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In this paper, a novel experimental procedure is carried out for providing all the through-thickness rigidities of a thick glass-epoxy laminated ring cut from a tube, using only one diametral compression test. The procedure requires first to measure the strain field over a predefined area of the lateral surface of the ring coupon, and then to process it with the Virtual Fields Method. The region of interest where noise effects are minimized is first determined with simulated data. Then, the practical feasibility of the procedure is demonstrated with experimental data. The displacement fields are measured using the grid method. In order to filter the measurement noise at best, the strain fields are derived by polynomial fitting of the displacement fields. The validity of this approach is checked on simulated data. However, the experimentally identified stiffness values appear very scattered from one test to another. This is due to the non-uniform distribution of the load through the thickness, which is a well-known problem when testing thick composites. It has been shown that an optical system providing directly the images of both sides of the specimen can address this issue. Finally, such a system is set-up and successfully applied for identifying all the through-thickness rigidities of the ring.

Introduction

Composite materials structural components are usually based on thin plates or shells. In this case, only in-plane properties are required for design. However, composite applications tend now to spread out over industrial sectors such as the naval or ground transportation industry. These sectors require the use of less costly materials such as glassreinforced polymers, for which increased thicknesses are necessary to fulfil the structural functions. For this type of applications, not only the in-plane but also the throughthickness properties are necessary.

The structure investigated in this paper is a filamentwound glass/epoxy composite tube used in off-shore applications for oceanographic electronic device encasing. The present study focuses on a ring coupon cut from the tube. Its thickness is 50 mm (Fig. 1) and its mean radius is 112.5 mm, meaning that the through-thickness mechanical behaviour significantly affects the response of the tube. The objective here is to identify its through-thickness rigidities.

Because of their relatively new development, the measurement techniques for the through-thickness rigidities of thick composites have seldom been studied up till now. Some of the available mechanical tests, which have been found in the literature, are: † the tensile test on through-thickness waisted or nonwaisted coupons [START_REF] Broughton | An overview of through-thickness test methods for polymer matrix composites[END_REF][START_REF] Mespoulet | Through-thickness test methods for laminated composite materials[END_REF], † the Iosipescu shear test [START_REF] Gipple | Measurement of the out-of-plane shear response of thick section composite materials using the V-notched beam specimen[END_REF], † the torsion test on a rectangular bar [START_REF] Broughton | An overview of through-thickness test methods for polymer matrix composites[END_REF], † a combined tensile and bending test on a curved coupon [START_REF] Hiel | A curved beam specimen for determining the interlaminar tensile strength of a laminated composite[END_REF].

For all these tests, significant errors can occur if the boundary conditions provide unexpected gradients in the strain distribution. This requirement is difficult to fulfil for anisotropic materials because the anisotropy enhances parasitic effects induced by imperfect boundary conditions [START_REF] Arimitsu | A study of Saint Venant's principle for composite materials by means of internal stress fields[END_REF][START_REF] Pierron | Whole-field assessment of the effects of boundary conditions on the strain field in off-axis tensile testing of unidirectional composites[END_REF]. Moreover, some specimens are difficult to prepare, like the waisted tensile specimen, and the strain gauging can be rather tiresome. Therefore, there is a great interest in developing novel experimental procedures suited to thick composites that will use coupons that are simple to prepare.

An alternative strategy to the above tests has been proposed in the literature a few years ago [START_REF] Gre ´diac | Principe des travaux virtuels et identification[END_REF]. It requires the measurement of the full strain field over the surface of the specimen using an optical technique. The inverse problem can be solved with the Virtual Fields Method (VFM), which is based on the principle of virtual work. This approach is very promising since it can directly supply the whole set of parameters of the constitutive equations from the measurement of the heterogeneous strain fields over the whole or part of the specimen surface ( [START_REF] Gre | The use of heterogeneous strain fields for the characterization of composite materials[END_REF][START_REF] Gre ´diac | Novel procedure for complete in-plane composite characterization using a T-shaped specimen[END_REF][START_REF] Gre ´diac | Direct measurement of invariant parameters of composite plates[END_REF][START_REF] Pierron | Identification of throughthickness properties of thick laminated tubes using the virtual fields method[END_REF][START_REF] Pierron | Identification of the through-thickness moduli of thick laminates from whole-field measurements using the Iosipescu fixture: theory and simulations[END_REF], for instance). Contrary to finite element model updating [START_REF] Hendriks | Identification of the mechanical properties of solid materials[END_REF], the VFM provides the unknown material parameters directly (in the case of elasticity at least) without the need of calibrating iteratively a finite element model of the test. Besides, it is rather insensitive to parasitic end-effects, which usually disturb the in-plane stress field, and no assumption is made on the displacement/strain/stress distributions. Only the form of the constitutive equations has to be assumed a priori.

The application of this approach to the identification of the through thickness rigidities of a thick laminated composite tube has already been the object of a feasibility study using simulated data [START_REF] Pierron | Identification of throughthickness properties of thick laminated tubes using the virtual fields method[END_REF]. It was shown that this diametral compression test gives rise to heterogeneous stress and strain fields in the specimen and that the use of suitable virtual fields enabled the simultaneous identification of all the material rigidities. However, no experimentation had been carried out. The aim of this study is to test experimentally the suitability of this approach for identifying the through thickness rigidities of the ring coupons.

After a numerical study devoted to the selection of the region of interest of the specimen, the practical feasibility of the procedure is shown with experimental data. Displacement fields are measured using the grid method and strain fields are derived by fitting displacement fields with polynomials. The obtained results appear very scattered. As this scatter is induced by non uniform load distribution through the depth of the ring, an improved procedure is finally developed for identifying more accurately the unknown stiffnesses by using back-to-back measurements.

The identification procedure

The diametral compression test

The sample tested here is a ring cut from a glass/epoxy composite tube. The ring symmetry is cylindrical and therefore, the polar coordinate system is chosen. The ring is studied in its transverse plane (r,q). The fibres are in the q-wise (i.e. circumferential) direction. (Fig. 1).

The ring dimensions are as follows: R 0 Z87.5 mm (inner radius), R 1 Z137.5 mm (outer radius) and DZ21.5 mm (depth of the coupon, the depth referring here to the dimension in the out of plane direction z).

It is assumed that the constitutive equations are linear elastic orthotropic.

The stress-strain relation is expanded using the convention of contracted indices (rr/R, qq/Q, rq/S), which writes:
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The different steps involved are as follows. † The mechanical test:

It is a diametral compression test. It has been chosen because of its simplicity and its ability to generate a heterogeneous strain field inside the coupon [START_REF] Pierron | Identification of throughthickness properties of thick laminated tubes using the virtual fields method[END_REF]. † Full-field measurements:

The application of this procedure requires the measurement of the full strain field. Therefore, an optical full-field measurement technique is necessary. The grid method is used here [START_REF] Surrel | Moire ´and grid methods: a signal-processing approach[END_REF][START_REF] Avril | A full-field optical method for the experimental analysis of reinforced concrete beams repaired with composites[END_REF]. † Identification:

The Virtual Fields Method is applied. 

The Virtual Fields Method

The VFM has been introduced by Gre ´diac [START_REF] Gre ´diac | Principe des travaux virtuels et identification[END_REF] and is based on the Principle of Virtual Work. According to this principle, at point M, the static global equilibrium of a coupon having a constant thickness D yields, for plane stress conditions and in absence of body forces:

D ð S s : 3 à dS Z ð S f T ! ðMÞ$u à ! ðMÞdS (2) 
where: † s is the stress field; † S is the surface of the studied coupon; † S f is the surface where the load is applied; † T ! ðMÞ are the forces per unit area (distribution of tractions) over the boundary surface

S f ; † u à !
is the virtual displacement field and 3 à the virtual strain field derived from u à ! .

Introducing the elastic orthotropic constitutive equations Eq. ( 1), and assuming that the material is homogeneous at the scale of the coupon, Eq. ( 2) becomes:
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Four independent virtual displacement fields f u Ãa ! ; 3 Ãa g, f u Ãb ! ; 3 Ãb g, f u Ãc ! ; 3 Ãc g and f u Ãd ! ; 3 Ãd g have to be chosen to identify Q RR , Q QQ , Q RQ and Q SS independently. They should be kinematically admissible, i.e. continuous, differentiable and consistent with the actual boundary conditions. Thus, a system of four linear equations is obtained where Q RR , Q QQ , Q RQ and Q SS are the four unknowns:

A !Q Z B (4) 
A is a 4!4 square matrix that represents the contribution of the internal virtual work and B is a 4!1 matrix that represents the external virtual work divided by the thickness D. The unknown vector Q is determined by inverting the system of equations.

One of the critical points of the method is the choice of the four virtual fields f u Ãa ! ; 3 Ãa g, f u Ãb ! ; 3 Ãb g, f u Ãc ! ; 3 Ãc g et f u Ãd ! ; 3 Ãd g that must lead to four independent equations. It has been shown [START_REF] Avril | Sensitivity of the virtual fields method to noisy data[END_REF] that some virtual fields called special virtual fields render A equal to unity. Eq. ( 4) leads therefore to the direct identification of the unknown parameters because three out of the four terms of each row are equal to zero, whereas the fourth one in the diagonal is equal to 1 (the dimension is m2 for ensuring dimensional homogeneity).

Finally, the solution is:
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Choice of virtual fields

In practice, if the basis of functions used to select the virtual fields is sufficiently broad, a great number of special virtual fields leading to Eq. ( 5) can be found. A method for selecting one of these special virtual fields has recently been developed [START_REF] Avril | Sensitivity of the virtual fields method to noisy data[END_REF]. It relies on the minimization of the effect of noise on the identified parameters. Only the main features of this method will be recalled here.

The measured cartesian strains (the optical method will provide the strains in the cartesian coordinate system) 3 x , 3 y and 3 s will contain noise. The model assumed here for the noise is a Gaussian white noise. Although the present authors are well aware that this assumption is too simplistic, it is still thought that it could be a helpful criterion to select good virtual fields among the many available special fields. So this noise, respectively gN x , gN y and gN s , adds to 3 x , 3 y and 3 s . g is a strictly positive real number that represents the random variability of the strain measurements (it is interpreted as the uncertainty of the strain measurements). The noise is assumed to be uncorrelated from one measurement location to another in the current model. The components are also assumed to be uncorrelated between each other. Again, since experimentally, the strains will be derived from the two in-plane displacement components bearing the noise, this is not strictly true but this assumption is needed to keep the process analytical.

Computing 3 R , 3 Q and 3 S in polar coordinates from 3 x , 3 y and 3 s leads to noisy values because the measured strains in cartesian coordinates are noisy.

A standard Gaussian noise, respectively gN R , gN Q and gN S , adds to 3 R , 3 Q and 3 S .

N R , N Q and N S are linked to N x , N y and N s by the coordinate rotation matrix:
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According to this linear equation, and unlike N x , N y and N s , N R , N Q and N S are not statistically independent: they are correlated between each other. The inter correlation is characterized by the covariance matrix of N R , N Q and N S : M cov ZP!P T .

As 3 R , 3 Q and 3 S are random, the value of each unknown parameter identified from 3 R , 3 Q and 3 S with Eq. ( 5) is a random variable. For example, Q RR is given by:
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Q QQ , Q RQ and Q SS are also random variables. According to Eq. ( 7), it can be shown that the variances of Q RR , Q QQ , Q RQ and QSS write [START_REF] Avril | Sensitivity of the virtual fields method to noisy data[END_REF]:
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Therefore, computing h a quantifies the sensitivity to noise of the method. For a given virtual field, the lowest h a , the most accurate the identification. It has been shown [START_REF] Avril | Sensitivity of the virtual fields method to noisy data[END_REF] that, for given strain fields 3 R , 3 Q and 3 S , there is a unique set of special virtual fields f u Ãa ! ; 3 Ãa g, f u Ãb ! ; 3 Ãb g, f u Ãc ! ; 3 Ãc g and f u Ãd ! ; 3 Ãd g which minimize respectively the sensitivity to noise h a , for aZa, b, c, or d. These four virtual fields are deduced from the resolution of a constrained minimization problem. The unknowns of this minimization problem are the components of the virtual fields expanded in a suitable basis of continuous functions. The Lagrangian of the problem is written. Its unique saddle point is found [START_REF] Avril | Sensitivity of the virtual fields method to noisy data[END_REF], yielding the virtual field that is the less sensitive to noise for each unknown constitutive parameter. However, the problem is not explicit because the unknowns Q RR , Q QQ , Q RQ and Q SS are involved in the expression of h a . The problem is solved by an iterative algorithm where the unknown parameters are replaced by their identified value. A first set of initial values is chosen. Tests showed that this algorithm converges in less than 4 iterations whatever the choice of the initial values [START_REF] Avril | Sensitivity of the virtual fields method to noisy data[END_REF].

Finally, each unknown constitutive parameter can be identified by applying the VFM with these optimized special virtual fields.

Choice of a region of interest

In order to optimize the spatial resolution of the full-field measurements, only a reduced part of the ring surface is investigated. Indeed, if all the ring lateral surface is studied, only 26% of the pixels of the camera are located onto the ring surface, the remaining pixels being either inside the ring, or outside. However, if only a 308 angular sector of the ring is studied, more than 50% of the pixels of the camera are located onto the ring surface and the spatial resolution is therefore significantly improved.

The choice of the active zone is based on simulated data. The mechanical response of the ring subjected to diametral compression is computed with the finite element ANSYS software. The applied load is FZ20,000 N. An orthotropic linear elastic behaviour law is considered, with the following parameters: E RR Z10 GPa, E QQ Z40 GPa, n QR Z0.3 and G RQ Z4 GPa. A regular mesh of 3600 bilinear elements is defined over a quarter of the ring (Fig. 2). The locations (X k , Y l ) where strain data are simulated, with 1!k!p and 1!l!q, correspond to the centroids of the elements. These data are then input into the VFM procedure described previously and the coefficients of sensitivity to noise h a , for aZa, b, c or d can be computed for the regions of interest varying from 0-308 to 60-908 by increments of 108.

The zone that presents the lowest noise sensitivity average is the 60-908 one (Table 1). However, this zone is just under the loading point. The plane stress assumption can be affected in this zone because of Saint-Venant effects [START_REF] Arimitsu | A study of Saint Venant's principle for composite materials by means of internal stress fields[END_REF][START_REF] Pierron | Whole-field assessment of the effects of boundary conditions on the strain field in off-axis tensile testing of unidirectional composites[END_REF]. Moreover, this area will see high strain concentrations and the spatial resolution of the optical technique will not be sufficient to measure these correctly. Therefore, the zones near the loading point have been discarded.

Among the remaining zones, the best one is the 0-308 (Table 1). Consequently, the study focuses on this zone in the following sections.

Full-field measurements with the grid method

Displacement fields have been measured using an optical method called the grid method [START_REF] Surrel | Moire ´and grid methods: a signal-processing approach[END_REF][START_REF] Avril | A full-field optical method for the experimental analysis of reinforced concrete beams repaired with composites[END_REF]. A grid pattern is deposited onto the surface of the specimen. It is considered as a spatial carrier to characterize the displacement field of the specimen. The basic rules leading to the measurement of the displacement fields with this method are recalled in this section.

Printing of the grid

The spatial carrier is made up of a set of horizontal and vertical contrasted lines, with a natural spatial frequency f 0 Z2.083 line per mm. Practically, these are obtained from a professional printer through an EPS file. The prints consist of a polymer base and a photosensitive coating of very small thickness that bears the optical contrast. In order to avoid the presence of the thick polymer base at the surface of the specimen, the procedure adopted consists in bonding the film onto the specimen and then, peeling off the base. A white glue is used to ensure good final contrast. The full procedure can be found in [START_REF] Piro | Producing and transferring low-spatialfrequency grids for measuring displacement fields with moire ´and grid methods[END_REF].

Characterization of displacements by phase modulation

A given point M 0 of the space determined by its position vector R ! ðX; YÞ in the reference cartesian frame ðO; i ! ; j ! Þ is considered. In the initial undeformed configuration, material point M coincides with M 0 . In the final deformed configuration, another material point M 0 coincides with the spatial point M 0 . The position of M 0 in the initial undeformed configuration was characterized by R ! 0 ðX 0 ; Y 0 Þ in the cartesian reference frame.

In the initial undeformed state, the reflected light at point M 0 is the light reflected by material point M. Its intensity writes:

Ið R ! Þ Z I 0 f1 C gfrng½2p F ! $ R ! g (10) 
where: † I 0 is the local intensity bias, † g is the contrast, † frng is a 2p-periodic continuous function, † u ! : v ! denotes the dot product of both vectors u ! ðu x ; u y Þ and v ! ðv x ; v y Þ:

u ! $ v ! Z u x v x C u y v y (11) 
† F ! is the spatial frequency vector. It is orthogonal to the grid lines and its amplitude is the spatial frequency of the grid. If the grid lines are vertical, they are parallel to j ! , meaning that the spatial frequency vector writes F ! ðf 0 ; 0Þ. If the grid lines are horizontal, they are parallel to i ! , meaning that the spatial frequency vector writes

F ! ð0; f 0 Þ.
When a loading is applied, there is a deformation of the structure and the grid is also deformed. The reflected light at spatial point M 0 has become the light reflected by the material point M 0 . As the position of M 0 in the undeformed configuration is determined by R ! 0 ðX; YÞ, the new intensity at point M 0 is actually:

Ið R ! Þ Z I 0 f1 C g frng½2p F ! $ R ! 0 g (12) 
The deformation from the undeformed configuration to the deformed configuration is described mathematically by the displacement field U

! ð R ! 0 ÞZ R ! K R ! 0 , but also by the inverse displacement field U ! K1 ð R ! ÞZ R ! K R ! 0
. Therefore Eq. ( 12) writes: 

Ið R ! Þ Z I 0 f1 C g frng½2p F ! $ð R ! K U ! K1 ð R ! ÞÞg (13)
The phase of the function frng at point M varies of 2p

F ! :U ! K1 ð R ! Þ from the undeformed to the deformed state. If the assumption of small deformations is valid, U ! K1 ð R ! Þ and U ! ð R ! Þ are similar.
Therefore, it can be written in the deformed state:

Ið R ! Þ Z I 0 f1 C g frng½2p F ! $ð R ! K U ! ð R ! ÞÞg (14) 
The first component U x (x, y) of the displacement is calculated from the phase of the function frng when the grid lines are vertical, the second component U y (x, y) when the grid lines are horizontal. The phase fields are computed by using the spatial phase shifting method implemented in a Matlab routine [START_REF] Surrel | Fringe analysis[END_REF][START_REF] Surrel | Design of algorithms for phase measurements by the use of phase-stepping[END_REF].

Measurement of displacement fields

The U x (x, y) and U y (x, y) displacement components relative to the unloaded configuration are calculated from the respective phase differences Df X (for vertical lines) and Df Y (for horizontal lines) introduced by the deformation:

U x ðx; yÞ Z K p 2p Df X ðx; yÞ (15) 
U y ðx; yÞ Z K p 2p Df Y ðx; yÞ (16) 
where pZ0.48 mm here. The resolution of the method, i.e. the smallest displacement which can be measured in absolute value, depends on the measurement noise. The noise is a random variable which adds to the phase during the calculation [START_REF] Surrel | Fringe analysis[END_REF]. Its mean is 0 and its standard deviation is denoted s f . In our experiments, s f lies between 2p/360 and 2p/240, meaning that the resolution of the method for measuring displacements lies between 1.4 and 2.1mm.

Strain field computation

To compute the strain field components, displacement fields must be differentiated according to:

3 ij Z 1 2 vu i vx j C vu j vx i ! ; i; j 2½1 K 3 ( 17 
)
Several methods are available in the literature for numerically differentiating displacement fields: † point-wise [START_REF] Pe ´rie | Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model[END_REF] 3ðxÞ Z uðx C DxÞ K uðxÞ Dx (18) † by fitting a plane to P!P pixels subimages of the displacement fields [START_REF] Avril | A full-field optical method for the experimental analysis of reinforced concrete beams repaired with composites[END_REF][START_REF] Kajberg | Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields[END_REF]. Then, the gradient of the plane along the relevant axis provides an estimate of the strain component at the central pixel of the subimage. † by projecting the whole displacement field onto a basis of generic functions [START_REF] Roux | Correlation image velocimetry: a spectral approach[END_REF][START_REF] Wagne | Spectral approach to displacement evaluation from image analysis[END_REF] which can be differentiated analytically.

The solution chosen here is the third one because it is the less sensitive to noise and also because displacement fields are smooth enough in the region of interest for being fitted by polynomials of low degree. Generally speaking, this solution is very efficient when the spatial frequency ranges of the signal (strain field) and noise are well separated.

Polynomials of degree 4 are used to fit the whole displacement fields. Strain fields are derived by computing the closed form derivatives of the polynomials. The main advantage of this solution is that displacement fields can be interpolated at the locations of missing or inconsistent data.

To validate this approach, an application of this method for differentiating displacement fields has been performed on simulated finite element displacements. The Virtual Fields Method provided very similar results from strain fields obtained either by polynomial fitting or using the shape functions of the finite elements (Table 2). Therefore, it proves that the method chosen to compute strain fields is accurate enough for the present application.

Identification

Mechanical set-up with one camera

An INSTRON universal testing machine is used to perform the diametral compression test. Rubber is used at each point of application of the load to improve the contact pressure distribution and avoid compression damage of the composite in the vicinity of the load application. It also serves to prevent the specimen from slipping out of the fixture.

A grid has been bonded onto the ring which is then positioned in the fixture so that the grid lies in the chosen zone of interest (Fig. 3). The grid period is 480 mm. The lens is set such that a period of the grid is sampled by 6 pixels of the CCD camera. In these conditions, the spatial resolution is 0.96 mm and the resolution of displacement measurements is 2.3 mm.

Five tests have been carried out on the same specimen with an applied load of 20 kN. The 20 kN load limit has been chosen so as to avoid damaging of the specimen Fig. 4. Measured and fitted displacement fields (FZ20 kN). because of overloading. Indeed, the maximal strain criterion has been applied to the specimen. Damage can occur in glass-epoxy for shear strains of 0.2%. Achieving FE computations, it has been shown that this criterion is reached in the region below the loading point for applied loads just over 20 kN. Accordingly, 20 kN is the best load to apply for providing the largest strains within the elastic response domain of the ring.

Only the initial and the final images of the grid are grabbed. Thus, displacement and strain fields are measured only for one load. This is sufficient here since only elastic stiffnesses are required.

Results obtained with one camera

The measured displacement fields (Fig. 4) were fitted with polynomials of degree 4 and differentiated. The strain fields thus obtained (Fig. 5) are similar to those computed with the finite element model (Fig. 6), but the values are quite different. This indicates that the actual moduli are different from those used in the finite element model.

The moduli identified from those strain fields are reported in Table 3. Their average is quite consistent with the reference values of a glass-epoxy material. However, the coefficient of variations are very high, much higher than the values computed from Eq. ( 9). It means that the scatter of the results is far out of the range of scatter that could be induced by noise effects. According to the sensitivity to noise computed in Eq. ( 9) and according to the noise level in the measurements, the coefficient of variation of the moduli should not exceed 50% in the worst case. So, there is another problem causing this.

The most restrictive assumption in the identification procedure is that the stress distribution is uniform across the thickness of the specimen. This assumption may be a bit too restrictive considering the 21.5 mm depth of the specimen. Any misalignment in the vertical positioning of the ring will cause non uniform strain and stress distribution through the thickness.

In order to check this assumption, strains have been measured locally with two sets of back-to-back strain gauges bonded at two different locations (Fig. 7). Both groups of gauges put the parasitic effect in evidence. There is a large discrepancy between the strains measured by the gauge on the front face and the strains measured by the gauge on the back face (Fig. 8). This proves that the strain distribution is far from being uniform through the depth of the ring. It must also be noted that the discrepancy evolution is non linear, whereas the material behaviour is linear for this range of strain values. It proves that the contact pressure distribution at the loading point is likely to Fig. 6. Simulated strain fields (FZ20 kN). Table 3 Identified rigidities using only one camera be at the origin of the discrepancy, because the contact phenomenon, associated with the compression behaviour of rubber, is typically non linear. The contact distribution is also non repeatable from one test to another because it is not possible to put the ring exactly in the same position from one test to another. Therefore, the strain values from one test to another can vary even if the distribution remains similar. This can explain the high coefficients of variation of the identified stiffness even if the measured strain fields are similar to the simulated ones. However, it is interesting to note that averaging the back to back gauge readings provides the same response at the two locations, which is what was expected. This is consistent with similar observations on other tests when testing thick composites [START_REF] Pierron | Saint-Venant effects in the Iosipescu specimen[END_REF][START_REF] Pierron | A numerical and experimental study of woven composite pin-joints[END_REF]. In order to get rid of this effects, it was decided to measure the displacement fields on both faces of the ring using two cameras mounted back-to-back.

Q RR (GPa) Q QQ (GPa) Q RQ (GPa) Q SS (GPa)

Results obtained with the improved mechanical set-up

Following the above idea, a new experimental set-up has been used for validating this improved approach. Two cameras and two grids are used for measuring simultaneously the displacement fields on both sides of the ring coupon (Fig. 9). The new procedure consists in: † measuring the displacement fields on both sides of the specimen, † deducing the actual in-plane displacement field as the average value of both side displacements, † differentiating the average displacement field to get the actual in-plane strain, † and identifying the stiffness values from the derived inplane strain.

Nine tests have been carried out on the same specimen with an applied load of 20 kN using the improved set-up. The procedure is exactly the same as previously.

The identified stiffnesses are reported in Table 4. Their average is still consistent with the reference values of a glass-epoxy material. One can be surprised by the high value of Q SS . Values closer to 4 GPa would have been expected for a glass epoxy unidirectional laminate. This cannot come from a problem in the identification programme since it has been successfully validated with simulated data. However, it is very difficult to obtain reference values in this case, which is the very reason why the present approach has been used. Nevertheless, on the whole, the average values are fairly satisfactory. Moreover, the coefficients of variations have strongly improved compared to the first results. Their order is consistent with the theoretical noise sensitivity factors computed from Eq. ( 9) and given in Table 1 for the 0-308. zone, proving the relevancy of the noise effect minimization. The coefficients of variation remain higher than 20% for Q RR and Q RQ but they are identified using only one loading at 20 kN. An accurate value of the moduli can be obtained in practice by loading the ring step by step from 0 N up to 20 kN as it is usually adopted to characterize the stress/strain curve of materials with standard tests.

Summary

In this paper, a novel experimental procedure has been successfully demonstrated for providing all the throughthickness rigidities of a thick filament-wound glass-epoxy composite tube. The procedure requires diametral compression tests to be performed on ring coupons cut from the tubes, then to measure the strain fields over the lateral surface of a loaded ring, and finally to process the strain fields with the Virtual Fields Method.

Experimentation proved that the procedure yields consistent and repeatable values of the four unknown orthotropic rigidities provided that the average of the displacement fields measured over both sides of the specimen is processed instead of the fields measured only over one side. Moreover, the scatter obtained can indeed be related to the theoretical coefficients of variations provided by the VFM, validating the approach of special optimized virtual fields from an experimental point of view.

It is the first time that such consistent data have been obtained experimentally using the VFM, showing that the procedure is now ready for industrial transfer. The potential of such inverse identification from heterogeneous fields and full-field strain measurements is tremendous and may well lead to a very significant update of material testing procedures in the future. 
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Table 1

 1 

	Sensibility to noisy data for several zones of study					
		0-308	10-408	20-508	30-608	40-708	50-808	60-908
	h(Q RR )/Q RR	196	210	261	382	281	174	76
	h(Q QQ )/Q QQ	118	107	99	105	106	100	74
	h(Q RQ )/Q RQ	211	234	302	477	545	302	138
	h(Q SS )/Q SS	90	86	77	61	45	33	21
	(h/Q) average	154	159	185	256	244	152	

Table 2

 2 Influence of the polynomial fitting on the identification

		E RR	E QQ	n QR (no	G RQ
		(GPa)	(GPa)	dim.)	(GPa)
	Strains assessed with the	9.64	39.3	0.309	4.05
	FEM shape functions				
	Strains assessed by differ-	9.75	41.3	0.289	3.80
	entiating FEM displacement				
	fields point-wise				
	Strains assessed by differ-	9.29	40.7	0.292	3.83
	entiating FEM displacement				
	fields with a polynomial fit				
	Strains assessed by differ-	9.17	40.8	0.296	3.86
	entiating FEM displacement				
	fieldsCmodelled noise with				
	a polynomial fit				
	Reference values	10	40	0.3	4

Fig. 3. Experimental set-up.

Table 4

 4 Identified rigidities using the improved set-up with two camerasQ RR (GPa) Q QQ (GPa) Q RQ (GPa) Q SS (GPa)

	Test no 1	13.1	48.3	3.08	6.77
	Test no 2	12.6	45.4	2.04	6.93
	Test no 3	15.7	46	2.26	6.88
	Test no 4	13.3	44.6	1.92	6.36
	Test no 5	9.46	49.4	3.8	6.96
	Test no 6	10.9	47.2	3.86	6.41
	Test no 7	10.1	45.9	2.44	7.1
	Test no 8	8.44	39.6	2.2	6.54
	Test no 9	8.95	41.9	2.03	7.12
	Average	11.4	45.4	2.62	6.78
	Coeff. of	29%	10%	29%	4%
	variation				
	Engineering	E RR	E QQ	n QR	G RQ
	constants:				
		11.3 GPa	44.8 GPa	0.23	6.78 GPa
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