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Abstract
This manuscript presents a benchmark problem for the simulation of single-phase flow, reactive transport, and solid geometry
evolution at the pore scale. The problem is organized in three parts that focus on specific aspects: flow and reactive
transport (part I), dissolution-driven geometry evolution in two dimensions (part II), and an experimental validation of three-
dimensional dissolution-driven geometry evolution (part III). Five codes are used to obtain the solution to this benchmark
problem, including Chombo-Crunch, OpenFOAM-DBS, a lattice Boltzman code, Vortex, and dissolFoam. These codes
cover a good portion of the wide range of approaches typically employed for solving pore-scale problems in the literature,
including discretization methods, characterization of the fluid-solid interfaces, and methods to move these interfaces as a
result of fluid-solid reactions. A short review of these approaches is given in relation to selected published studies. Results
from the simulations performed by the five codes show remarkable agreement both quantitatively—based on upscaled
parameters such as surface area, solid volume, and effective reaction rate—and qualitatively—based on comparisons of
shape evolution. This outcome is especially notable given the disparity of approaches used by the codes. Therefore, these
results establish a strong benchmark for the validation and testing of pore-scale codes developed for the simulation of flow
and reactive transport with evolving geometries. They also underscore the significant advances seen in the last decade in
tools and approaches for simulating this type of problem.

Keywords Pore scale · Reactive transport · Moving boundary · Benchmark · Review of approaches

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10596-019-09903-x) contains
supplementary material, which is available to authorized users.

� Sergi Molins
smolins@lbl.gov

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2 Stanford University, Stanford, CA, USA
3 French Geological Survey (BRGM), Orléans, France
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1 Introduction

Study of flow, transport, and reactions in geological
materials has historically relied on treating the porous
medium as a continuum. The underlying assumption is
that a representative volume or REV can be defined where
at each point in space all phases are assumed to exist
simultaneously [11]. Bulk parameters such as porosity,
permeability, or reactive surface area are then used to
characterize this medium in what can be referred to as the
Darcy scale.

The pore scale, on the other hand, is defined as the
scale at which each point of space is occupied by a
specific phase, whether fluid or solid. Thus, the pore-
scale approach requires knowledge and correct represen-
tation of the spatial distribution of the fluid and solid
phases and its evolution with time. At the pore scale, the
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continuum assumption applies to each phase separately.
Hence, medium properties such as viscosity, diffusivity, and
to an extent, reaction rate constants are measurable directly
and independently. In contrast, Darcy scale parameters such
permeability, effective diffusivity, dispersion, or reactive
surface area must be fitted to aggregate experimental data.
The functional form for these relations is usually based on
empirical or theoretical relationships, e.g., Kozeny-Carman
for permeability [16, 48], Archie’s law for effective dif-
fusivity [6], or the two-thirds expression for reactive
surface area [54]. As a result, the pore-scale approach
provides insights not available with the porous medium
treatment.

The last decade has seen an explosion of pore scale stu-
dies: these include imaging and characterization techniques,
laboratory experiments, numerical simulations, and combi-
nations of these approaches. Many of the applications of
these studies have focused on the relations between pore-
scale processes in fully resolved geometries and Darcy scale
parameters such as permeability, effective diffusion, disper-
sion, and reactive surface area [12, 17, 30, 33, 36, 49, 56–58,
61, 62, 70, 95, 114, 119]. Numerical modeling plays an
important role in the investigation of pore-scale processes as
it provides a mechanistic understanding of the relevant cou-
pled processes. Further, simulation results resolve variables
that are not easily available from experiments, for exam-
ple concentration gradients within the pore space. Such data
enables additional insights to be drawn, especially when
comparison to experimental data is possible [15, 66, 75, 96,
97, 99].

A central theme of pore-scale numerical investigations has
been the study of the effects of pore structure and mineral het-
erogeneity on reaction rates [30, 51, 65, 75]. A significant
number of pore-scale modeling contributions have focused
on the interactions of CO2-rich fluids with carbonate-rich
porous media in the context of CO2 sequestration, includ-
ing the development of the reactive infiltration instabilities
[35, 66, 75, 96, 99, 108, 119]. Microbially driven evolu-
tion of porous media, including biofilm formation, has also
received broad attention [14, 93, 109].

These applications involve a set of coupled processes
including multiphase fluid flow, multi-component transport,
biochemical or geochemical reactions, and evolving pore
geometries. However, the fully coupled problem in complex
image–based computational domains within a single model
has been rarely considered, in part due to the complexity
of code development and the computational costs involved
in performing the simulations. Further, this complexity has
also made it difficult to derive reference solutions that
can be used to validate newly-developed codes. While
benchmarks for different subsets of the full problem have
been or are being developed, e.g., single-phase flow in
micro-CT images [91], wettability controls on multiphase

flow [121], or flow and conservative transport [72], there
is still a lack of a benchmark problem that includes
geochemical processes along with evolving pore geometries
coupled to these reactive processes.

In this manuscript, we set out to develop and present a
benchmark problem set for the simulation of single-phase
flow and reactive transport processes at the pore scale with
evolving pore-space geometries. One benchmark includes
validation against experimental data. The manuscript is
organized as follows. We begin by reviewing the equations
that govern the processes outlined above (Section 2).
Because the equations that describe the processes pose a
coupled, multi-faceted problem, a number of numerical
approaches are available to tackle the different aspects of the
problem. Next, we review these approaches from different
perspectives: (i) the characterization of the solid/fluid
interfaces, (ii) the evolution of the interfaces, (iii) the
approaches to couple different processes, and (iv) the
discretization of the computational domain (Sections 3 and
4). This review allows us to classify pore-scale codes,
specifically the codes that participate in the benchmark
problem set (Section 5). The benchmark problem set is
then described in Section 6. Results for the benchmark
problems obtained with the participant codes are presented,
compared, and discussed in Section 7. We conclude with
a brief discussion of the value of the benchmark presented
in the manuscript and an outlook on pore-scale reactive
transport modeling (Section 8).

2 Pore-scale governing equations

The benchmark problem set, described in detail in Section 6,
entails solving the flow equation for the motion of an
aqueous solution, the advection-diffusion equation for
transport of a single dissolved component in the aqueous
solution, the reaction equation for the dissolution of a solid
phase, and the equation that describes the evolution of the
solid geometry as a result of dissolution.

Although these processes are coupled, the time scales
associated with them are very different. For example,
the velocity of the dissolving mineral surface can be
assumed to be much slower than the fluid velocity [54].
Further, at typical flow rates in subsurface environments,
inertial forces can be neglected and Stokes flow assumed.
We will make use of these assumptions to present the
governing equations strictly needed to solve the benchmark
problem set. However, this does not preclude the use
of a more general form of the equations to solve the
problem. For example, one can use transient equations
instead of steady-state equations as is the case of some
codes (see Section 5). These different equation forms will
be considered part of the individual methods and discussed
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in Sections 3, 5, and 7. Appendix A lists all the equations for
completeness.

Fluid flow at the pore scale can be described by the
Stokes equations, which express mass and momentum
conservation in the absence of inertia:

∇ · u = 0, (1)
1

ρ
∇p = ν∇2u, (2)

where ρ is the fluid density, ν is the kinematic viscosity, p

is the fluid pressure, and u is the fluid velocity.
Transport of aqueous species is described by the

advection-diffusion equation:

∂c

∂t
+ ∇ · (uc) = ∇ · (D∇c) , (3)

where c is the concentration of the dissolved component and
D is the molecular diffusion coefficient. Mineral dissolution
takes place at the fluid-solid interface (�) and can be
expressed as a Robin boundary condition on the transport
(3),

−Dn · ∇c = ξr, (4)

here n is the outward surface normal to the fluid region, r(c)
is the mineral dissolution rate, and ξ is the stoichiometric
coefficient of species in the dissolution reaction. In general,
r is a non-linear function of concentration and the specific
form used in the benchmark problems is given in Section 6.

The mineral surfaces evolve in the direction of the local
normal, with a velocity u� that follows from a mass balance
across the interface

u� = −rVmn, (5)

where Vm is the molar volume of the dissolving mineral.
Equation 5 implies that the tangential fluid velocity at the
fluid-solid interface is zero but not the normal velocity.
However, because the aqueous concentration is much
smaller than the mineral concentration V −1

m , the normal
velocity is usually negligible.

3 Computational methods

A number of methodologies have been used to solve the
equations presented in Section 2 (Table 1). They can be
divided into those that seek to solve the equations from
Section 2 directly and those that solve a different set of
equations that under certain conditions recover (1)–(5). In
this section, we will review these approaches, including
two of the commonly used methods, which belong to the
second group: the mesoscale lattice Boltzmann method
(Section 3.3) and the micro-continuum Darcy-Brinkman-
Stokes approach (Section 3.5).

We will start by reviewing the methods used to discretize
the equations (e.g., Fig. 1), either the equations presented
in Section 2 or the equations resulting from the mesoscale

Table 1 Selected pore-scale reactive transport applications with summary of approaches: S indicates a structured Cartesian mesh, U indicates an
unstructured mesh, RW indicates random walk, and PT indicates particle tracking

Code/author/group Reference Discretization Interface representation and/or motion

Kang [22, 43, 44, 46] LBM Solid balance w/ threshold

Szymczak/Ladd [107, 108] LBM Solid balance w/ threshold

Prasianakis* [84] LBM Solid balance w/ threshold

Yoon [120] LBM + FV, S LBM, Micro-continuum

Golfier [35] CFD (S) Micro-continuum DBS

OpenFOAM-DBS* [96, 98] CFD (FV, S) Micro-continuum DBS

Oltean [71] CFD (U) ALE

Xu/Li/Huang/Meakin [39, 52, 53] CFD (FD) Level set

Chombo-Crunch* [64–66] CFD (FV, S) EB, level set

dissolFoam* [100] CFD (FV, U) Simplified ALE

Xu/Li/Huang/Meakin [115–117] CFD (FD) Phase field, level set

Salles/Bekri/Thovert/Adler [13, 89] CFD (FD) + RW Solid balance w/ threshold

Pereira/Bjieljic/Blunt [75] CFD (FV, S) + PT Solid balance w/ threshold

Tartakovsky [110] SPH SPH

Xu/Li/Huang/Meakin [118] SPH Phase field

Ovaysi [73] MPS Explicit

Vortex* this ref., [20, 21, 34] Vortex (PT,FD,FFT) Micro-continuum DBS

Other acronyms are defined in the text. *Codes used in this manuscript
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Fig. 1 Examples of meshes and
methods to capture reactive
fluid-solid interfaces in
pore-scale models as employed
by the codes participating in this
benchmark . a Finite volume
mesh with contours showing a
micro-continuum volume of
solid interface representation
(OpenFOAM-DBS,
Section 5.2). b Lattice
Boltzmann mesh showing
contours with solid mass
balance in each voxel
(Section 5.3). c Finite difference
mesh with contours showing a
micro-continuum volume of
solid interface representation
(Vortex, Section 5.4). d Finite
volume mesh with an
embedded-boundary interface
representation
(Chombo-Crunch, Section 5.1).
e Unstructured finite volume
mesh with a conforming mesh
interface representation
(dissolFoam, Section 5.5). In the
contour plots, the color indicates
the volume of solid in each cell,
with red being the solid phase,
blue the pore space, and
intermediate colors represent
porosity values in between. The
panels without contours
correspond to codes whose grid
(unstructured or structured with
embedded boundaries) follows
the fluid-solid interface

and micro-continuum approaches. Broadly, discretization
methods have been classified in the literature in three
groups. The first group includes those models that discretize
the equations using finite volume (FV), finite element

(FE), or finite differences (FD) methods in what are
often regarded as traditional computational fluid dynamics
(CFD) approaches (Section 3.1). A second group comprises
particle methods that rely on a Lagrangian description of
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flow and transport (Section 3.2). The lattice Boltzmann
method makes up the third group and is unique in that it can
be viewed as both a solution approach and a discretization
method (Section 3.3).

3.1 Traditional computational fluid dynamics
methods

Computational fluid dynamics (CFD) methods involve the
discretization of Eqs. 1–4 or Eqs. 13–17 — using finite
volume, finite differences, or finite element methods. In
reactive transport modeling, the finite volume method and
the finite differences have been the most common choices
(Table 1, Fig. 1a, d, and e).

These discretization methods have historically been con-
sidered computationally expensive. However, increasing
computational power and, more recently, the availability
of high-level, open-source libraries such as OpenFOAM®

(http://www.openfoam.org) or Chombo [3, 25] have made
it possible to adopt these methods to the simulation of
pore-scale reactive transport processes [64–66, 96, 98–
100]. Structured Cartesian meshes are more common than
unstructured meshes, owing to their computational effi-
ciency and ease of implementation. Cut-cell methods, such
as the embedded boundary, provide a powerful approach
to capture complex geometries with structured Cartesian
grids [111, 112]. Codes using unstructured meshes are bet-
ter able to conform to the shape of the boundary, although
the mesh must be able to adapt to the changing geometry.
As points on the boundary move according to the computed
normal displacements (5), the mesh as a whole must be
smoothed to maintain mesh quality, while simultaneously
maintaining the shape of the surface [99, 100].

3.2 Lagrangian approach and particle methods

Particle methods, such as the smooth particle hydrody-
namics (SPH), particle-in-cell (PIC), and moving particle
semi-implicit (MPS) methods represent fluids by particles
with intensive properties (e.g., mass mi) that are tracked in
time as they move in the pore space. Many of these methods
have been successfully used in reactive transport at the pore
scale (Table 1).

Continuous variables (e.g., density) are represented as
a superposition of kernel functions centered on a set
of discrete particle points ri . In continuous form, this
superposition for variable A(r) at point r can be expressed
in integral form as the following convolution:

A∗(r) =
∫

A(r′)Wh(r − r′)dr′ = A ∗ Wh(r), (6)

where W is an interpolation kernel, h is the kernel size
that defines the domain of influence for each particle, and

Wh(r) = h−dW(r/h) is the rescaled kernel for the domain
of influence (d = 2 or 3 is the dimension of the space). To
reduce the computational costs in numerical calculations, h

is chosen to be finite such that Wh(r) �= 0 only near the
particle.

In particle methods, the kernel function satisfies

∫
W(r)dr = 1 and

∫
W(r)rq

k dr = 0 ∀k = 1..d, (7)

for all q strictly smaller than the order of the kernel.
This polynomial reproducibility defines the order of the
interpolation and thus is the key parameter for the accuracy
of the method, together with the regularity of the function
W [26].

A particle description means that A is a set of Dirac
masses of weight Ai at location ri and representing a volume
vi . Thus, Eq. 6 may be written as

A∗(r) = A ∗ Wh(r) =
∑
i∈Nh

AiW
h(r − ri)vi, (8)

where A = ∑
i Aiδrivi . Nh is the set of index of particles

neighbors to the location r, and Wh = h−dW(·/h) is the
rescaled kernel (d = 2 or 3 is the dimension of space).
This feature is especially interesting for problems where
transport is significant for two reasons.

First, the solution of ∂A
∂t

+ ∇ · (uA) = f (A) satisfies
A′

i (t) = f (Ai(t)), ri′(t) = u(ri(t)) (vi remains constant in
divergence-free fields) and can be solved by conventional
methods for ordinary differential equations (ODEs). This
removes the difficulty of solving a partial differential
equation as it eliminates ∇ · (uA) and the associated
CFL condition. Many applications take advantage of this
fact [19–21, 76, 80, 90]. An alternative solution to move
particles is the semi-analytical Pollock method [75].

Second, the formulation in Eq. 8 has given birth to several
spatial discretizations. For the linear differential operators
—e.g., the Laplace operator ∇2— the convolution yields
∇2A∗ = A ∗ ∇2Wh. In smoothed particle hydrodynamics
(SPH), ∇2Wh becomes a set of weights that has to satisfy
the moment (7). Further, direct computation of ∇2A∗ =
∇2A ∗ Wh entails computing diffusion between the point-
wise sources of A by means of particle strength exchange
schemes (e.g., [77]) or by random walk particle tracking
[13, 89]). The convolution is used in this case only as
an interpolation to extend the particles over the whole
space. The diffusion of particles ∇2A can be computed
by finite differences on a grid with values obtained from
the convolution A∗ = A ∗ Wh, and interpolated back on
particles via the convolution by Wh [28] in what is referred
to as hybrid grid-particle methods (e.g., Fig. 1c).

In the special case that a distribution A is a collection
of point-wise vorticity, the so-called method of singularities
can be used. The related velocity is then computed via



Comput Geosci

the convolution with a Green kernel. This makes up the
original vortex method [4, 9, 10], which has the advantage
of eliminating the pressure computation. Vortex methods
can be purely Lagrangian by using Biot-Savart laws [4, 24]
or grid-particles hybrid methods [32]. Moreover, fluid-solid
interaction can also be managed, beside by penalization, by
immersed boundaries [79] in order to enforce continuity of
the normal velocity field, and by vortical flux [78] in order
to enforce continuity of its tangential components.

3.3 Themesoscale lattice Boltzmannmethod

The lattice Boltzmann method (LB) is a special discretiza-
tion of the Boltzmann equation, with applications that range
from microflows to turbulent flows, and from colloid trans-
port to multiphase flows [104]. Originating from gas kinetic
theory, the elementary variables are statistical functions
(populations fi), which describe the probability of finding
a particle with a given velocity in a particular location in
space. Every grid point of the discretized domain, a lattice
(e.g., Fig. 1b), is populated by a set of discrete veloc-
ity vectors [86, 105]. The Bhatnagar-Gross-Krook (BGK)
relaxation to equilibrium is the simplest and most com-
monly used collision model, resulting in the Boltzmann
BGK equation:

∂fi

∂t
+ ci · ∇fi = − 1

τ

(
fi − f

eq
i

)
, (9)

where τ is the relaxation parameter and is correlated to
the macroscopic dynamic viscosity of the fluid, ci are
the discrete velocities of the populations, and f

eq
i are

the populations at thermodynamic equilibrium. After time
and space discretization, the lattice BGK equation can be
formulated as

fi(x+ci	t, t+	t) = fi(x, t)+ 2	t

2τ + 	t
(f

eq
i (x, t)−fi(x, t)), (10)

where δt is the respective time step. Such a model,
in the macroscopic limit, can be shown to recover the
compressible Navier-Stokes equations.

∂ρ

∂t
+ ∇ · (ρu) = 0, (11)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + 1
3μ∇(∇ · u). (12)

The lattice Boltzmann equations recover the incompress-
ible Navier-Stokes, when the fluid velocity is small com-
pared to speed of sound cs , in the same medium u/cs << 1,
i.e., when the Mach number is small (Ma << 1). Local
mass and momentum conservation, along with only nearest-
neighbor communication, allows for efficient parallelization
of the method.

For chemically reacting flows, several approaches have
been developed, based fully or partially on the lattice Boltz-
mann framework (Table 1). Some models have made use of
LB for the flow solution only ([107, 108, 120], Section 3.4).
The most common approach however relies solely on the
LB framework, solving a standard LB fluid flow equa-
tion coupled with an LB solver for the advection-diffusion
Eq. 3 of the chemical species [45, 47]. Such models have
been used to study simultaneous dissolution and precip-
itation processes for applications that range from CO2

sequestration [44], to nuclear waste repositories [29, 84],
and multiphase reacting flow in magma chambers [40, 74].

3.4 Combining discretizations

Combination of discretization methods within a single
model, e.g., using a different method for each component of
the problem, has been a common approach to take advantage
of existing, time-tested software packages, or because
specific methods are seen as computationally advantageous.
Different combinations of methods have been reported in a
number of studies, for example, LB for flow and a stochastic
solver for transport [107, 108], LB for flow and a FV multi-
component solver for reactive transport [120], a FD solver
for flow and a random walk method for reactive transport
[88], or a FV solver for flow and a semi-analytical particle
method for reactive transport [75]. However, it appears that
as methods have become more mature in the field, and the
use of high-level libraries has increased, reliance on a single
discretization method is a common approach (Table 1).

3.5 Themicro-continuumDarcy-Brinkman-Stokes
approach

While the equations in Section 2 imply that the location
of interfaces between the phases that make up the porous
medium is known explicitly, approaches are also available
that do not require an explicit description of the interface.
Rather than treating the mineral phase as 100% solid and the
pore space as 100% fluid, the medium is characterized as a
porous continuum with a given porosity and permeability. In
the pore-scale limit (i.e., when the porosity and permeability
are very small), such a treatment recovers the description
in Section 2 [35, 96]. The equation that describes flow
in a such a medium is termed the Darcy-Brinkman-Stokes
(DBS) equation. Soulaine and co-workers referred to it
as micro-continuum approach [96], an extension to the
definition given by Steefel and co-workers [102, 103] that
also includes open pore space.

The volume fraction of fluid, ε, is used to map the solid
geometry spatially with ε = 1 indicating fluid only and ε =
0 solid only (e.g., Fig. 1a and c). Then, the mathematical
problem posed by Eqs. 1–5 can be reformulated in terms



Comput Geosci

of locally averaged equations and immersed boundary
conditions at the solid surface. A single equation is solved
for to obtain the fluid flow in the entire computational
domain (written here to recover the transient incompressible
Navier-Stokes equations in the fluid domains, i.e., Eq. 12 in
lieu of Eq. 2):

1

ε

(
∂ρu
∂t

+ ∇ ·
(ρ

ε
uu

))
= −∇p + μ

ε
∇2u − μk−1u, (13)

where k is the permeability and μ = νρ is the viscosity.
In the pore spaces, ε = 1 and Eq. 13 asymptotically
tends towards Navier-Stokes, while in the porous domain it
asymptotically tends to Darcy’s law. When coupled with a
low-porosity / low-permeability matrix, this has the effect
of making a nearly no-slip boundary condition on the
fluid-rock interface [5, 98].

During the dissolution process, the solid morphology
evolves with the reaction at the solid surface. The boundary
condition for the receding velocity of the fluid/solid
interface (Eq. 5) is replaced by the mass balance for the solid
phase,

−ρs

∂ε

∂t
= ṁ, (14)

where ρs is the solid density (Vm = ρ−1
s ) and ṁ is the

rate of dissolution per bulk volume. The dissolution rate
(ṁ) is related to the reaction rate by ṁ = avr , where av

is the mineral surface per bulk volume. The surface area
is evaluated from the porosity gradient (av = |∇ε|) (see
discussion in [96]).

As the solid mass dissolves into the fluid phase, the
divergence-free velocity (Eq. 1) is replaced by

∇ · u = ṁ

(
1

ρ
− 1

ρs

)
. (15)

With dissolution, the volume fraction of fluid (ε) evolves
from the intial value of zero in the solid —effectively
simulating the motion of the fluid/solid interface —and the
local permeability field is updated according to the new
value of ε. This requires a constitutive relation linking
permeability to porosity, for example, the Kozeny-Carman
equation,

k−1 = k−1
0

(1 − ε)2

ε3
. (16)

The transport of the aqueous species is described by a
locally averaged equation,

∂(εc)

∂t
+ ∇ · (uc) − ∇ · (εD∇c) − ξavr, (17)

where the dissolution is here described as a source-sink
term.

The vorticity formulation of the DBS equation can be
obtained by taking the curl of Eq. 13 and assuming a
constant density of the solvent:

∂ω

∂t
+ (ε−1u · ∇)ω = ρ−1div(μ∇ω) − ρ−1curl

(
εμk−1u

)
+ ω · ∇(ε−1u),

(18)

where ω = curlu is the vorticity. The term curl(ε∇p) can
be neglected compared to curl(εk−1u), while the viscosity
μ is allowed to depend on ε by means of Archie’s law.

4 Geometry generation and interface
evolution

The pore-scale approach requires incorporating directly the
spatial distribution of the fluid and solid phases and then
simulate their evolution with time. For model validation and
testing of fundamental concepts, computational domains
have been synthetically generated using simple geomet-
ric shapes that sometimes may reproduce those etched in
micromodels (e.g., [120]). In actual rock or sediment sam-
ples, the initial phase distributions are available from exper-
imental characterization techniques. Significant advance-
ments in imaging techniques and processing capabilities
have made it possible to resolve the porous media from the
nanometer to the micrometer scale and beyond. These tech-
niques include X-ray computed microtomography (XCMT,
e.g., [15, 66]), scanning electron microscopy (SEM), and
back-scattered SEM (e.g., [33, 69]), SEM Quantitative
Evaluation of Minerals by Scanning Electron Microscopy
(QEMSCAN®, e.g., [12, 55]), focused ion beam SEM
(FIB-SEM, e.g., [50, 114]), and optical microscopy (e.g.,
[96]).

Generally, experimental images are two- or three-
dimensional gray scale representations of the medium, with
each pixel providing a measure of the phase or phases
that occupy that point in space (e.g., x-ray attenuation in
XCMT). To convert this image to a numerical domain, an
assumption needs to be made regarding the phase distri-
bution, i.e., how the gray scale values translate to values
of the volume occupied by each solid and fluid phases.

Approaches that use an explicit representation of the
interface (Section 2) require binarization of the gray
scale image (or ternary and higher-order segmentations
for multiple phases, e.g., [55]), although this can also
be automated in the code. An advantage of the Darcy-
Brinkman-Stokes approach (Section 3.5) is that the voxel-
based image data can be correlated to porosity fields and
readily incorporated into the model [95, 98]. Different
methods may be used for determining where the interfaces
are in the computational domain and how they evolve with
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dissolution: level sets, phase fields, the volume of solid
method, and conforming meshes.

The level set method describes fluid-solid interfaces,
�(x) with a contour of a function φ(x, t) such that

� = {x|φ(x, t) = φo}, (19)

where φo is a constant. The level set function φ is greater
than φo for one phase, and less than φo for the other
phase. The evolution of the level set is governed by the
following advection equation, which describes the motion
of the fluid-solid interface [53]:

∂φ

∂t
+ u�

nn · ∇φ = 0, (20)

where n is the normal vector of the level set function (n =
∇φ/|∇φ|) at φ = φo).

The phase field method is based on the idea that the free
energy depends on an order parameter (φ, the phase field
variable) that acts as a function indicating what phase a
point in space is in. The concentration field (diffusion-only
version of Eq. 3 as in [116]) as a function of the phase field
evolution may be captured with

∂c

∂t
= D∇2c + α

∂φ

∂t

(
1 + D∇2φ − ∂φ

∂t

km|∇φ|

)
, (21)

where α is proportional to the molar volume of the
mineral. The method replaces the boundary conditions at the
interface (e.g., Eq. 4) with a partial differential equation for
the evolution of the phase field [116]:

τ
∂φ

∂t
= ε2∇2φ + (1 − φ2)(φ − λc) − ε2κ|∇φ|, (22)

where τ is the phase field characteristic time parameter, ε

is closely related to the interface thickness, and λ controls
the strength of the coupling between the phase field and the
concentration c.

In the volume of solid approach (named by analogy with
the volume of fluid approach commonly used in two-phase
flow simulations [38]), the porosity (ε, i.e., the volume
fraction of void) field maps the distribution of the solid
phase onto the computational grid (Fig. 1a and c). The
fluid-solid interface is then located in cells containing 0 <

ε < 1. The exact location of the interface within a grid
block is not known explicitly and therefore, an accurate
description requires grid refinement in the vicinity of the
interface. The evolution of the medium is then captured by
performing a mass balance of the solid phase in each point
in space using Eq. 14. The average normal to the interface is
estimated using ∇ε/|∇ε|. This is the technique used in the
micro-continuum approach (Section 5.2).

Unstructured methods can adapt to the geometry of
the interfaces with conforming meshes (Fig. 1e). In a
conforming mesh approach, a subset of the vertices lie
on the fluid-solid boundaries, with a simple conservative

calculation of the fluxes [99, 100]. When the mineral
dissolves, the boundary points move in accordance with
Eq. 5 and the flow and transport Eqs. 2 and 3 are solved
again with the new geometry. This is a simplification of the
Arbitrary-Lagrangian-Eulerian (ALE) method [37] because
mesh motion is decoupled from the solution of the field
equations by the large time scale separation. In the ALE
method, the field equations are solved in a Lagrangian
frame, which automatically implies mesh motion. The mesh
is then relaxed to prevent entanglements and the fields
interpolated to the new mesh. Here, the field equations
can be solved in an Eulerian frame and no interpolation is
required; for each mesh, the steady-state field equations are
solved from scratch. This is very efficient computationally.

5 Participant codes

5.1 Chombo-Crunch

Chombo-Crunch is a code suite for the solution of flow,
reactive transport and geometry evolution at the pore scale
developed since 2010 by Trebotich and co-workers [64–
66]. Flow, transport, and geometry evolution processes
are implemented using the Chombo software package [3,
25], while geochemical reactions are implemented in the
CrunchFlow code [101] which is coupled to Chombo
via a custom interface. Geometric multigrid solvers from
Chombo and algebraic multigrid solver from PETSc [7] are
available at runtime.

The governing equations are discretized directly on a
Cartesian grid using an embedded-boundary (EB) finite-
volume method. Chombo-Crunch solves the transient
incompressible Navier-Stokes equations (Eqs. 33 and 34)
or the transient Stokes equations (as is the case in this
benchmark). The code solves separately flow, reactive
transport, and boundary displacement over a given same
time step, assuming that flow and reactive transport
solutions change instantaneously as the geometry evolves.
This makes it possible to update the geometry based on
a reaction rate that does not change over the duration of
the time step. The size of this time step is chosen as a
fraction of the Courant-Friedrichs-Levy (CFL)-constraint
CFL-constrained time step for boundary displacement.

The solutions of flow and reactive transport are obtained
via sub-time stepping, which may be viewed as a relaxation
method, until steady state is achieved in each sub-problem.
This is carried out sequentially: that is, flow is solved first
using the velocity of the interface in the previous time step
as boundary condition (5). This is distinct from other code
participants that assume this velocity is small enough that its
effect on the flow and transport equations can be neglected
(Section 2). Then, reactive transport (Eqs. 3 and 4) is solved
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using the fluid velocities obtained from the solution of the
flow problem. Finally, the fluid-solid interface is moved
according to the local dissolution rate via (5) via a level set
method (20) from which the implicit functions describing
the new embedded boundary are obtained. Geochemical
reactions are coupled to transport using an operator splitting
approach.

Fluid-solid interfaces are represented with embedded
boundaries that intersect the Cartesian grid cells. The
resulting cut cells account for the partial volumes occupied
by both fluid and solid, and for the interfacial area between
fluid and solid. Conservation (34), (33), and (3) are solved
using a predictor-corrector projection method. A higher-
order upwind method with a van Leer flux limiter is to
be applied to advection terms in a semi-implicit Crank-
Nicolson approach to minimize numerical dispersion. Flow
and transport time steps are constrained by the CFL
criterion. Flow time steps may also be constrained by the
viscous time scale when viscous forces dominate.

5.2 OpenFOAM® Darcy-Brinkman-Stokes

The OpenFOAM-DBS method solves the micro-continuum
model formed by Eqs. 13–17. The solver is implemented
in the open-source simulation platform OpenFOAM® 5.0
(http://www.openfoam.org). OpenFOAM® is a C++ library
which solves partial differential equations using the finite
volume method on an unstructured grid. OpenFOAM-DBS
benefits from all the features offered by the OpenFOAM®

library, including code parallelization, and an entire set
of tools including discretization schemes and geometric-
algebraic multigrid solvers.

For the benchmark problem (Section 6), the computa-
tional domain is discretized using a Cartesian grid. The
code also works on all kinds of unstructured grids. Equa-
tions 13–17 are solved using a sequential coupling strategy.
The solution algorithm is presented in detail in [98]. Within
a given time step, the geometry of the solid phase is updated
solving (17), along with the dissolution rate computed at the
previous time. Then the advection-diffusion-reaction equa-
tion (Eq. 14) transports the reactive fluid in the domain.
To maintain a sharp concentration front, the advection term
is discretized using van Leer flux limiter schemes. The
pressure-velocity coupling (13) and (15) are handled by
a predictor-corrector strategy adapted from the Pressure-
Implicit with Splitting of Operators (PISO) algorithm [41].
Finally the algorithm marches in time. The PISO algorithm
is not unconditionally stable and a time step restriction
based on a CFL number is necessary to handle numerical
instabilities.

5.3 Lattice Boltzmann code

Lattice Boltzmann algorithms are relatively simple, and
in principle they do not rely on external computational
mathematical libraries and solvers. Due to their simplicity,
they can be programmed in many different computer
languages and can be executed entirely, for example, on
general purpose graphical units (GP-GPU’s). A family of
such codes has been developed at Paul Scherrer Institut
over the past few years with applications that range from
catalytic reactive flows [43], to micro-flows [81], to three-
dimensional porous media and multiphase flows [83, 87],
and to geochemical flows [85]. The lattice Boltzmann solver
used here follows the passive scalar approach [84]. For the
underlying fluid flow, the guided equilibrium model of Ref.
[82], with enhanced Galilean invariance is implemented,
thus solving the compressible Navier-Stokes equations. The
chemical species are advected and diffused following the
motion of the fluid.

The computational domain is discretized using a regular
Cartesian grid. Each grid point represents a discretized
volume, which can be fully or partially filled with fluid.
The pore geometry is mapped as a staircase. In order to
obtain the partial surface of the fluid-solid interface during
dissolution or precipitation, an approximation is made,
based on the composition of neighboring solid and fluid
nodes, similar to the volume of fluid method for capturing
interfaces in two-phase flow solvers. When a surface crosses
a lattice cell, the wetted area and volume of solid depend
on the nearest neighbor configurations (solid or fluid). In
the assumption that a solid node shall start dissolving only
if at least 3 out of the 8 neighbor cells are in a fluid/quasi-
fluid state, seven possible types of sub-lattice configurations
exist (2D). This allows for a continuous estimate of the
position of the interface, and an estimation of the reactive
surface area and fluid-solid volumes. The time step, the
diffusion coefficients, the viscosity, and the reaction rates
are parametrized using the non-dimensional numbers that
characterize flow (Appendix E). A half-way bounce back
condition to represent the no-slip boundary condition at the
fluid-solid interface.

5.4 Hybrid grid-particle vortex code

The vortex code solves the Darcy-Brinkman-Stokes reaction
(13)–(14) and (16) using the vortex method (Section 3.2)
applied to the vorticity formulation of the DBS Eq. 18.

The splitting between Lagrangian transport and
diffusion-stretching (i.e., ∇ · (μ∇ω) + ω · ∇V) was per-
formed in [28] in three dimensions, and the Kozeny-Carman

http://www.openfoam.org
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term has been implemented in its vorticity formulation in
[32]. The diffusion equation was solved by an improved
Particle-Strength-Exchange method [77], especially well
suited to variable diffusion, including diffusing depending
on shear-rate [94].

This equation is coupled to the displacement of reactive
fluids (acid and product) by means of the diffusion-reaction-
transport (Eqs. 17). Equations 17 and 18 are transformed
into a set of ordinary differential equations (Section 3), with
vorticity considered as a set of point-wise vortices to be
transported. The code uses Runge-Kutta methods, of order
2 or 4, for the solution of this large set of ODE’s.

The velocity u is computed from the vorticity ω by
taking the curl of the stream function ψ solution of the
Poisson equation −∇2ψ = ω. The Poisson solvers are grid-
based solvers, either the fast Fourier transform (FFT) solver
FISHPACK using cyclic reduction [2, 106] or the AMG
solver MUDPACK [1], while the curl and gradient operations
are performed by 4th order finite differences (FD) schemes
on Cartesian grids.

A time-splitting algorithm is used to split transport and
reactions on the one hand (Lagrangian feature), and the
differential operators and coupling terms on the other hand
(Eulerian feature). The communications between grids and
particles are performed by kernel interpolations defined by
Eq. 8, using the 3rd order kernel M ′

4 for hydrodynamic
quantities and M3 for chemical quantities that need to be
sign preserving (cf. [18, 68] for the kernel definitions).
Improvement of the integration over the kernel support has
been introduced in [27, 60] by performing a sequence of
directional interpolations. The choice of these two kernels is
justified in Appendix D.2. An adaptive time step is triggered
when the coupled reaction-flow reaches a quasi-stationary
state, allowing to use relatively large time steps despite
the restrictive stability condition induced by the benchmark
problems.

5.5 DissolFoam

The solver is based on the OpenFOAM® toolkit, together
with customized libraries for mesh motion and boundary
conditions that are not supported by the distributed source
code. The steady-state flow and transport (1) and (35) are
solved by a second-order finite volume discretization of the
fields using an unstructured mesh [42]. The computational
domain is decomposed into polyhedral cells, and the
governing equations are solved by operator splitting, under
the assumption [54] that the velocity of the dissolving
mineral surface is much slower than the fluid velocity.

Equations 1–3 are closed by boundary conditions on the
domain and on the exposed surfaces of the porous material.
Chemical reactions on the mineral surfaces are included by
imposing a Robin boundary condition (4) on the surface
of the solid. The rate of dissolution controls the (normal)
motion of points on the pore surfaces,

dr
dt

= u�, (23)

where the local velocity of the boundary is given by u� (5).
In order to allow for significant dissolution, a Laplacian

smoothing of the mesh was implemented in conjunction
with the mesh motion from Eq. 23. First, the displacements
of the face centers that make up the fluid-solid boundaries
are obtained from the concentration gradient via (23). Next,
the displacements of the cell centers, δC , are obtained from
a solution of the Laplace equation, using the prescribed
motion of the dissolving surfaces as a boundary condition.
The normal displacements on the faces of the surface
polygons are combined with a slip condition, which imposes
a zero gradient on the tangential displacements. The vertex
displacements, δP

k , are then obtained from the cell-center
values (δC) by interpolation. Finally, the vertex positions r
are updated, using a projection operator P = (I − nn) to
ensure that points remain on the boundary surface:

rk+1 = rk + PδP
k . (24)

Because the projection operator is non-linear, the outer
solution must be iterated to convergence for stable and
accurate mesh evolution. Once the new vertex positions are
determined, OpenFOAM functions can be used to recreate
the geometric information: cell centers and volumes, and
lists of faces, edges, and neighbors. A description of the
OpenFOAM implementation, along with source codes and
test cases, can be found in the Supplemental Information
attached to a recent publication [99].

At present, there is no means within dissolFoam to
change the topology of the mesh dynamically, although such
functionality exists within the more cutting-edge versions
of OpenFOAM [113]. However, when necessary, the pore
spaces can be re-meshed externally, after extracting the
coordinates of the surfaces.

6 Benchmark problem set

The benchmark is organized as a problem set divided in 3
separate parts: one that seeks to establish solutions for the
flow and concentration fields around a dissolving mineral
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grain, together with the associated reaction rates, but
without consideration of the evolving geometry; a second
one that adds the evolution of the grain geometry as a result
of dissolution; and a third that provides validation against
experimental data of grain evolution. Parts I and II are based
on the same synthetic geometry, which may be generated
computationally, to form a two-dimensional domain. Part III
relies on image data obtained in an experiment to produce a
three–dimensional domain that is used for the simulations.
While the governing equations and process models are the
same, the parameter values for part I/II and part III are
different because the parameters for part III were calibrated
to experimental results [96].

6.1 Part I: reactive transport and flow

This part entails the simulation of flow and transport
in a two-dimensional rectangular domain, with chemical
reactions on the surface of a circular grain placed in
the center in the rectangle (Fig. 2). A single irreversible
heterogeneous reaction is considered that simulates calcite
dissolution according to the following stoichiometric
relationship:

CaCO3(s) + H + − > Ca2+ + HCO−
3 (25)

The mineral reaction rate is expressed as a first-order
dependence on the concentration of H+, assuming that far
from equilibrium conditions are maintained:

r = kH+ γH+ cH+, (26)

where r has units of mol cm−2 s−1, and the activity (γH+)
has units of cm3 mol−1. The activity coefficient is assumed
to be one in this benchmark problem, but the activity (γH+ =
1000 cm3 mol−1) is retained to indicate that cH+ must be
in mol cm−3 for unit consistency (see Appendix C for a
discussion on rate constant units). The dissolution rate only
depends on [H+], and thus, only the transport of H+ needs

to be considered. The benchmark problem does not include
multi-component geochemistry or complexation reactions
in the aqueous phase.

The geometry of the grain does not evolve as a result of
the reaction; thus, this part entails the solution of Eqs. 2-
4 only. This part is intended to compare components of
the problem without evolving geometry, as differences in
these components may affect the moving boundary problem
solution (Section 6.2). Due to feedback processes and
potential instabilities, these differences may be amplified
when geometry evolves. In particular, part I is aimed at
validating the flow solution, and the concentration at the
fluid-solid boundary that determines the reaction rate r in
Eq. 26.

A single calcite crystal is placed in cross-flow conditions
in a two-dimensional rectangular channel (Fig. 2). A
uniform velocity boundary condition is applied across the
inlet face, which determines the volumetric flux and flow
rate throughout the domain:

u|x=0 = uin, (27)

The grain has a cylindrical shape with a radius equal to
0.01 cm, or 1/5 of the width of the flow channel (Fig. 2). A
solution, at pH 2, out of equilibrium with respect to calcite
(Table 2), flows into the domain and drives dissolution of
the grain. The mass flux at the inlet is assumed to take place
by advection (i.e., cin · uin, with cin and uin being the inlet
concentration and fluid velocity, see Eq. 27). This may be
expressed as a Dirichlet boundary condition:

c|x=0 = cin, (28)

Because of dissolution, the concentration of products,
such as calcium ions, increases around and downstream
of the mineral grain. The first-order reaction rate value
obtained in [23] at 25◦C is used (Table 2). The upper and

Fig. 2 Computational domain
and boundary conditions for
parts I and II. The specifics of
the problem set up are described
in Table 2
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Table 2 Parameters for the simulations in parts I and II

Parameter Symbol Value Units

Fluid density ρ 1 g cm−3

Kinematic viscosity ν 10−2 cm2 s−1

Diffusion coefficient D 10−5 cm2 s−1

Inlet velocity |uin| 0.12 cm s−1

Length of domain L 0.1 cm

Width of domain w 0.05 cm

Grain radius R 0.01 cm

Specific grain reactive area S = 2πR (π R2)−1 200 cm−1

Rate constant kH+ 10−4.05 mol cm−2 s−1

Activity coefficient γH+ 1000 cm3 mol−1

Calcite molar volume Vm 36.9 cm3 mol−1

Calcite molecular weight Mm 100 g mol−1

Solid density ρs = Mm · V −1
m 2.71 g cm−3

Inlet concentration (pH = 2) c 10−5 mol cm−3

Reynolds number Re = uin w ν−1 0.6

Péclet number Pe = uin w D−1 600

Damköhler number DaII = kH+γH+SR2/D 178

The rate constant (kH+ ) is from [23]

lower walls of the channel are assumed to be no-flow,
non-slip boundaries:

u|y=0,y=w = 0, (29)

where the non-slip condition does apply at the inlet face
(x = 0) for consistency with Eq. 28.

Solute mass flux across the upper and lower boundary
walls is also zero:

∂c

∂n
|y=0,y=w = 0, (30)

At the outlet boundary, a fixed pressure boundary
condition is used. The solute is allowed to flow freely out
of the domain by advection (no concentration gradients
allowed):

p|x=L = po, (31)

∂c

∂n
|x=L = 0, (32)

The simulation parameters and symbols are summarized
in Table 2.

The solution for flow, transport, and reaction is expected
to reach a steady state because the geometry is not allowed
to evolve. The focus here is to compare the steady-state
solutions. Therefore, matching the trajectory to steady state
from an initial condition is not required and is provided

in Section 7.1 for the purpose of illustration. Steady state
may be identified by a plateau in the average effluent
concentrations (38) and average reaction rates (37). The
time to reach steady state from the initial conditions noted
in Table 2 is of the order of 3 seconds; a simulation of 5
seconds is sufficient for this benchmark.

The resolution of the spatial discretization is not set as
part of the problem definition as it is specific to each code
and method. A component of part II (Section 6.2) addresses
specifically the effect of the spatial resolution on results.

6.2 Part II: moving boundary problem

This section builds on part I by including the evolution
of the grain shape resulting from the dissolution reaction.
Equations 1–5 are solved, updating the position of the
boundary at each time step. Conditions on the external
boundaries are the same as in part I (27)–(32). The results in
this section emphasize the moving boundary component of
the simulations, with both quantitative (such as the average
reaction rate) and qualitative (from the shape of the mineral
grain) comparisons of the different codes. The simulations
in part II do not reach a steady state because the grain
surface and flow field evolve with time; results are therefore
compared at specific times. The simulations are run for
45 min, period in which the size of the grain evolves
sufficiently to make comparisons between code results but
is still large enough that is captured by the grid resolution.



Comput Geosci

Table 3 Parameters for simulations exploring a range of Péclet and
Damköhler numbers

Pe DaII D ( cm s−1) kH+ ( mol cm−2 s−1)

600 178 10−5 10−4.05

6 0.178 10−3 10−5.05

600 17800 10−5 10−2.05

6 178 10−3 10−2.05

Two additional components are considered. First, part
II is used to explore the sensitivity of the results to the
resolution of the spatial discretization, i.e., whether results
converge to a solution as the discretization is refined.
Second, part II is used to explore the sensitivity of the results
to the dimensionless parameters, Péclet (Pe = uinw/D)
and Damköhler (DaII = kH+γH+SR2/D) number (Table 3,
with each parameter defined in Table 2).

6.3 Part III: three-dimensional experimental
validation

This part is intended to provide an experimental validation
of the pore-scale simulators in three dimensions. For this
purpose, experimental and simulation data from [96] are
used. In the experiment, calcite dissolution was created
by an acidic solution flowing past an hexagonal-shaped
calcite column, which was placed within a microfluidic cell
(Fig. 3). The experiment and methods are described in detail
in [96].

The initial geometry is generated from an image of
the experimental calcite column (Fig. 3a) provided in
the Supplemental Information. This is a two-dimensional
image that needs to be extruded in the third dimension,
perpendicular to the plane, to obtain the three-dimensional
column for the simulations. The height of the resulting
column is 0.2 mm. The width of the channel is 1.496
mm and is defined as the distance between the two dark
layers on top and bottom of the mask image. The top
72 and bottom 38 rows of pixels of the 1416 pixels
are considered solid and do not need to be included in
the simulation. The long dimension of the image (i.e.,
2526 pixels) corresponds to 2.667 mm in the micromodel
experiment. There is no strict requirement in simulating
exactly the entirety of the length of the image as long as
the chosen domain length is sufficient to capture the flow
field and the diffusive boundary layer that form around the
column. In other words, the solution should be unaffected
by the boundary conditions. For example, if plug flow is
used as a boundary condition at the inlet, the distance to

the calcite column must be enough to develop a Poiseuille-
type velocity profile before reaching the grain. Because the
computational methods differ, the approach to incorporate
the image data and construct the domain is part of the
benchmark problem. As in parts I and II, the spatial
resolution is not set specifically.

Top and bottom boundaries (defined by the edge of
the black bands in the image) as well as front and back
boundaries (resulting from the extrusion of the image in
the direction perpendicular to the image) are no-flow, no -
slip boundaries (i.e., Eq. 29 is also applied at z = 0 and
z = h). The left and right boundaries (the inlet and outlet)
are the only ones open for flow. At the inlet, the flow rate
is prescribed. When plug flow is assumed, the fluid velocity
at the inlet face is 0.117 cm s−1 (27). A fixed pressure is
used as boundary condition at the outlet (31). The external
boundary conditions for the transport problem are the same
as for parts I and II, with consideration of the front and back
boundaries via (30) applied at z = 0 and z = h.

The parameters used for the simulations are those
employed by [96] to obtain a match to experimental
observations (Table 4). It is worth noting that the rate
constant is an order of magnitude faster than that for
parts I/II as it was obtained by fitting the evolution of
the grain observed in the experiment to results from
OpenFOAM-DBS. The simulation is run for 12000 s, as in
the experiment.

7 Results and discussion

Results from the simulations are analyzed and compared in
this section in two ways: (i) spatially, in terms of the grain
shape at specified times and in terms of concentrations,
and (ii) by means of aggregate measures of the simulated
processes for the whole domain, namely, the fluid-solid
interfacial area, volume of the solid grain and average
reaction rate (Appendix B.1).

7.1 Part I

Results from part I show that concentrations of H+
decreases towards the surface of the mineral as the reaction
consumes it Eq. 25. The rate of dissolution at the surface
is controlled by both the reaction kinetics (26) and the
diffusion of reactant towards the surface. As a result, a
diffusive boundary layer is established around the mineral
grain as shown in Fig. 4. The boundary layer is wider on the
downstream side of the grain than on the upstream side, and
[H+] values are slightly lower at the surface. This difference
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Fig. 3 a Masking image that
defines the domain for part III
(grain in black) and b
3-dimensional rendering of the
grain as used in the Vortex
simulations obtained by
extruding the masking image in
the z direction. An exactly
octagonal perimeter was used to
initialize the dissolFoam
simulations rather than the
bitmap mask

is better observed when plotting pH values (Fig. 6), with
pH = −log10(γH+cH+). These differences give rise to the
evolution in shape investigated in part II.

The resolution of the mesh used for part I is 256 × 128
for all codes (Fig. 1), except for dissolFoam that used an
unstructured mesh with an underlying structured resolution
200 × 100 and additional refinement as in Fig. 1e).

Average reaction rates calculated from the different codes
agree quite well, with a steady-state value around 4.3 ×
10−8 mol cm−2 s−1 (Table 5). The effective rate is much
slower than under well-mixed conditions (i.e., under strict
surface control), kH+γH+cin = 8.9 × 10−7 mol cm−2 s−1;
this implies that the dissolution is strongly transport limited
and insensitive to the actual reaction rate. Overall the
reaction rates are consistent between all the codes (Table 5)

While codes using an explicit representation of the
interface produce an accurate surface area and grain volume,

the Darcy-Brinkman-Stokes results are slightly different
from the theoretical values for a circle (Table 5). This
is due to the inherent uncertainty in the calculation of
the surface area from the porosity gradient (Section 3.5).
Although the lattice Boltzmann code represents the solid
volume using a stepwise (or staircase) description of the
boundary on a Cartesian grid (similar to the output of an
X-ray tomogram), the solid mass balance is performed at
each flow and transport time step. The dissolving voxels
are then in a partially solid state (diffusion is allowed,
fluid is stagnant) and the sub-lattice surfaces may be
approximated (Section 5.3). The trade-off for robustness is
the introduction of slight uncertainties in the flux calculation
(dissolution rate is about 5% larger than the other methods).

The steady-state flux-averaged effluent concentration
also shows a good agreement among the codes (Fig. 5b).
This is also true for the Vortex code, which used a different

Table 4 Parameters for simulation in part III

Parameter Symbol Value Units

Fluid density ρ 0.92 g cm−3

Kinematic viscosity μ 0.0261 cm2 s−1

Diffusion coefficient D 5 · 10−5 cm2 s−1

Inlet velocity |uin| 0.117 cm s−1

Length of domain L 0.267 cm

Width of domain w 0.150 cm

Height of domain h 0.02 cm

Grain radius From image file

Specific grain reactive area S 78.5 cm−1

Rate constant kH+ 10−3 mol cm−2 s−1

Activity coefficient γH+ 1000 cm3 mol−1

Calcite molar volume Vm 36.9 cm3 mol−1

Calcite molecular weight Mm 100 g mol−1

Solid density ρs = Mm · V −1
m 2.71 g cm−3

Inlet concentration c 1.26 × 10−5 mol−1 cm3

Reynolds number Re = |uin| w ν−1 0.671

Péclet number Pe = |uin| w D−1 350

Damköhler number DaII = (kH+γH+S) R2 D−1 3930

The source for all parameter values is [96]. Conversion of the reaction rate constant from the units reported in [96] to the units used here is detailed
in Appendix C
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Fig. 4 Steady-state concentration contours for the two-dimensional
dissolution of a cylindrical calcite grain obtained from a OpenFOAM-
DBS, b lattice Boltzmann, c vortex, d Chombo-Crunch, and e dissol-
Foam simulations with concentrations in units of mol/L. In a, b, and

c, the concentration field is defined everywhere including in the solid
grain where it is zero, while in d and e there is no internal region and
the field is not defined there, see also Fig. 1

initial condition (pH = 7 in lieu of pH = 2). As
noted earlier, the time scale associated with transport is
faster than that of the evolution of the fluid-solid interface.
Consistently, this result shows that the same dissolution
rates are obtained in about 1 s (Fig. 5a) even with initial
conditions that vary 5 orders of magnitude, while the time
scales of geometry evolution obtained in part II are in the
order of several minutes (Section 7.2).

For convenience, the rate R is defined from the mass
balance between outlet and inlet concentrations (Appendix
B.1), and therefore, only at steady-state R matches the
instantaneous average reactive flux dissolving the grain.
Thus, after a short delay (while calcium ions are convected
towards the outlet), the average reaction rate increases
sharply with time (Fig. 5a). Nevertheless, the relaxation
times for all simulations to achieve a steady state are similar.

Table 5 Initial surface area, mineral grain volume, and average steady-state dissolution rate (37) calculated from the different codes, using the
geometry and conditions described in Section 6.1

Code Surface area ( cm2) Grain volume ( cm3) Average rate ( mol cm−2 s−1)

Theoretical 0.0628 3.14 · 10−4

OpenFOAM-DBS 0.0643 3.13 · 10−4 4.18 · 10−8

Lattice-Boltzmann 0.0628 3.14 · 10−4 4.57 · 10−8

Vortex 0.0628 3.11 · 10−4 4.27 · 10−8

Chombo-Crunch 0.0628 3.14 · 10−4 4.32 · 10−8

dissolFoam 0.0628 3.14 · 10−4 4.33 · 10−8

In calculating the grain surface area and volume, the height of the cylinder is taken as 1 cm
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Fig. 5 Evolution of the a average reaction rate and b effluent concentration from OpenFOAM-DBS, Lattice-Boltzmann, Vortex, Chombo-Crunch,
and dissolFoam simulations. The geometry and parameters are described in Section 6.1

In most simulations, the reaction rate approaches its steady-
state value monotonically, but the lattice Boltzmann results
show a small overshoot as well as a larger asymptotic
value. The reason for the overshoot might be attributable
to the initialization of the flow field and its subsequent
relaxation to steady state, or to the sudden change of state of
the dissolving voxels from solid to quasi-solid. Moreover,
the LB code is not implementing a time scale separation
between fluid motion and the transport of ions, but is
solving a fully coupled problem. However, the steady-state
flux-averaged effluent concentration shows good agreement
among the codes (Fig. 5b), although the initial condition for
the vortex method was different from the other methods.

Figure 6 shows the concentration (in the form of pH)
along different axes: horizontal, vertical, and at 45◦. The
agreement between the codes is good, in particular in regard
to the thickness of the diffusive layer and the gradient of pH
values. As will be discussed in Section 7.2, in relation to the
sensitivity of results to Pe and Da, rates in the simulation
in part I are to a large extent controlled by transport
and therefore capturing the concentration gradients is
critical to obtaining an accurate solution. Differences exist
between results from the different codes, especially for
the concentration values in cells at or near the surface of
the solid, which is represented differently in the different
codes (Section 4, Fig. 1). Relatively high pH values are
observed for the lattice Boltzmann code, which represents
the interface as a staircase (Fig. 1). Artifacts related to
extracting the values and plotting them on a line that does
not align with the meshes employed also contribute to

differences, especially for the Vortex code that also stores
concentration values in the solid.

7.2 Part II

In contrast to part I, here the geometry is allowed to
evolve from the local surface reaction. Initially, the results
correspond to the long-time limit of Fig. 5. The time
scales in Fig. 7 are about 1000 times longer, reflecting
the difference in molar volume between the solution
(105 cm3 mol−1) and mineral (36.9 cm3 mol−1). As a result
of dissolution, the surface area exposed to the fluid and
the size of the grain decrease with time (Fig. 7b and c).
Although the shrinking of the grain reduces the effluent
concentration, the effective reaction rate increases because
of the area of the grain decreases more rapidly than the
effluent concentration (Fig. 7). This is because, as the
grain becomes smaller, the diffusive control on the overall
reaction rate decreases. However, the average rate in Fig. 7
is still significantly smaller than the reaction limit 8.9 ×
10−7 mol cm−2 s−1. Results from the different codes agree
quite well with one another, with differences of up to
10% in the average dissolution rate and somewhat smaller
deviations in the grain area and volume.

The lack of fore-aft symmetry in the concentration field
(Fig. 4) leads to non-uniform shrinking of the disk, with
most of the dissolution occurring on its leading (upstream)
edge while the most downstream point moves much less.
Figure 8 shows the evolving grain shape as calculated by the
different codes. The overall grain shape is quite similar in all
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Fig. 6 Steady-state pH values along a horizontal, b vertical, and c 45◦ lines that cross the center of the disk, obtained in part I (Section 6.1).
Results from OpenFOAM-DBS, lattice Boltzmann, vortex, Chombo-Crunch, and dissolFoam simulations are compared. Here x represents the
distance along the line

the codes, but some noticeable differences develop at longer
times. The dissolution in the vortex method is more uniform
over the surface of the disk than in the other codes. The
dissolution on the trailing (downstream) edge of the disk
predicted by Chombo-Crunch and dissolFoam are similar
and slower than results from the other codes.

As noted in Section 2, the time scales associated
with different simulated processes are very different. In
particular, the displacement of the fluid-solid interface
in response to dissolution is much slower than all other
processes such that flow and transport may be solved at
steady state with Eqs. 1, 2, and 35. Depending on the
specific approach and particular development history, each
of the participant codes use different strategies to step

through time in each component in order to solve each the
overall problem and capture the coupling between processes
(Section 5). The good agreement between code results
thus also serves as validation that the different approaches
can simulate the benchmark problem accurately with their
specific strategy for time stepping and process coupling.
The steady-state assumption for flow and transport is taken
advantage directly by dissolFoam (Section 5.5), which
solves the equations in the steady-state form. The methods
to update the position of the interface discretely, whether
based on a threshold, as in the LB code (Section 3.3) or
limited by the boundary CFL (Section 5.1), yield similar
results. Although the grain geometry is updated at non-
uniform intervals, average interval times are of the same
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Fig. 7 Evolution of a the average dissolution rate, b the surface area
(perimeter in two dimensions), and c the volume (area in two dimen-
sions) as a function of time during the dissolution of a two-dimensional

disk in part II. Panel d shows the discrete times used to draw for the
solid lines shown in a–c, which correspond to the discrete times the
geometry was updated for dissolFoam and Chombo-Crunch

order of magnitude for Chombo-Crunch (13.3 s) and
dissolFoam (30.4 s) (Fig. 7d). While the LB code updates
the geometry at discrete times, the mass balance of the solid
is performed at each time step (Section 5.3). Therefore,
the flow and transport solutions are obtained every 2.54 ·
10−6 s, and no assumption is made regarding the time
scales of the processes. The Darcy-Brinkman-Stokes codes
(OpenFOAM-DBS and Vortex) update the geometry every
time step and solve for flow and transport at each step.
OpenFOAM-DBS used a constant step of 10−3s.

Figure 9 illustrates the convergence of the various codes
for different resolutions. The average reaction rate is plotted
as a function of time for a number of different mesh
resolutions. All the codes are showing convergent solutions
with each doubling of the resolution making a smaller

difference in the predicted reaction rate. This behavior can
be partially attributed to the extent of the convection and
concentration boundary layers that are formed around the
disk. A larger number of grid points (grid refinement) allow
for a more accurate resolution of the physics in the vicinity
of the disk. In the case of dissolFoam, the results are
essentially independent of mesh resolution, since the use of
unstructured mesh with local refinement on the disk surface
allows for a smoother and more accurate representation of
the processes occurring near the surface. The converged
solutions from each code are similar.

Figure 10 reports results at varying Pe and DaII but
at the same resolution as reported earlier. In all these
simulations, the Reynolds number is kept constant Re =
0.6, with a fixed inlet velocity uin = 0.12 cm s−1. The codes
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Fig. 8 Grain shape at a 15, b 30, and c 45 minutes from OpenFOAM-DBS (red), lattice Boltzmann (green), vortex (blue), Chombo-Crunch (cyan),
and dissolFoam (orange) simulations for part II

predict similar dissolution rates and grain surface areas as
a function of time, with results typically within 10% of
each other. The first simulation (Pe = 600, DaII = 178)
repeats the data from Fig. 7, while the second (Pe = 6,
DaII = 0.178) is at much smaller Péclet and Damköhler
numbers. Here, dissolution is almost entirely limited by
the reaction rate at the surface of the disk (R = 8.9 ×
10−4 mol cm−3 s−1), which dissolves almost uniformly. The
dissolution rate predicted by Chombo-Crunch is noticeably
smaller for this case, but still within 10% of the other codes.
OpenFOAM-DBS and vortex were not able to complete this
test because the reactant penetrated in excess the fictitious
porous solid and the fluid/solid interface likely spread over
too many cells.

In the third case (Pe = 600, DaII = 17800), the
reaction rate has been increased by a factor of 100, so the
solution is essentially in chemical equilibrium all the time
(transport limit). The dissolution is only slightly enhanced
over the base state, which suggests the base state itself is
deep in the transport-limited regime. The dissolution rate
predicted by Chombo-Crunch is very similar to the lattice
Boltzmann and dissolFoam results but the predicted surface
area is significantly smaller. Chombo-Crunch simulation

was affected by instabilities and the area could not be
captured accurately but the rate was due to being fully
transport limited. Results from the codes using the DBS
approach (Vortex and OpenFOAM-DBS) are similar to
those of the base case.

Finally we examine a reduced Péclet number (Pe =
6), while keeping the Damköhler number (DaII = 178)
constant. Here the dissolution time scale is reduced by about
an order of magnitude, due to the much higher reaction
rate (R = 8.9 10−1 mol cm−3 s−1). Result from all codes
compare well but the Chombo-Crunch simulation could not
be run to completion.

7.3 Part III

The agreement between code results for the two-dimen-
sional simulations on the synthetic geometry in Section 7.2
is remarkably good. Part III challenges the participant
codes in two additional aspects of pore-scale reactive
transport simulations, namely in the consideration of three
dimensions and in incorporating image data to construct the
numerical domain. Experimental data of the evolution of the
solid geometry are also available for comparison.
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Fig. 9 Grid convergence test results for the evolution with time of the
effective reaction rate from a OpenFOAM-DBS, b lattice Boltzmann,
c vortex, d Chombo-Crunch, and e dissolFoam simulations. For e, only

the resolution of the underlying structured mesh is noted but unstruc-
tured mesh refinement leads to a grid with about twice as many cells
as the structured mesh
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Fig. 10 Dissolution of a two-dimensional disk at various Péclet and
Damköhler numbers from lattice Boltzmann and dissolFoam simula-
tions: Pe = 600, DaII = 178 (c.f. Fig. 7), Pe = 6, DaII = 0.178,

Pe = 600, DaII = 17800, Pe = 6, DaII = 178. The average disso-
lution rate of the disk (a, c) and its surface area (b, d) are plotted as a
function of time

7.3.1 Considerations onmeshing and domain generation

The domain size and mesh resolutions differ between
participant codes. OpenFOAM-DBS simulated a domain
with dimensions 2.667×1.496×0.2 mm using 125×75×5
cells. Vortex simulated a domain with dimensions 1.627 ×
1.627 × 0.267 mm using 128 × 128 × 32 cells; ten cells in
Y and eight cells in Z were occupied with a non-reactive
solid. Chombo-Crunch simulated a domain with dimensions
3.2×1.6×0.2 mm using 256×128×16 cells, where a non-
reactive embedded boundary intersected the domain at y =
1.496 mm to trim the domain to size. DissolFoam simulated
a domain with dimensions 2.667 × 1.496 × 0.2 mm at 3
different resolutions, 34×19×5 (42k), 67×38×5 (124k),

133 × 75 × 10 (585k), where the quantity in parentheses
indicates the number of cells after refinement; results are
presented for the convergent solution.

As noted in Section 4, different approaches are used
to incorporate image data into pore-scale models. These
approaches are often tightly connected to the solution
approach. In this manuscript, the two codes based on the
Darcy-Brinkman-Stokes formulation incorporate the solid
phase by assigning an initial value of zero to volume fraction
of fluid (ε = 0) at the solid cells, and 1 otherwise (ε =
1). In contrast, Chombo-Crunch and dissolFoam must have
an explicit description of the grain surface. For Chombo-
Crunch, the mask image was saved as a binary file (0
for pore and 255 for solid) and processed with a dilate
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Fig. 11 Evolution of the a grain volume and b surface area obtained
from part III. Experimental results (dots) can be compared with sim-
ulations from OpenFOAM-DBS (red), vortex (blue), Chombo-Crunch
(cyan), and dissolFoam (orange) codes. Panel (d) shows the discrete

times used for the solid lines shown in (a–c), which correspond to
the discrete times the geometry was updated for dissolFoam and
Chombo-Crunch

filter followed by an erode cycle from the imageJ software
[92]. The resulting grayscale image—with a smoother grain
surface—was read by the code, which then used a level set
algorithm (19) with a threshold value of 128 to generate
the implicit functions that define the embedded boundary.
The lattice Boltzmann code did not participate in part
III. DissolFoam took advantage of the octagonal shape of
the grain to initialize the domain with an exact octagonal
perimeter rather than using the image directly. Further,
dissolFoam also took advantage of the ability to remesh
pore spaces externally (Section 5.5), as the octagonal shape
of the object caused more skewness in the mesh than the

circular shape in part II. The results were insensitive to
the frequency of re-meshing. Overall, the solution approach
is very efficient computationally. The simulations required
about 100 time steps to determine the boundary motion,
with less than 100 iterations of the linear solvers per time
step; a typical mesh contains of the order of 105 cells.

7.3.2 Evolution results

The evolution of the grain in terms of both volume and
surface area is qualitatively very similar to that of the disk
in part II (Section 7.2, Fig. 11). The grain volume initially
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Fig. 12 Grain shape on a cross-section at half height (0.01 cm) at a 0, b 30, c 60, d 90, and e 120 min for part III simulations from
OpenFOAM-DBS (red), vortex (blue), Chombo-Crunch (cyan), and dissolFoam (orange) simulations

decreases in size rapidly, but progressively slows down as it
dissolves. The rate of surface area decrease increases with
time, and if the simulation is run for long enough (see results
for OpenFOAM-DBS and Vortex), it disappears completely.
This evolution is also qualitatively similar to that observed

in the experiments (symbols in Fig. 11, [96]). There is
qualitative agreement between codes with OpenFOAM-
DBS results being the closest to the experimental data.
However, the results from the other codes are similar to
one another and indicate a more rapid dissolution than
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Fig. 13 Grain shape on a cross-section at half width (approximately 0.75 cm) at a 0, b 30, c 60, d 90, and e 120 min from three-dimensional
simulations (part III): OpenFOAM-DBS (red), vortex (blue), Chombo-Crunch (cyan), and dissolFoam (orange)

OpenFOAM-DBS. The discrepancy in time scale between
vortex, Chombo-Crunch, and dissolFoam simulations, and
the experiment is approximately 20%.

As in part II, although the grain geometry is updated at
non-uniform intervals, average interval times for all codes
can be calculated. A wider range of interval values are
observed, however: 7.3 seconds for Chombo-Crunch and
86 s for dissolFoam. For Chombo-Crunch, geometry update
steps are limited by the cell with the fastest rate. In this
rough grain geometry where embedded-boundary cells have
relatively large variations in volume fractions, this led to
very strict limitations on the update intervals. The mesh
relaxation employed by dissolFoam allowed for larger time
steps (Fig. 11c).

Differences in the initial shape and size of the grain
are evident as the different codes used different ways
to incorporate the geometry information from the image
(Figs. 12, 13). For this reason, initial grain volume and
surface area were slightly different and results in Fig. 11
were presented normalized to initial values of grain volume
and grain surface area for each code. However, the
staircase outline for OpenFOAM-DBS is an artifact of the
visualization software after a threshold is applied to the
output porosity (ε) field. These initial differences likely
have an effect on the different evolution of the grain for
the different codes. In spite of this, however, the agreement

is in general very good and the simulated evolution of
the shape is qualitatively similar between codes (Figs. 12).
As in part II, the dissolution of the trailing edge of the
grain predicted by Chombo-Crunch is slower than for
other codes. In this case, it also it dissolves faster in the
leading edge. There is however good agreement among all
codes in capturing the width of the evolving grain. The
vortex code predicts a slightly wider grain than the other
codes.

In the direction perpendicular to the plane shown in
Fig. 12), the top and bottom boundaries were considered
non-slip boundaries. Because flow is faster in this mid-
plane and slower towards the boundaries, dissolution is
slightly faster here. As a result, the grain surface recedes
faster in this area, especially in the leading edge of the
grain (Fig. 13). The predictions for the trailing edge by
the different codes diverge more significantly. While the
vortex code predicts a similar pattern as in the leading
edge, dissolFoam and OpenFOAM-DBS predict instead that
trailing edge remains a vertical wall (only slightly concave
for OpenFOAM-DBS), and Chombo-Crunch predicts a
convex evolution. Although there is no experimental data
to ascertain the evolution, additional simulations with
Chombo-Crunch did not change this prediction. This result
however explains the longer trailing edge for this code
discussed earlier as Fig. 12 was obtained for the mid-plane,



Comput Geosci

i.e., the section where the trailing edge extends the farthest
for this code.

8 Conclusion and outlook

The overall good agreement between codes in the results
of Section 7 establishes a strong benchmark that can be
used for testing and validation of new and existing codes for
the simulation of reactive transport at the pore scale with
consideration of fluid-solid geometry evolution, in a variety
of transport and reactive conditions.

The problem set was organized with increasing levels of
complexity. Part I addresses only pore-scale reactive trans-
port without geometry evolution and can be solved as a
first step to part II. Part II includes geometry evolution
for the same domain geometry and conditions. Additional
components within part II such as analysis of grid conver-
gence and sensitivity to Pe–Da conditions are helpful in
validating and testing new codes. By varying the parame-
ters (Fig. 10), they also investigate regimes where rates are
closer to surface control, although carbonate dissolution is
often closer to the transport limit. Part III can be addressed
separately from parts I and II but new layers of difficulty
are added; namely, the need to read a relatively rough
fluid-solid interface from image data to generate the initial
domain geometry and consideration of the third dimension.

The five codes that participated in this manuscript
use different approaches including in the form of the
equations they solve to recover the governing equations,
the discretizations they employ, the characterization of the
fluid-solid interfaces, and how they simulate the motion of
these interfaces. These approaches and methods cover many
of the approaches reported in the literature to solve reactive
transport at the pore scale. This gives added confidence in
that the results establish a well founded benchmark.

The benchmark problem presented focused exclusively
on single-phase processes. Simulation of reactive processes
in multiphase systems at the pore scale is a relatively
new development, e.g., [59, 97], but one that will likely
receive increasing attention due to its relevance, e.g., in
carbon sequestration or gas release from shales in hydraulic
fracturing problems.

As a first effort, the benchmark considered a relatively
simple geochemical problem: a single component reacts
with a single mineral in a dissolution reaction, which
is simulated with a first-order rate. Natural subsurface
environments are however characterized by heterogeneous
multi-mineral media involving multi-component aqueous
solutions (e.g., [31]). Future benchmark efforts can build
on this manuscript to consider more complex geochemical
problem where multiple minerals are present, and may
dissolve and precipitate in different areas of the domain.

The domain considered here is also relatively simple with
single grain geometries, which included an experimental
validation. Well-characterized natural media with relatively
large porosity and relatively homogeneous mineralogy (e.g.,
[75]) offer a good opportunity for follow-up benchmarking
efforts.

Simulation of multi-mineral systems at the pore scale has
been performed but focused on media such as sandstones
where uniform resolution was sufficient to represent [55,
56]. It is often however the multiscale nature of mineral
heterogeneity that challenges the pore-scale approach,
where geochemical evolution leads to altered porous layers
adjacent to open pore space [31, 63]. Specifically, extreme
resolution may be needed to capture the different mineral
phases at multiple spatial resolutions.

Multiscale models are emerging as a powerful to tool to
simulate systems that are heterogeneous at multiple scales
as they offer a reasonable compromise between the fidelity
of medium and process representation and feasibility
of numerical simulation. In this sense, micro-continuum
approaches (e.g., Section 5.2) or hybrid multiscale methods
(e.g., [8, 63]) offer appealing options to expand the range of
applications of pore-scale modeling.

The focus on dissolution in the benchmark reflects
the topic of relevance in most applications. Precipitation
processes however have also been investigated in pore-scale
models, e.g., [22, 29, 40, 45, 84, 120], particularly as they
can have a strong feedback on flow and transport properties
by blocking pore spaces. Treatment of nucleation however
varies significantly in these applications and warrants a
dedicated benchmarking effort.
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Appendix A: Additional/alternative
equations

Flow at the pore scale may be described by the incompress-
ible Navier-Stokes (33) and (34):

∇ · u = 0, (33)

∂u
∂t

+ (u · ∇)u + 1

ρ
∇p = ν∇2u, (34)

as well as the Stokes (1) and (2). In these benchmarks, the
Reynolds number is sufficiently small that fluid inertia can
be neglected; thus, these two approaches are equivalent.

In the dissolution benchmarks (parts II and III), codes
may take advantage of the large time scale separation
between boundary motion and transport processes to solve
the steady-state transport equation directly,

∇ · (uc) = D∇2c. (35)

Time-dependent solutions of transport and reaction (part
I) are more tightly coupled than dissolution (parts II and III),
because tA and tR are often of the same order, especially
for relatively fast reacting minerals such as carbonates. Both
global implicit and operator splitting approaches have been
used for time-dependent transport, with the time stepping in
the operator splitting constrained by the Courant-Friedrichs-
Levy (CFL) criterion

	t <
	x

max (u)
. (36)

Appendix B: Analysis and comparison
of results

B.1. Upscaled parameters

Simulation results are compared in terms of the evolution
with time of upscaled parameters. These upscaled parame-
ters include the volume (V ) and surface area of all reacting

reacting mineral surfaces (A) and the average reaction rate
(R). The average rate is calculated as follows:

R = Q(cout − cin)

ξA
, (37)

where ξ is the stoichiometric coefficient, cin is the (uniform)
concentration at the inlet, given by the boundary conditions,
and cout is the flux-weighted-average outlet concentration,

cout =
∫
δS

cu · ds

Q
. (38)

The volumetric flux at the outlet Q is found by integrating
over the outlet area

Q =
∫

δS

u · ds. (39)

In addition to these upscaled parameters, simulation results
are compared on the basis of the geometry of the grain
at different time points and the concentration contours are
prescribed times.

B.2. Grid convergence

As methods for simulating of moving boundary problems
vary greatly, we want to investigate the impact of grid
resolution on results for each method separately. For this
purpose, the simulations were run at different resolutions
(Figs. 14, 15, and 9) in the main text. Results for the
grain volume and surface area were analyzed to ensure grid
convergence of the methods, and choose a resolution for
which results will be assumed to have converged within a
reasonable accuracy.

Appendix C: Notes on unit conversion
for concentrations and rates

The conversions from the parameters reported by [96] to
the units used in Part III are presented. Mass fraction is
converted to molar concentration using

c = ρf

M
, (40)

where c is the molar concentration of protons ( mol cm−3),
M is the molar weight of acid ( g mol−1), ρ is the fluid
density ( g cm−3), and f is the mass fraction of acid. The
inlet concentration (0.05%) is converted to mol cm−3 as
follows:

cin = 0.92 g cm−3 × 0.0005

36.5 g mol−1
= 1.26 · 10−5 mol cm−3. (41)

In the formulation used in this manuscript (Section 2),
the first-order reaction is expressed as a function of the
activity coefficient and the molar concentration of H+
(26). Assuming that γH+ = 1000cm3mol−1, the proton
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Fig. 14 Grid convergence tests results for the time evolution of the grain volume (part II) from a OpenFOAM-DBS, b lattice Boltzmann, c vortex,
d Chombo-Crunch, and e dissolFoam simulations
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Fig. 15 Grid convergence tests results for the time evolution of the grain surface area (Part II) from a OpenFOAM-DBS, b lattice Boltzmann, c
vortex, d Chombo-Crunch, and e dissolFoam simulations
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concentration cH+ must be in mol cm−3 so that the product
kH+γH+ has units of cm s−1. The conversion from the rate
constant used in [96] (kH+γH+ = 0.5cm s−1) is

kH+ = 0.5 cm s−1

1000 cm3 mol−1
= 5 × 10−4 mol cm−2 s−1. (42)

However, in [96], this rate is applicable to the rate of
HCl consumption when reacting with calcite according to
the following stoichiometry

CaCO3(s) + 2HCl− > CaCl2 + H2CO3. (43)

To maintain consistency with the rate expressed for calcite,
one must multiply by the stoichiometric coefficient of HCl
in Eq. 43,

kH+ = 10−3 mol cm−2 s−1. (44)

Appendix D: Additional information
on numerical choices and parameters

D.1. Lattice Boltzmann dimensionalization

Dimensionalization of the LB computations is a process
that needs special care. Lattice Boltzmann unit conversion
to physical units can be done after matching the charac-
teristic non-dimensional Reynolds, Péclet, and Damköhler
numbers. For a 256 × 128 discretization grid Ly = 128 (in
lattice units), each lattice space unit in parts I and II corre-
sponds to w/128 = 3.91 × 10−4cm. For the current setup,
viscosity is defined as ν = τf ρT . The relaxation parameter
for the fluid phase, τf , is set to τf = 0.5 in lattice units. By
equating Re=ReLB=0.6, using the aforementioned viscosity,
the inlet velocity can be calculated as uinLB = 0.00078125
(in lattice units), which corresponds to uin = 0.12cm s−1.
Once the lattice velocity is set, the duration of the time
step δt can be calculated by equating the inlet velocities:
δt = 2.54 × 10−6 s. Note that the time step is dictated
by the slow advective flow, and by choosing to keep the
same time step for all processes. This leads to a fully cou-
pled advection-diffusion-reaction scheme applicable to all
flow and chemical conditions. Separation of time scales is
possible by solving for steady-state flow, then steady-state
reactive transport, and finally the solid geometry update.
Such an approach would be sufficient for these benchmarks
and would greatly reduce the number of time steps to reach
the solution.

Diffusivity is defined as D = τgT . By equating the
Péclet numbers Pe=PeLB=600, the relaxation parameter τg ,
which corresponds to the diffusive time scale, is set to
τD = 0.0005, for the species that follow the advection-
diffusion equation. Finally, by equating the Damköler
numbers DaII=DaII-LB=178.15, the rate constant kH+LB =

10−3.2364. For this dimensionalization Ma<Kn<<1, thus
recovering the incompresible Navier-Stokes equations.

D.2. Discussion on interpolation kernel
for Lagrangianmethods

The choice of the kernel � used for re-meshing the particle
is crucial for the accuracy of vortex and particle methods.
Indeed, in order to avoid holes and accumulation of particles
that would ruin the convergence, particle information
Fp (including vorticity, concentration, ...) in volumes vp

located at positions ξp is remeshed on to a new structured
mesh (with cell volumes ṽq ). This mesh defines a new set
of particles F̃q at locations ξ̃q by means of the following
convolution:

F̃q = F ∗ �(x̃q) =
∫

F(y)�(x̃q − y)dy

=
∑
p

Fp�(x̃q − xp)vp, (45)

since the set of particles is mathematically defined by the
generalized function F =

∑
p

Fpδxpvp, based of Dirac

functions at xp. In practice, when � is the “hat” (or “tent”)
function, the reaction stays confined on the fluid/solid
interface, but exhibits a pH over-estimation close to the
stagnation points, thus over-estimating the reaction rate.
When this kernel is smoother but positive in order to be
sign preserving, such as the first-order cubic spline M4,
the fluid/solid boundary becomes fuzzy and requires us
to force the reaction on the interface by means of the
function ‖∇ε‖, as in [96]. When using the second-order
kernel M ′

4 from [67], which is non sign preserving since
the integral of x2M ′

4(x) is zero, no negative concentration
appears despite the jump of acid concentration at the body
but it leads underestimation of reaction rate. However, the
hydrodynamic flow is computed with better accuracy using
M ′

4, as expected [28]. Consequently, the short-supported
function M3, smoother than the hat function with a support
smaller than M4, has been chosen for interpolating and
remeshing the chemical concentrations, while M ′

4 has been
chosen for the interpolation hydrodynamic values (velocity
and vorticity).

In practice for the present benchmark, for which the
reaction properties (bounds and positivity) have to be
strictly satisfied, the choice of the remeshing kernel is
mainly driven by the following arguments:

– The hat function, is good for the estimation of reaction
rate but does respect the pH bounds (pH overshoots
below 2 can occur),

• The kernel M4 is smooth but M4(0) = 2/3 �= 1; thus,
it is diffusive: pH bounds are good but reaction rate is
under-estimated (see formula A.4 of [18] for definition),
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Table 6 Parameters for Darcy-Brinkman-Stokes equations

Parameter Symbol Value Units Code

Solid porosity (initial) ε 10−2 [−] OpenFOAM-DBS

Solid porosity (initial) ε 10−2 - Vortex

Reference permeability k0 10−11 m2 OpenFOAM-DBS

Reference permeability k0 10−11 m2 Vortex

– M ′
4 (formula 4.5 of [20]) is algebraically mass-

conservative, smooth, and second order, but its negative
values induce oscillations at concentration jumps and
over-estimate the reaction rate. Furthermore, it is
not mathematically sign preserving, although negative
concentrations were never been observed in this
benchmark,

– M3 (formula A.3 of [18]) is smoother than hat, first
order and sign preserving, with short support. It is the
best choice for reactive flows like the one considered
in the present study; the reaction rate is well estimated
(a bit higher than the hat function and closer to other
curves) and does not go lower than the initial pH=2
bound, consistent with this purely dissolution process,

– M6 and M ′
6 supports are too large for this geometry,

and cannot handle correctly the final state of the
dissolution.

Consequently, the kernel M ′
4 is the best choice for

hydrodynamic computations (for particle remeshing and
interpolation of velocity and vorticity from and to grids),
while M3 is the best choice for interpolation and transfer of
concentrations.

D.3. Darcy-Brinkman-Stokes parameter values

Parameters specific to Darcy-Brinkman-Stokes code simu-
lations are presented in Table 6.
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