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Motion of a solid particle in a bounded viscous flow using
the Sparse Cardinal Sine Decomposition

F. Alouges * A. Lefebvre-Lepot - A. Sellier

Abstract This work investigates the Sparse Cardinal
Sine Decomposition (SCSD) method ability to effi-
ciently deal with a Stokes flow about a solid particle
immersed in a liquid. In contrat to Alouges and Aussal
(Numer Algorithms 70:1-22, 2015), the liquid domain
is bounded by a solid and motionless wall. The
advocated procedure inverts on the particle and
truncated wall boundaries the boundary-integral equa-
tion governing the stress there. This is numerically
achieved by implementing a Galerkin method. The
resulting linear system, with fully-populated and non-
symmetric influence matrix, is both compressed and
solved by the new SCSD method which allows to
accurately deal with a large number of unknowns.
Both analytical and numerical comparisons are
reported for a spherical particle and several bounded
liquid domains. Moreover, the rigid-body motion
of spheroidal particles settling in a cylindrical tube
is examined.
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1 Introduction

For many basic applications it is necessary to deter-
mine the force and torque experienced by a no-slip
solid particle moving in a viscous Newtonian liquid.
As soon as the liquid flow Reynolds number becomes
small, for example in micro scale hydrodynamics,
inertial effects can be neglected and the fluid velocity
and pressure satisfy in the liquid domain the linear
quasisteady Stokes equations. The treatment of these
equations can appeal to quite different theoretical and
numerical approaches properly introduced in standard
textbooks (see, for example, [1, 2]). There is a huge
literature devoted to this topic for both unbounded and
bounded liquid domains. Since boundaries are
encountered in practice, the present work considers
the case of a liquid bounded not only by the particle
but also by either a closed (cavity problem) or an open
(case of a plane wall, a tube, ...) surface %. Depending
upon the particle surface § and the bounding surface 2,
different treatments have been proposed and worked
out:

1. Exact solution. To the authors very best knowl-
edge, only the case of a spherical solid particle



located at the center of a spherical cavity admits an
analytical solution. This solution, derived for a
translating sphere by Cunningham [3] and also
Williams [4], is established whatever the sphere
rigid-body motion in the Appendix by another
straightforward singularity approach.
Semi-analytical solution. Here, the flow (u,p) is
expanded as infinite series of analytical solutions
of the creeping flow equations. These solutions,
adapted to the liquid domain geometry, are
combined in order to ensure the boundary condi-
tions required on the surface SU X. The suit-
able combination is numerically determined, at a
prescribed accuracy level, by truncating the series.
Different wall shapes 2 have been handled with

1. The closed spherical cavity or the plane wall
case. Use is then made of solutions in bipolar
coordinates for a spherical particle and a plane
or spherical surface 2. The spherical cavity
case has been handled for instance in O’Neill
and Majumdar [5, 6] and Jones [7]. For the
plane wall case with a potential ambient flow,
the reader is directed to the review by Pasol
et al. [8] and one can also mention Chaoui [9],
Pasol et al. [10, 11].

2. The case of a sphere moving between two
parallel plane walls is numerically solved,
using this approach, by Ganatos et al. [12, 13].

3. The circular tube case. The axisymmetric
problem of a collection of bodies of revolution
located on the tube axis and translating
parallel with it is handled by expanding the
problem stream function for spherical bodies
by Wang and Skalak [14] and also by Leicht-
berg [15]. The same procedure is also used for
spheroidal bodies by Chen and Skalak [16]. In
addition, a perturbation approach appealing to
this method is used in Tozeren [17] to deal
with a rotating or translating sphere located
close the tube axis.

Multipole technique. This approach is restricted to
a spherical particle and expands the solution in
terms of so-called multipoles (see the review by
Ekiel-Jezewska and Wajnryb [18]). It has been
applied to a sphere near a plane wall by Cichocki
et al. [19, 20], between two parallel solid walls by
Jones [21] and also by Bhattacharya et al. [22].

The finite element method (FEM). To the authors
very best knowledge, quite a very few works on
Stokes flows numerically solved the problem by a
finite element method (FEM) when the liquid is
not bounded by a closed cavity. One should
mention in this direction the Galerkin finite
element method used in [23] to compute the
resistance matrix of a spheroid located close a
solid, no-slip and motion plane wall.

The boundary element method (BEM). In this
approach, nicely introduced in Pozrikidis [24], a
fundamental solution of the Stokes equations
produced by a point force is used to derive a
velocity boundary representation in terms of the
flow velocity and stress only on the particle
surface § and, in general also, on the bounding
wall 2. As a result, the stress on the particle is
obtained by numerically solving a boundary-
integral equation on S U X if the simple free-space
fundamental solution is used (see, for instance,
Ladyshenskaya [25]) or on S if the fundamental
solution, complying with the boundary conditions
on X and here termed wall-solution, is used
instead. The BEM method is applied for a
spherical cavity both with the free-space and the
wall solution (obtained in Oseen [26]) by Sellier
[27]. The wall-solution is only available for quite a
very few surfaces 2 and adopts a more or less
complicated form depending not only on X but
also on the prescribed boundary conditions there.
It receives a quite tractable form for a plane no-
slip motion wall (see Blake [28)) used, for
instance, by Hsu and Ganatos [29, 30], Mody
and King [31] and also Sellier [32]. The more
involved wall-solution for a slip plane wall, with
potential anisotropic slip behaviour, is established
by Sellier and Ghalia [33]. The complicated wall-
solution for two parallel plane no-slip motionless
walls (see Jones [21]) is.used by Staben et al. [34]
for a sphere in a Poiseuille flow and by Pasol and
Sellier [35] for a cluster of settling solid particles.
It is also obtained and implemented by Pasol and
Sellier [36] for parallel plane free surface and no-
slip motionless wall. Finally, the wall-solution
derived by Liron and Mochon [37] for a (no-slip)
cylindrical tube is too much involved to be in
practice implemented in a BEM procedure. The
free-space solution makes it possible to deal with a
tube of different cross-sections. It is done by



Tullock et al. [38, 39] for a sphere settling in a tube
with circular, square or triangle cross-section. It
should be noted that, as shown by comparing the
Stokes predictions with experiments in Tullock
et al. [39], the low-Reynolds-Number flow
approach is quite valid for such confined geome-
tries. The cylindrical tube case is also investigated,
still using the free-space solution, by Pozrikidis
[40] (for a spheroidal particle translating on the
tube axis), by Higdon and Muldowney [41] for a
spherical particle (solid, bubble) using a spectral
boundary element method and by Zhu et al. [42]
for a spherical squirmer.

Nowadays, it turns out that the BEM technique is the
most efficient approach to deal with tube of arbitrary
(and eventually varying in the tube mean ’axis’
direction) cross-section. Since the wall-solution is
not available for such challenging geometries, it is
needed to invert a boundary-integral equation with the
very tractable free-space solution but on a large
truncated surface. As a result, meshing the surface and
discretizing the boundary-integral equation can end up
with a huge linear system governing the unknown
surface quantities at the nodes.

Alouges and Aussal [43] proposed in [40] a new
procedure to achieve an efficient fast matrix-vector
product in this context. The method, termed the Sparse
Cardinal Sine Decomposition (SCSD), has been
successfully designed and tested in [43] for the
potential equation. Recently, Alouges et al. [43] have
extended this procedure to the Stokes kernel. In this
article, the authors test the procedure in the framework
of a Galerkin discretization using P1 elements. The
new method is then compared with a full BEM solver
discretized using a collocation method and P2 ele-
ments. The error for the new method is then found to
tend to zero with order 1 (against order 2 for the BEM
code) and the needed CPU-time seen to scale as
O(Nlog(N)) (instead of O(N?) for the direct BEM
code) with N the number of degrees of freedom. Such
investigations regarding the new method error beha-
viour and cpu-time requirements achieved in [44]
confirmed the efficiency and accuracy of the SCSD
method for an unbounded liquid. The present work
now benchmarks the application of the SCSD to the
Stokes kernel for several confined geometries. It
validates for such widely-encountered cases its accu-
racy against several available analytical and numerical

results. Finally, it also investigates the settling motion
of spheroidal particles in a liquid bounded by a
cylindrical tube.

The paper is organized as follows. The considered
Stokes flow and the employed relevant boundary
formulation are given in Sect. 2. Section 3 is devoted
to the application of the Sparse Cardinal Sinus
Decomposition (SCSD) technique to the Stokes kernel
and to the numerical implementation. Numerical
comparisons for different geometries are addressed
in Sect. 4 together with the settling motion of
spheroidal solid particles in a liquid bounded by a
cylindrical tube. Finally, a few concluding remarks
close the paper in Sect. 5.

2 Stokes problem and employed boundary
formulation

This section introduces the considered Stokes prob-
lem, the relevant boundary formulation and the
resulting boundary-integral equation.

2.1 Governing equations

Consider, as illustrated in Fig. 1, a solid particle P
with smooth boundary § moving in a Newtonian liquid
subject to a uniform gravity field g and bounded by a
closed (cavity problem) or open (plane, tube,...)
motionless wall X.

The fluid flow and particle motion are studied with
respect to the wall. Cartesian coordinates
(0, x1,x3,x3) attached to the wall and with associated
unit vectors (er,e;,e;) are used. Moreover, Einstein
summation convention over repeated indices is
employed and x = OM = x;e; for arbitrary point

(a) (b)

s||®

Fig. 1 A solid particle moving in a fluid subject to a uniform
gravity field g and bounded by a motionless wall 2. a closed
surface 2 (cavity case). b Open surface X (tube case here)



M(xy,x2,x3). The fluid, with uniform viscosity u and
density p, experiences a velocity field u = u;e; and a
pressure field p + pg - x. For the open wall case the
fluid is quiescent far from the particle in each allowed
liquid domain direction. Introducing a point O’
attached to the particle and the notation x' = O'M,
this condition reads

(u,p) — (0,0) as |x'| — oo in allowed directions.
' (1)

Of course for a closed cavity X the condition (1) is
discarded. The particle rigid-body motion is described
by the angular velocity £2 and the translational
velocity U which is here the velocity of the particle

point 0. Taking S and X to be no-slip yields the *

velocity boundary conditions
u=U+2Ax onS,u=0o0n2Z. (2)

By virtue of (2), the velocity u typical magnitude is
V = Max(|U|, |2|a) with a the particle length scale.
Assuming a vanishing Reynolds number Re = pVa/p,
makes it possible to neglect in the Navier-Stokes
momentum equation the inertial non-linear term.
Thereby, (u,p) obeys in the liquid domain D the
quasi-steady Stokes equations

4iVu=Vp,V-u=0inD. (3)

The flow (u, p), has stress tensor @. It applies on the
smooth liquid domain boundary S U X having unit
normal n, pointing into the liquid (see Fig. 1), the
surface force f = ¢ - n. In applications one at least
seeks the force F and torque T" (about the point O')
exerted on the particle, i. e. the vectors

Fz/a-ndS,Fz/x’Aa-ndS. 4)

s s

Since the problem (1)—(3) is linear in (U, £2),

F=—pu{A-U+B-Q},T'=—u{C-U+D-Q}
(5)

with so-called second-rank resistance tensors A, B, C
and D solely depending on the problem geometry
(surface 2 and particle shape and location). Usually,
the task consists in calculating these tensors and, once
done, determining the particle gravity-driven rigid-
body motion (Us, £2;). Neglecting inertia, this motion
is found by requiring the particle to be force-free and

torque-free. Taking a particle with uniform density p,
volume V and center of volume O’ yields the equations

A-U;+B-Q,=(p—p,)Vg/u,C-U; +D -2, = 0.
(6)

For the no-slip boundary condition (2) on the wall 2
used in gajning the tensors A, B, C and D; it can be
shown (see, for instance, Sellier [27]) that (6) is a
linear system with a real-valued, symmetric and
positive-definite matrix. Thus, (6) is well-posed, i. e.
its solution (Uy, £2,) is unique.

2.2 Boundary formulation and associated
boundary-integral equation

Since it obeys the linear creeping flow equations (3),
the flow (u,p) can be obtained by a boundary
formulation. This well-established approach (see, for
instance, Pozrikidis [24]) is employed in the present
work and given below.

2.2.1 Green tensors

The boundary formulation appeals to a fundamental
flow-produced by a point force, with strength s = s;e;,
placed at a pole y located either in the particle or in the
liquid. Such a flow velocity v and pressure g obey

Vv = Vg — 634(x —y)s,V.v=0in PUD (7)

with 634(x —y) = da(x1 — y1)0a(x2 — y2)da(x3 — ¥3)
and d4 the Dirac pseudo-function. Clearly, the flow
(v, q) solution to (8) is not unique. As seen below, it
can be uniquely selected by adding specific behaviour
and/or boundary condition far from the source y and/or
on the boundary of the domain P U D. For such
additional requirements linear in (v,q) the selected
velocity v and associated stress tensor o(v,q) write
(reminding the Einstein summation convention)

V(9 =[Gy Vsl g (®)

e; @ ey
. 9
. 9)

The tensors G = Gye; @ ¢; and T = Tire; ® € @ ¢
are the velocity and stress Green tensors, respectively.
Two different choices are made in practice:

G'(V, q) (X) :[Tijk (Xa Y)sj]



1. the free-space tensors, given by Oseen [26]
labelled with the superscript oo, obtained by
requiring (v, g) to vanish away from the source y
in each direction. Denoting by J;; the Kronecker
delta, one gets (See also Ladyshenskaya [25])l

XiX;

00 6’
Gijv (x,y) = |XJ| +—5,X=x

le:;a -y = X;e;.

(10)

2. the wall tensors, labelled with the superscript wall.
For this choice, the velocity tensor complies with
the no-slip condition on the wall, i. e.
(;wall(x Y)
G"!(x,y) vanishes in each allowed direction for
|x —y| large and x in the domain P U D. The

0 for x on 2. For the open wall case

tensors G**' and T**" are not available in closed
forms, except for a very few wall shapes (Oseen
[26] for spherical cavity, Blake [28] for a plane no-
slip wall and Sellier and Ghalia [33] for a plane
slip wall).

Finally, one should note the key symmetry property

Gij(x,y) = Gi(y,x) (11)

which is obtained for G* by inspecting (11) and for
G by using the proof given in Pozrikidis [24] (see
Chapter 3).2

2.2.2 Basic velocity integral representations

Recall that (u,p) solution to the creeping flow
equation (3), exerts on the liquid domain boundary
SU 2 the stress f = 6.n = f;¢;. Exploiting the beha-
viour (1) and the definitions of the tensors G and T
then yields (see, for instance, POZI‘lkldlS [24]) the
integral representation

! Since not needed in the present work, the tensor T* is not
given here although it also admits a simple analytical form (see
Happel and Brenner [1]).

2 This proof is established for the no-slip boundary condition on
the wall but can fail for other boundary conditions not handled in
the present paper.

8muu;(x) = u /suz ui (¥) T (y, X)rue (y) dS(y)

_/suz Gji(y, x)f;(y) dS(y) for x in D.
(12)

Moreover, the flow with velocityu’ = U+ 2 A X’ and
zero pressure is a Stokes flow inside the particle P and
exerts a zero stress on the surface S. Accordingly (see
also Pozrikidis [24]), one gets for i =1,2,3 the
identity

/s w,(Y) T (y, X)mi (y) dS(y) = 0 for x in D.  (13)

Combining (12) with (13) and taking into account of
the symmetry property (11) and of the no-slip
boundary conditions (2) provides the following sin-
gle-layer boundary integral representations

8nuu(x) = — Auz G*(x,y) - f(y) dS(y) for x in D,
(14)

8ruu(x) = — / G*(x,y) - f(y) dS(y) for x in D.

N
(15)

In establishing (15) use is made for y located on 2 of
the identities G} (x,y) = G¥!(y,x) = 0.

If necessary, the integral representations (14) or
(15) make it possible to calculate the fluid velocity u in
the entire liquid domain once the stress f is known on
the particle surface S and also on the wall X for (14).

2.2.3 Relevant integral-equations

Note that G*! = G® + W with W(x,y) a tensor
regular also as x — y. Recalling (10) we note that (14)
and (15) aldo hold for x located on § U X. From (2), in
which x’ = x + O'O, the stress f thus fulfills on the
surface S U 2 the boundary-integral equation

[ 6x@y) t0)ds) = - sma), (16
uy(x) =0 for x on X, (17)
u(x) =U+ 2 A (00 +x) for x on S. (18)

Likewise, f obeys on S the boundary-integral equation



[ 600y - 105) asty)
= —8nu[U+ 2 A (0’0 +x)] for x on S.

(19)

Note that Tullock et al. [38, 39] employ instead of
(16)—(18) a more complicated integral-equation
which also involves the quantity T*(x,y) on the
entire surface SU ~.

3 Application of the Sparse Cardinal Sine
Decomposition (SCSD) method

This section presents the numerical implementation. It
also introduces the SCSD method and its application
to the free-space velocity tensor G™.

3.1 Numerical implementation and strategy

As noticed in the introduction, quite a very few wall
shapes make it possible to express the velocity wall
tensor G**! in a simple form (analytical result or
formulae in closed form). Consequently, this work
uses free-space tensors approach, i. e. consists in
numerically inverting the boundary-integral equation
(16). The wall X' is replaced in (16)—(17) with a closed
wall 2. For the closed wall case (cavity problem; see
Fig. 1a) 2. = 2. When X is a tube parallel with the
(0, e3) axis (open wall case shown in Fig. 1b) X, =
2(L) U Cs(—L) U C(L), with L > 0 a given trunca-
ture length, X, (L) = {M on X, |x".e3| <L} and C,(+L)
the tube cross-sections with points M such that
x ey = FL.

A boundary element method (BEM) is imple-
mented to solve the boundary-integral equation (16).
The closed surface S U X is discretized with boundary
elements obtained by putting on this surface N nodes
and using first-order interpolating shape functions.
One ends up with N; = 3N unknown quantities
collected in a vector V : the values of fi,/f; and f; at
the nodes. Interpolating f; on each boundary element,
two different appoaches are distinguished: the collo-
cation method (CM) for which (16) is enforced at the
nodes and the Galerkin method (GM) for which (16) is
first weighted with test functions ¢ on S U X, and then
integrated over this surface. Both procedures result in
alinear system A.V = P with a N; x N, square, fully-
populated and non-symmetric matrix A. For N not too

large (in practice, for N <0(10%)), this system is
solved by a LU factorisation algorithm requiring
O(N3) floating-point operations. For N, too large
another treatment avoiding the storage of A is needed.
The system is iteratively inverted using, for instance,
the Generalized Minimal Residual method (GMRES).
Each iteration requires the fast and accurate approx-
imation of one convolution (product) A.Y with Y a
given vector. It is done by building (and storing) a
compressed approximation of A. This approximation,
usually obtained either by the H-matrices technique
(see Hackbusch [45, 46]) or the Fast Multipole Method
(FMM) pioneered by GreenGard and Rokhlin [47, 48]
requires O(Ny log N,) floating-point operations. In this
work two BEM are used:

1. For comparisons with N not too large, a high-order
collocation method (CM) taking a quadratic
interpolation of f; over curved 6-node triangular
boundary elements and solving the linear system
A.V = P by Gaussian elimination. This approach,
applied either to (16) or (19), is detailed in Sellier
[27] and also in Hedhili et al [49] for the retained
treatment of Gi°(x,y) as y approaches x.

2. For other computations with large values of N the
boundary-integral equation (16) is solved by using
a Galerkin method (GM). More precisley, flat
3-node triangular boundary elements and linear
test functions ¢ are employed together with
GMRES solver dealing with a Sparse Cardinal
Sine Decomposition (SCSD) of the free-space
kernels Gj°. This SCSD method is briefly

explained in the next Subsection.

3.2 Sparse Cardinal Sine Decomposition (SCSD)

The application of the SCSD to the kernels Gy has

been recently given in Alouges et al. [44]. Therefore, it
is only briefly explained below.

3.2.1 Sparse Cardinal Sine Decomposition
of the free-space Stokes tensor components

Denoting by i, the usual complex number such that

i2 = —1, let introduce for a real function K, of the

vector X, its Fourier transform K as



R(E) = [ K(Oe ax. (20)

Taking a radial function K gives K (X) = K(|X|) and
K(€) =K(1) with A= |¢. Applying the inverse
Fourier transform and defining the usual Cardinal
Sine Function sinc by sinc (z) = sin(z)/t, the radial
function K also satisfies (see Alouges and Aussal [43])

o0

1 , 2 re
K(X|) =5 | sinc [AX[IR (1) 4%d4, |X] > 0.
(21)

Clearly, (21) is the continous Cardinal Sine Decom-
position of the radial function K. Setting R = |X], its
discretized counterpart reads

K(R) ~ Z Ap_oc,, sinc (A4,R) for Rpmin <R < Rpyax.
p
(22)

More precisely, a general method is proposed by
Alouges and Aussal [43] to compute both the coeffi-
cients 4, > 0 and the weights a, for the usual Laplace
radial kernel 1 / R and Helmholtz kernel exp(i.kR)/R
in such a way that (22) uniformly holds, to within a
prescribed accuracy € in a given range
R € [Ruin, Rmax]- Another approximation of K can be
deduced from (22). Designating by S(v) the sphere
with radius v > 0 in the Fourier space (variable &), it
appears that (see Alouges and Aussal [43])

4nl, sinc (}y,,‘|X|) :/ el X<ge. (23)
‘ S(%)

The integration over S(4,) is then discretized using a
quadrature with Gauss points and weights selected to
preserve the accuracy €. As a result, (22) becomes

L
K@R)~ Y w(&)e®% for Ruin SR< Rax ~ (24)
=1

with quadrature points £, located on the spheres S(4,)
and associated weights w(&,). As & and w(&)) the
integer L>2 depends on the function K and the
prescribed accuracy level e.

In dealing with (16) it is noted that, from (10),

" _25; R
Gy () =¢ = OX;0X;’

R=X,X=x-y.
(25)

The approximations (22) for the kernels 1/R and R are
built as explained in by Alouges and Aussal [43]. As a
result, one gets

L, Ly
/R~ wi(E)e™ 5 RS wa(E))e
=1 ' =1
(26)

and, differentiating twice the second approximation
(26),

—OZR S 2 2 2 i X-£2
s~ = 2w - &) (&} - €)X,
L'} =1

(27)

Hence, each component Gy (x, y) admits an expansion
of the form (24).

3.2.2 Efficient treatement of the encountered
convolution integrals -

From the above form of Gi°, the BEM iterative

procedure requires the fast computation of the convo-
Iution integral

I(x) = /S K(jx ~ y))$(y)dS(y) (28)

for quite a large number N of nodal points x = x,
located on § = SU X,. Here, I(x,) is divided into two
terms: the integral 7,(x, ) obtained by replacing K(R) in
(28) with the right-hande side, K,(R), of (24) and the
regular integral /,(x,) obtained by integrating [K —
K,](R) over the points y of S for which R is outside
[Runin, Rmax|. The accurate and fast calculation of 1,(x,)
is made by usual Gaussian quadratures. For I,(x,) the
integration over the discretized surface S is also
performed with a Gaussian quadrature employing M
Gauss points y,, and associated weights 1 (y,,). From
(24), this yields

L

Ia(xn) NF(X,,),F(X") = Zw(él)d;(gl)eicxnfla

=1
(29)



(Y)Y )™ 1. (30)

m=1

&(fl) =

The above direct and inverse non-uniform Fast Fourier

Transforms <;3(§,) and F(x,) are efficiently performed
thanks to the Type 3 non-uniform FFT, developed by
Lee and Greengard [50], which entails a O((L +
M) log(L + M)) global algorithm complexity.

4 Numerical results

The proposed SCSD method has been recently com-
pared, in terms of cpu time and convergence against
the Fast Multipole Method (FMM), by Alouges et al.
[44] but soleley for an unbounded liquid. This section
gives numerical comparisons for a spherical particle
immersed in a bounded liquid and also new results for
spheroids in a cylindrical tube. The computations are
done taking for the GMRES solver and the approxi-
mation (24) for each component Gy the same

accuracy level € = 1075,
4.1 Comparisons

This subsection gives comparisons against either
analytical or numerical results for a spherical particle.
For cach reported comparison the accuracy level is
e=107°.

4.1.1 Sphere located at the center of a spherical
cavity

Consider a sphere with radius a and center O
immersed in a liquid bounded by a motionless spher-
ical cavity with center O and R > a. The sphere
translates at the velocity U and rotates at the angular
velocity £2. It experiences a force F and a torque T’
about its center O'. As shown in the Appendix, these
quantities and the flow (u, p) about the sphere can be
obtained analytically when the sphere is located at the
cavity center.’ Setting § = a/R, the results read

3 Note that Cunningham [3] and Williams [4] solved the
problem of a translating sphere in a more complicated way,
using a stream function formulation.

14+ 8+ +B+ 4
(1= B +7p/4+ )’
(31)

F= ;67CWC[U, Cr =

1
(=B +p+p)

Clearly, both force and torque friction coefficients c;,
and ¢, deeply depend upon the ratio § = a/R. This
ratio is related to the sphere-cavity gap, normalized
with the sphere radius, # = (R —a)/a=(1— B)/B.
For f— 1, i. e. when the liquid becomes very
confined between the two spheres, # vanishes with

I = —8nua*c,R,c, = (32)

n~1— B while ¢,~#3 and c¢,~y~'. The large
sphere-cavity interactions at small § are therefore due
to the sphere translation.

Both coefficients ¢, and ¢, have been computed
with the proposed SCSD method using N, and N;
nodal points on the cavity and on the sphere surface,
respectively. The GMRES iterative solver number of
iterations is I;;. The computed coefficients ¢; and ¢, are
given for f#=0.5,0.8 in Table 1. This table also
indicates I, the mesh parameters N.,N, and the
relatives errors E(c,) and E(c,) defined as E(c) =
|¢/Cexact — 1| With Cexaer the analytical values given by
(3D)—(32).

For a selected mesh (N, N,) the number of
iterations I;, is not the same for ¢, and ¢, and E(c,) is
smaller than E(c,). Clearly, the numerical results
converge to the analytical ones as N =N, + N;
increases.

4.1.2 Sphere located off the center of a spherical
cavity

In contrast to the previous case, for a sphere located off
the spherical cavity center the force F and the torque I
experienced by the moving sphere depends upon both
U= Ue; and 2 = Q;e;. Still denoting the sphere-
cavity normalised gap with § this time
0<n<R/a—1.* Locating the sphere center O’ by
00’ = R — (1 +#n)ajes, the problem symmetries
yield (see also Sellier [27])

* The value 7 = R/a — 1 was obtained in the previous subsec-
tion for the sphere located at the cavity center, i. e. for O’ = O.



Table 1 Sphere centered in a spherical cavity: computed friction coefficients ¢, and ¢, and associated relative errors E(c,) and E{c,)
for two values of the ratio f (and associated sphere-cavity normalized gap #

B n N N, N, Iy < E(c,) I cr E(c,)

0.5 1 2261 1809 452 26 7.1877 1.46E—02 19 1.1373 4.85E—03
0.5 1 4020 3216 804 26 7.2353 8.06E—-03 21 1.1391 3.26E—03
0.5 1 56547 45238 11309 25 7.2899 5.83E—04 15 1.1426 2.53E-04
0.5 1 - - - - 7.2941 - - 1.1429 -

0.8 0.25 8242 5030 3216 38 137.72 3.66E—-03 19 2.0468 1.17E—03
0.8 0.25 32973 20106 12867 39 138.14 5.94E-04 16 2.0485 3.35E—-04
0.8 0.25 - - - — 138.22 - 2.0492 -

The lines without values of N provide the theoretical values of ¢, and ¢, given by (31)—(32)

F = — 6nua{c;(Uie; + Usey) + c3Uses}

) (33)
— 877.',[1(1 S{Qlez — .Qzel},

=- 8nua2s{U2e1 — Uey}

; (34)
— 8nua {tl (.Qlel + .Qzez) + t3U3e3}

with five friction coefficients ¢y, c3, 1,3 and s solely
depending upon the normalized sphere-cavity gap #
and cavity radius R/a = 1/f. It is not possible to
analytically obtain those coefficients which can how-
ever be calculated very accurately by using the bipolar
coordinates approach (see, for instance, O’Neill and
Majumdar [5, 6] and also Jones [7]). In Sellier [27] the
collocation BEM described in Sect.3.1 has been
employed to invert the boundary-integral equations
(16), using the free-space tensor G*, and (19) by
implementing this time the cavity Green tensor G*!
derived in [26]. The comparisons achieved by Sellier
[27] for R =4a and # =0.1,0/5 confirmed Jones
predictions [7]. The present SCSD method is com-
pared against those results in Table 2.

As seen in Table 2, the SCSD predictions match the
accurate results given by Sellier [27] and Jones [7] as
N increases. Even for the small sphere-cavity gap
value 1 = 0.1 relative errors of order 10~ are nicely
obtained for N = 85450.

4.1.3 Translating sphere located on the axis
of a cylindrical tube

As mentioned in the introduction, a large body of
literature is devoted to the translating motion of a
sphere in a liquid bounded by a cylindrical tube with
axis (O, e3) and radius R. In addition to the previously

quoted works one can also cite the investigations made
by Haberman [51], Brenner [52], Greenstein [53] and
also Hirschfeld [54] and Falade [55]. For such a
geometry, a sphere centered on the tube axis experi-
ences a zero torque and a force F given by

F = —6nua{c;(Uie; + Ue) + c3Uses} (35)

with positive friction coefficients ¢; and ¢; depending
upon ff = a/R. The most accurate results for those
coefficients are available in Higdon and Muldowney
[41] and taken to be the ’exact’ values in computing
the relative errors E(c;) and E(c3) using the SCSD
code and putting N, nodes on the sphere boundary S
and N nodes on the surface S U X, (recall the definition
of 2. in Sect. 3.1). It has been found sufficient to take
L = 3R in defining for the computations the ’closed
truncated’ tube X.. Comparisons against Higdon and
Muldowney [41] for f = 0.5,0.9 (i. e. for normalized
gap values n = (R—a)/a=1,1/9) are given in
Table 3.

The SCSD predictions well agree with the results

- obtained in [41]. Note that, for a given mesh, the

convergence to the results by Higdon and Muldowney
[41] is faster for the ’perpendicular’ coefficient ¢; than
for the larger ’axial’ coefficient c3.

4.1.4 Sphere translating parallel with the axis
of a tube with square cross-section

Much less results are available in the literature for a
tube with non-circular cross-section. However, a BEM
approach has been employed in [39] to give the
friction factor ¢3 of a sphere centered in a tube with
square cross section and translating at the velocity U



Table 2 Sphere located off-center the spherical cavity: computed friction coefficients ¢y, c3, 4, 3 and s for § = a/R = 0.25 and gap

values n = 0.1,0.5

n N Ny Cy c3 t t3 K

0.5 3417 201 2.5897 4.5613 1.1480 1.0628 0.11603
0.5 85450 5026 2.6464 47072 1.1632 1.0750 0.11926
0.5 192264 11309 2.6477 4.7105 1.1636 1.0753 0.11931
0.5 [27] [27] 2.6486 47127 1.1639 1.0755 0.11932
0.5 [71 [7] 2.6487 47131 1.1639 1.0755 0.11933
0.1 85450 5026 3.9065 18.607 1.6143 1.1938 0.18332
0.1 133516 7853 3.9085 18.631 1.6151 1.1941 0.18305
0.1 192264 11309 3.9096 18.645 1.6154 1.1942 0.18353
0.1 [27] [27] 39121 18.711 1.6160 1.1945 0.18353
0.1 [71 [7] 3.9121 18.674 1.6163 1.1945 0.18344

The accurate results obtained by Sellier [27], using the BEM approach (for the wall-solution and putting 1058 nodes on the sphere),
and Jones [7], using the bipolar coordinates technique, are given for comparisons

Table 3 Sphere translating at the center of a cylindrical tube: computed friction coefficients ¢; and c3 and associated relative errors
E(cy) and E(c3) for a sphere translating at the center of a cylindrical tube

B n N N, N I 1 E(c1) I; c3 E(c3)

0.5 | 12125 11321 804 40 3.9801 6.52E—03 55 5.8889 9.83E—03
0.5 1 42532 39705 2827 40 3.9988 1.83E—-03 66 5.9310 2.75E—03
0.5 1 118427 110574 7853 42 4.0035 6.60E—04 77 59414 1.00E—03
0.5 1 - = - 4.0062 - - 5.9474 -

0.9 1/9 87112 70826 16286 90 66.242 7.21E—-04 99 461.82 1.58E—02
0.9 1/9 136020 110574 25446 72 66.254 5.40E—04 158 464.45 1.02E—02
0.9 1/9 222648 180956 41692 69 66.279 1.70E—04 119 467.00 4.73E—03
09 1/9 - - - - 66.290 — - 469.22 -

The line without values of N provides the accurate numerical values of ¢; and c¢3 taken from [41]

parallel with the (O,e;) axis. More precisely, the
sphere experiences no torque and the force F =
—6nuaciU. Here, the coefficient depends upon f =
a/R with 2R the square cross-section side length. The
normalized sphere-tube gap is still 6 = R/a — 1.
Comparisons between the SCSD code and the numer-
ical results given in [39] are shown in Table 4, taking
the values in [39] as the ’exact’ ones in calculating the
relative error E(c3) and truncating the tube with length
L = 3R. Actually, the accuracy of the computations in
[39] is of order O(10 %) (This is why E(c3) is no lower
than O(107?) in Table 4 even for N very large). In
addition, the SCSD predictions are therefore in
agreement with [39]. Note that the predictions of
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Table 4 Sphere translating on and parallel with the axis of a
tube with square cross-section: computed friction coefficient c;
and associated relative error E(c3) for a sphere translating at
the center of a tube with square cross-section

B n N N; Ly c3 E(cy)

05 1 15142 804 63 44900 1.08E—-02
05 1 147855 7853 90 45322 1.52E-03
05 1 - - - 45391 -

09 1/9 105888 16286 63 59.862 4.67E—03
09 1/9 238245 36643 114 60.077 1.08E-03
09 19 - - — 60.142 -

The lines without values of N provide the numerical values
taken from [39]



[39] were found to well agree with the experimental
results obtained in Happel and Bart [56] for § < 0.25.

4.2 Settling motion of a spheroid in a cylindrical
tube

The settling motion of a spheroidal particle in a liquid
bounded by a cylindrical tube, with radius R, is
considered for a uniform gravity field g = —ge;
parallel with the tube axis (O, e3) and with magnitude
g > 0. The spheroid has center of volume O’ and axis
of revolution (O',E;) with unit vector E;. For
Cartesian coordinates (0', X1, X,, X3) attached to the
spheroid, x' = X;E; and the surface S admits the
equation

(xl) 2 X243
=—ul _l_ 3

=1 with a; = Aa3,a° = lag.

(36)

Hence, either oblate (A<1) or prolate (4> 1)
spheroid and the sphere with radius a (obtained for
4=1) have the same volume V = 4na’/3. The
spheroid density p, is uniform and its settling rigid-
body motion (Uy,$2;) is obtained from (6) after
computing the tensors A,B,C and D. This step is
achieved by successively solving with the SCSD
method the boundary-integral equation (16) for the
spheroid "unit’ translations U = e; and rotations £ =
e;. The resulting spheroid normalized motion (U, £2),
defined by’

U = VU, = VQ/a,V = 2d*(p, — p)g/ (9p)
(37)

depends, in general, upon the spheroid center of
volume O location and two angles describing the unit
vector E; orientation. For conciseness, as done by
Mitchell and Spagnolie [57] for the settling of a
spheroid near a plane wall, the attention is restricted to
position and orientation vectors OO’ and E{ normal to
e;. Accordingly, X, = x, and, as shown in Fig. 1b,
E; = cos pe; + sin @pe3 with ¢ the orientation angle.
Due to the problem symmetries, it is sufficient to
consider the spheroid configurations for which
0< @ <xw/2and OO’ = de; with 0 <d < d,. The later
upper value d; =d;(¢,R) is reached for a zero

% The motion is normalized by the volume-equivalent sphere
settling velocity for the unbounded liquid case.
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spheroid-tube gap. Moreover, the normalized transla-
tional velocity U and angular velocity £ admit only
three-non zero components: v; = U.e;,v3 = U.e3 and
wy = §2.e,. Note that v3 <0 and w, <0 while the sign
of v; will be found to depend, as in the unbounded
liquid case, upon the spheroid slenderness ratio 4. Of
course, each velocity vy, v3 and w, depends upon the
circular tube size a / R and the spheroid slenderness
ratio A, orientation ¢ and location d. For the compu-
tations the tube, with radius R, is truncated at length
L = 3R and N, nodal points are spread on the resulting
closed truncated tube X..

4.2.1 Case of a sphere

This case, obtained for A =1, has been already
handled by Tullock [38] using a collocation BEM
method. For this case d; = R — a and the sphere-tube
gap, normalized with the tube radius,isd =1— (d +
a)/R. Moreover, v; = 0. Comparisons for v3 and w,
with [38] have been performed for § = a/R = 0.5,0.8
taking for the SCSD method the accuracy level € =
107% and, depending upon the sphere location d, a
large number of nodes N = 0(10°).

The results are shown for the confined case a/R =
0.8 in Fig. 2 in which, as in [38], the quantity vs is
plotted. In contrast to [38], the SCSD method is able to
deal with refined meshes (N large) and thereby to
provide results up to the ratio d/R = 0.1975 obtained
for tiny small sphere-tube gap value 6 = 0.0025. The
agreement between the two approaches is very good.
Both |v3] and |w;| are found to increase and then
decrease as the sphere approaches the tube boundary.
Not surprisingly, |vs| reaches its minimum when the
sphere is located on the tube axis. Moreover, in the
entire range 0 < d < d, both velocities are O(1072).

The curves for v3 and wy in the less confined case
B =a/R=0.5, also found to agree with [38], are
provided when dealing with spheroidal particles.

4.2.2 Case of a spheroidal particle

For such a non-spherical shape a few comparisons are
made against a BEM method for a solid oblate
spheroid translating at the velocity U near a plane
solid wall (case of R/a — o0) taking a; = a; = 2a3
and OO0’ = (3a;/2)e;. The force experienced by the
spheroid is F. In absence of wall (distant spheroid) this
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Fig. 2 Normalized translational velocity vs and angular
velocity wyp for a settling sphere with radius a and center
distance to the tube axis d. The tube radius is R = 1.25a, a value
obtained for # = 0.8. The results from the SCSD or Tullock [38]
are indicated by symbols filled circle and open circle,
respectively

force, denoted by F*, can be analytically obtained
(see, forinstance, the Appendix Cin [29]). Fori = 1,3
the coefficient f; = F.e;/(F*.¢;), obtained taking U
parallel with e;, is computed versus the angle ¢ either
by the SCSD method or the BEM technique employed
in [32]. As seen in Table 5, both methods very well
agree.

Henceforth, the tube radius is R = 2a and both
oblate 4 =0.6 and prolate A = 1.4 spheroids are
considered. The computations required for a settling
non-spherical spheroid are much more cpu-time
demanding than for the sphere because the velocity
components v, v3 and wy depend upon the orientation
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angle ¢. Therefore, several values of the prescribed
accuracy € and several coarse, medium or fine meshes
for the truncated tube and the spheroid boundary have
been tested. It is done by:comparing the computed
values (vq1,vs,w;) against the accurate ones,
(v{,v§,ws), obtained (as for the sphere case) taking
¢ = 107 and N large. The mesh resorts to N, and N,
nodes on the ellipsoid surface and truncated tube and
the relative error E(v) for each velocity component v is
built using the value v, as the reference one. Illustrat-
ing results for the A= 0.6 oblate spheroid with
orientations ¢ = 0,7/4 are shown in Fig. 3 for ¢ =
10~* and three different meshes. Both N, and N, for
these meshes are given in Fig. 3 caption. It turns out
that taking € = 10~* and the mesh with N = 29810 is
thus quite sufficient to ascertain a very good accuracy
whatever the spheroid location. These settings are
adopted for the other reported results for spheroids
(while the curves for the sphere have been obtained as
previously indicated).

The normalized velocity component v; is plotted in
Fig. 4 versus d / R. Both oblate (2 = 0.6) and prolate
(A =1.4) spheroids are considered for orientations
¢ =0,n/8,n/4,3n/8. For comparison, the results for
the sphere is also given. Each curve is drawn in a range
d/R<d,/R with d, depending on the addressed
particle and orientation angle ¢ and close to the
contact previously introduced value d;. Here d; is
numerically determined (by meshing the particle with
given angle ¢ and computing the nodes-tube distance
versus the particle location). The values of d,/R and
d;/R are listed in Table 6 for the considered particles
and orientations together with the resulting particle-
tube gap ¢ (here still normalized with the tube radius
R). For a given orientation ¢, the oblate spheroid is
seen to move whatever its location d / R either faster
or slower than the sphere. The prolate spheroid
behaviour is a bit different. For instance, for ¢ =
n/4 it moves either faster or slower than the sphere for
d <d;ord > d;, respectively. By the way, it adopts the
same velocity as the sphere for d = d, ~0.4R. More-
over, for a given location d/ R the velocity v
decreases or increases in magnitude as ¢ increases
for the oblate spheroid or the prolate spheroid,
respectively. In summary, the velocity ’settling’
component (i. e. the one in the direction of the gravity)
v3 of the two equal-volume spheroids is deeply
sensitive to the spheroid shape and orientation.



Table 5 Normalized coefficients f; and f3 for a solid oblate
spheroid translating normal (f;) with or parallel to (f3) a rigid
plane solid wall

¢ fi (BBEM)  fi (SCSD)  f3 (BEM)  f3 (SCSD)
n/4 1454 1.452 2.370 2.369
n/2 1524 1.528 2.372 2.367

The SCSD is used putting N, = 3000 nodes on the spheroid
and N, = 15469 nodes on the wall which is truncated

107
7.10°

d/R

Fig. 3 Mesh sensitivity for ¢ = 10™* and the 4 = 0.6 oblate
spheroid with ¢ =0 (clear symbols) and ¢ = n/4 (filled
symbols) taking three meshes: coarse (open circle) with
(N, N.) = (1602,100), medium (open diamond) with
(N;,No) = (12,747,1000) and fine (open square) with
(N¢,N,) = (27,810,2000). Top: relative errors E(v3) (solid
ligne) and E(v;) (dashed lines). Bottom: E(w-)

Inspecting Fig. 4 clearly shows that, depending upon
(d/R, @), the prolate spheroid may move either faster
or slower than the oblate one.
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Fig. 4 Normalized translational velocity v; versus d / R for
different orientations of the 2 = 0.6 oblate spheroid (top) and
the 1 = 1.4 prolate spheroid (bottom). ¢ = 0 (open square),
¢ = /8 (open circle), ¢ = n/4 (open diamond) and ¢ = 3r/8
(open downtriangle). The curve with filled circle symbols is for
the sphere

The angular velocity component w, behaviour is
shown in Fig. 5. This velocity exhibits the same trends
as the ones previously discussed for the translational
velocity v4 except that wy and vs are order 0.01 and
0.1, respectively. Finally, the normalized ’drift’
translational velocity v, is considered in Fig. 6. For
symmetry reasons it vanishes for the sphere and also
the spheroids when ¢ = 0. In any case v; is small
compared with v3 and of comparable magnitude with
the angular velocity w,. The magnitude |v;| decreases
as the spheroid approaches the tube surface (it
becomes small very close the tube). Note that, when
comparing with the behaviour of |vs|, here |v;| is seen



Table 6 Computed values of d;/R and values d, /R employed
for the curves displayed in Figs. 4, 5 and 6

) A d./R d;/R &

0 0.6 0.644 0.6 0.044
/8 0.6 0.601 0.575 0.027
n/4 0.6 0.517 0.5 0.017
3n/8 0.6 0.436 0.425 0.011
0 1 0.5 0.475 0.044
0 14 0.374 0.35 0.024
n/8 1.4 0.387 0.375 0.012
n/4 1.4 0.456 0.45 0.016
3n/8 14 0.523 0.5 0.023

The normalized gap é = (d; — d,)/R is also given

to decrease slowly when the spheroid is moving away
from the tube axis.

Note that, as for the unbounded case, v, is positive
or negative for the oblate spheroid or prolate spheroid,
respectively.

In summary, the settling motion of different
volume-equivalent spheroids has been found to deeply
depend on the spheroid shape and orientation.

5 Concluding remarks

The range of application of the SCSD method to
Stokes flows, previously confined to the unbounded
liquid case in [44], has been extended in the present
work to the widely-encountered case of a bounded
liquid. The computed force and torque experienced by
a moving solid particle is then found to nicely and
accurately compare against the analytical and numer-
ical results given in the literature for several bounding
walls. Furthermore, estimates of the involved cpu
times can be easily obtained from the careful analysis
of this issue, both for a sphere and a general ellipsoid
(non spheroidal one), made in [44].

Finally, the settling motion of a spheroid in a a fluid
confined by a cylindrical tube with axis parallel with
the gravity is investigated. For volume-equivalent and
equal-density spheroids this computed settling motion
is found to deeply depend not only upon the particle
center of volume location but also upon the particle
orientation and slenderness ratio.
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Fig. 5 Normalized angular velocity w, versus d/ R for
different orientations of the 2 = 0.6 oblate spheroid (top) and
the 2 = 1.4 prolate spheroid (bottom). ¢ =0 (open square),
@ = /8 (open circle), ¢ = n/4 (open diamond) and ¢ = 37/8
(open down triangle). The curve with filled circle symbols is for
the sphere

By essence, the proposed approach can deal with
tubes of non-uniform and non-trivial cross-sections. It
should also be able to consider other boundary
conditions on the wall such as a slip condition.
However, this challenging task requires to also deal
with the stress tensor T. Therefore, it is postponed to
another work.
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Appendix

The flow (u,p) is obtained by superposing a few
singularities placed at the sphere center O’ = O.
Setting » = |x|, u and p are sought in the following
forms
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s (sx)x _(dx)x d yAx
=- 3 -
R E = - L
+,a)/\x—|—2rZS—(S.x)xforaﬁrgR,
p=2u{ssx+3} fora<r<r. (39)
T

Hence, (u, p) consists of a rigid-body motion ¢ + @ A
x and of four flows induced by singularties located at
the sphere center: a Stokeslet with intensity s, a
potential dipole with intensity d, a rotlet with intensity
y and a Stokeson with intensity S. The unknown
vectors ¢, w, §,d, y and S are obtained by enforcing the
no-slip boundary conditions u = 0 on the r = R cavity
and u = U + A x on the r = a sphere surface. The
following linear equations are obtained

§

d s
I 2R2 — =90 40
S 3 =02RS et —23=0,  (40)
d d
s_i_3_=0,£——+c+2a25=U, (41)
a3 as a a
Y. Y
w+F:0,a—3—|—w=Q. (42)

N

Setting A = a/R, elementary algebra easily yields the
analytical solution

3a(1 — 2)U
= : 43
41 —25+32° —227 + )] (@)
— 2 4453975
d:(l .5/ )as,c:( +S<5 9z )S_'_U, (44)
S 37 -1) 3a(2” 1) .
3 3 2032
_ aQS,w:‘Aaﬂ, _ A2 5 l)s. (45)
1-p a aR*(2> — 1)

From (38) the sphere experiences a force F and a
torque I (about its center O') given by F = —8mus and
I' = —8nuy. Accordingly, one gets the announced
results (31)-(32).
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