X-Ray Sobolev Variational Auto-Encoders - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

X-Ray Sobolev Variational Auto-Encoders

Résumé

The quality of the generative models (Generative adversarial networks, Variational Auto-Encoders, ...) depends heavily on the choice of a good probability distance. However some popular metrics lack convenient properties such as (geodesic) convexity, fast evaluation and so on. To address these shortcomings, we introduce a class of distances that have built-in convexity. We investigate the relationship with some known paradigms (sliced distances, reproducing kernel Hilbert spaces, energy distances). The distances are shown to posses fast implementations and are included in an adapted Variational Auto-Encoder termed X-ray Sobolev Variational Auto-Encoder (XS-VAE) which produces good quality results on standard generative datasets.
Fichier principal
Vignette du fichier
xsvae_turinici_v1_2.pdf (1.2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02387084 , version 1 (29-11-2019)
hal-02387084 , version 2 (10-03-2020)

Identifiants

Citer

Gabriel Turinici. X-Ray Sobolev Variational Auto-Encoders. 2019. ⟨hal-02387084v2⟩
93 Consultations
119 Téléchargements

Altmetric

Partager

More