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Abstract

The quality of the generative models (Generative adversarial networks,
Variational Auto-Encoders, ...) depends heavily on the choice of a good
probability distance. However some popular metrics lack convenient prop-
erties such as (geodesic) convexity, fast evaluation and so on. To address
these shortcomings, we introduce a class of distances that have built-in con-
vexity. We investigate the relationship with some known paradigms (sliced
distances, reproducing kernel Hilbert spaces, energy distances). The dis-
tances are shown to posses fast implementations and are included in an
adapted Variational Auto-Encoder termed X-ray Sobolev Variational Auto-
Encoder (XS-VAE) which produces good quality results on standard gener-
ative datasets.

1 Introduction
Deep neural networks used as generative models are of high interest in a large
array of application domains [13, 9, 24, 4]. However they come at the price of a
more intricate architecture and convergence patterns than supervised networks.

The goal of generative models is to design a procedure to sample from a target
probability law Preal using a dataset of available samples Y1, ..., YL ∼ Preal (the
number L of samples is large but fixed).

One of the most used and efficient architectures are the Generative Adversarial
Networks (GANs); GANs come in the form of a dual net: a generator and a
discriminator, whose joint convergence was shown to pose problems, addressed
in late variants (see WGAN, SWGAN, etc.). As generators deal with probability
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laws, the choice of the distance used to quantify the closeness of a candidate turns
out to be of critical importance. This is even more visible for Variational Auto-
Encoders (VAE) that use the distance directly (i.e., not in the dual form as most of
the GANs do).

A VAE has two stages: an encoder stage Eθe(·) indexed by the parameters θe
of the encoding network and a decoding network Dθd . The networks are fitted
in order to satisfy two goals: first the reconstruction error Dθd(Eθe(Yk)) − Yk
is to be minimized over all available samples Yk; this is usually implemented
minimizing the mean square error. On the other hand, the second requirement is
to minimize the mismatch between the encoded empirical distribution Eθe#Preal
and a predefined, fixed, law Lz (here the symbol ”#” means the image of the
distribution on the right with respect to the mapping on the left, also called the
push-forward map).

In the generation phase one takes as input samples z from the law Lz and maps
them through the decoding functionDθd in order to generate new samples not seen
in the dataset Y1, ..., YL.

Let Ω be the set of all possible values of the latent sample z and P(Ω) the
set of all probability laws on Ω; then, crucial to the VAE is the distance d(·, ·)
acting on (possibly a subset of the) P(Ω)2 that measures the mismatch between
Eθe#Preal and the latent distribution Lz. The computation of the distance d is
usually difficult and in many cases one resorts to approximations.

The goal of this paper is to present a class of distances relevant to practice,
easy to compute and that have built-in convexity (thus ease the minimization pro-
cedure).

Our proposal builds on several ideas: on one hand the ”kernel trick” that en-
ables to compute functional quantities on Euclidian spaces; on the other hand the
”sliced distances” that average, in a sense to be made precise, the distances of pro-
jections to one-dimensional subspaces. We use the ”X-ray” term instead of ”slice”
to eliminate the ambiguity between the Radon and X-ray transforms, the first pro-
jecting on hyper-planes (dimension N − 1) and the other on one-dimensional
spaces (dimension 1), see [10], [19, Chapter 2] (the two coincide only in dimen-
sion N = 2, which is much lower than the dimension of applications we have
in mind). The third and last ingredient is a Hilbert space of regular functions.
The regularity has often been invoked in relation with GANs for instance in the
Wasserstein GAN form (that use Lipschitz functions). We encode the smoothness
of a function through a parameter s ≥ 0 of some Sobolev space Hs of Ḣs (see
definition in section A), larger s meaning smoother.
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Figure 1: We plot the distance squared from points µt on a geodesic to the target
ν. The function is not convex and in particular has two local minima.

2 Desirable properties of a distance
We discuss in this section some specific properties that a distance should have in
order to be suitable for use in generative models.

2.1 Convexity
A property easy to understand is the convexity; it is not a hard requirement but it
certainly helps the convergence and robustness with respect to perturbations.

Let us be more clear what convexity means in a space of probability laws.
Suppose a metric d is given on P(Ω); then given two distributions µ−1 and µ1

one can consider the geodesic µt starting at µ−1 and ending in µ1. In an Euclidian
space this would be just a straight line but in general this is not the case [19].
Take for instance the Wasserstein metric dW used for instance in WGANs (see [4]
for details concerning the definition of such metrics), and the following example
(adapted from [19, page 275]): consider the geodesic µt = 1

2
δ(t,2) + 1

2
δ(−t,−2)

linking µ−1 and µ1 and the ”target” law ν = 1
2
δ(1,0) + 1

2
δ(−1,0). Then the distance

squared from ν to the points µt on the geodesic is given by: d(ν, µt)
2 = 4 +

min((1− t)2, (1+ t)2), which is not convex, see Figure 1. Or the distance squared
is a main ingredient of the loss function and thus adds non-convexity in a new
manner, different from that induced by the neural network that generates the laws
µt.
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2.2 Nonlocal calculability
Another suitable property of a distance is related to its calculability. It is very
convenient to deal with distances that can be computed with as less information
as possible concerning the local (thus specific and changing) properties of the
distributions in the argument. For instance, in a metric space, the possibility to
compute the distance to points on a geodesic with the sole information of the
distance to its extremities is very practical and has been used in many works [3].
We will consider in particular the following property:

For any geodesic µt : [0, 1]→ P(Ω) and any ν ∈ P(Ω) :

d2(ν, µt) = (1− t) · d2(ν, µ0) + t · d2(ν, µt)

−t(1− t) · d2(µ0, µ1),∀t ∈ [0, 1]. (1)

Although at first cryptic, this is nothing more than, for instance, the parallelogram
identity in a Hilbert space ‖x + y‖2 = 2 · ‖x‖2 + 2 · ‖y‖2 − ‖x − y‖2 expressed
at ν = 0, µ0 = x, µ1 = y, t = 1/2. In fact (1) is satisfied in any Hilbert
space because the geodesics are straight lines. For instance the space L2 of square
integrable functions is a positive example, but the space L4 of functions with finite
norm ‖f‖L4 =

(∫
f 4
)1/4 is a negative example. Reciprocally, if a metric space is

endowed with an algebraic operation compatible with the distance and the above
identity, it can then be isometrically embedded into a Hilbert space. In practice
this allows to have the following:

Proposition 2.1 Let Ω a subdomain of RN and (X, d) a metric space containing
all Dirac masses δx, for all x ∈ Ω. Then if (X, d) satisfies property (1) on any
straight line µt = (1− t)µ0 + tµ1 then for any x1, ..., xK , y1, ..., yJ ∈ Ω :

d

(
1

K

K∑
k=1

δxk ,
1

J

J∑
j=1

δyj

)2

=
1

K · J

K∑
k=1

J∑
j=1

d(δxk , δyj)
2

− 1

2K2

K∑
k=1

K∑
k′=1

d(δxk , δxk′ )
2 − 1

2J2

J∑
j=1

J∑
j′=1

d(δyj , δyj′ )
2 (2)

Proof: follows directly from equation (1).
Proposition 2.1 is a powerful tool because of two reasons: first it allows to

compute the distance in an easy way, second this computation is in the form of
expectations (replacing the sums by expectation over a discrete uniform law; see
equation (3) below for an example).
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3 Relationship with the literature
This work owes much to previous advances from the literature.

Of course, first of all is the idea that a GAN can be seen as minimizing some
probability metric [4]. They use a Wasserstein metric which is not finally so much
different from ours (see equation (10) and section 5.2.2) but whose computation
requires iterations and the enforcing of some special (Lipschitz type) constraints.

Starting from this difficulty, several solutions were proposed : first the ”sliced”
distances, most used being the ”sliced Wasserstein distance” appearing in [15, 8,
14, 25, 7] to cite but a few. Other forms of sliced distances have also been pro-
posed, in particular in [23] authors implement a VAE using a kernelized distance;
note however that in full rigor the metric they used is not a distance because of
the smoothing parameter depending on the number of Dirac masses present in the
distributions. However it is a good metric that allows to compute analytically the
distance from a Dirac mass to a standard multi-variate normal (distance used to
converge to the latent distribution).

On the other hand there is the remarkable work on the energy distance by
Szekely and al. (see [22] and related references) that establish an encouraging
framework; at the contrary of the first group cited, here the approach is global;
note that in [16] the authors use Sobolev spaces but instead of using X-ray (or
”sliced”) versions they use directly the overall space Hs(RN); the inconvenient
of this space is that it is included in the space of continuous functions only when
s ≥ N/2 which means that, since N is large, a high regularity is required in order
for the dual to contain Dirac masses. A close work is [5] which implements a
particular form of Xray Sobolev distance (for H = Ḣ) in the framework of a
GAN; as such it requires the use of a space of features that is to be optimized.

Finally, this work can be put in the more general framework of Hilbert space
embeddings (see for instance [21, Theorem 21 p.1551]) and [20] that give theo-
retical insights into the use of energy-type distances and relationship with MMD
metrics.

3.1 Contributions of this work
This work proposes some novelties with respect to the literature that we detail
below:

- first from a theoretical point of view, we introduce a novel procedure to
construct a class of probability distances taking into account the regularity of the
test functions; note that this regularity is precisely what delimitates for instance
the Total Variation distance (continuous functions) from the Wasserstein distance
(Lipschitz functions);
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- in particular the ”energy distance” of Szekely et al.( see [22]) is a particular
member of this class; this distance has been tested extensively outside the deep
learning community;

- the distances are interesting computationally because one has quasi-analytic
formulas for computing the distances between sums of Dirac masses and from a
sum of Dirac masses to the standard normal multi-variate distribution; furthermore
some aysmptotic expansions (giving good results in practice) are proposed;

- we propose an adapted Variational Auto-Encoder (termed XS-VAE to recall
that the distance used is in the proposed class) that obtains good results on stan-
dard datasets. In particular the distance is seen to be a reliable proxy for other
metrics (including Sliced Wasserstein and Cramer-Wold). Note that in practice
it is difficult to compare with non-sliced VAEs because the distances, exact to
the extent needed to make meaningful comparisons, are difficult to obtain in high
dimensional latent spaces. This comparison is for instance the approach used in
other, not directly related, endeavors, see [11]).

4 Theoretical results
We refer the reader to section A for the definition of Sobolev spaces Hs(R) and
Ḣs(R).

Theorem 4.1 Let M > 0 (M can be +∞) and Ω the ball of radius M in RN

(whole RN if M = ∞). Let (H, ‖ · ‖H) be a Hilbert space of real functions of
one variable (such as Hs(R) or Ḣs(R)) on the domain ] −M,M [ such that H
is included in the set of continuous functions C0(Ω). Denote by (H ′, ‖ · ‖H′) the
dual of H , P(Ω) the set of probability laws on Ω and dXH the distance on P(Ω)
associated to ‖ · ‖H′ as described in section B. Then dXH is such that:

1. any line µt = (1− t)µ0 + tµ1 ⊂ P(Ω), t ∈ [0, 1] is a geodesic and dXH is
convex on µt;

2. for any ν ∈ P(Ω) the distance dXH satisfies (1);

3. the distance dXH satisfies relation (2).

In particular, up to a multiplicative constant, for H = Ḣ1:

dXSḢ1(µ, ν)2 = EX∼µ,Y∼ν,X⊥⊥Y ‖X − Y ‖

−EX,X′∼µ,X⊥⊥X′‖X −X ′‖+ EY,Y ′∼ν,Y⊥⊥Y ′‖Y − Y ′‖
2

, (3)

where X,X ′, Y, Y ′ are independent random variables, first two with distribution
µ and the last two with distribution ν.
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Proof: the conclusion follows from the considerations of the section B, see sup-
plementary material for details.

Remark 1 In general, the procedure in section B allows to resume the distance
to two functions gxy and gxn such that

dXH(δx, δy)
2 = gxy(‖x− y‖), ∀x, y ∈ Ω, (4)

dXH(δx, N(0, I))2 = gxn(‖x‖), ∀x ∈ Ω. (5)

These functions can be used in the XS - Variational Auto-Encoder as detailed in
section 5. Note that, e.g., contrary to sliced Wasserstein implementations, here
there is no need to discretize the directions of the N -dimensional sphere SN−1.
The precise formulas and approximation of gxy and gxn when H = Ḣ1 are the
object of the section C.

5 XSVAE: X-Ray Sobolev Variational Auto-Encoder

5.1 Algorithm
Enabled by the previous results, we propose a new type of VAE using the above
distances. Compared with a GAN the VAE has the advantage to use a fixed ref-
erence latent distribution and does not need to look for a suitable ”feature space”
to express the distance in. This means that, as in [23], one can pre-compute the
distance from a Dirac mass to a target latent distribution (here a standard multi-
variate normal) which speeds up even more the computations.

In order to compare with results from the literature we use the space H = Ḣ
that has been studied before and that has also interesting properties, cf. equa-
tion (10).

Let us fix the following notations: θe are the parameters of the encoder network
and θd the parameters of the decoder. The encoding is a (parametrized ) function
transforming some real sample X ∈ RI to the latent space RN , i.e. Eθe(X) ∈
RN . The goal of this part is to have the distribution Preal transported to the latent
distribution (standard multi-variate normal) on the latent space; the corresponding
part of the loss functional is dXSḢ1(Eθe#Preal, N(0, I))2. The decoding part takes
z ∈ RN and through the decoding function Dθd maps it to the initial space RI ;
the goal is to provide accurate reconstruction of the real samples and corresponds
to the minimization of the mean squared error EX∼Preal‖[Dθd ◦Eθe ]#(X)−X‖2.
We obtain the following procedure:
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Algorithm A1 Xray-Sobolev Variational Auto-Encoder (XSVAE)
1: procedure XSVAE
2: • Sets batch size K, latent dimension N , λ ≥ 0
3: • compute constants cN0, cN1 from equation (18)
4: while (stopping not reached) do
5: • Sample X1, ..., Xk ∼ Preal (i.i.d).
6: • propagate the real sample through the
7: encoding network;
8: • Compute the latent loss: Losslat(θe, θd)

9: = cN0 +
∑K
k=1

√
‖Eθe (Xk)‖2+cN1

K

10: −
∑K
k=1

∑K
k′=1‖Eθe (Xk)−Eθe (Xk′ )‖

2K2 .
11: • propagate the real sample through the
12: decoding network;
13: • Compute the reconstruction loss:
14: Lossrec(θe, θd)
15: = 1

K

∑K
k=1 ‖Dθd(Eθe(Xk))−Xk‖2

16: • Compute the global loss: Lglobal(θe, θd)
17: = Lossrec(θe, θd) + λLosslat(θe, θd)
18: • Backpropagate Lglobal(θe, θd) and update
19: parameters θe, θd (a minimization step).
20: end while
21: end procedure
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5.2 Numerical results
We tested the XSVAE on several datasets from the literature. The goal here is to
show that this procedure is comparable with other probability distances used in
generative networks while still benefiting from a fast computation and no hyper-
parameters to choose (except latent space size and batch size that all VAEs deal
with).

The code is available in the supplementary material and the comparison is
made with the algorithm from [23]. The datasets are MNIST, Fashion-MNIST
and CIFAR10 and the encoder-decoder architecture is taken from the reference
(and recalled in section D).

In all cases we used the additive version of the loss functional because the
”log” introduced in [23] for the distance term would prevent from having a convex
loss (the ”log” being concave). In practice the scaling constant λ can either be
choosen by trial and error or by running first two optimizations, one with only
reconstruction loss and the other with only latent loss and take the quotient of the
standard deviations in the oscillations seen in the result. In practice it has been set
to λ = 100 for all tests.

5.2.1 Relevance of both loss terms

We first test whether in the XS-VAE both loss terms are effective. We only show
the results for MNIST dataset but the conclusions are similar for all datasets.
Namely we consider three runs:
• optimization of the reconstruction loss only (λ = 0);
• optimization of the latent loss only;
• full optimization (λ = 100).

The results are in Figure 2. The first situation results in good reconstruction
but poor generation while the second generates ”white noise like” images. The
advantage of having both terms is obvious from the figure.

When only optimizing the reconstruction loss the reconstruction error drops
from 39.5 to around 11.5. When optimizing the latent part only the reconstruction
loss remains at high values (depending on the run between 40 and 180) and the
latent distance reaches small values (around 1.e− 4 and below). When using both
terms, the reconstruction error drops down to around 11.5 and the distance around
5e− 3, depending on the run.

This behavior remains visible in all tests we performed.

5.2.2 Comparison with other ”sliced” distances

One of the main interests of the distance that we introduce is to be able to provide
a computational efficient alternative to previous metrics such as the sliced Wasser-
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Figure 2: Results for section 5.2.1 on the MNIST dataset. Both the reconstruction
cost and the latent cost are required for good generative quality.

stein [15, 8, 14, 25, 7] (referenced as ”SW” in the following) and the Cramer-Wold
distances [23] (named ”CW”). As such it is interesting to know whether optimiz-
ing the X-ray Sobolev distance (referenced as ”XS”) is a proxy to minimizing the
SW or CW distances. In fact, evidence is already present in the literature that op-
timizing the CW distance and SW distances is similar so for clarity we will only
compare with a distance at a time.

A comparaison between the XS and CW distances on the Fashion-MNIST
dataset is presented in Figure 4 (see Figure 3 for illustrative results on Fashion-
MNIST).

Comparaisons between the SW and XS distances on MNIST and CIFAR10
are presented in Figures 5 and 6. Both show that the XS distance is a practical
proxy for both the SW and CW distances.

6 Concluding remarks
We introduce in this work a class of probability distances to be used in generative
modeling; all members of the class share the important properties of convexity and
fast evaluation which were not always present in previous works (Wasserstein,
sliced distances, ...). Each distance corresponds to a Hilbert space of functions
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Figure 3: Fashion-MNIST dataset. Left: generated samples. Right: reconstruc-
tion quality.

Figure 4: Convergence of the XS-VAE procedure: plot of the reconstruction er-
ror, XS and CW distances for the Fashion-MNIST dataset. XS and CW distances
move in similar directions (Pearson’ R correlation coefficient equals 97%) a good
indication that they are equivalent for practical purposes. Also important, a reduc-
tion of the XS distance results in a reduction of the CW distance.
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Figure 5: Convergence of the XS-VAE procedure: comparison of the SW and
XS distances for the MNIST dataset. Due to convexity, the convergence of the
distance is very fast and we see only the oscillation around the correct value.
However this is interesting exactly because it allows to see that both distances
move in a correlated manner (Pearson’ R correlation coefficient is equals 64%),
indicating that they are equivalent for practical purposes. Thus one can use XS
distance instead of SW. Note that we do not expect a perfect linear relationship.
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Figure 6: Convergence of the XS-VAE procedure: comparison of the SW and XS
distances for the CIFAR10 dataset. Compared with MNIST dataset in Figure 5
the convergence is slower. On the other hand correlation is stronger (because the
value range is larger), Pearson’s R coefficient 97%.

(Sobolev spaces in this work) and is constructed using the X-ray transform.
To illustrate the effectiveness of the metrics, we consider the particular case

of the Sobolev space Ḣ−1 which gives a distance already present in the literature,
for which we derive and use novel fast evaluation formulas.

The resulting procedure, called XS-VAE (to recall the X-ray Sobolev con-
struction) is shown to perform well on standard datasets.

Appendix: formal definitions
We recall here some definitions used in previous sections and refer the reader

to the supplementary material for details.

A Some Sobolev spaces

A.1 Spaces Hs

Recall that L2(Ω) (also denoted L2 when there is no ambiguity) is the space of
real functions f defined on Ω such that f 2 is integrable. If f ∈ L2 and its first
derivative ∇f is also in L2 then we say that f belongs to the Sobolev space H1;
this construction can be iterated: if f is derivable m times and all (partial) deriva-
tives of rank m are in L2 then f ∈ Hm. Let us take Ω = RN and recall that
the Fourier transform maps the derivation operator into the multiplication by the
(dual) argument. Then we can define, for any s ≥ 0 the Sobolev space (see [2]):

Hs(RN) =

{
f ∈ L2(RN)

∣∣∣∣∫
RN
|f̂ |2(ξ)(1 + |ξ|2)s <∞

}
(6)
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Here f̂ is the Fourier transform of f . We cannot expect a probability law (such
as a Dirac delta) to belong to some Hs for positive s; however it will be in some
dual H−s of Hs; the dual H−s is a subspace of the space S ′(RN) of (Schwartz)
distributions:

H−s(RN) =

{
f ∈ S ′(RN)

∣∣∣∣∣
∫
RN

|f̂ |2(ξ)

(1 + |ξ|2)s
<∞

}
. (7)

For all s ∈ R, Hs are Hilbert spaces, the squared of the norm of an element f
being the integral given in the definition; H0 reduces to L2.

A.2 Spaces Ḣ1 and Ḣs

For any connected domain Ω (in practice for us Ω is either an open ball in RN or
the whole space RN ) let us introduce the space BL(L2) of distributions f such
that∇f ∈ L2(Ω); we also introduce the equivalence relation : f ∼ g if f = g+ c
where c is a real constant. Then the quotient of BL(L2) with respect to this
equivalence is denoted Ḣ1. One can prove as in [6, Corrolary 1.1] that Ḣ1 is a
Hilbert space. and define its dual Ḣ−1 as is [18] which, for our situation, means
that for any two measures µ and ν we obtain a distance d−1:

d−1(µ, ν)2 = sup

{∫
f(x)(µ(dx)− ν(dx))

∣∣∣‖∇f‖L2 ≤ 1

}
. (8)

Note that because of the Sobolev embeddings, Ḣ1 is included in the space of
continuous functions in dimension N = 1. Thus its dual contains any Dirac mass
δx, x ∈ Ω. In particular :

Proposition A.1 There exists a universal constant c−1 such that for N = 1 and
x, y ∈ Ω:

d−1(δx, δy)
2 = c−1|x− y|. (9)

Proof: We use the formulation (see [19, Section 5.5.2]): ‖δx− δy‖Ḣ−1 = ‖∇u‖L2

where u is the solution of the Neuman problem ∂u/∂n = 0 on ∂Ω and −∆u =
δx − δy on Ω. But in 1D the solution is such that |∇u| = |H(· − max(x, y)) −
H(· −min(x, y))| with H(·) denoting the Heaviside function. �

It is remarkable to know that Ḣ−1 is related to the 2-Wasserstein distance W2

through the following relation (see [18],[17, Chap. 7, formula (68)] for details):
if µ is a measure with finite second order moment and ν a small variation, then
formally:

W2(µ, µ+ εν) = |ε| · ‖ν‖Ḣ−1 + o(ε). (10)

In general, one can define for any s ≥ 0 the homogeneous Sobolev spaces Ḣs

as in [2].
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B Construction of the dual X-ray distance
We make precise in this section the construction of the X-ray distance; we recall
that this is another version of the ”sliced” idea used in the literature [23, 8, 7, 15,
25, 14, 5] but, to eliminate any ambiguity with the Radon transform arriving in
dimension N > 2 we keep the X-ray denomination as in the original papers [10].
We suppose thus having at our disposal a distance between two one-dimensional
distributions (for instance coming from the dual of a Hilbert space H containing
continuous functions as in Theorem 4.1).

Then the X-ray distance corresponding to H is the mean value of the dis-
tances of projected distribution over all directions on the d-dimensional unit sh-
pere SN−1; the formal definition is:

dXH(µ, ν)2 = −
∫
SN−1

‖θ#µ− θ#ν‖2
H′dθ. (11)

Recall that the projection θ#µ of the measure µ on the direction θ has, when µ
is a sum of Dirac masses, the simple expression θ#

(∑K
k=1 δxk

)
=
∑K

k=1 δ〈xk,θ〉.
Note that when ‖δx − δy‖H′ only depends on |x− y| (as is the case for trans-

lation invariant norms and in particular for the Sobolev spaces in section A) then
there exists a function g such that for any x, y ∈ Ω: dXH(δx, δy)

2 = g(‖x − y‖).
In this case all that is required to compute the distance dXH is the knowledge of a
real function g of one variable. For instance formula in equation (2) becomes:

dXH

(
1

K

K∑
k=1

δxk ,
1

J

J∑
j=1

δyj

)2

=
K∑
k=1

J∑
j=1

g(‖xk − yj‖)−
∑K

k=1

∑K
k′=1 g(‖xk − xk′‖)

2K2

−
∑J

j=1

∑J
j′=1 g(‖yj − yj′‖)

2J2
. (12)

C Analytic computations of gxy and gxn
We give below the formulas (and approximation results) to compute the functions
gxy and gxn in Remark 1 for H = Ḣ1 and refer to the supplementary material for
additional considerations.

Proposition C.1 For H = Ḣ1 up to multiplicative constants, gxy(z) = |z| and
gxn(z) = cN0 +

√
z2 + cN1 +O (‖x‖4). More precisely:
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• for any x, y ∈ Ω: dXH(δx, δy)
2 = ‖x − y‖ (up to a multiplicative constant

taken as 1)

• Denote N(0, I) the standard normal multi-variate distribution in RN , then
dXH(δx, N(0, I))2 = ξ(‖x‖) with

ξ(a) = (
√

2− 1)
Γ(N+1

2
)

Γ(N
2

)

−
√

2

π

∞∑
k=0

(
−a2

2

)k+1
1

(k + 1)!

Γ(N+1
2

)Γ(k + 3
2
)

(2k + 1)Γ(k + 1 + N
2

)
. (13)

Here Γ is the Euler gamma function (for instance Γ(n + 1) = n! for any
integer n). In particular:

dXH(δx, N(0, I))2 = cN0 +
√
z2 + cN1

+O
(
‖x‖4

)
. (14)

Thus the following approximation is exact up to ‖x‖4:

dXH

(
1

K

K∑
k=1

δxk , N(0, I)

)2

' cN0

+

∑K
k=1

√
‖xk‖2 + cN1

K
−
∑K

k=1

∑K
k′=1‖xk − xk′‖
2K2

, (15)

where cN0, cN1 are defined in (18).

Proof We give below an intuitive version of the proof, see the supplementary
material for further details.

Take x, y ∈ Ω. WhenH = Ḣ1 we already saw in equation (9) that the distance
is translation invariant in one dimension i.e. depending only on |〈x−y, θ〉|. Then,
by symmetry, the mean over all directions θ ∈ SN−1 of |〈x−y, θ〉| is a multiple of
‖x − y‖ (see also [22] which introduces the same distance from another point of
view). The formula (9) is an application of considerations in [22, Section 4.3]. In
order to derive the formula (15) it is enough to prove (14). Note first that when Z
follows aN -dimensional standard normal distributionE‖x−Z‖ is asymptotically
equal to ‖x‖ for large values of x, which is also the case of the formula (14) (up to
a constant which will not appear in the gradient). Proving the approximation (13)
amounts to analyze the behavior of the function ξ(a) for a ' 0. We do not take
into account the universal constants (depending only on N ) and consider instead

16



the second derivative with respect to a (the first derivative is zero because the
leading term is quadratic in a)

ξ′′(0) =

√
2

π

Γ(N+1
2

)Γ(3
2
)

Γ(1 + N
2

)
. (16)

It is now enough to see that we also have

ξ(0) = (
√

2− 1)
Γ(N+1

2
)

Γ(N
2

)
, (17)

to conclude that defining

cN0 = ξ(0)− 1

ξ′′(0)
, cN1 =

1

ξ′′(0)2
, (18)

we have an approximation of ξ(a) exact to second order in a thus error of order
O (‖x‖4) because of parity.

Remark 2 If one uses the Stirling’s formula in (16) Γ(z) =
√

2π
z

(
z
e

)z
(1 +

O(1/z)) it is possible to conclude, after straightforward computations, that ξ′′(0) =
1√
N

+O(1/N). This means that for some c1 depending only on N :

dXH(δx, N(0, I))2 =
√
‖x‖2 +N − c1

+O

(
‖x‖4 +

1

N

)
, (19)

which is a coarser approximation and in practice gives less good results.

D Network architecture
We follow in this section the specifications in [23] and reproduce below the cor-
responding architectures as given in the reference:
MNIST/Fashion-MNIST (28× 28 sized images):

encoder three feed-forward ReLU layers, 200 neurons each;
latent 8-dimensional;
decoder three feed-forward ReLU layers, 200 neurons each.

CIFAR-10 (32× images with 3 color layers):
encoder: four convolution layers with 2× 2 filters, the second one with 2× 2

strides, other non-strided (3, 32, 32, and 32 channels) with ReLU activation, 128
ReLU neurons dense layer;

17



latent 64-dimensional;
decoder: two denseReLU layers with 128 and 8192 neurons, two transposed-

convolution layers with 2× 2 filters (32 and 32 channels) and ReLU activation, a
transposed convolution layer with 3× 3 filter and 2× 2 strides (32 channels) and
ReLU activation, a transposed convolution layer with 2× 2 filter (3 channels) and
sigmoid activation.

The last layer returns the generated or reconstructed image.
All hyper-parameters are chosen as in the references: the loss was minimized

with the Adam optimizer [12] with a learning rate of 0.001 and hyper-parameters
β1 = 0.9, β2 = 0.999, ε = 1e− 8; we used 500 epochs. The scaling parameter λ
was set to 100.
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versarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 214–223, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR. 1, 3, 5

[5] Marc G. Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Laksh-
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E Supplementary material

E.1 Implementation
see attached notebook

E.2 Additional details on the proofs and formulas
E.2.1 Proof of the Theorem 4.1

To prove the first two points it is enough to recall that property 1 is true in a Hilbert
space because there the distance (squared) is the norm (squared) and the identity
follows from the expansion using the scalar product. It remains to see that the
construction in section B uses the space of square integrable functions from SN−1

to H ′: to each distribution µ we associate the function f : SN−1 → H ′ by the
relation θ ∈ SN−1 7→ θ#µ ∈ H ′. Since the dual H ′ of H is also a Hilbert space,
the set of such functions f is a subset of L2(SN−1, H ′) which is a Hilbert space
with the usual scalar product 〈f, g〉 =

∫
SN−1〈f(θ), g(θ)〉H′,H′dθ.

The third point follows as in Proposition 2.1.

E.2.2 Additional remarks on the proofs of Propositions A.1 and C.1

Let us take x, y ∈ R and suppose for instance x ≤ y. Then for any function
f ∈ Ḣ (in particular it is absolutely continuous) we have :

〈δy − δx, f〉 = f(y)− f(x) =

∫ y

x

f ′(t)dt =

∫
R

1[x,y](t)f
′(t)dt. (20)

From the definition of Ḣ it follows that the function Dxy ∈ Ḣ with D′xy =
1[x,y] satisfies 〈δy−δx, f〉 = 〈Dxy, f〉Ḣ,Ḣ thusDxy is the representative of δy−δx ∈
H ′ given by the Riesz theorem. In particular the norm of δy − δx in the dual is
the same as the norm of Dxy in Ḣ . This norm (squared) equals

∫
R |D

′
xy|2dt =∫

R 1[x,y](t)dt = y − x = |x− y|.
Let us now take x, y ∈ Ω ⊂ RN and compute the X-ray Sovolev distance

dXḢ(δx, δy)
2. From the previous formula:

dXḢ(δx, δy)
2 = −

∫
SN−1

dḢ(δ〈θ,x〉, δ〈θ,y〉)
2dθ. = −

∫
SN−1

|〈θ, x− y〉|dθ. (21)

We write x − y = ‖x − y‖θxy where θxy ∈ SN−1. The last integral can be
written

−
∫
SN−1

|〈θ, x− y〉|dθ = ‖x− y‖ −
∫
SN−1

|〈θ, θxy〉|dθ = cSN−1‖x− y‖, (22)
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where the constant cSN−1 does not depend on θxy but only on the dimension N
(because the law dθ is uniform on the sphere and thus invariant to rotations).

E.2.3 Two more approximations for gxn when H = Ḣ

Let us make two additional remarks concerning the computation of the distance
when H = Ḣ . Recall that we want to compute dXH(δ(x1,...;xN ), N(0, I))2 or,
equivalently, the average of

√
(x1 −X1)2 + ...+ (xN −XN)2 where x = (x1, ..., xN) ∈

RN and X1, ..., XN are independent standard normal variables. Denote Zx =
(x1 − X1)2 + ... + (xN − XN)2; when x = 0 the random variable Z0 has a chi-

squared distribution and the average E[
√
Z0] is known E[

√
Z0] =

√
2

Γ(N+1
2

)

Γ(N
2

)
. In

general, Zx follows a non-central χ2 distribution with N degrees of freedom and
non centrality parameter λ = ‖x‖2.

It follows that if one replaces E[
√
Zx] by

√
E[Zx] =

√
‖x‖2 +N we recover

the same approximation as in Remark 2. This procedure can be iterated writing

E[
√
Zx] =

√
E[Zx]

√
1 +

Zx − E[Zx]

E[Zx]
, (23)

and (formally) using the expansion (valid only for |h| < 1):

√
1 + h = 1 +

h

2
− h2

8
+
h3

16
− ... (24)

We obtain after computations:

dXH(δ(x1,...;xN ), N(0, I))2 = E[
√
Zx] (25)

'
√
‖x‖2 +N

(
1− 2‖x‖2 +N

4(‖x‖2 +N)2
+

3‖x‖2 +N

2(‖x‖2 +N)3

)
.

On the other hand using the properties of the non-central chi distribution one
can derive an exact formula. We know that the density of Zx is:

fN,λ(z) =
e−

z+λ
2

2

(z
2

)N/2−1
∞∑
j=0

(
λz
4

)j
j! · Γ(j +N/2)

. (26)

Computing
∫∞

0

√
zfN,λ(z)dz one obtains after several straightforward alge-

braic manipulations (recall λ = ‖x‖2):

E[‖x−X‖RN ] =
√

2
∞∑
j=0

(‖x‖2/2)j

j! · e‖x‖2/2
· Γ(j +N/2 + 1/2)

Γ(j +N/2)
, (27)
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where X is a N -dimensional standard normal variable and x ∈ RN .
Note that the terms pj = (‖x‖2/2)j

j!·e‖x‖2/2
are the values of the probability mass func-

tion of the Poisson distribution of parameter ‖x‖2/2 (in particular they sum to 1).
In principle (27) lends to direct numerical implementation but in practice, other
than the care needed to evaluate the terms pj , the sum converges very slow for
large values of ‖x‖ (hundreds up to thousands terms needed). We found that the
effort to do so does not pay off (except when fast implementation in a low level
programming language is used).

As a final remark note that the formula (27) allows to obtain the gradient;
denote:

gNxn(a) := E[‖x−X‖], x ∈ RN , ‖x‖ = a. (28)

Then:

dgNxn(a)

da
= a

(
gN+2
xn (a)− gNxn(a)

)
, ∀a ≥ 0. (29)

E.2.4 Additional remarks to section C

We will detail here the computations of functions gxy and gxn for other choices of
Sobolev spaces beyond Ḣ .

From formula (7) it follows that for x, y ∈ R

‖δx − δy‖2
H−s(R) =

∫
R

|e−ixξ − e−iyξ|2

(1 + |ξ|2)s
dξ.

=

∫
R

2− 2 cos((x− y)ξ)

(1 + |ξ|2)s
dξ.

=

√
πΓ(s− 1/2)

22s−1/2Γ(s)
− |x− y|

s−1/2
√
π

2s−3/2Γ(s)
Ks−1/2(|x− y|), (30)

where Ks(·) is the modified Bessel function of the second kind (see [1])
Although the formula (30) is exact, its use is somehow awkward and the an-

alytic formula does not carry on when integrating over the unit N -dimensional
sphere. An alternative formulation is possible.

Consider thus x, y ∈ Ω. Since the distance is invariant with respect to rotations
one may suppose that x−y = ‖x−y‖ · (1, 0, ..., 0), i.e., the vector is aligned with
the first axis. For θ = (θ1, ..., θN) ∈ SN−1 , the scalar product 〈x − y, θ〉 reduces
to ‖x− y‖θ1.

Recall that if X1, ..., XN are independent standard normal variables then the

distribution of
(

X1√
X2

1+...+X2
N

, ..., XN√
X2

1+...+X2
N

)
is the uniform law on the unit

sphere in N dimensions.
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In particular since X2, ..., XN are independent standard normals, Y = X2 +
... + XN has chi-squared distribution with N − 1 degrees of freedom, i.e., with
probability density ρN(y) = yN/2−3/2e−y/2

2(N−1)/2Γ((N−1)/2)
. Then the distance satisfies

dXHs(δx, δy)
2 = gH

s

xy (‖x− y‖), (31)

where the function gHs

xy is defined as

gH
s

xy (a) =

∫
R+

∫
R

∫
R

2− 2 cos

(
azξ√
z2+y

)
(1 + |ξ|2)s

pn(z)ρN(y)dξdzdy. (32)

Here pn(·) is the density of the standard normal. This function can be accu-
rately computed by quadrature (Gauss-Laguerre quadrature for y, Gauss-Hermite
quadrature for z).

In particular from equation (32) one obtains:

gH
s

xy (a) = gH
s

xy (−a),∀a ∈ R, (33)

gH
s

xy (0) = 0. (34)

Derivating once the integral one obtains a function which is odd with respect
to a:

dgH
s

xy (a)

da
=

∫
R2×R+

2zξ sin

(
azξ√
z2+y

)
(1 + |ξ|2)s

√
z2 + y

pn(z)ρN(y)dξdzdy, (35)

and thus
dgH

s

xy

da
(0) = 0. (36)

Moreover:

d2gH
s

xy (a)

da2
=

∫
R2×R+

2z2ξ2 cos

(
azξ√
z2+y

)
(1 + |ξ|2)s(z2 + y)

pn(z)ρN(y)dξdzdy.

(37)

In particular

d2gH
s

xy (a)

da2

∣∣∣
a=0

=

∫
R2×R+

2z2ξ2pn(z)ρN(y)dξdzdy

(1 + |ξ|2)s(z2 + y)

= 2

∫
R

ξ2

(1 + |ξ|2)s
dξ

∫
R×R+

z2pn(z)ρN(y)dzdy

z2 + y
. (38)
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Figure 7: The function gHs

xy (|a|) for different choices of dimension N and regu-
larity parameter s.

Recall now that in the last integral the variable y stands for the sum of N − 1

squared standard normal variables i.e., the integral is nothing else than E X2
1

X2
1+...+X2

N

which by symmetry equals 1/N . On the other hand the first integral equals∫
R

ξ2

(1+ξ2)s
dξ =

√
πΓ(s−3/2)

Γ(s)
, which allows to write

d2gH
s

xy (a)

da2

∣∣∣
a=0

=
2
√
πΓ(s− 3/2)

NΓ(s)
. (39)

On the other hand, for a → ∞ one can have the following intuition (that can
be made precise using an asymptotic expansion for the Bessel function K·(·) in

formula (30) ): the quantity cos

(
azξ√
z2+y

)
will oscillate rapidly around its mean

value of zero. Thus in the limit a→∞ the ”cos(·)” part will average out and only
the first part remains, thus

lim
a→∞

gH
s

xy (a) =
2
√
πΓ(s− 1/2)

Γ(s)
. (40)

E.3 Further simplifications
Consider now the real variable U = X1√

X2
1+...+X2

N

with values in [−1, 1], where

X1, ..., XN are independent standard normal variables. Then U , as real variable
has a density pU(u), u ∈ [−1, 1] depending only on N . This allows to write a
simplified version of the previous formulas, for instance instead of (32) we have:

gH
s

xy (a) =

∫
R

∫
[−1,1]

2− 2 cos (auξ)

(1 + |ξ|2)s
pU(u)dξdu. (41)
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Figure 8: Left: The density pV (v) of V for N = 8 and s = 25/16 (s was chosen
so that s > 3/2). Middle: The function gHs

xy (|a|) computed using ϕV . Right: The
gradient of gHs

xy (|a|). For graphical convenience we plotted also the functions for
a < 0 by symmetry.

This construction can be iterated once more. Recall that, up to constants, if T is a
random variable with Student-t distribution of parameter 2s− 1 then T/

√
2s− 1

has a density proportional to 1
(1+x2)s

. Consider the variable V = UT/
√

2s− 1.
Then, if we denote pV (v) the density of V (depending only on N and s and that
can be precomputed), then

gH
s

xy (a) =
2
√
πΓ(s− 1/2)

Γ(s)
− 2

∫
R

cos (av) pv(v)dv. (42)

We recognize in the last term the real part of the characteristic function of the
variable V .

To summarize, let: X1 be a normal variable, Y a chi-squared (parameterN−1)
variable and T a random variable with Student-t distribution of parameter 2s− 1;
suppose all variables are independent. Then define V = X1T√

(2s−1)·(X2
1+Y )

and let

ϕV be the characteristic function of V . Then, up to a multiplicative constant:

gH
s

xy (a) = 1−Re(ϕV (a)), (43)

with ”Re” denoting the real part of a complex number. We illustrate in figures 8
and 7 the typical behavior of the density pV (v) of V and of the distance gHs

xy (a).
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