Markov chains so that all transition matrices are learnt uniformly well.
The game proceeds as follows: Initially all chains are assumed to be non-stationary with arbitrary
initial distributions chosen by the environment. At each step t ≥ 1, the learner samples a chain
kt, based on the past decisions and the observed states, and observes the state Xkt,t. The state of
kt evolves according to Pkt . The state of chains k 6= kt does not change: Xk,t = Xk,t−1 for all
k 6= kt.

We introduce the following notations: Let Tk,t denote the number of times chain k is selected
by the learner up to time t: Tk,t :=

∑t
t′=1 I{kt′ = k}, where I{·} denotes the indicator function.

Likewise, we let Tk,x,t represent the number of observations of chain k, up to time t, when the
chain was in state x: Tk,x,t :=

∑t
t′=1 I{kt′ = k,Xk,t′ = x}. Further, we note that the learner

only controls Tk,t (or equivalently,
∑

x Tk,x,t), but not the number of visits to individual states. At
each step t, the learner maintains empirical estimates of the stationary distributions, and estimates
transition probabilities of various chains based on the observations gathered up to t. We define the
empirical stationary distribution of chain k at time t as π̂k,t(x) := Tk,x,t/Tk,t for all x ∈ S. For
chain k, we maintain the following smoothed estimation of transition probabilities:

P̂k,t(x, y) :=
α+

∑t
t′=2 I{Xk,t′−1 = x,Xk,t′ = y}

αS + Tk,x,t
, ∀x, y ∈ S, (1)

where α is a positive constant. In the literature, the case of α = 1
S is usually referred to as the

Laplace-smoothed estimator. The learner is given a budget of n samples, and her goal is to obtain
an accurate estimation of transition matrices of the Markov chains. The accuracy of the estimation
is determined by some notion of loss, which will be discussed later. The learner adaptively selects
various chains so that the minimal loss is achieved.

2.3 Performance Measures

We are now ready to provide a precise definition of our notion of loss, which would serve as
the performance measure of a given algorithm. Given n ∈ N, we define the loss of an adaptive
algorithm A as:

Ln(A) := max
k∈[K]

Lk,n, with Lk,n :=
∑
x∈S

π̂k,n(x)‖Pk(x, ·)− P̂k,n(x, ·)‖22 .

The use of the L2-norm in the definition of loss is quite natural in the context of learning and
estimation of distributions, as it is directly inspired by the quadratic estimation error used in active
bandit allocation (e.g., [2]). Given a budget n, the loss Ln(A) of an adaptive algorithm A is a
random variable, due to the evolution of the various chains as well as the possible randomization
in the algorithm. Here, we aim at controlling this random quantity in a high probability setup as
follows: Let δ ∈ (0, 1). For a given algorithm A, we wish to find ε := ε(n, δ) such that

P (Ln(A) ≥ ε) ≤ δ . (2)

Remark 1 We remark that the empirical stationary distribution π̂k,t may differ from the stationary
distribution associated to the smoothed estimator P̂k,t of the transition matrix. Our algorithm and
results, however, do not rely on possible relations between π̂k,t and P̂k,t, though one could have
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used smoothed estimators for πk. The motivation behind using empirical estimate π̂k,t of πk in Ln
is that it naturally corresponds to the occupancy of various states according to a given sample
path.

Comparison with other losses. We now turn our attention to the comparison between our
loss function and some other possible notions. First, we compare ours to the loss function
L′n(A) = maxk

∑
x∈S ‖Pk(x, ·) − P̂k,n(x, ·)‖22. Such a notion of loss might look more natural

or simpler, since the weights π̂k,n(x) are replaced simply with 1 (equivalently, uniform weights).
However, this means a strategy may incur a high loss for a part of the state space that is rarely
visited, even though we have absolutely no control on the chain. For instance, in the extreme case
when some states x are reachable with a very small probability, Tk,x,n may be arbitrarily small thus
resulting in a large loss L′n for all algorithms, while it makes little sense to penalize an allocation
strategy for these “virtual" states. Weighting the loss according to the empirical frequency π̂k,n of
visits avoids such a phenomenon, and is thus more meaningful.

In view of the above discussion, it is also tempting to replace the empirical state distribution
π̂k,n with its expectation πk, namely to define a pseudo-loss function of the form L′′n(A) =

maxk
∑

xπk(x)‖Pk(x, ·)−P̂k,n(x, ·)‖22 (as studied in, e.g., [22] in a different setup). We recall that
our aim is to derive performance guarantees on the algorithm’s loss that hold with high probability
(for 1− δ portions of the sample paths of the algorithm for a given δ). To this end, Ln (which uses
π̂k,n) is more natural and meaningful than L′′n as Ln penalizes the algorithm’s performance by the
relative visit counts of various states in a given sample path (through π̂k,n), and not by the expected
value of these. This matters a lot in the small-budget regime, where π̂k,n could differ significantly
from πk — Otherwise when n is large enough, π̂k,n becomes well-concentrated around πk with
high probability. To clarify further, let us consider the small-budget regime, and some state x where
πk(x) is not small. In the case of Ln, using π̂k,n we penalize the performance by the mismatch
between P̂k,n(x, ·) and Pk(x, ·), weighted proportionally to the number of rounds the algorithm
has actually visited x. In contrast, in the case of L′′n, weighting the mismatch proportionally to
πk(x) does not seem reasonable since in a given sample path, the algorithm might not have visited
x enough even though πk(x) is not small. We remark that our results in subsequent sections easily
apply to the pseudo-loss L′′n, at the expense of an additive second-order term, which might depend
on the mixing times.

Finally, we position the high-probability guarantee on Ln, in the sense of Eq. (2), against those
holding in expectation. Prior studies on bandit allocation, such as [7, 2], whose objectives involve a
max operator, consider expected squared distance. The presented analyses in these series of works
rely on Wald’s second identity as the technical device. This prevents one to extend the approach
therein to other distances. Another peculiarity arising in working with expectations is the order
of “max” and “expectation” operators. While it makes more sense to control the expected value
of the maximum, the works cited above look at maximum of the expected value, which is more in
line with a pseudo-loss definition rather than the loss. All of these difficulties can be avoided by
resorting to a high probability setup (in the sense of Eq. (2).

Further intuition and example. We now provide an illustrative example to further clarify some

of the above comments. Let us consider the following two-state Markov chain: P =

[
1/2 1/2
ε 1− ε

]
, where ε ∈ (0, 1). The stationary distribution of this Markov chain is π = [ ε

2+ε ,
2

2+ε ]. Let s1

(resp. s2) denote the state corresponding to the first (resp. second) row of the transition matrix.
In view of π, when ε� 1, the chain tends to stay in s2 (the lazy state) most of the time: Out of
n observations, one gets on average only nπ(s1) = nε/(2 + ε) observations of state s1, which
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means, for ε � 1/n, essentially no observation of state s1. Hence, no algorithm can estimate
the transitions from s1 in such a setup, and all strategies would suffer a huge loss according to
L′n, no matter how samples are allocated to this chain. Thus, L′n has limited interest in order to
distinguish between good and base sampling strategies. On the other hand, using Ln enables to
better distinguish between allocation strategies, since the weight given to s1 would be essentially 0
in this case, thus focusing on the good estimation of s2 (and other chains) only.

2.4 Static Allocation

In this subsection, we investigate the optimal loss asymptotically achievable by an oracle policy
that is aware of some properties of the chains. To this aim, let us consider a non-adaptive strategy
where sampling of various chains is deterministic. Therefore, Tk,n, k = 1, . . . ,K are not random.
The following lemma is a consequence of the central limit theorem:

Lemma 1 We have for any chain k: Tk,nLk,n →Tk,n→∞
∑

xGk(x) .

The proof of this lemma consists in two steps: First, we provide lower and upper bounds onLk,n
in terms of the loss L̃k,n incurred by the learner had she used an empirical estimator (corresponding
to α = 0 in (1)). Second, we show that by the central limit theorem, Tk,nL̃k,n →Tk,n→∞∑

xGk(x).
Now, consider an oracle policy Aoracle, who is aware of

∑
x∈S Gk(x) for various chains. In

view of the above discussion, and taking into account the constraint
∑

k∈[K] Tk,n = n, it would be
asymptotically optimal to allocate Tk,n = ηkn samples to chain k, where

ηk :=
1

Λ

∑
x∈S

Gk(x) , with Λ :=
∑
k∈[K]

∑
x∈S

Gk(x) .

The corresponding loss would satisfy: nLn(Aoracle) →n→∞ Λ . We shall refer to the quantity
Λ
n as the asymptotically optimal loss, which is a problem-dependent quantity. The coefficients
ηk, k ∈ [K] characterize the discrepancy between the transition matrices of the various chains,
and indicate that an algorithm needs to account for such discrepancy in order to achieve the
asymptotically optimal loss. Having characterized the notion of asymptotically optimal loss, we
are now ready to define the notion of uniformly good algorithm:

Definition 1 (Uniformly Good Algorithm) An algorithm A is said to be uniformly good if, for
any problem instance, it achieves the asymptotically optimal loss when n grows large; that is,
limn→∞ nLn(A) = Λ for all problem instances.

3 The BA-MC Algorithm

In this section, we introduce an algorithm designed for adaptive bandit allocation of a set of Markov
chains. It is designed based on the optimistic principle, as in MAB problems (e.g., [34, 35]), and re-
lies on an index function. More precisely, at each time t, the algorithm maintains an index function
bk,t+1 for each chain k, which provides an upper confidence bound (UCB) on the loss incurred by k
at t; more precisely, with high probability, bk,t+1 ≥ Lk,t :=

∑
x∈S π̂k,t(x)‖Pk(x, ·)− P̂k,t(x, ·)‖22,

where P̂k,t denotes the smoothed estimate of Pk with some α > 0 (see Eq. (1)). Now, by sampling a
chain kt ∈ argmaxk∈[K] bk,t+1 at time t, we can balance exploration and exploitation by selecting
more the chains with higher estimated losses or those with higher uncertainty in these estimates.
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In order to specify the index function bk,·, let us choose α = 1
3S (we motivate this choice

of α later on), and for each state x ∈ S, define the estimate of Gini coefficient at time t as
Ĝk,t(x) :=

∑
y∈S P̂k,t(x, y)(1− P̂k,t(x, y)). The index bk,t+1 is then defined as

bk,t+1 =
2β

Tk,t

∑
x∈S

I{Tk,x,t > 0}Ĝk,t(x) +
6.6β3/2

Tk,t

∑
x∈S

T
3/2
k,x,t

(Tk,x,t + αS)2

∑
y∈S

√
P̂k,t(I − P̂k,t)(x, y)

+
28β2S

Tk,t

∑
x∈S

I{Tk,x,t > 0}
Tk,x,t + αS

,

where β := β(n, δ) := c log
(⌈

log(n)
log(c)

⌉
6KS2

δ

)
, with c > 1 being an arbitrary choice. In this paper,

we choose c = 1.1.
We remark that the design of the index bk,· above comes from the application of empirical

Bernstein concentration for α-smoothed estimators (see Lemma 4 in the supplementary) to the
loss function Lk,t. In other words, Lemma 4 guarantees that with high probability, bk,t+1 ≥ Lk,t.
Our concentration inequality (Lemma 4) is new, to our knowledge, and could be of independent
interest.

Having defined the index function bk,·, we are now ready to describe our algorithm, which
we call BA-MC (Bandit Allocation for Markov Chains). BA-MC receives as input a confidence
parameter δ, a budget n, as well as the state space S . It initially samples each chain twice (hence,
this phase lasts for 2K rounds). Then, BA-MC simply consists in sampling the chain with the
largest index bk,t+1 at each round t. Finally, it returns, after n pulls, an estimate P̂k,n for each
chain k. We provide the pseudo-code of BA-MC in Algorithm 1. Note that BA-MC does not
require any prior knowledge of the chains (neither the initial distribution nor the mixing time).

Algorithm 1 BA-MC – Bandit Allocation for Markov Chains
Input: Confidence parameter δ, budget n, state space S;
Initialize: Sample each chain twice;
for t = 2K + 1, . . . , n do

Sample chain kt ∈ argmaxk bk,t+1;
Observe Xk,t, and update Tk,x,t and Tk,t;

end for

In order to provide more insights into the design of BA-MC, let us remark that (as shown
in Lemma 8 in the supplementary) bk,t+1 provides a high-probability UCB on the quantity

1
Tk,t

∑
xGk(x) as well. Now by sampling the chain kt ∈ argmaxk∈[K] bk,t+1 at time t, in view

of discussions in Section 2.4, BA-MC would try to mimic an oracle algorithm being aware of∑
xGk(x) for various chains.
We remark that our concentration inequality in Lemma 4 (of the supplementary) parallels

the one presented in Lemma 8.3 in [36]. In contrast, our concentration lemma makes appear the
terms Tk,x,t + αS in the denominator, whereas Lemma 8.3 in [36] makes appear terms Tk,x,t in
the denominator. This feature plays an important role to deal with situations where some states are
not sampled up to time t, that is for when Tk,x,t = 0 for some x.

4 Performance Bounds

We are now ready to study the performance bounds on the loss Ln(BA-MC) in both asymptotic
and non-asymptotic regimes. We begin with a generic non-asymptotic bound as follows:
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Theorem 1 (BA-MC, Generic Performance) Let δ ∈ (0, 1). Then, for any budget n ≥ 4K,
with probability at least 1− δ, the loss under A = BA-MC satisfies

Ln(A) ≤ 304KS2β2

n
+ Õ

(K2S2

n2

)
.

The proof of this theorem, provided in Section C in the supplementary, reveals the motivation
to choose α = 1

3S : It verifies that to minimize the dependency of the loss on S, on must choose
α ∝ S−1. In particular, the proof does not rely on the ergodicity assumption:

Remark 2 Theorem 1 is valid even if the Markov chains Pk, k ∈ [K] are reducible or periodic.

In the following theorem, we state another non-asymptotic bound on the performance of BA-
MC, which refines Theorem 1. To present this result, we recall the notation Λ :=

∑
k

∑
xGk(x),

and that for any chain k, ηk = 1
Λ

∑
x∈S Gk(x),Hk :=

∑
x∈S πk(x)−1, and πk := minx∈S πk(x) >

0.

Theorem 2 Let δ ∈ (0, 1), and assume that n ≥ ncutoff := K maxk

(
300

γps,kπk
log
(

2K
δ

√
π−1
k

))2
.

Then, with probability at least 1− 2δ,

Ln(A) ≤ 2βΛ

n
+
C0β

3/2

n3/2
+ Õ(n−2) ,

where C0 := 150K
√
SΛ maxkHk + 3

√
SΛ maxk

Hk
ηk
.

Recalling the asymptotic loss of the oracle algorithm discussed in Section 2.4 being equal
to Λ/n, in view of the Bernstein concentration, the oracle would incur a loss at most 2βΛ

n for
when the budget n is finite. In this regard, we may look at the quantity Ln(A) − 2βΛ

n as the
pseudo-excess loss ofA (we refrain from calling this quantity the excess loss, as 2βΛ

n is not equal to
the high-probability loss of the oracle). Theorem 2 implies that when n is greater than the cut-off
budget ncutoff, the pseudo-excess loss under BA-MC vanishes at a rate Õ(n−3/2). In particular,
Theorem 2 characterizes the constant C0 controlling the main term of the pseudo-excess loss:
C0 = O(K

√
SΛ maxkHk +

√
SΛ maxk

Hk
ηk

). This further indicates that the pseudo-excess loss

is controlled by the quantity Hk
ηk

, which captures (i) the discrepancy among the
∑

xGk(x) values
of various chains k, and (ii) the discrepancy between various stationary probabilities πk(x), x ∈ S .
We emphasize that the dependency of the learning performance (through C0) on Hk is in alignment
with the result obtained by [21] for the estimation of a single ergodic Markov chain.

The proof of this theorem, provided in Section D in the supplementary, shows that to determine
the cut-off budget ncutoff, one needs to determine the value of n such that with high probability,
for any chain k and state x, the term Tk,n(Tk,x,n + αS)−1 approaches πk(x)−1, which is further
controlled by γps,k (or γk if k is reversible) as well as the minimal stationary distribution πk. This
in turn allows us to show that, under BA-MC, the number Tk,n of samples for any chain k comes
close to the quantity ηkn. Finally, we remark that the proof of Theorem 2 also reveals that the
result in the theorem is indeed valid for any constant α > 0.

In the following theorem, we characterize the asymptotic performance of BA-MC:

Theorem 3 (BA-MC, Asymptotic Regime) Under A =BA-MC, lim supn→∞ nLn(A) = Λ .

9



The above theorem asserts that, asymptotically, the loss under BA-MC matches the asymp-
totically optimal loss Λ/n characterized in Section 2.4. We may thus conclude that BA-MC is
uniformly good (in the sense of Definition 1). The proof of Theorem 3 (provided in Section E of
the supplementary) proceeds as follows: It divides the estimation problem into two consecutive
sub-problems, the one with the budget n0 =

√
n and the other with the rest n−

√
n of pulls. We

then show when n0 =
√
n ≥ ncutoff, the number of samples on each chain k at the end of the first

sub-problem is lower bounded by Ω(n1/4), and as a consequence, the index bk would be accurate
enough: bk,n0 ∈ 1

Tk,n0
(
∑

xGk(x),
∑

xGk(x) + Õ(n−1/8)) with high probability. This allows us
to relate the allocation under BA-MC in the course of the second sub-problem to that of the oracle,
and further to show that the difference vanishes as n→∞.

Below, we provide some further comments about the presented bounds in Theorems 1–3:

Various regimes. Theorem 1 provides a non-asymptotic bound on the loss valid for any n, while
Theorem 3 establishes the optimality of BA-MC in the asymptotic regime. In view of the inequality
Λ ≤ K(S − 1), the bound in Theorem 1 is at least off by a factor of S from the asymptotic loss
Λ/n. Theorem 2 bridges between the two results thereby establishing a third regime, in which the
algorithm enjoys the asymptotically optimal loss up to an additive pseudo-excess loss scaling as
Õ(n−3/2).

The effect of mixing. It is worth emphasizing that the mixing times of the chains do not appear
explicitly in the bounds, and only control (through the pseudo-spectral gap γps,k) the cut-off budget
ncutoff that ensures when the pseudo-excess loss vanishes at a rate n−3/2. This is indeed a strong
aspect of our results due to our meaningful definition of loss, which could be attributed to the
fact that our loss function employs empirical estimates π̂k,n in lieu of πk. Specifically speaking,
as argued in [36], given the number of samples of various states (akin to using π̂k,t(x) in the
loss definition), the convergence of frequency estimates towards the true values is independent
of the mixing time of the chain. We note that despite the dependence of ncutoff on the mixing
times, BA-MC does not need to estimate them as when n ≤ ncutoff, it still enjoys the loss
guarantee of Theorem 1. We also mention that to define an index function for the loss function
maxk

∑
xπk(x)‖Pk(x, ·)−P̂k,n(x, ·)‖22, one may have to derive confidence bounds on the mixing

time and/or stationary distribution πk as well.

More on the pseudo-excess loss. We stress that the notion of the pseudo-excess loss bears some
similarity with the definition of regret for active bandit learning of distributions as introduced
in [7, 2] (see Section 1). In the latter case, the regret typically decays as n−3/2 similarly to the
pseudo-excess loss in our case. An interesting question is whether the decay rate of the pseudo-
excess loss, as a function of n, can be improved. And more importantly, if a (problem-dependent)
lower bound on the pseudo-excess loss can be established. These questions are open even for the
simpler case of active learning of distributions in the i.i.d. setup; see, e.g., [37, 8, 2]. We plan to
address these as a future work.

5 Conclusion

In this paper, we addressed the problem of active bandit allocation in the case of discrete and
ergodic Markov chains. We considered a notion of loss function appropriately extending the
loss function for learning distributions to the case of Markov chains. We further characterized
the notion of a “uniformly good algorithm” under the considered loss function. We presented
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an algorithm for learning Markov chains, which we called BA-MC. Our algorithm is simple
to implement and does not require any prior knowledge of the Markov chains. We provided
non-asymptotic PAC-type bounds on the loss incurred by BA-MC, and showed that asymptotically,
it incurs an optimal loss. We further discussed that the (pseudo-excess) loss incurred by BA-MC
in our bounds does not deteriorate with mixing times of the chains. As a future work, we plan to
derive a (problem-dependent) lower bound on the pseudo-excess loss. Another interesting, yet very
challenging, future direction is to devise adaptive learning algorithms for restless Markov chains,
where the state of various chains evolve at each round independently of the learner’s decision.
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A Concentration Inequalities

Lemma 2 ([38, Lemma 2.4]) Let Z = (Zt)t∈N be a sequence of random variables generated by
a predictable process, and F = (Ft)t be its natural filtration. Let ϕ : R → R+ be a convex
upper-envelope of the cumulant generating function of the conditional distributions with ϕ(0) = 0,
and let ϕ? denote its Legendre-Fenchel transform, that is:

∀λ ∈ D, ∀t, logE
[
exp

(
λZt

)
|Ft−1

]
≤ ϕ(λ) ,

∀x ∈ R, ϕ?(x) = sup
λ∈R

(λx− ϕ(λ)) ,

where D = {λ ∈ R : ∀t, logE [exp(λZt)|Ft−1] ≤ ϕ(λ) <∞}. Assume that D contains an open
neighborhood of 0. Let ϕ−1

?,+ : R→ R+ (resp. ϕ−1
?,−) be its reverse map on R+ (resp. R−), that is

ϕ−1
?,−(z) := sup{x ≤ 0 : ϕ?(x) > z} and ϕ−1

?,+(z) := inf{x ≥ 0 : ϕ?(x) > z} .
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Let Nn be an integer-valued random variable that is F -measurable and almost surely bounded by
n. Then, for all c ∈ (1, n] and δ ∈ (0, 1),

P
[

1

Nn

Nn∑
t=1

Zt ≥ ϕ−1
?,+

(
c

Nn
log
(⌈ log(n)

log(c)

⌉
1

δ

))]
≤ δ ,

P
[

1

Nn

Nn∑
t=1

Zt ≤ ϕ−1
?,−

(
c

Nn
log
(⌈ log(n)

log(c)

⌉
1

δ

))]
≤ δ .

Moreover, if N is a possibly unbounded N-valued random variable that is F -measurable, then for
all c > 1 and δ ∈ (0, 1),

P
[

1

N

N∑
t=1

Zt ≥ ϕ−1
?,+

(
c

N
log

[
log(N) log(cN)

δ log2(c)

])]
≤ δ ,

P
[

1

N

N∑
t=1

Zt ≤ ϕ−1
?,−

(
c

N
log

[
log(N) log(cN)

δ log2(c)

])]
≤ δ .

We provide an immediate consequence of this lemma for the case of sub-Gamma random
variables:

Corollary 1 Let Z = (Zt)t∈N be a sequence of random variables generated by a predictable
process, and F = (Ft)t be its natural filtration. Assume for all t ∈ N, |Zt| ≤ b and E[Z2

s |Fs−1] ≤
v for some positive numbers v and b. Let Nn be an integer-valued random variable that is
F-measurable and almost surely bounded by n. Then, for all c ∈ (1, n] and δ ∈ (0, 1),

P
[

1

Nn

Nn∑
t=1

Zt ≥

√
2ζ(n, δ)v

Nn
+
ζ(n, δ)b

3Nn

]
≤ δ ,

P
[

1

Nn

Nn∑
t=1

Zt ≤ −

√
2ζ(n, δ)v

Nn
− ζ(n, δ)b

3Nn

]
≤ δ ,

where ζ(n, δ) := c log
(⌈

log(n)
log(c)

⌉
1
δ

)
, with c > 1 being an arbitrary parameter.

Proof. The proof follows by an application of Lemma 2 for sub-Gamma random variables with
parameters (v, b). Note that sub-Gamma random variables satisfy ϕ(λ) ≤ λ2v

2(1−bλ) , for all λ ∈
(0, 1/b), so that

ϕ−1
?,+(z) =

√
2vz + bz and ϕ−1

?,−(z) = −
√

2vz − bz .

Plugging these into the first statements of Lemma 2 completes the proof. �
As a consequence of this corollary, we present the following lemma:

Lemma 3 (Bernstein-Markov Concentration) Let (Xt)1≤t≤n be generated from an ergodic
Markov chain defined on a finite state-space S with transition matrix P . Consider the smoothed
estimator P̂n of P defined as follows: For all (x, y) ∈ S2,

P̂n(x, y) :=
α+

∑n
t=2 I{Xt−1 = x,Xt = y}

αS + Tx,n
,
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with α > 0. Then, for any δ ∈ (0, 1), it holds that with probability at least 1 − δ, for all
(x, y) ∈ S2,

|P̂n(x, y)− P (x, y)| ≤

√(
Tx,n

Tx,n + αS

)
2P (I − P )(x, y)ζ(n, δ)

Tx,n + αS
+

1
3ζ(n, δ) + α|1− SP (x, y)|

Tx,n + αS
,

where ζ(n, δ) := c log
(⌈

log(n)
log(c)

⌉
2S2

δ

)
, with c > 1 being an arbitrary parameter.

Proof. The proof uses similar steps as in the one of Lemma 8.3 in [36]. Consider a pair (x, y) ∈ S2.
We have

P̂n(x, y)− P (x, y) =
α+

∑n
t=2 I{Xt−1 = x,Xt = y}

αS + Tx,n
− P (x, y)

=
Tx,n

Tx,n + αS
Yn +

α(1− SP (x, y))

Tx,n + αS
,

where Yn := 1
Tx,n

(
∑n

t=2 I{Xt−1 = x,Xt = y} − Tx,nP (x, y)). Hence,

|P̂n(x, y)− P (x, y)| ≤ Tx,n
Tx,n + αS

|Yn|+
α|1− SP (x, y)|
Tx,n + αS

. (3)

To control Yn, we define the sequence (Zt)1≤t≤n, with Z1 := 0, and

Zt := I{Xt−1 = x}(I{Xt = y} − P (x, y)), ∀t ≥ 2.

Note that for all t, Zt ∈ [−P (x, y), 1−P (x, y)] almost surely. Moreover, denoting by (Ft)t the fil-
tration generated by (Xt)1≤t≤n, we observe that (Zt)1≤t≤n is Ft−1-measurable and E[Zt|Ft−1] =
0. Hence, it is a martingale difference sequence with respect to (Ft)t, and it satisfies Zt ∈
[−P (x, y), 1− P (x, y)] for all t, and

E[Z2
t |Ft−1] = P (x, y)(1− P (x, y))I{Xt−1 = x} , ∀t ≥ 2.

Applying Corollary 1 yields

|Yn| ≤

√
2P (I − P )(x, y)ζ(n, δ)

Tx,n
+
ζ(n, δ)

3Tx,n
,

with probability at least 1− δ. Plugging the above bound into (3) gives the announced result. �

Lemma 4 (Empirical Bernstein-Markov Concentration) Let (Xt)1≤t≤n be generated from an
ergodic Markov chain defined on S with transition matrix P . Consider the smoothed estimator P̂n
of P as defined in Lemma 3. Then, with probability at least 1− δ, for all (x, y) ∈ S2,

|P̂n(x, y)− P (x, y)| ≤

2Tx,nP̂n(I − P̂n)(x, y)ζ

(Tx,n + αS)2
+ c1

√
Tx,nP̂n(I − P̂n)(x, y)

(Tx,n + αS)2
+

c2

(Tx,n + αS)2

1/2

,

where ζ := ζ(n, δ) := c log
(⌈

log(n)
log(c)

⌉
2S2

δ

)
, where c > 1 is an arbitrary parameter, ζ ′ :=

1
3ζ + α(S − 1), and

c1 =
√

8ζ(2ζ + ζ ′) and c2 := ζ ′2 + 4ζ(4ζ + ζ ′ + 2
√
ζζ ′) + ζ ′

√
8ζ(5.3

√
ζ +

√
2ζ ′) .
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Proof. Fix a pair (x, y) ∈ S2. Recall from Lemma 3 that with probability at least 1− δ,

|P̂n(x, y)− P (x, y)| ≤

√
2ζTx,nP (I − P )(x, y)

(Tx,n + αS)2
+

ζ ′

Tx,n + αS
,

so that

(P̂n(x, y)− P (x, y))2 ≤ 2ζTx,nP (I − P )(x, y)

(Tx,n + αS)2
+

ζ ′2

(Tx,n + αS)2
+

√
8ζTx,nP (I − P )(x, y)

(Tx,n + αS)2

ζ ′

Tx,n + αS
.

(4)

Next we derive an upper bound on P (I − P )(x, y). By Taylor’s expansion, we have

P (I − P )(x, y) = P̂n(I − P̂n)(x, y) + (I − 2P̂n)(P − P̂n)(x, y)− (P − P̂n)(x, y)2

= P̂n(I − P̂n)(x, y) + (I − P̂n − P )(P − P̂n)(x, y)

≤ P̂n(I − P̂n)(x, y) + |(I − P̂n − P )(x, y)|

(√
2ζTx,nP (I − P )(x, y)

(Tx,n + αS)2
+

ζ ′

Tx,n + αS

)

≤ P̂n(I − P̂n)(x, y) +

√
8ζTx,nP (I − P )(x, y)

(Tx,n + αS)2
+

2ζ ′

Tx,n + αS
.

Using the fact that a ≤ b
√
a+ c implies a ≤ b2 + b

√
c+ c for nonnegative numbers a, b, c, we get

P (I − P )(x, y) ≤ P̂n(I − P̂n)(x, y) +
2ζ ′

Tx,n + αS
+

√
8ζTx,n

(Tx,n + αS)2

(
P̂n(I − P̂n)(x, y) +

2ζ ′

Tx,n + αS

)
+

8ζTx,n
(Tx,n + αS)2

≤ P̂n(I − P̂n)(x, y) +

√
8ζTx,n

(Tx,n + αS)2
P̂n(I − P̂n)(x, y) +

8ζ + 2ζ ′ + 4
√
ζζ ′

Tx,n + αS
,

(5)

where we have used
√
a+ b ≤

√
a+
√
b valid for all a, b ≥ 0. Taking square-root from both sides

and using the fact
√
a+ b ≤

√
a+ b

2
√
a

valid for all a, b > 0 give

√
P (I − P )(x, y) ≤

√
P̂n(I − P̂n)(x, y) +

1√
Tx,n + αS

(√
2ζ +

√
8ζ + 2ζ ′ + 4

√
ζζ ′
)

≤
√
P̂n(I − P̂n)(x, y) +

5.3
√
ζ +
√

2ζ ′√
Tx,n + αS

, (6)

where we have used√
2ζ +

√
8ζ + 2ζ ′ + 4

√
ζζ ′ ≤

√
2ζ +

√
6ζ + 2(

√
ζ +

√
ζ ′)2 ≤ 5.3

√
ζ +

√
2ζ ′ .
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Plugging (5) and (6) into (4), we obtain

(P̂n(x, y)− P (x, y))2

≤ 2ζTx,n
(Tx,n + αS)2

(
P̂n(I − P̂n)(x, y) +

√
8ζTx,n

(Tx,n + αS)2
P̂n(I − P̂n)(x, y) +

8ζ + 2ζ ′ + 4
√
ζζ ′

Tx,n + αS

)

+
ζ ′

Tx,n + αS

√
8ζTx,n

(Tx,n + αS)2

(√
P̂n(I − P̂n)(x, y) +

5.3
√
ζ +
√

2ζ ′√
Tx,n + αS

)
+

ζ ′2

(Tx,n + αS)2

≤ 2ζTx,nP̂n(I − P̂n)(x, y)

(Tx,n + αS)2
+ c1

√
Tx,nP̂n(I − P̂n)(x, y)

(Tx,n + αS)2
+

c2

(Tx,n + αS)2
,

with

c1 :=
√

8ζ(2ζ + ζ ′) and c2 := ζ ′2 + 4ζ(4ζ + ζ ′ + 2
√
ζζ ′) + ζ ′

√
8ζ(5.3

√
ζ +

√
2ζ ′) ,

which after taking the square-root from both sides yields the announced result. �
Next we recall a result for the convergence of empirical stationary distributions in a Markov

chain to its stationary distribution:

Lemma 5 ([20]) Let (Xt)1≤t≤n be an ergodic and reversible Markov chain defined on S with
stationary distribution π and spectral gap γ. Let π̂n denote the corresponding empirical stationary
distribution of the Markov chain. For any δ ∈ (0, 1), with probability at least 1− δ,

|π̂n(x)− π(x)| ≤

√√√√8π(x)(1− π(x))

γn
log

(
1

δ

√
2

minx π(x)

)
+

20

γn
log

(
1

δ

√
2

minx π(x)

)
, ∀x ∈ S.

B Technical Lemmas

Before providing the proofs of the main theorems, we provide some technical lemmas. We begin
with the following definition:

Definition 2 (Definition of the Event C) Let n ≥ 1 and δ > 0. For any (x, y) ∈ S2 and k ∈ [K]
define

Cx,y,k(n, δ) :=

{
∀t ≤ n : |(P̂k,t − Pk)(x, y)| ≤

√
2Tk,x,tPk(I − Pk)(x, y)β(n, δ)

(Tk,x,t + αS)2
+

β(n, δ)

3(Tk,x,t + αS)

}
,

where β(n, δ) := c log
(⌈

log(n)
log(c)

⌉
6KS2

δ

)
. Define

C := C(n, δ) := ∩k∈[K] ∩x,y∈S Cx,y,k(n, δ) .

Lemma 6 For any n ≥ 1 and δ ∈ (0, 1), it holds that P(C(n, δ)) ≥ 1− δ.

Proof. Let n ≥ 1 and δ > 0. Define ζ(n, δ) = c log
(⌈

log(n)
log(c)

⌉
2KS2

δ

)
, and note that β(n, δ) =

ζ(n, δ) + c log(3). Applying Lemma 3, we obtain

|(P̂k,t − Pk)(x, y)| ≤

√
2Tk,x,tPk(I − Pk)(x, y)ζ(n, δ)

(Tk,x,t + αS)2
+

1
3ζ(n, δ) + α(S − 1)

Tk,t,x + αS
,
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for all (x, y), and uniformly for all t ≤ n, with probability at least 1 − δ
K . With the choice of

α = 1
3S , and noting that β(n, δ) ≥ ζ(n, δ) and

ζ(n, δ)

3
+
S − 1

3S
≤ β(n, δ)

3
,

we obtain P(∩x,y∈SCx,y,k(n, δ)) ≥ 1 − δ/K for all k. Finally, using a union bound gives
P(C(n, δ)) ≥ 1− δ. �

In the following lemma we provide an upper bound on the loss Lk,n, which is valid for all n.

Lemma 7 (Upper Bound on the Loss) Assume that the event C holds. Then, for any budget
n > 1 and chain k,

Lk,n ≤
2β

Tk,n

∑
x

Gk(x)I{Tk,x,n > 0}+
2
√

2

3

β3/2
√
S

Tk,n

∑
x

T
3/2
k,x,n

√
Gk(x)

(Tk,x,n + αS)2
+

Sβ2

9Tk,n

∑
x

Tk,x,n
(Tk,x,n + αS)2

.

Proof. Let n > 1 and consider a chain k. To simplify the notation, we omit the dependence of
various quantities on k (hence Tx,n := Tk,x,n, Tn := Tk,n, and so on). On the event C, we have

|P̂n(x, y)− P (x, y)| ≤

√(
Tx,n

Tx,n + αS

)
2P (I − P )(x, y)β

Tx,n + αS
+

β

3(Tx,n + αS)
,

so that

(P̂n(x, y)− P (x, y))2 ≤ 2βP (I − P )(x, y)

Tx,n + αS
+

1
9β

2

(Tx,n + αS)2
+

2
√

2
3 β3/2

(Tx,n + αS)2

√
Tx,nP (I − P )(x, y) .

Hence, we obtain the announced upper bound on the loss:

Ln =
∑
x

π̂n(x)
∑
y

(P̂n(x, y)− P (x, y))2

≤ 2β

Tn

∑
x

Tx,nG(x)

Tx,n + αS
+

2
√

2

3

β3/2

Tn

∑
x

T
3/2
x,n

(Tx,n + αS)2

∑
y

√
P (I − P )(x, y) +

Sβ2

9Tn

∑
x

Tx,n
(Tx,n + αS)2

≤ 2β

Tn

∑
x

G(x)I{Tx,n > 0}+
2
√

2

3

β3/2
√
S

Tn

∑
x

T
3/2
x,n

√
G(x)

(Tx,n + αS)2
+
Sβ2

9Tn

∑
x

Tx,n
(Tx,n + αS)2

,

where the last step follows from the Cauchy-Schwarz inequality. �
The following lemma presents bounds on the index bk,· on the event C (defined in Definition

2):

Lemma 8 (Bounds on the Index) Consider a chain k, and assume that the event C holds. Then,
for any time t,

bk,t+1 ≤
2β

Tk,t

∑
x

Gk(x)I{Tk,x,t > 0}+
13β3/2

√
S

Tk,t

∑
x

√
Gk(x)I{Tk,x,t > 0}

Tk,x,t + αS
+

39β2S

Tk,t

∑
x

I{Tk,x,t > 0}
Tk,x,t + αS

,

bk,t+1 ≥
2β

Tk,t

∑
x

Gk(x)I{Tk,x,t > 0} .
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Proof. Fix a chain k and time t. To ease notation, let us omit the dependence of various quantities
on k throughout. We first recall the definition of the index bt+1:

bt+1 =
2β

Tt

∑
x

Ĝt(x)I{Tx,t > 0}+
c1

Tt

∑
x

T
3/2
x,t

(Tx,t + αS)2

∑
y

√
P̂t(I − P̂t)(x, y) +

c2S

Tt

∑
x

I{Tx,t > 0}
Tx,t + αS

,

where c1 = 6.6β3/2 and c2 = 28β2.
To derive an upper bound on bt, we first find an upper bound on P̂t(I − P̂t)(x, y) as follows.

First, using Taylor’s expansion, we have

P̂t(I − P̂t)(x, y) = P (I − P )(x, y) + (I − 2P )(P̂t − P )(x, y)− (P̂t − P )(x, y)2

= P (I − P )(x, y) + (I − P − P̂t)(P̂t − P )(x, y)

≤ P (I − P )(x, y) +

√
8βP (I − P )(x, y)

Tx,t + αS
+

2β

3(Tx,t + αS)
(7)

≤

(√
P (I − P )(x, y) +

√
2β

Tx,t + αS

)2

,

where (7) follows from the definition of C. Hence,√
P̂t(I − P̂t)(x, y) ≤

√
P (I − P )(x, y) +

√
2β

Tx,t + αS
. (8)

Using (7) and (8), we obtain the following upper bound on bt, on the event C:

bt+1 ≤
2β

Tt

∑
x

∑
y

(
P (I − P )(x, y) +

√
8βP (I − P )(x, y)

Tx,t + αS
+

2β

3(Tx,t + αS)

)
I{Tx,t > 0}

+
6.6β3/2

Tt

∑
x

T
3/2
x,t

(Tx,t + αS)2

∑
y

(√
P (I − P )(x, y) +

√
2β√

Tx,t + αS

)
+

28β2S

Tt

∑
x

I{Tx,t > 0}
Tx,t + αS

≤ 2β

Tt

∑
x

G(x)I{Tx,t > 0}+
13β3/2

√
S

Tt

∑
x

√
G(x)I{Tx,t > 0}

Tx,t + αS
+

39β2S

Tt

∑
x

I{Tx,t > 0}
Tx,t + αS

.

To prove the lower bound on the index, we recall from the proof of Lemma 4 (see (5) with the
choices ζ = β and ζ ′ = β

3 ) that

P̂t(I − P̂t)(x, y) ≥ P (I − P )(x, y)−

√
8βTx,t

(Tx,t + αS)2
P̂t(I − P̂t)(x, y)− 12

Tx,t + αS
.

Putting this together with the definition of bt+1 leads to bt+1 ≥ 2β
Tt

∑
xG(x)I{Tx,t > 0}, and thus

completes the proof. �

19



C Proof of Theorem 1

Consider a chain k and assume that the event C (defined in Definition 2) holds. Applying Lemma
7, we obtain

Lk,n ≤
2β

Tk,n

∑
x:Tk,x,n>0

Gk(x) +
2
√

2

3

β3/2
√
S

Tk,n

∑
x

T
3/2
k,x,n

√
Gk(x)

(Tk,x,n + αS)2
+

Sβ2

9Tk,n

∑
x

Tk,x,n
(Tk,x,n + αS)2

≤ 2β

Tk,n

∑
x:Tk,x,n>0

Gk(x) +
2
√

2

3

β3/2

Tk,n

√
S

∑
x:Tk,x,n>0

Gk(x)

√√√√ ∑
x:Tk,x,n>0

1

Tk,x,n + αS

+
Sβ2

9Tk,n

∑
x:Tk,x,n>0

1

Tk,x,n + αS

=

√√√√ 2β

Tk,n

∑
x:Tk,x,n>0

Gk(x) +

√√√√ Sβ2

9Tk,n

∑
x:Tk,x,n>0

1

Tk,x,n + αS


2

,

where we have used Cauchy-Schwarz in the second inequality. Introducing

A1,k :=
Sβ2

9Tk,n

∑
x:Tk,x,n>0

1

Tk,x,n + αS
and A2,k :=

2β

Tk,n

∑
x:Tk,x,n>0

Gk(x) ,

we provide upper bounds on A1,k and A2,k in the following lemmas:

Lemma 9 On the event C, it holds for any chain k and any n:

A1,k ≤
0.175KS2β2

n−K
.

Lemma 10 Assume that the event C holds. Then for any chain k and n:

A2,k ≤
288KS2β2

n− 2K
+

550K2S2β2

(n− 2K)2
.

Applying Lemmas 9 and 10 gives

Lk,n ≤ (
√
A1,k +

√
A2,k)

2 ≤ KS2β2

n− 2K

(√
288 +

550K

n− 2K
+
√

0.175

)2

≤ KS2β2

(
304

n− 2K
+

564K

(n− 2K)2

)
,

where we have used(√
288 +

550K

n− 2K
+
√

0.175

)2

≤ 289 +
550K

n− 2K
+ 2
√

0.175

√
288 +

550K

n− 2K
≤ 304 +

564K

n− 2K
.

Finally, using the inequality (n− 2K)−1 ≤ n−1 + 4Kn−2 valid for n ≥ 4K, and noting that the
event C holds with a probability higher than 1− δ, we get the desired bound on the loss. �
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C.1 Proof of Lemma 9

Assume that C holds. We claim that there exists a chain j such that Tj,n ≥ n
K . We show this claim

by contradiction: If for all j, Tj,n < n
K , then

∑K
j=1 Tj,n < n, which is a contradiction.

Now, consider a chain j such that Tj,n ≥ n
K . Let t + 1 ≤ n be the last time that it has been

sampled. Hence, Tj,t+1 = Tj,n and Tj,t = Tj,n − 1 ≥ n
K − 1. Applying Lemma 8 for chain j, it

follows that on the event C,

bj,t+1 ≤
2β

Tj,t

∑
x:Tj,x,t>0

Gj(x) +
13β3/2

√
S

Tj,t

∑
x:Tj,x,t>0

√
Gj(x)

Tj,x,t + αS
+

39β2S

Tj,t

∑
x:Tj,x,t>0

1

Tj,x,t + αS

≤ 2β

Tj,t

∑
x:Tj,x,t>0

Gj(x) +
13β3/2

√
S

Tj,t

√ ∑
x:Tj,x,t>0

Gj(x)

√√√√ ∑
x:Tj,x,t>0

1

Tj,x,t + αS

+
39β2S

Tj,t

∑
x:Tj,x,t>0

1

Tj,x,t + αS

≤ K

n−K

2β
∑
x

Gj(x) + 13β3/2

√
S
∑
x

Gj(x)

√∑
x

1

1 + αS
+ 39β2S

∑
x

1

1 + αS


≤ K

n−K

2β
∑
x

Gj(x) + 12Sβ3/2

√∑
x

Gj(x) + 30β2S2

 .

Noting that
∑

xGj(x) ≤ S − 1, we get

bj,t+1 ≤
K

n−K

(
2β(S − 1) + 12Sβ3/2

√
S − 1 + 30β2S2

)
≤ 44KS2β2

n−K
,

where we have used that S ≥ 2. Note that for any chain i, by the definition of bi,t+1,

bi,t+1 ≥
28β2S

Ti,t

∑
x

I{Ti,x,t > 0}
Ti,x,t + αS

≥ 28β2S

Ti,n

∑
x

I{Ti,x,n > 0}
Ti,x,n + αS

.

Furthermore, since j is played at time t, it holds that for any chain i 6= j, bi,t+1 ≤ bj,t+1, so that
for any chain i,

bj,t+1 ≥ bi,t+1 ≥
28β2S

Ti,n

∑
x

I{Ti,x,n > 0}
Ti,x,n + αS

.

Thus, combining this with the upper bound on bj,t+1 leads to the desired results. �

C.2 Proof of Lemma 10

The proof borrows some ideas from the proof of Lemma 1 in [2]. Consider a chain j that is
sampled at least once after initialization, and let t + 1(> 2K) be the last time it was sampled.
Hence, Tj,t = Tj,n − 1 and Tj,t+1 = Tj,n. Moreover, let Xt+1 be the observed state of j at
t + 1. Then, Tj,Xt+1,t = Tj,Xt+1,n − 1 and Tj,Xt+1,t+1 = Tj,Xt+1,n, whereas for all x 6= Xt+1,
Tj,x,t = Tj,x,t+1 = Tj,x,n. We thus have, Tj,x,t ≥ Tj,x,n − 1 for all x ∈ S.

21



By the design of the algorithm, for any chain k, bk,t+1 ≤ bj,t+1. Using Lemma 8 yields

2β

Tk,n

∑
x

Gk(x) ≤ 2β

Tj,n − 1

∑
x

Gj(x) +
13β3/2

√
S

Tj,n − 1

∑
x

√
Gj(x)

Tj,x,t + αS
+

39β2S

Tj,n − 1

∑
x

1

Tj,x,t + αS

≤ 2β

Tj,n − 1

∑
x

Gj(x) +
26β3/2

√
S

Tj,n − 1

∑
x

√
Gj(x)

Tj,x,n + αS

+
156β2S

Tj,n − 1

∑
x

1

Tj,x,n + αS
,

where in the second line we have used that for α = 1
3S and Tj,x,n ≥ 1,

Tj,x,t + αS ≥ Tj,x,n − 1 + αS ≥ Tj,x,n + αS

4
.

The above holds for any chain k, and any chain j that is sampled at least once after the initialization
(hence, Tj,n > 2). Summing over such choices of j gives

2β

Tk,n

∑
x

Gk(x)
∑

j:Tj,n>2

(Tj,n − 1)

≤ 2β
∑
j

∑
x

Gj(x) + 26β3/2
√
S
∑
j

∑
x

√
Gj(x)

Tj,x,n + αS
+ 156β2S

∑
j

∑
x

1

Tj,x,n + αS

≤ 2βΛ + 26β3/2
√
SΛ

√∑
j

∑
x

1

Tj,x,n + αS
+ 156β2S

∑
j

∑
x

1

Tj,x,n + αS
,

where we have used Cauchy-Schwarz in the last inequality, and that
∑

j

∑
xGj(x) = Λ. Noting

that
∑

j:Tj,n>2(Tj,n − 1) ≥ n− 2K yields

2β

Tk,n

∑
x

Gk(x) ≤ 2βΛ

n− 2K
+

26β3/2
√

Λ

n− 2K

√∑
j

∑
x

S

Tj,x,n + αS
+

156β2

n− 2K

∑
j

∑
x

S

Tj,x,n + αS
.

By Lemma 9,
∑

x
S

Tj,x,n+αS ≤
1.58KS2

n−K Tj,n for any chain j, which gives

2β

Tk,n

∑
x

Gk(x) ≤ 2βΛ

n− 2K
+

33β3/2
√

Λ

n− 2K

√√√√ KS2

n−K
∑
j

Tj,n +
263KS2β2

(n− 2K)(n−K)

∑
j

Tj,n

≤ 2βKS

n− 2K
+

33β3/2KS3/2

n− 2K

√
n

n− 2K
+

263KS2β2n

(n− 2K)2

≤ 288KS2β2

n− 2K
+

550K2S2β2

(n− 2K)2
,

where we have used
∑

j Tj,n = n, Λ ≤ KS, S ≥ 2, and
√

n
n−2K ≤ 1 + K

n−2K . �

D Proof of Theorem 2

Let δ ∈ (0, 1) and n ≥ ncutoff. To control the loss in this case, we first state the following result for
the concentration of empirical state distribution π̂k,n.
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Lemma 11 (Concentration of Empirical State Distributions) Assume that event C holds and
n ≥ ncutoff. Then, for any chain k and state x, π̂k,n(x)−1 ≤ 2πk(x)−1 with probability at least
1− δ.

Recalling that π̂k,n(x) =
Tk,x,n
Tk,n

for all x ∈ S, on the event C (defined in Definition 2), we
have by Lemma 7 and Lemma 11,

Lk,n ≤
2β

Tk,n

∑
x

Gk(x) +
2
√

2

3

β3/2
√
S

T
3/2
k,n

∑
x

√
Gk(x)

π̂k,n(x)
+

Sβ2

9T 2
k,n

∑
x

1

π̂k,n(x)

≤ 2β

Tk,n

∑
x

Gk(x) +
4β3/2

√
S

3T
3/2
k,n

∑
x

√
Gk(x)

πk(x)
+

2SHkβ
2

9T 2
k,n

≤ 2β

Tk,n

∑
x

Gk(x) +
4β3/2

3T
3/2
k,n

√
SHk

∑
x

Gk(x) +
2SHkβ

2

9T 2
k,n

,

with probability at least 1− δ, where the last step follows from the Cauchy-Schwarz inequality.
To control the right-hand side of the above, we first provide an upper bound on 2β

Tk,n

∑
xGk(x)

assuming that the event C holds:

Lemma 12 Assume that the event C holds. Then, for any chain k and n ≥ ncutoff, it holds that

2β

Tk,n

∑
x

Gk(x) ≤ A1

n
+

A2

n3/2
+
A3

n2
+ Õ(n−5/2) ,

with probability at least 1− δ, where

A1 = 2βΛ, A2 = 150β3/2K
√
SΛHmax, A3 =

3912KSHmaxβ
2

ηmin
.

Applying Lemma 12, and noting P(C) ≥ 1− δ (see Lemma 6), we obtain the following bound
on Lk,n, which holds with probability greater than 1− 2δ:

Lk,n ≤
2β

Tk,n

∑
x

Gk(x) +
4β3/2

3T
3/2
k,n

√
SHk

∑
x

Gk(x) +
2SHkβ

2

9T 2
k,n

≤ 2β

Tk,n

∑
x

Gk(x) +

(
2β

Tk,n

∑
x

Gk(x)

)3/2
0.48
√
SHk∑

xGk(x)
+

2SHk

9(
∑

xGk(x))2

(
β

Tk,n

∑
x

Gk(x)

)2

≤ A1

n
+

A2

n3/2
+
A3

n2
+

(
A1

n
+

A2

n3/2
+
A3

n2

)3/2 0.48
√
SHk∑

xGk(x)

+
2SHk

9(
∑

xGk(x))2

(
A1

n
+

A2

n3/2
+
A3

n2

)2

+ Õ(n−5/2)

(a)

≤ A1

n
+

A2

n3/2
+
A3

n2
+

0.84
√
SHk∑

xGk(x)

(
A

3/2
1

n3/2
+
A

3/2
2

n9/4
+
A

3/2
3

n3

)

+
4SHk

9(
∑

xGk(x))2

(
A2

1

n2
+
A2

2

n3
+
A2

3

n4

)
+ Õ(n−5/2)

≤ A1

n
+

1

n3/2

(
A2 +

0.84
√
SHk∑

xGk(x)
A

3/2
1

)
+ Õ(n−2)

≤ 2βΛ

n
+
β3/2

n3/2

(
150K

√
SΛHmax +

2.4
√
SHkΛ

ηk

)
+ Õ(n−2) ,
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where (a) follows from the fact that for positive numbers ai, i = 1, . . . ,m, we have by Jensen’s
inequality,

( 1

m

m∑
i=1

ai

)3/2
≤ 1

m

m∑
i=1

a
3/2
i .

so that (
∑m

i=1 ai)
3/2 ≤

√
m
∑m

i=1 a
3/2
i . Finally, taking the maximum over k completes the proof.

�

D.1 Proof of Lemma 11

By Lemma 5, we have for all chains k and all x ∈ S,

|π̂k,n(x)− πk(x)| ≤ ξk,x,n :=

√
8πk(x)εk
Tk,n

+
20εk
Tk,n

,

with probability at least 1−δ, where εk := 1
γk

log
(
K
δ

√
2
πk

)
. It is easy to verify that if Tk,n ≥ 96εk

πk
,

then ξk,x,n ≤ πk(x)/2, so that for all k and all x,

1

π̂k,n(x)
=

1

πk(x)
+
πk(x)− π̂k,n(x)

π̂k,n(x)πk(x)

≤ 1

πk(x)
+

ξk,x,n
πk(x)(πk(x)− ξk,x,n)

≤ 2

πk(x)
,

with probability at least 1− δ.
It remains to show that if n ≥ ncutoff, we have Tk,n ≥ 96εk

πk
. Indeed, when C occurs, as a

consequence of Lemma 9, one has

Sβ2

9Tk,n

∑
x:Tk,x,n>0

1

Tk,x,n + αS
≤ 0.175KS2β2

n−K
,

with probability at least 1− δ. Using the trivial bound Tk,x,n ≤ Tk,n, it follows that

S2β2

9Tk,n(Tk,n + αS)
≤ 0.175KS2β2

n−K
,

so that

Tk,n ≥
√

n−K
1.575K

− 1

3
≥ 0.56

√
n

K
− 1

3
≥ 0.327

√
n

K
.

with probability greater than 1−δ. Putting together, we deduce that if n satisfies 0.327
√

n
K ≥

96εk
πk

,
we have ξk,x,n ≤ πk(x)/2, and the lemma follows.

Moreover, when the chain k is non-reversible, we may use [20, Theorem 3.4] (instead of Lemma

9), and follow the exact same lines as above to deduce that if n ≥ K maxk

(
300

γps,kπk
log
(

2K
δ

√
π−1
k

))2
,

the assertion of the lemma follows. �

24



D.2 Proof of Lemma 12

The proof borrows some ideas from the proof of Lemma 1 in [2]. Consider a chain j that is
sampled at least once after initialization, and let t + 1(> 2K) be the last time it was sampled.
Hence, Tj,t = Tj,n − 1 and Tj,t+1 = Tj,n. Moreover, let Xt+1 be the observed state of j at
t + 1. Then, Tj,Xt+1,t = Tj,Xt+1,n − 1 and Tj,Xt+1,t+1 = Tj,Xt+1,n, whereas for all x 6= Xt+1,
Tj,x,t = Tj,x,t+1 = Tj,x,n. We thus have, Tj,x,t ≥ Tj,x,n − 1 for all x ∈ S.

By the design of the algorithm, for any chain k, bk,t+1 ≤ bj,t+1. Applying Lemma 8 gives

2β

Tk,t

∑
x

Gk(x) ≤ 2β

Tj,t

∑
x

Gj(x) +
c3

√
S

Tj,t

∑
x

√
Gj(x)

Tj,x,t + αS
+
c4S

Tj,t

∑
x

1

Tj,x,t + αS

≤ 2β

Tj,n − 1

∑
x

Gj(x) +
2c3

√
S

Tj,n − 1

∑
x

√
Gj(x)

Tj,x,n + αS
+

4c4S

Tj,n − 1

∑
x

1

Tj,x,n + αS
,

where c3 = 13β3/2 and c4 = 39β2, and where where in the second line we have used that for
α = 1

3S and Tj,x,n ≥ 1

Tj,x,t + αS ≥ Tj,x,n − 1 + αS ≥ Tj,x,n + αS

4
.

Now, applying Lemma 11 and using Tk,t ≤ Tk,n yield

2β

Tk,n

∑
x

Gk(x) ≤ 2β

Tj,n − 1

∑
x

Gj(x) +
c3

√
8S

(Tj,n − 1)T
1/2
j,n

∑
x

√
Gj(x)

πj(x)
+

8c4S

(Tj,n − 1)Tj,n

∑
x

1

πj(x)

≤ 1

Tj,n − 1

2β
∑
x

Gj(x) +

√
8c3

T
1/2
j,n

√
SHj

∑
x

Gj(x) +
8c4SHj

Tj,n

 .

Note that the above relation is valid for any k, and any j that is sampled after initialization (i.e.,
Tj,n > 2). Summing over such choices of j gives

∑
j:Tj,n>2

2β
∑

xGk(x)

Tk,n
(Tj,n − 1) ≤

∑
j:Tj,n>2

(
2β
∑
x

Gj(x) +
c3

√
8SHj

∑
xGj(x)

T
1/2
j,n

+
8c4SHj

Tj,n

)
.

Noting that
∑

j:Tj,n>2(Tj,n − 1) ≥ n− 2K, we have

2β

Tk,n

∑
x

Gk(x) ≤ 1

n− 2K

∑
j

(
2β
∑
x

Gj(x) +
c3

√
8SHj

∑
xGj(x)

T
1/2
j,n

+
8c4SHj

Tj,n

)

≤ 2βΛ

n− 2K
+
c3

√
8S

n− 2K

∑
j

√
Hj

∑
xGj(x)

Tj,n
+

8c4S

n− 2K

∑
j

Hj

Tj,n
. (9)

To carefully control the right-hand side of the last inequality, we use the following lemma:

Lemma 13 Under the same assumption of Lemma 12, we have for any chain j,

β

Tj,n
≤ β

ηmin(n− 2K)
+

c3

η2
min(n− 2K)3/2

√
2SHmax/Λ +

4c4SHmax

Λη3
min(n− 2K)2

,√
2β

Tj,n

∑
x

Gj(x) ≤
√

2βΛ

n− 2K
+

18β
√
SHmax

ηmin(n− 2K)
.
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Now, applying Lemma 13 yields

2β

Tk,n

∑
x

Gk(x) ≤ 2βΛ

n− 2K
+

37β
√
SHmax

n− 2K

∑
j

(√
2βΛ

n− 2K
+

18β
√
SHmax

ηmin(n− 2K)

)

+
312βSHmax

n− 2K

∑
j

(
β

ηmin(n− 2K)
+

c3

η2
min(n− 2K)3/2

√
2SHj/Λ +

4c4SHj

Λη3
min(n− 2K)2

)

≤ 2βΛ

n− 2K
+

53β3/2K
√
SHmaxΛ

(n− 2K)3/2
+

978KSHmaxβ
2

ηmin(n− 2K)2
+ Õ((n− 2K)−5/2) .

Finally, using the inequality (n− 2K)−1 ≤ n−1 + 4Kn−2 and n− 2K ≥ n/2 valid for all
n ≥ 4K, we get the desired result:

2β

Tk,n

∑
x

Gk(x) ≤ 2βΛ

n
+

150β3/2K
√
SΛHmax

n3/2
+

3912KSHmaxβ
2

ηminn2
+ Õ(n−5/2) .

�

D.3 Proof of Lemma 13

The proof borrows some ideas from the proof of Lemma 1 in [2]. Consider a chain j that is
sampled at least once after initialization, and let t + 1(> 2K) be the last time it was sampled.
Hence, Tj,t = Tj,n − 1. Using the same arguments as in the beginning of the proof of Lemma 12,
we have on the event C,

2β

Tk,n

∑
x

Gk(x) ≤ 1

Tj,n − 1

(
2β
∑
x

Gj(x) + c3

√
8SHj

∑
xGj(x)

Tj,n
+

8c4SHj

Tj,n

)
. (10)

Note that (10) is valid for any k, and any j that is sampled after initialization.
Now consider a chain j such that Tj,n − 2 ≥ ηj(n− 2K). In other words, j is over-sampled

(w.r.t. budget n− 2K). In particular, j is sampled at least once after initialization. Hence, using
(10) and noting that Tj,n ≥ ηj(n− 2K) + 2, we obtain

2β

Tk,n

∑
x

Gk(x) ≤ 1

ηj(n− 2K)

(
2β
∑
x

Gj(x) + c3

√
8SHj

∑
xGj(x)

ηj(n− 2K)
+

8c4SHj

ηj(n− 2K)

)
(a)
≤ 2βΛ

n− 2K
+

c3

√
8SΛHj

ηj(n− 2K)3/2
+

8c4SHj

η2
j (n− 2K)2

, (11)

where (a) follows from the definition of ηj . Multiplying both sides on ηk
2Λ gives:

β

Tk,n
≤ β

ηk(n− 2K)
+

c3

√
2SΛHj

Ληkηj(n− 2K)3/2
+

4c4SHj

Ληkη
2
j (n− 2K)2

(12)

≤ β

ηmin(n− 2K)
+

c3

η2
min(n− 2K)3/2

√
2SHj/Λ +

4c4SHj

Λη3
min(n− 2K)2

,
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thus verifying the first statement of the lemma. To derive the second statement, we take square-root
from both sides of (11):√

2β

Tk,n

∑
x

Gk(x) ≤

√
2βΛ

n− 2K
+

c3

√
8SΛHj

ηj(n− 2K)3/2
+

8c4SHj

η2
j (n− 2K)2

≤

√
2βΛ

n− 2K
+

c3

√
8SΛHj

ηj(n− 2K)3/2
+

√
8c4SHj

ηj(n− 2K)

≤
√

2βΛ

n− 2K
+

√
c3/β
√
SHmax

ηmin(n− 2K)
+

√
8c4SHmax

ηmin(n− 2K)
,

where the second and third inequalities respectively follow from
√
a+ b ≤

√
a+
√
b and

√
a+ b ≤√

a + b
2
√
a

valid for all a, b > 0. Plugging c3 = 13β3/2 and c4 = 39β2 into the last inequality
verifies the second statement and concludes the proof. �

E Asymptotic Analyses — Proofs of Lemma 1 and Theorem 3

E.1 Proof of Lemma 1

Consider a chain k, and let us denote by P̃k,n the corresponding empirical estimator of Pk
(corresponding to α = 0). That is, for all (x, y) ∈ S2, P̃k,n(x, y) = 1

Tk,x,n

∑n
t=2 I{Xt−1 =

x,Xt = y}. Further, let L̃k,n denote the corresponding loss for chain k. To prove the lemma, we
first show that limTk,n→∞ Tk,nLk,n = limTk,n→∞ Tk,nL̃k,n.

To this end, we derive upper and lower bounds on Lk,n in terms of L̃k,n. We have for all
(x, y) ∈ S2:

|(P̂k,n − P̃k,n)(x, y)| =
∣∣∣∣∑n

t=2 I{Xt−1 = x,Xt = y}+ α

Tk,x,n + αS
−
∑n

t=2 I{Xt−1 = x,Xt = y}
Tk,x,n

∣∣∣∣
=

α

Tk,x,n(Tk,x,n + αS)

∣∣∣∣Tk,x,n − S n∑
t=2

I{Xt−1 = x,Xt = y}
∣∣∣∣

≤
αSTk,x,n

Tk,x,n(Tk,x,n + αS)
≤ αS

Tk,x,n
.

We therefore get, on the one hand,

Lk,n ≥
∑
x

π̂k,n(x)‖P̂k,n(x, ·)− P̃k,n(x, ·)‖22 + L̃k,n ≥ L̃k,n ,

and on the other hand,

Lk,n ≤
∑
x

π̂k,n(x)‖P̂k,n(x, ·)− P̃k,n(x, ·)‖22 +
∑
x

π̂k,n(x)‖Pk(x, ·)− P̃k,n(x, ·)‖22

+ 2
∑
x

π̂k,n(x)
∑
y

∣∣P̂k,n(x, y)− P̃k,n(x, y)
∣∣∣∣P̃k,n(x, y)− Pk(x, y)

∣∣
︸ ︷︷ ︸

A

≤
∑
x

π̂k,n(x)‖P̂k,n(x, ·)− P̃k,n(x, ·)‖22 + L̃k,n + 2A

≤
∑
x

Tk,x,n
Tk,n

∑
y

( αS

Tk,x,n

)2
+ L̃k,n + 2A =

α2S3

Tk,n

∑
x

1

Tk,x,n
+ L̃k,n + 2A .
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Furthermore, A is upper bounded as follows:

A ≤
∑
x

π̂k,n(x)
αS

Tk,x,n

∑
y

∣∣P̃k,n(x, y)− Pk(x, y)
∣∣

≤

√√√√∑
x

∑
y

π̂k,n(x)
α2S2

T 2
k,x,n

√∑
x

π̂k,n(x)
∑
y

(P̃k,n(x, y)− Pk(x, y))2

=

√∑
x

α2S3

Tk,nTk,x,n

√
L̃k,n ,

where we have used Cauchy-Schwarz in the second line. In summary, we have shown that

L̃k,n ≤ Lk,n ≤ L̃k,n +
α2S3

Tk,n

∑
x

1

Tk,x,n
+ 2

√∑
x

α2S3

Tk,nTk,x,n

√
L̃k,n ,

so that

Tk,nL̃k,n ≤ Tk,nLk,n ≤ Tk,nL̃k,n + α2S3
∑
x

1

Tk,x,n
+ 2

√∑
x

α2S3

Tk,x,n

√
Tk,nL̃k,n .

Taking the limit when Tk,n → ∞ and noting the fact that when Tk,n → ∞, by ergodicity,
Tk,x,n →∞ for all x ∈ S, we obtain limTk,n→∞ Tk,nLk,n = limTk,n→∞ Tk,nL̃k,n.

It remains to compute limTk,n→∞ Tk,nL̃k,n. We have

L̃k,n =
1

Tk,n

∑
x

Tx,n
∑
y

(P̃k,n(x, y)− Pk(x, y))2

=
1

Tk,n

∑
x

∑
y

[
√
Tk,x,n(P̃k,n(x, y)− Pk(x, y))]2︸ ︷︷ ︸

Z(x,y)

.

When Tk,n →∞, by ergodicity, we have Tk,x,n →∞ for all x ∈ S . Therefore, by the central limit
theorem,

√
Tk,x,n(P̃k,n(x, y)−Pk(x, y)) converges (in distribution) to a Normal distribution with

variance Pk(I − Pk)(x, y), and Z(x, y) converges to a Gamma distribution with mean Pk(I −
Pk)(x, y). Hence, the mean of L̃k,n would be 1

Tk,n

∑
x

∑
y Pk(I − Pk)(x, y) = 1

Tk,n

∑
xGk(x),

thus completing the proof. �

E.2 Proof of Theorem 3

Let n be a budget such that
√
n ≥ ncutoff, and let n0 :=

√
n. The proof proceeds in two steps. We

first consider the case with budget n0, and show that at the end of this sub-problem, the index of
each chain is well estimated. Then, we consider allocation in the second sub-problem.

Step 1: Bounds on the index at t = n0. Fix a chain k. To derive upper and lower bounds on
the index bk,t at t = n0, we derive a lower bound on Tk,n0 . Recall that by Lemma 9, we have with
the choice n = n0,

Sβ2

9Tk,n0

∑
x:Tk,x,n0

>0

1

Tk,x,n0 + αS
≤ 0.187KS2β2

n0 −K
,
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with probability at least 1− δ. Using the trivial bound Tk,x,n0 ≤ Tk,n0 , it follows that

S2β2

9Tk,n0(Tk,n0 + αS)
≤ 0.175KS2β2

n0 −K
,

so that

Tk,n0 ≥
√
n0 −K
1.575K

− 1

3
≥ 1

4

√
n0

K
≥ n1/4

4
√
K
,

with probability greater than 1− δ.
Noting that n0 ≥ ncutoff, we apply Lemma 8 and 11 to obtain

2β

Tk,n0

∑
x

Gk(x) ≤ bk,n0+1 ≤
2β

Tk,n0

∑
x

Gk(x) +
19β3/2

√
S

T
3/2
k,n0

∑
x

√
G(x)

πk(x)
+

90β2S

T 2
k,n0

∑
x

1

πk(x)
,

with probability at least 1 − 2δ. Using Cauchy-Schwarz and recalling Hk :=
∑

k πk(x)−1, we
obtain give

2β

Tk,n0

∑
x

Gk(x) ≤ bk,n0+1 ≤
2β

Tk,n0

∑
x

Gk(x) +
19β3/2

T
3/2
k,n0

√
SHk

∑
x

Gk(x) +
78β2SHk

T 2
k,n0

,

so that∑
x

Gk(x) ≤
Tk,n0

2β
bk,n0+1 ≤

∑
x

Gk(x) +
10β1/2

T
1/2
k,n0

√
SHk

∑
x

Gk(x) +
39βSHk

Tk,n0

,

with probability at least 1− 2δ. Using the lower bound Tk,n0 ≥ n1/4

4
√
K

yields∑
x

Gk(x) ≤
Tk,n0

2β
bk,n0+1 ≤

∑
x

Gk(x) +
20β1/2

n1/8

√
SKHk

∑
x

Gk(x) +
156βSHk

√
K

n1/4
,

with probability at least 1− 2δ. Let us write the last inequality as∑
x

Gk(x) ≤
Tk,n0

2β
bk,n0+1 ≤

∑
x

Gk(x) + εn ,

where εn = Õ(n−1/8), thus giving

2β

Tk,n0

∑
x

Gk(x) ≤ bk,n0+1 ≤
2β

Tk,n0

(∑
x

Gk(x) + εn

)
.

Step 2: The second sub-problem. Now let us consider n0 + 1 ≤ t ≤ n. It follows that with
probability 1− 2δ, BA-MC allocates according to the following problem

max
ξ∈[0,εn]K

max
k

2β

xk + Tk,n0

(∑
x

Gk(x) + ξk

)
s.t.:

∑
k

xk = n−
√
n ,

whose optimal solution satisfies

(n−
√
n)
∑

xGk(x)

Λ +Kεn
≤ xk ≤

(n−
√
n)
(∑

xGk(x) + εn

)
Λ

.

Recalling εn = Õ(n−1/8) and noting that Tk,n ≥ xk, we obtain Tk,n
n →n→∞

∑
xGk(x)

Λ .
It remains to show that the loss Ln(BA-MC) approaches Λ/n as n tends to infinity. By Lemma

1, recall that limTk,n→∞ Tk,nLk,n =
∑

xGk(x). So, using Tk,n
n →n→∞

∑
xGk(x)

Λ , we conclude
limn→∞ nLk,n = Λ, and the claim follows. �
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