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CHALLENGES IN GRASSLAND MOWING EVENT DETECTION
WITH MULTIMODAL SENTINEL IMAGES
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Abstract—Permanent Grasslands (PG) are heterogeneous en-
vironments with high spatial and temporal dynamics, subject to
increasing environmental challenges. This study aims to identify
requirements, key constraining factors and solutions for robust
and complete detection of Mowing Events. Remote sensing is a
powerful tool to monitor and investigate Near-Real-Time and
seasonally PG cover. Here, pros and cons of Sentinel-2 (S2)
and Sentinel-1 (S1) time series exploitation for Mowing Events
(MowEve) detection are analysed. A deep-based approach is
proposed to obtain consistent and homogeneous biophysical
parameter times series for MowEve detection. Recurrent Neural
Networks are proposed as regression strategy allowing the
synergistic integration of optical and Synthetic Aperture Radar
data to reconstruct dense NDVI times series. Experimental results
corroborates the interest of deriving consistent and homogeneous
series of biophysical parameters for subsequent MowEve detec-
tion.

Index Terms—Permanent Grasslands; Mowing Events; Time
Series; Sentinel; NDVI; Regression; Recurrent Neural Networks

I. INTRODUCTION AND MOTIVATION

Permanent Grasslands (PG) are defined as areas used per-
manently (at least 5 years) for cultivated, natural herbaceous
forage crops or for growing grasses. Grasslands correspond
to 37% of the agricultural areas in Europe. They are major
ecosystems supporting a large number of functions, such as
carbon storage, biodiversity conservation, renewable energy
production, or soil erosion. They provide a considerable num-
ber of what are referred to as ecosystem services.
Mainly, grasslands behave as a significant carbon sink. Strong
links between Mowing Events (MowEve), act of levelling or
cutting down grass, and soil carbon storage have for instance
been demonstrated. Accurate monitoring is relevant since
recent decades have witnessed significant modifications such
as abandonment and conversion to arable land. MowEve are
highly variable in time and space: the farmer’s decision to
mow depends on many factors. Both yearly and Near Real-
Time (NRT) inspections are mandatory to capture the large
diversity of behaviours.

Remote sensing allows a synoptic and regular monitoring
through systematic acquisitions of Earth Observation imagery.
Sentinels of the European Space Agency (ESA) are combining
high temporal and fine spatial resolutions. Their free and
easily accessible policy makes it possible to envisage regular
monitoring of grassland cover [1]. A majority of the literature
focuses on discriminating grasslands from other land-cover
types [2]. Only few studies address management practises
detection. Optical time series of images are privileged [3], even

if combined exploitation of optical and Synthetic Aperture
Radar (SAR) data has proven its potential in distinguishing
management practices [4]–[6]. Besides focusing on restricted
areas [6]–[10], optical and SAR data sources still remain very
often independently exploited. Such approaches do not face
operational constraints (automation, scalability), and the high
heterogeneity of landscapes.

The aim of this paper is threefold: (i) to review main
strengths and weaknesses of S2 and S1 data for PG monitor-
ing; (ii) to propose a methodological framework for low-level
S2/S1 fusion for dense biophysical feature retrieval; (iii) to
assess the proposed strategy over a test site.

II. PROBLEM ANALYSIS

A. Thematic data analysis

Optical Sentinel-2 images: 13 spectral bands are acquired
every 5 days. Visible and Near-Infra-Red channels are avail-
able at 10m resolution, and strongly correlate to the vegetation
cover. The Normalized Difference Vegetation Index (NDVI)
measures the vegetation health and is highly relevant [1]
for monitoring and visualizing grassland phenology. NDVI
time series varies with phenological stages and highlights the
different agronomic types and management methods.

The most important limitation in optical time series is the
recurrent presence of cloud cover. Cloud-masking techniques
are now effective but not faultless (e.g., non-detected thin
clouds). Yet, a large number of missing data exists and
significantly decreases S2 revisit rate. For instance, the av-
erage revisit rate obtained by studying 200 PG parcels comes
down to 13 days (ranging from 2 days up to 120 days).
Unfortunately, this actual temporal resolution would not allow
exhaustive MowEve detection. They are abrupt phenomena
with very different natures and duration (Fig. 1). When rapid
re-growth of grass or partial mowing are occurring, sparse S2
measurements would thus fail effective monitoring.

(a) (b)
Fig. 1. Several stages of MowEve spanning over S2 acquisitions (Pre-Event,
Event, Post-Event). A large diversity of behaviours exists. For example grass
cover fast regrowth (b), here within 7 days.

When optical data is not cloud-affected, MowEve are well
spotted (Fig. 1) by a significant change in the surface color.
Fig. 2 shows another example validating how optical data can



provide key information for MowEve detection. Vertical red
lines correspond to MowEve on a NDVI time series. The
slope breaks confirms how simple spectral indices such as
NDVI are effective for MowEve detection. However, a high
temporal resolution is essential. Indeed, sudden movements in
time series are more likely to be due to anthropogenic impacts.

Fig. 2. PG MowEve (red line) example.

SAR Sentinel-1 imagery: Active SAR sensors allows ac-
quiring more dense time series. S1 dual-polarized (VV &
VH) SAR systems is independent of illumination conditions or
cloud cover. It permits a 3 day revisit rate alternating ascend-
ing/descending orbit acquisitions. The measure describing the
backscattering coefficient per unit area is σ0. It is based on the
intensity of emitted signal returning directly to the antenna.
It therefore varies accordingly to the reflective strength of
the target. Compared with optical NDVI ones, σ0 time series
appear more persistent in time. However, phenological stages
are contrarily less clearly discernible. Recently, coherence has
appeared to be more suitable for MowEve [4], [6]. Coherence
measures changes between pair of images and ranges from
0 to 1. When scatterers remain geometrically and physically
stable between two images, coherence estimation tends to
be high. Conversely, it decreases with ground-based changes.
Therefore, MowEves following pair of images will have a
different response and lead to shifts in the time series.

Surface roughness, local slope and orientation, soil mois-
ture, precipitations or frost events will affect the amplitude
and phase recorded by the sensor. They have a strong impact
on σ0 and coherence values. Fig. 3 visually correlates daily
precipitations (bars) with S1 σ0 measurements (black lines)
over one PG parcel. Abrupt variations in the S1 σ0 signal are
observed after rainy events. In addition, S1 images are also
affected by shadow, layover, and foreshortening (occurring
differently between ascending and descending orbits) with no
possibilities to offset these effects.

Fig. 3. S1 σ0vv (dB) fluctuates jointly with daily precipitation and temper-
ature (source: Météo France). Strong drops in σ0 affecting both polarization
(end of November, April) coincides with heavy precipitations and probably
open water on the parcel.

Mitigating external factors is generally a major challenge
in the exploitation of SAR signal due to its high sensitivity.
Auxiliary data can partly improve time series interpretation
by decreasing the variations of σ0 and coherence values.

Lack of reference data: despite a high environmental
importance, there is yet no national or pan-European initiative
that reports on the number of mowing performed on grassland
parcels during a season. Field campaigns can help. But they are
tedious, costly, and limited in view of the spatial and temporal
scales involved. Therefore, any MowEve methodology should
sparsely rely on reference data or should be designed in an
unsupervised way.

B. Methodological analysis: related work

Both time series of optical and SAR data have been used for
MowEve detection. Optical images are traditionally privileged
in remote sensing. Classification of PG management practices
have been proposed using several SPOT and Quickbird images
in [8]. RapidEye time series to classify PG management
practices intensity are processed in [7]. S1 and S2 datasets
are proposed for exploring correlation bewteen NDVI and σ0
over PG in [5], and in [4] for monitoring MowEve and grazing
occurrences. Some studies integrate optical multi-sensor data
to increase the temporal resolution. Radiometric and geometric
discontinuities between modalities have then to be considered
[2]. To address low optical temporal resolution, exponential
amount of work is being done to investigate SAR time series
for PG monitoring and MowEve assessment as in [9] with
COSMO-SkyMed data, and in [10] for PG classification from
RapidEye augmented with TerraSAR-X data. The potential of
dual-pol capability of S1 to discriminate MowEve and grazing
is discussed in [5]. The interest of S1 coherence variation for
MowEve detection with 12-days pairs of images over PG in
Estonia is also explored in [6]. It is highlighted that in-situ
data is required to interpret coherence behaviour in regard to
climate effects.

A vast majority of MowEve detection analysis is based
on predefined threshold(s) [4], [8] or conventional regression
analysis on handcrafted features (spectral indices). Thresholds
are usually locally and manually determined (in space and
time). Thus, they do not handle the vast temporal and structural
variations of MowEve on larger geographical areas. Further-
more, they usually only address the offline detection case (i.e.,
retrospective detection), through the full scanning of complete
time series.
The instability of thresholding methods can be easily demon-
strated by experimentally studying the NDVI time series of
200 contiguous PG plots. It is considered that a MowEve
is detected when the difference of two consecutive NDVI
values is higher than a predefined value. Table I shows the
wide variation in results based on several arbitrarily defined
thresholds.

TABLE I
MEAN NUMBER (PER PARCEL) OF MOWEVE DETECTED THOROUGH ONE

YEAR OF S2 NON-CLOUDY NDVI TIME SERIES AMONG 200 PG.

The problem analysis corroborates how the ability of op-
tical imaging to detect changes in vegetation cover and the
consistency of SAR acquisitions must be jointly exploited.



Considering complementary strengths and weaknesses of S1
and S2, methodology must be guided by these requirements:

• High temporal sampling over a full year;
• Both NRT and retrospective detection should be possible;
• Limited supervision: to cope with sparse reference data;
• Interpretability of the time series to end-users;
• Operational constraints: automation & scalability

III. PROPOSED APPROACH

Our approach consists in using the complete S1 time series
to derive dense biophysical optical features (here, NDVI)
allowing the detection of MowEwe. The new dense temporal
super-resolution will allow to cope with missing data and
account for fluctuating weather and topographic conditions.

In the literature, regression methods and other statistical
parametric modeling approaches are applied, in order to in-
crease temporal resolution. Unfortunately, they do not fulfill all
requirements (multimodal, unsupervised, and NRT). Autore-
gressive ARIMA [11] or MASD [3] models are mishandling
sparse datasets [11]. Alternatively, decomposition-based mod-
els can be used (e.g., BFAST [12]), but they require explicit
analytic functions and known distributions.
Although some improvements have been proposed (multi-
modality, climate variations), non-parametric Machine Learn-
ing approaches have been privileged [13]. Random Forest,
Support Vector Machines [4], [10], Gaussian Processes [14]
or Neural Networks [15] are part of the solutions used.
Recently, Deep Learning methods have proved to successfully
generate nonlinear estimation models. Specially, Recurrent
Neural Networks (RNNs) [16] allow the use of multimodal
datasets and exploit the temporal dimension of time series.
They can regress values based on a temporal memory of past
observations. Thus, exploration of the potential and flexibility
of RNN model is proposed here.

To derive yearly real-time synthetic S2 NDVI ( ˆS2NDV I )
time series, the use of a trained RNN model is selected. The
training model uses (dense) S1 as input data and (sparse)
non-cloudy S2 observations as target. Inputs and targets of
training samples corresponds to Sentinels time series pixels
values describing PG parcels. The French agricultural farmer
declaration (LPIS) allows to extract enough samples to permit
supervised training. Our proposed RNN architecture can be
fed with external data through attention mechanisms [17]. The
resulting trained model allows to estimate NDVI values for
cloudy observations by only considering S1 information.

IV. EXPERIMENTS

A. Test site and Dataset

Agricultural season from October 2016 to October 2017 is
observed. The test site is located North-East of Lyon in France
over a S2 orbit overlap area. This 5,267 km2 area offers a
high geographical diversity (valleys, hillsides, mountains). The
LPIS is used to retrieve the 23,846 PG parcels over the test
site. The average size of parcels is 5.1 ha (ranging 1 - 88 ha).

The slope is in-between 0 and 46o, with notable steep areas
in the Eastern and Western parts of a river catchment.

56 Level-2A S2 A&B images were downloaded from the
French Theia web-portal. They were processed with the MAJA
chain, which performs atmospheric correction and provides
cloud and shadow masks. 60 ascending and 60 descending
S1 Ground Range Detected (GRD) IW dual-pol images were
downloaded from ESA’s Copernicus Open Access Hub, and
pre-processed in order to compute σ0 time series. In addition,
InSAR coherence estimation (in a averaging window size of
azimuth×range: 3×9) images with 6 days temporal gap were
computed from S1 Single Look Complex (SLC) IW dual-pol
images. Produced σ0 and coherence time series are stacked,
but separately for ascending and descending orbits. This avoids
viewing angle correction.

B. First results

The proposed method requires the use of a common tem-
poral grid for all satellite data. Therefore interpolation by the
nearest neighbour method is done following S1 descending
acquisitions. Non cloudy observations are used for S2. This
grid consists of 60 dates with a fixed 6-day interval. The
dataset is splitted in train and test sets with a 80/20 rule
resulting in 19076 samples for training and 4770 samples for
validation. Fig. 4 shows the proposed RNN architecture which
is composed of two main components. First, a Gated Recurrent
Unit (GRU) as a encoder exploiting the temporal dimension
of the inputs sequences. Secondly, a Multi Layer Perceptron
(MLP) is used as a classifier.

Fig. 4. RNN workflow architecture used for regression.

As shown in Fig. 4, two data sequences are used as input
data. All the data is standardized. The Sentinel’s sequence
is composed by the information of the 60 temporal S1 and
S2 acquisitions. Concerning S2, a 60× 1 vector is composed
of NDVI values. In contrast, each S1 acquisitions contains
30 features by computing the means, median and standard
deviation for each polarization and orbit (for σ0 and coher-
ence). Besides, in the case of σ0, the three measures are
also computed for the VV/VH ratio. A second vector, the
context sequence describes temporal information (e.g. day of
the year, month, season) for both S1 and S2 acquisitions. This
vector is passed through a MLP so that the output of this
context sequence is of same size of the Sentinel’s sequence.
The resulting vector is used as attention vector for the S1
input sequence through element wise multiplication in order
to temporally weight their importance. Hyperparameters of the
network have been chosen empirically. The recurrent GRU cell
has a hidden state size of 128. The last hidden state of the GRU
network is used as embedding to a final MLP classifier which
uses batch normalization, dropout, and ReLu activation on
each hidden layer. The last layer of this MLP includes sigmoid



Fig. 5. Left: 6-day dense estimation of NDVI values over a year for one parcel. Dots: S2 acquisitions (green: valid and selected for training, red: invalid
and removed). Black dashed line: resulting time series from model inference. Right: R2 and MSE score for this parcel. Dots indicate NDVI values along
regression line. They are colored with respect to the position in the temporal sequence (dark → bright: early → late).

activation function. The model is trained for 200 epochs with
Adam optimizer set with a batch size of 32 and a learning rate
of 10−3. Accuracy during training is measured through Mean
Squared Error (MSE) for each epoch. Training the model with
a NVIDIA Geforce RTX 2070 GPU takes about 15 minutes.
Inference takes less than 10 seconds.

Fig. 5 shows an example of resulting ˆS2NDV I over a PG
parcel. The black curve contains 60 values of NDVI over a
one-year period, regressed from S1 features. The variations
of ˆS2NDV I approximate well the phenological cycle of a
PG parcel. On Fig. 5 right, regression line shows a general
good correlation between non-cloudy S2 NDVI and matching

ˆS2NDV I . Although the two worst predicted results are asso-
ciated to the NDVI values at the beginning of the season,
temporal analysis denotes similar results almost regardless
of the position in the time series. Model performances have
been evaluated on the 4770 validation samples representing
each of them a PG parcel. The original non cloudy S2 NDVI
values are compared with the ˆS2NDV I values predicted by
the trained model. The mean R2 for all the samples and
dates obtains 0.805 and Mean Standard Deviation of 0.158.
Regarding MSE, Mean MSE is 0.0071 but with a same order
for Mean Standard Deviation MSE that is 0.0077 expressing
the difficulty of the model for some outlying observations.

V. CONCLUSION & FURTHER PERSPECTIVES

Optical time series has proven to be effective for detecting
MowEve phenomenon. Unfortunately, temporal resolution of
S2 time series is affected by cloud coverage greatly reducing
the number of exploitable observations. To address it, a RNN
architecture has been proposed to densify available S2 time
series by exploiting S1 acquisitions.

The results obtained are promising by predicting ˆS2NDV I

values using only S1 SAR features. The reconstruction of
dense biophysical features as NDVI can be used as input data
for a change detection algorithm. Mainly, ˆS2NDV I obtained
in this paper has been with few supervision data and allows
to comply with operational constraints. The result is easily
interpreted by end users being expressed as a biophysical
parameter. Once the model has been trained over a limited
time series (e.g. a full year), it will be possible to obtain a

ˆS2NDV I value from S1 acquisitions. Our architecture will be
improved, in particular with dynamic weighting derived from
neighborhood or topological information. The reconstructed

signal will be used to detect MowEve under different geo-
graphical conditions.
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