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1. Manakov system: Linear stability analysis and polarization modulation instability 
 
The propagation of two orthogonally polarized optical pump waves at a relative frequency offset, say, ∆ = ∆ω/2π, 
in the normal dispersion regime of a randomly birefringent telecom fiber with relatively low polarization mode 
dispersion is described in terms of two incoherently coupled Nonlinear Schrödinger equations (CNLSEs) or 
Manakov system [S1-S3]:  
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Here z and t denote the propagation distance and retarded time (in the frame travelling at the group-velocity 
evaluated at the central carrier frequency ωo) coordinates; U and V are the complex slowly varying amplitudes of 
the two pump waves at frequencies ωu,v = ωo ±  π∆, respectively, and δ is associated with their group-velocity 
mismatch (GVM) owing to normal group-velocity dispersion. In fact, the U (V) pump is a slow (fast) wave with 
respect to the waves at the carrier frequency ωo. β2 and γ  are the group-velocity dispersion and the effective Kerr 
nonlinear coefficient at frequency ωo. Note that in Eqs. (s1) the variations of β2 and γ  as a function of the 
frequency are neglected for the frequency detuning that is considered in our experiments (∆ ≤ 500 GHz). The 

GVM parameter is then simply defined as δ = β2∆ , whereas the nonlinear coefficient is written as 𝛾𝛾 = 8𝑛𝑛2𝜔𝜔0
9𝑐𝑐𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒

, 

where c designates the light velocity, n2 = 2.6 10-20 m2/W is the nonlinear index coefficient, and Aeff designates the 
effective core area at the carrier angular frequency ωo. The factor 8/9 takes into account random variations of the 
intrinsic fiber birefringence [S3]. We would now like to emphasize the fact that coherent coupling terms [S3] have 
been neglected in Eqs. (s1), since they only play a role in a very small parameter range (small values of ∆) which 
is outside the operating conditions considered in our experimental study. On the other hand, we would like to 
mention that Raman effects are not considered in Eqs. (s1) since our experimental conditions (rather low input 
power and fiber length) were selected for these effects to be negligible. The accuracy of Eqs. (s1) in representing 
MI effects of polarized waves in a randomly birefringent, low-PMD fiber was recently confirmed in the 
anomalous GVD regime [S4]. 

The linear stability analysis of the steady state solution of Eqs. (s1) leads to the eigenvalue equation 
[𝑀𝑀][𝑌𝑌] = 𝐾𝐾[𝑌𝑌], with the eigenvector defined as [𝑌𝑌]𝑇𝑇 = [𝑈𝑈𝑎𝑎 ,𝑈𝑈𝑠𝑠∗,𝑉𝑉𝑎𝑎 ,𝑉𝑉𝑠𝑠∗], where Us and Ua are the 
amplitudes of the Stokes and anti-Stokes sidebands for the pump wave of amplitude U, respectively, 
whereas vs and va represent the Stokes and anti-Stokes sidebands for the pump wave of amplitude V, 
respectively. Throughout this work we assume that the power P injected into the fiber is equally 
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distributed into the two pumps, i.e. |𝑈𝑈(𝑧𝑧 = 0, 𝑡𝑡)|2 = |𝑉𝑉(𝑧𝑧 = 0, 𝑡𝑡)|2 = 𝑃𝑃/2. The stability matrix of the 
system [𝑀𝑀] is then defined as: 
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2
  and 𝑔𝑔 = 𝛾𝛾𝛾𝛾, where Ω is the angular frequency of the perturbation related to the 

wave number K by the dispersion relation 𝑑𝑑𝑑𝑑𝑑𝑑([𝑀𝑀] −𝐾𝐾[𝐼𝐼]) = 0. The MI phenomenon occurs when the wave 
number K of the perturbation possesses a nonzero imaginary part, and manifests itself in an exponential increase 
of the amplitude of the perturbation, whose importance is measured by a power gain G defined by 𝐺𝐺(Ω) =
2|𝐼𝐼𝑚𝑚(𝐾𝐾)|. Thus, one obtains the following dispersion relation: 

   𝐾𝐾2 = 𝑑𝑑2 + 𝑏𝑏2 + 𝑏𝑏𝑏𝑏 − �𝑏𝑏(4𝑑𝑑2(𝑏𝑏 + 𝑔𝑔) + 𝑏𝑏𝑔𝑔2)            (s3) 
 
which yields the condition for polarization MI to occur, that is, 

   𝑚𝑚𝑚𝑚𝑚𝑚 �0, �Δ2 − 𝑔𝑔
𝜋𝜋2𝛽𝛽2

�� ≤ � Ω
2𝜋𝜋
�
2
≤ Δ2     (s4) 

 
Figure S1(a) shows the MI gain spectrum for different powers obtained for the following parameter values of our 
fiber at λ0 = 1554.7 nm: 𝜷𝜷𝟐𝟐 = 18 ps2 km-1 (or D = -14 ps/nm/km), and γ=2.4W-1.km-1. As can be seen, 
whatever the input power the high cutoff frequency is fixed and equal to the pump spacing, whereas the low cutoff 

frequency depends on the input power level. 𝑷𝑷𝟎𝟎 = 𝟗𝟗𝝅𝝅𝟐𝟐𝚫𝚫𝟐𝟐𝜷𝜷𝟐𝟐
𝟖𝟖𝟖𝟖

 denotes the power for which the low cutoff frequency 

vanishes (e.g. Po=0.83W for ∆=100 GHz). It aims to define the frontier between two different regimes of PMI 
gain, namely, passband and baseband regimes. It was recently proven that existence of isolated rogue wave 
solutions is strictly related with the specific form of baseband PMI (i.e., 𝑷𝑷 ≥ 𝑷𝑷𝟎𝟎) [S5,S6]. One remarkable point 
is that there is no critical power beyond which PMI disappears, but there is a monotonic increase of the peak gain 
with input power, and a gain saturation as the power grows above about 10 𝑷𝑷𝟎𝟎 (see Fig. S1a). The asymptotic 
solutions to the dispersion relation (Eq. (s3)) that are found in the limit of large value of 𝒈𝒈 leads to the saturation 

values of the peak gain 𝑮𝑮𝒔𝒔𝒔𝒔𝒔𝒔 = 𝟐𝟐𝝅𝝅𝟐𝟐𝚫𝚫𝟐𝟐𝜷𝜷𝟐𝟐 and optimum modulation frequency 𝒇𝒇𝒔𝒔𝒔𝒔𝒔𝒔 = 𝚫𝚫 √𝟐𝟐⁄ . 
  
To validate the use of the Manakov system, we carried out an extensive analysis of spontaneous 
(i.e., quantum-noise induced) PMI in the fiber. We present some of the experimental results in 
Fig. S1b-c, in particular when considering the following input parameters (P = 1.69 W for ∆=200 
GHz). The red solid line indicates the experimental spectrum, showing the emergence of noise 
sidebands which agree well with the predictions of the linear stability analysis of panel (a) (black 
line) for frequency position of MI gain bands. The corresponding numerical simulation of 
Manakov system (Eqs. (s1)) is also depicted (dashed blue line) and fits well the experimental 
observation of PMI gain bands. Note that the experimental setup to observe Manakov PMI in the 
normal dispersion regime of a telecom fiber span is the same than the one used for the 
observation of ODRW, except that the optical seeding stage is removed and the fiber length is 5 
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km. Figure S1d compares the observed cumulated (over the entire fiber sample, i.e. 5 km) peak 
PMI gain with the analytical predictions, for different initial frequency separations among the 
pump waves. The PMI gain grows larger with the pump spacing, however at large frequency 
separations the available gain is reduced with respect to the small signal analytical predictions 
(which neglect pump depletion), in excellent agreement with the full numerical solution of the 
Manakov system. Note that choosing non-orthogonal input polarization conditions for the pump 
waves completely prevents from the emergence of any PMI gain bands in our experiments. 
 

 
 

Figure S1 | a, Variation of PMI gain G for each pump wave as a function of the input pump power: as P is 
equal or greater than P0, a baseband PMI is obtained. b,c, Input and output spectrum: red solid curves 
indicate the experimental spectrum. Solid blue curves are obtained from the numerical solution of the 
vector NLSE, and black curves represent the theoretical gain shown in panel a. d, Variation of PMI gain 
with pump spacing from the analytical gain of panel a (solid black line), from the numerical solution 
Manakov equations (dashed blue line) , and from the experiments (empty red dots). 

 

 

2. Manakov system: Dark rogue wave solution 

 
Equations (s1) exhibit a multi-component solution, with property of describing unique wave 
events, i.e. “dark rogue waves” isolated in space and time. This solution exists in the defocusing 
regime of the vector NLSE, in the subset of the parameter space where baseband PMI is present 
[S5]. The ODRW solution which is written in terms of rational functions of coordinates, can be 
expressed as:  
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with  

𝑎𝑎 = �𝛾𝛾 𝑃𝑃 4⁄  , 𝑞𝑞 = −𝛿𝛿 �2�2𝛽𝛽2�⁄ ,  

𝜃𝜃𝑛𝑛 = (2𝑞𝑞𝑛𝑛 + 𝑖𝑖𝑖𝑖) (2𝑞𝑞𝑛𝑛 − 𝑖𝑖𝑖𝑖)⁄  , 𝛼𝛼𝑛𝑛 = 𝛼𝛼 = 4𝑝𝑝2 (𝑝𝑝2 + 4𝑞𝑞2) where 𝑛𝑛 = 𝑢𝑢,𝑣𝑣⁄  

𝑞𝑞𝑢𝑢 = −𝑞𝑞 , 𝑞𝑞𝑣𝑣 = 𝑞𝑞 , 𝛽𝛽 = 𝑝𝑝3 �𝜒𝜒(𝑝𝑝2 − 4𝑞𝑞2)�⁄  , 𝜒𝜒 = 𝐼𝐼𝐼𝐼(𝑘𝑘) , 𝑝𝑝 = 2𝐼𝐼𝐼𝐼(𝜆𝜆 + 𝑘𝑘) 

(S5) 
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λ is the double solution of the polynomial 𝜆𝜆3 + 𝐴𝐴2𝜆𝜆2 + 𝐴𝐴1𝜆𝜆 + 𝐴𝐴0 = 0, with  
𝐴𝐴0 = −𝑘𝑘3 + 𝑘𝑘(𝑞𝑞2 + 2𝑎𝑎2);  𝐴𝐴1 = −𝑘𝑘2 − 𝑞𝑞2 + 2𝑎𝑎2;  𝐴𝐴2 = 𝑘𝑘. The constraint on the double roots is 
satisfied when the discriminant is zero, which results in the fourth order polynomial condition: 
𝑘𝑘4 + 𝐷𝐷3𝑘𝑘3 + 𝐷𝐷2𝑘𝑘2 + 𝐷𝐷1𝑘𝑘 + 𝐷𝐷0 = 0,  
with 𝐷𝐷0 = (𝑞𝑞2 − 2𝑎𝑎2)3 (16𝑞𝑞2)⁄ ;  𝐷𝐷1 = 0; 𝐷𝐷2 = (𝑎𝑎2 − 10𝑎𝑎2𝑞𝑞2 − 2𝑞𝑞4) (4𝑞𝑞2)⁄ ;  𝐷𝐷3 = 0. 
 
As an example, for the parameters involved in Fig. 2 (main manuscript), 𝛽𝛽2 = 18 ps2 km-1, γ=2.4W-

1 km-1, 𝛿𝛿 =1.8 ps km-1, and P = 1.9 W, we obtain the following truncated results (by choosing a 
complex value of 𝑘𝑘): 𝑎𝑎 =  1.067708, 𝑘𝑘 = 0.251791i, 𝜆𝜆 = −0.785421i, 𝑞𝑞 = −0.942478. 
 

3. Polarization rogue wave and event horizons 
 
As shown in Fig. 3, the ODRW induces the emergence of localized event horizons in space-time, in 
particular for each polarization around the notch where the light intensity is close to zero. As the event 
horizons originate from the intensity-dependent phase shift, we carefully checked the impact of input 
power P on the features of localized event horizons. For the experimental parameters we used, a power 
threshold was revealed (Pth = 0.98 W) to observe the emergence of localized event horizons in space-
time. Below Pth, the local phase velocity induced by the intensity-dependent phase shift is too small to 
counteract the constant linear group velocity and reach the zero speed (or ∆vg=vgh=0). Beyond Pth, there 
is a localized event horizon in space time, where indeed light is slowed down and reaches the zero speed 
(see Fig. 3). Note that the zero velocity horizons encircle the minimum intensity point at the middle of 
the notch, and its localization is strongly related to the notch profile in space-time, which evolves with 
the input power. Indeed, when increasing the input power beyond 1.98 W, the light intensity in each 
polarization dips to exactly zero (only once or twice for P > 1.98 W): as a consequence, there is a double 
loop event horizon appearing in space time (see Fig. S2), where indeed light is slowed down and reaches 
the zero speed. When carefully examining the evolving intensity dip in space-time between the two zero 
intensity points, we note that it slightly varies from 0 to 0.03 and then goes back to 0 W. Such small 
intensity variations cannot be revealed experimentally (less than 2% variations compared to the maximal 
peak intensity of the wave profile), so that the presence of complex double-loop event-horizon dynamics 
cannot be confirmed in our experiments. Note that the experimental input power (P = 2.5 W) was chosen 
in such a way that we observe the ODRW on the shortest fiber length (z = 3 km) to overcome the 
detrimental impact of fiber losses compared to the CNLSEs model. Both temporal and spectral features 
presented in Fig. 6 allow to confirm the opening and closing of localized event horizons for each 
polarization (as shown in Fig. 3), even if more complex dynamics remain hidden in the center of the 
ODRW. 
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Figure S2 | Left column: intensity of orthogonal U and V components of ODRW solution of the 
vector NLSE in the normal dispersion regime for the experimental pump power P = 2.5 W; Right 
column: corresponding plot of the instantaneous or local light velocity ∆vg versus propagation 
distance, showing that there is a localized event horizon in space time (black curve) defined by 
the condition ∆vg=0, where indeed light is slowed down and reaches the zero speed. Note that 
the value range of color-bars is arbitrarily restricted to the range [-1,1] to better highlight the 
event horizon curve. 
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