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Abstract

In this paper we consider high dimensional ergodic diffusion mod-
els in nonparametric setting on the basis of discrete data, when the
diffusion coefficients are unknown. For this problem, by using efficient
sequential point-wise estimators we construct a model selection proce-
dure and then we show sharp oracle inequalities, i.e. the inequalities in
which the main term coefficient is closed to one. This means that the
proposed sequential model selection procedure is optimal in this sense.
Particularly, we show that the constructed procedure is the best in the
class of weighted least square estimators with the Pinsker coefficients
which provide the efficient estimation in the minimal asymptotical
quadratic risk sense.
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1 Introduction

1.1 Problem and Motivations

In this paper we consider the following diffusion model

dyt =

q∑
j=1

θjψj(yt) dt+ b(yt) dWt , 0 ≤ t ≤ T , (1.1)

where the functions (ψj)1≤j≤q are known linear independent functions, (Wt)t≥0

is a standard Wiener process and the diffusion coefficient b(·) is an unknown
function. Moreover, it is assumed that the observations are accessible only
at discrete times, i.e.

(ytj)1≤j≤N , tj = jδ , (1.2)

where the frequency δ = δT ∈ (0, 1) is some function of T which will be
specified later and the sample size N = N(T ) = [T/δ]. Here [a] denotes
the integer part of a. It should be noted that in this case the diffusion
coefficient is considered as a nuisance parameter. The problem is to estimate
the unknown parameters (θj)1≤j≤q in the ”high dimensional” setting, i.e.
when the number of parameters q > N . Usually, for such models one uses
one of two methods: Lasso algorithm proposed in [37] for i.i.d. regression
models and modified later for diffusion regression models (1.1) in [10] and the
Dantzig selector method proposed in [3] and applied to diffusion models in [9].
But in all these papers the number of parameters q is known and, therefore,
unfortunately, these methods can’t be applied to estimate the number of
parameters in regression models. In this paper we study this problem in
the nonparametric estimation framework, i.e. we study the diffusion process
defined as

dyt = S(yt) dt+ b(yt) dWt (1.3)

and the problem is to estimate the unknown function S(·) on the basis of the
observations (1.2). The nonparametric setting allows to consider the models
(1.1) with unknown q or with q = +∞. Note that, the case when the number
of parameters q is unknown is one of challenging problems in the signal
processing theory (see, for example, [2]). The models (1.3) are very important
for various fields in the theory of stochastic processes such as optimal control,
identification problem, filtration, financial markets, insurance etc (see, for
example, [28, 29, 34, 35, 36]). Nonparametric estimation problems of the drift
S were studied in a number of papers in the case of complete observations, i.e.
when the whole trajectory (yt)0≤t≤T is observed. In [12, 14, 15] a sequential
approach was proposed for the point-wise efficient estimation. In [5, 6, 13, 19]
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this problem was studied for integral risks when the diffusion coefficient is
known. In practice, usually only discrete time observations are accessible. A
natural question arises about proprieties and the behavior of estimates based
on discrete time observations for such models. Nonparametric estimation
based on discrete time observations for models (1.3) was considered firstly for
estimating the squared unknown diffusion coefficient b2(·) on a fixed interval
[0, T ] (see, for example, [8, 25, 26, 27] and the references therein). Later, in
[24] kernel estimates for the drift and diffusion coefficients were studied for
reflecting ergodic (1.3), i.e. for the processes with values in [0, 1]. Concerning
the estimation in the ergodic case, a sequential procedure was proposed in
[26] for nonparametric estimating the drift coefficient in an integral metric
and in [22] a special sequential method was developed to provide the efficient
estimation for the point-wise risks, i.e. sequential kernel procedures for which
normalized minimax risks attain a minimal value. This property is very
important for nonparametric estimation, since usually the convergence rate
is very slow, therefore, the influence of the value of the normalized risks in the
estimation accuracy is much more important than in the parametric cases.

1.2 Main tool

In this paper for the problem (1.3) we develop a new model selection method

which is an adaptive selection rule λ̂ of an estimator S∗ = Ŝλ̂ in the family of

weighted least square estimators (Ŝλ)λ∈Λ. Our goal is to show that the con-
structed procedure is optimal in the sense of the following oracle inequality:
for any small ρ > 0 and any T > 0

E‖S∗ − S‖2 ≤ (1 + ρ) min
λ∈Λ

E‖Ŝλ − S‖2 +
BT
ρT

, (1.4)

where ‖f‖2 =
∫ b
a
f 2(x)dx for some a < b and the term BT is some slowly

varying function of T , i.e. for any δ > 0

lim
T→∞

BT
T δ

= 0 . (1.5)

It should be noted that for the first time, such inequalities for non-Gaussian
regression models in discrete time were obtained in [17], and for continuous
processes in [30]. Later, such inequalities were called sharp (since the main
coefficient 1 + ρ arbitrarily close to one). Moreover, it should be noted that
such inequalities allow us to prove asymptotic efficiency without knowing the
regularity of the estimated function (see, for example, [19]).

Our approach is based on the sequential estimation method developed
in [22] for the efficient nonparametric point-wise estimation in a special
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functional class. Similarly to [19] we will use these estimators to pass to
a heteroscedastic regression model and, then, using the methods developed
in [17, 18] for such regression we construct the sequential model selection
procedure. To obtain the oracle inequalities we use a special uniform con-
centration inequality from [20] obtained for discrete time observations.

It should be noted also that in this paper we construct the model selection
procedure for arbitrary orthonormal basis. We recall that in [19] the model
selection procedure was constructed only for the trigonometric basis. In
practice, this basis is not well appropriate sometimes to signal processing
problems (see, for example, [4, 7] and the references therein). So in the
paper, we develop a new analytical tool to provide sharp oracle inequalities
for any orthonormal basis on the grid.

1.3 Plan of the paper

The paper is organized as follows. In Section 2 we describe functional classes
that will be used. Sequential estimators of the drift coefficient are constructed
in Section 3. In Section 4 we introduce a regression model based on the se-
quential estimators. In Section 5 we construct the model selection procedure
based on the sequential pointwise estimators. Main results are announced in
Section 6 and their proofs are given in Section 8. In Section 7 we study some
properties of the model selection. In Appendix we give all auxiliary results.

2 Main Conditions

In the paper we consider the estimation problem for the drift S on the in-
terval [x0 , x1], where x0 < x1 are some arbitrary fixed points. In order to
obtain a reliable estimator of S, it is necessary to impose some conditions on
this function which are similar to the periodicity of the deterministic signal in
the white noise model. One of conditions which is sufficient for this purpose
is the assumption that the process (yt)t≥0 in (1.3) returns to any vicinity of
each point x ∈ [x0,x1] infinite times. The ergodicity provides this property,
when the coefficients of equation are known. In the case of unknown coeffi-
cients, one needs to impose the uniform ergodicity property. To obtain the
uniform ergodicity property for the process (1.3) we use the functional class
introduced in [22], i.e. for any fixed L ≥ 1, M > 0 and x∗ > |x0| + |x1| we
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set

ΣL,M =

{
S ∈ C1(R) : sup

|x|≤x∗

(
|S(x)|+ |Ṡ(x)|

)
≤M ,

−L ≤ inf
|x|≥x∗

Ṡ(x) ≤ sup
|x|≥x∗

Ṡ(x) ≤ −1/L

}
. (2.1)

Here and in the sequel we denote by ḟ and f̈ the correspoding derivatives.
Moreover, for some fixed parameters 0 < bmin ≤ bmax <∞ we denote by B
the class of functions b from C2(R) such that

bmin ≤ inf
x∈R
|b(x)| ≤ sup

x∈R
max

(
|b(x)| , |ḃ(x)| , |b̈(x)|

)
≤ bmax . (2.2)

Now we set

Θ = ΣL,M × B =
{

(S, b) : S ∈ ΣL,M and b ∈ B
}
. (2.3)

It is easy to see that the functions from ΣL,M are uniformly bounded on
[x0,x1], i.e.

s∗ = sup
x0≤x≤x1

sup
S∈ΣL,M

S2(x) <∞ . (2.4)

It should be noted that, for any ϑ ∈ Θ, there exists an invariant density for
the process (1.3) which is defined as

qϑ(x) =

(∫
R
b−2(z) eS̃(z)dz

)−1

b−2(x) eS̃(x) , (2.5)

where S̃(x) = 2
∫ x

0
b−2(v)S(v)dv (see,e.g., [23], Ch.4, 18, Th2). It is easy to

see that this density is uniformly bounded on the class (2.3) , i.e.

q∗ = sup
x∈R

sup
ϑ∈Θ

qϑ(x) < +∞ (2.6)

and bounded away from zero on the interval [−x∗,x∗], i.e.

q∗ = inf
|x|≤x∗

inf
ϑ∈Θ

qϑ(x) > 0 . (2.7)

For any qϑ - integrable R → R function f , i.e.
∫
R
|f(x)|qϑ(x) dx < ∞, we

set

mϑ(f) =

∫
R
f(x) qϑ(x) dx . (2.8)
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We need the following condition for the observation frequency.
A1) The frequency δ in the observations (1.2) has the following form

δ = δT =
1

(T + 1)lT
, (2.9)

where the function lT is such that,

lim
T→∞

lT
lnT

= +∞ . (2.10)

For example, one can take lT = (ln T )1+ι for some ι > 0.

In this paper we consider the quadratic risk defined for any estimator Ŝ as

R(Ŝ, S) = Eϑ

∫ x1

x0

|Ŝ(x)− S(x)|2dx , (2.11)

where Eϑ is the expectation with respect to the distribution of the process
(1.3) under the parameter ϑ ∈ Θ.

Remark 2.1. Note that we consider the estimation problem only for the
drift function S, i.e. in this case the diffusion coefficient b is considered as
a nuisance parameter.

3 Sequential point-wise estimation

In order to obtain a reliable estimator of the function S on the interval
[x0,x1] we need some efficient point-wise estimators of this function. To give
such estimators, we begin with the partition of the interval [x0,x1] by points
(zk)0≤k≤n defined as

zk = x0 +
k(x1 − x0)

n
, (3.1)

where n = n(T ) is an integer-valued function of T such that

lim
T→∞

n(T )√
T

= 1 . (3.2)

To construct an efficient procedure for S(zk), at any point zk, we need to
use some estimators of the invariant density qϑ(·) and the squared diffusion
coefficient b2(·). To this end, we will estimate these functions by making use
of the first N0 observations, i.e. (ytj)1≤j≤N0

.

We begin with estimating the function S. We set

N0 = [Nγ(T )] with 3/4 < γ < 1 . (3.3)
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Now we estimate S(zk), at every point zk, by making use of the observations
(ytj)N0+1≤j≤N . To this end we use the sequential kernel estimator from [15]

with the indicator kernel function χ(y) = 1{|y|≤1} and the sample size given
by the stopping time

τk = inf

l ≥ N0 + 1 :
l∑

j=N0+1

χj,k(h) ≥ Hk

 , (3.4)

where

χj,k(h) = χ

(ytj−1
− zk
h

)
, h =

x1 − x0

2n

and Hk is some positive random threshold which will be specified later. On
the set

Γk = {τk ≤ N} (3.5)

we define the correction coefficient 0 < κk ≤ 1 from the equation

τk−1∑
j=N0+1

χj,k(h) + κkχτk,k(h) = Hk . (3.6)

Moreover, on the Γc
k

we set κk = 0. Using this definition we introduce the
weight sequence

κ̃j,k = 1{j<τk} + κk1{j=τk} . (3.7)

One can check directly that, for any j ≥ 1, the coefficients κ̃k,j are Gj−1

measurable, where Gj = σ
(
ytl , 0 ≤ l ≤ j

)
. Now we define the sequential

estimator for S(zk) as

S∗
k

=
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)∆ytj 1Γk

, (3.8)

where ∆ytj = ytj − ytj−1
.

To specify the threshold Hk we need a truncated estimator q̃(zk) for the
invariant density qϑ(zk) given in (3.12) which must be greater than some
positive function υT . We impose the next condition on this function.

A2) Assume, that

lim
T→∞

(
υT +

lnT

T (υT )2
+

lnT

lT (υT )5

)
= 0 . (3.9)
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For example, one can take υT = ln−ι(T+1) and lT ≥ ln1+6ι T , for some ι > 0.
Finally, as in [22], we set

Hk = h(N −N0)(2q̃(zk)− υT ) . (3.10)

Note that in [12] it has been shown that such form of the threshold Hk

provides the optimal convergence rate.

Remark 3.1. It should be noted that it is not necessary to have a good
estimator for the invariant density. As we will see later it suffices to construct
some rough estimators, just to correct corresponding coefficients.

Remark 3.2. In fact, our procedure uses only the observations belonging
to the interval [zk − h , zk + h]. This implies that the sample size equals
asymptotically to 2Nhq̂(zk). This is related with the choice of the estimator
kernel that is an indicator function. It is easy to verify (see [14]) that this
kernel minimizes the variance of stochastic term in the kernel estimator.
Ultimately, the last result provides efficiency of the procedure.

3.1 Estimation of the invariant density

To estimate the density qϑ we will make use of the following kernel estimator

q̂(zk) =
1

2N0 h0

N0∑
j=2

χj,k(h0) , (3.11)

where

h0(T ) =
1√
T0

and T0 = δN0 .

We set

q̃(zk) =


(υT )1/2 , if q̂(zk) < (υT )1/2 ;

q̂(zk) , if (υT )1/2 ≤ q̂(zk) ≤ (υT )−1/2 ;

(υT )−1/2 , if q̂(zk) > (υT )−1/2 .

(3.12)

The properties of this estimator are studied in [22].
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3.2 Estimation of the squared diffusion coefficient

To estimate the squared diffusion coefficient b2(zk) we use the following se-
quential procedure. First we define the sample size for this procedure. To
do this we set

τ∗,k = inf{j ≥ 1 :

j∑
l=1

χl,k(h0) ≥ H∗} ∧N0 , (3.13)

where

h0 =
1√
T0

and H∗ =
1

ln(T + 1)
h0N0 .

Then we set

b̂k =

∑τ∗,k
j=1 χj,k(h0)(ytj − ytj−1

)2

δ H∗
1Γ∗,k

, (3.14)

where Γ∗,k = {
∑N0

j=1
χj,k(h0) ≥ H∗}.

This estimator satisfies the following property.

Proposition 3.1. For any a > 0,

lim
T→∞

sup
ϑ∈Θ

max
1≤k≤n

T γ−1/2−aEϑ|̂bk − b2(zk)| = 0 . (3.15)

Remark 3.3. Note that in the case of known diffusion coefficient b(·), we

can take b̂k = b2(zk) .

4 Regression model

In order to obtain an oracle inequality for discrete time data, we shall pass
to a regression model by the same way as in [19]. From (1.3) and (3.8) it
follows that, for any k on the set Γk,

S∗
k

= S(zk) +Bk + ζk , (4.1)

where the approximation term

Bk =
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)

∫ tj

tj−1

S(yu) du− S(zk) (4.2)
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and the stochastic term

ζk =
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)

∫ tj

tj−1

b(yu) dWu .

Therefore, if we set

ξk =
1√
δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)∆Wtj

and σk =
b(zk)√
δHk

, (4.3)

then we can rewrite the stochastic term as

ζk = B̃k + σkξk ,

where

B̃k =
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)

∫ tj

tj−1

(b(ys)− b(zk))dWs . (4.4)

So, setting
G∗ = ∩n

k=1
Γk and Yk = S∗

k
1G∗

, (4.5)

we can represent the equality (4.1) on the set G∗ as nonparametric regression
model, i.e. for any 1 ≤ k ≤ n,

Yk = S(zk) + gk + σkξk , gk = Bk + B̃k . (4.6)

Note that the coefficients (σl)1≤l≤n are random variables and using their
definitions one can obtain the following bounds

σ0,∗ ≤ min
1≤l≤n

σ2
l
≤ max

1≤l≤n
σ2
l
≤ σ1,∗ , (4.7)

where

σ0,∗ =
υTbmin
δNh

and σ1,∗ =
bmax

υT δ(N −N0)h
.

Now we set
g∗
T

= T max
1≤k≤n

sup
ϑ∈Θ

Eϑ g2
k
1G∗

(4.8)

Proposition 4.1. Assume that the observation frequency δ and the band-
width h are defined in (2.9) and (3.4), respectively. Then, for any a > 0,

lim
T→∞

g∗
T

T a
= 0 . (4.9)
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Concerning the random variables (ξk)1≤k≤n, we can show the following prop-
erty.

Proposition 4.2. The random variables (ξk)1≤k≤n are N (0, 1) i.i.d. condi-
tionally to GN0

.

Similarly to the proof of Proposition 4.5 in [22] and using Theorem A.1 we
can obtain the following property for the set G∗ in (4.5).

Proposition 4.3. Assume that the conditions A1) – A2) hold. Then, for
any a > 0,

lim
T→∞

T a sup
ϑ∈Θ

Pϑ(Gc
∗) = 0 . (4.10)

We estimate the parameter σ2
l

as follows:

σ̂l =
b̂l
δHl

, (4.11)

where b̂l is the estimator of the squared diffusion coefficient b2(zl) defined in
(3.14).

In order to write the oracle inequality, we need to study the properties of
the last estimator. To this end we set

$∗
T

= n max
1≤l≤n

Eϑ |σ̂l − σ2
l
| . (4.12)

Proposition 4.4. Assume that the conditions A1) – A2) hold. Then, for
any a > 0,

lim
T→∞

T γ−1/2−a$∗
T

= 0 . (4.13)

Remark 4.1. Note, that the main technical difference of the considering case
from the estimation problem on the complete observations considered in [19]
is such that in the heteroscedastic regression model (4.6) the noise variances
tend to zero as n→∞ since the number of the point is proportionally to

√
T ,

but not to T as in [19]. By this reason we need to normalize the difference
in (4.12) by n.

5 Model selection

First we choose a basis (φj)j≥1 in L2([x0,x1]) such that, for any 1 ≤ i, j ≤ n,

(φi , φj)n =
x1 − x0

n

n∑
l=1

φi(zl)φj(zl) = 1{i=j} . (5.1)
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For example, one can take the trigonometric basis defined as Tr1(x) ≡
1/
√

x1 − x0 and, for j ≥ 2,

Trj(x) =

√
2

x1 − x0

 cos(2π[j/2] l0(x)) for even j ;

sin(2π[j/2]l0(x)) for odd j ,
(5.2)

where [a] denotes the integer part of a and l0(x) = (x− x0)/(x1 − x0). Note
that if n is odd, then this basis is orthonormal for the empirical inner product,
i.e. satisfies the property (5.1). By making use of this property we define the
discrete Fourier representation for S on the sieve (3.1), i.e.,

S(zk) =
n∑
j=1

θj,nφj(zk) , 1 ≤ k ≤ n , (5.3)

where

θj,n = (S, φj)n =
x1 − x0

n

n∑
l=1

S(zl)φj(zl) .

Moreover, using the regression model (4.6) we estimate these coefficients as

θ̂j,n = (Y, φj)n =
x1 − x0

n

n∑
l=1

Ylφj(zl) . (5.4)

By the model (4.6), we obtain on the set G∗

θ̂j,n = θj,n + ζj,n , ζj,n = gj,n +

√
x1 − x0

n
ξj,n , (5.5)

where

ξj,n =

√
x1 − x0

n

n∑
l=1

σlξlφj(zl) , gj,n =
x1 − x0

n

n∑
l=1

glφj(zl) .

We estimate the values S(zk), 1 ≤ k ≤ n, by the weighted least squares
estimators

Ŝλ(zk) =
n∑
j=1

λ(j)θ̂j,nφj(zk) , 1 ≤ k ≤ n , (5.6)

where the weight vector λ = (λ(1), . . . , λ(n))′ belongs to some finite set Λ
from [0, 1]n. In the sequel, we denote by ν the cardinal number of the set
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Λ, ν = card(Λ), which is a function of T , i.e. ν = νT . Moreover, we set the
norm for Λ as

Λ∗ = max
λ∈Λ

n∑
j=1

λ(j) (5.7)

which can be a function of T , i.e. Λ∗ = Λ∗(T ). We assume that the basis
functions and the weights set Λ satisfy the following condition.

A3)For any a > 0,

lim
T→∞

φ∗
T

+ νT
T a

= 0 and lim
T→∞

Λ∗(T )

T 1/6+a
= 0 , (5.8)

where φ∗
T

= max1≤j≤n maxx0≤x≤x1
|φj(x)|.

To estimate the function S on the interval x ∈ [x0,x1], we use the step-
function approximation, i.e.,

Ŝλ(x) =
n∑
l=1

Ŝλ(zl)1{zl−1<x≤zl} . (5.9)

Now one needs to choose a cost function in order to define an optimal weight
λ ∈ Λ. A best candidate for the cost function should be the empirical squared
error given by the relation

Errn(λ) = ‖Ŝλ − S‖2
n
→ min .

In our case, the empirical squared error is equal to

Errn(λ) =
n∑
j=1

λ2(j)θ̂2
j,n
− 2

n∑
j=1

λ(j)θ̂j,n θj,n +
n∑
j=1

θ2
j,n
. (5.10)

Since coefficients θj,n are unknown, we need to replace the term θ̂j,n θj,n by
some estimator which we choose as

θ̃j,n = θ̂2
j,n
− x1 − x0

n
σ̂j,n and σ̂j,n =

x1 − x0

n

n∑
l=1

σ̂lφ
2
j
(zl) , (5.11)

where σ̂l is the estimator for σ2
l

defined in(4.11). Note that if the diffusion
is known, then we take in (5.11) σ̂j,n = σj,n and

σj,n =
x1 − x0

n

n∑
l=1

σ2
l
φ2
j
(zl) . (5.12)

13



It is clear that the inequalities (4.7) imply

σ0,∗ ≤ min
1≤l≤n

σl,n ≤ max
1≤l≤n

σl,n ≤ σ1,∗ . (5.13)

Now, for using the estimator (5.11) instead of θj,nθ̂j,n one needs to add to the
cost function a corresponding penalty term that we take as

P̂n(λ) =
x1 − x0

n

n∑
j=1

λ2(j)σ̂j,n (5.14)

if the diffusion is unknown and as

Pn(λ) =
x1 − x0

n

n∑
j=1

λ2(j)σj,n (5.15)

when the diffusion is known. Finally, we use the following cost function

Jn(λ) =
n∑
j=1

λ2(j)θ̂2
j,n
− 2

n∑
j=1

λ(j)θ̃j,n + ρ P̂n(λ) , (5.16)

where the positive coefficient 0 < ρ < 1 will be specified later.
We define the model selection procedure as

λ̂ = argmin
λ∈Λ

Jn(λ) and Ŝ∗ = Ŝλ̂ . (5.17)

Remark 5.1. It should be emphasized that if in the model (1.3) the diffusion
coefficient b(·) in known, then the model selection procedure (5.17) is defined
through the minimazing the cost function Jn(λ) with the penalty term (5.15).

6 Main results

First we set

UT =
ν

υ3
T

(
1 + g∗

T
+ Λ∗$

∗
T

)
+
√
T/υT sup

ϑ∈Θ

√
Pϑ(Gc

∗) , (6.1)

where the function υT is given in (3.10). Now we give the oracle inequality
for the discrete norm (5.1).

Theorem 6.1. Assume that the conditions A1) – A3) hold. Then there
exists a positive constant ľ > 0 such that for any T ≥ 1, 0 < ρ ≤ 1/8 and
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ϑ ∈ Θ, the following oracle inequality holds for the model selection procedure
(5.17) :

Eϑ‖Ŝ∗ − S‖2
n
≤ 1 + 5ρ

1− 6ρ
min
λ∈Λ

Eϑ‖Ŝλ − S‖2
n

+ ľ
UT

ρ T
. (6.2)

Moreover, for any a > 0,

lim
T→∞

UT

T a
= 0 . (6.3)

Note that, if the diffusion coefficient b(·) is known, then the term $∗
T

= 0 in
the function UT .
Using Lemma A.3 with ε̃ = ρ we obtain now the oracle inequality for the
risk (2.11).

Theorem 6.2. Assume that the conditions A1) – A3) hold. Then, for any

T ≥ 1, 0 < ρ ≤ 1/8 and ϑ ∈ Θ, the estimation procedure Ŝ∗ defined in (5.17)
satisfies the following inequality

R(Ŝ∗, S) ≤ (1 + ρ)2(1 + 5ρ)

1− 6ρ
min
λ∈Λ

Rn(Ŝλ, S) +
BT
ρ T

, (6.4)

where the rest term BT satisfies the limit the property (6.3) for any a > 0.

In the sequel to obtain the efficient properties for this procedure we will
use the special weight coefficients introduced in [17]. To this end consider a
numerical grid of the form

A = {1, . . . ,k∗} × {r1, . . . , rm∗} ,

where ri = iε and m∗ = [1/ε2]. The both parameters k∗ ≥ 1 and 0 < ε ≤ 1
are some functions of T , i.e. k∗ = k∗

T
and ε = εT , such that, for any γ > 0,

lim
T→∞

(
εT +

1

T γεT
+

1

k∗
T

+
k∗
T

lnT

)
= 0 . (6.5)

One can take, for example,

εT =
1

ln(T + 1)
and k∗ = k +

√
ln(T + 1),

for some fixed k ≥ 0. For each α = (β, r) ∈ A we introduce the weight
sequence λα = (λj(α))j≥1 as

λj(α) = 1{1≤j≤j0} +
(
1− (j/ωα)β

)
1{j0<j≤ωα} , (6.6)
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where j0 = j0(α) = [ωα/ ln(n+ 1)], ωα = ω∗ (r n)1/(2β+1) and

ω∗ = (x1 − x0)

(
(β + 1)(2β + 1)

π2ββ

)1/(2β+1)

.

We set
Λ = (λα)

α∈A . (6.7)

Note that, in this case, the cardinal ν of the set Λ is the function of T , i.e.
ν = νT = k∗m∗ and the conditions (6.5) imply that for any a > 0

lim
T→∞

νT
T a

= 0 . (6.8)

Moreover, from the definition (6.6) we can obtain that, for any α ∈ A,

n∑
j=1

λj(α) ≤ ωα ≤ ω∗

(
n

εT

)1/3

.

Therefore, for any a > 0,

lim
T→∞

Λ∗
T 1/6+a

= 0 . (6.9)

Hence, the condition A3) holds and we obtain the following theorem.

Theorem 6.3. Assume that the conditions A1) – A2) hold. Then, the model
selection procedure (5.16) with the weights (6.7) satisfies the oracle inequality
(6.4) with the rest term satisfying the property (6.3) for any a > 0.

Remark 6.1. It should be note that similarly to [19], we will use the in-
equality (6.4) to provide the efficiency property in the adaptive setting. This
means that without using the regularity properties of the unknown function S
we can estimate from above the risk for the model selection procedure by the
risk for the efficient estimation procedure constructed on the regularity prop-
erties of the function S. The upper bound for the risk of the model selection
procedure follows from the sharp oracle inequality.

7 Properties of the model (5.5)

In order to prove the oracle inequalities, we need to study the conditions
introduced in [30] for the general semimartingale model. To this end, for any
λ ∈ Rn, we define the functions

Ξ(λ) =

√
x1 − x0

n

n∑
j=1

λ(j) ξj,n and B(λ) =
x1 − x0√

n

n∑
j=1

λ(j) ξ̃j,n , (7.1)

where ξ̃j,n = ξ2
j,n
− σj,n, the variables ξj,n are from (5.5), σj,n = Eξ2

j,n
.
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Proposition 7.1. For any n ≥ 1 and any λ = (λ1, . . . , λn) ∈ [0, 1]n,

Eϑ Ξ2(λ) ≤ σ1,∗
(x1 − x0)

n
|λ|2 . (7.2)

Proof. From Proposition 4.2, (5.1), (5.5) and (4.7) we can obtain directly
that

Eϑ Ξ2(λ) =
(x1 − x0)2

n2
Eϑ

n∑
l=1

σ2
l

 n∑
j=1

λ(j)φj(zl)

2

≤ σ1,∗
(x1 − x0)2

n2

n∑
j,k=1

λ(j)λ(k)
n∑
l=1

φj(zl)φk(zl)

= σ1,∗
(x1 − x0)

n

n∑
j=1

λ2(j)
(x1 − x0)

n

n∑
l=1

φ2
k
(zl) .

Hence Proposition 7.1. �

Proposition 7.2. For any n ≥ 1 and any λ = (λ1, . . . , λn) ∈ [0, 1]n,

Eϑ [B2(λ)| GN0
] ≤ 6σ1,∗(x1 − x0)Pn(λ) . (7.3)

Proof. We begin with presentation of the variables ξ̃j,n and B(λ) from (7.1)
as follows

ξ̃j,n =
(x1 − x0)

n

n∑
l=1

(
σ2
l
φ2
j
(zl)ηl + 21l≥2ξlRj,l

)
,

where ηl = ξ2
l
− 1, Rj,l = σlφj(zl)

∑l−1
r=1 σrφj(zr)ξr, and

B(λ) =
(x1 − x0)2

n3/2

n∑
l=1

(
ηlγ1,l + 2ξlγ2,l

)
with γ1,l = σ2

l

∑n

j=1
λ(j)φ2

j
(zl), γ2,l =

∑n

j=1
λ(j)Rj,l1l≥2.

In view of Proposition 4.2, one has

E
(
B2(λ)|GN0

)
=

(x1 − x0)4

n3

n∑
l=1

(
2γ2

1,l
+ 4E [γ2

2,l
|GN0

]
)

:= M1,1 +M1,2 .
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Due to the Buniakovski-Cauchy-Schwartz inequality and the property (5.1),
one has

γ2
1,l

= σ4
l

 n∑
j=1

λ(j)φ2
j
(zl)

2

≤ σ4
l

 n∑
j=1

λ2(j)φ2
j
(zl)

 n∑
j=1

φ2
j
(zl)


≤ σ1,∗

n

(x1 − x0)
σ2
l

n∑
j=1

λ2(j)φ2
j
(zl) .

This implies for the term M1,1:

M1,1 ≤ 2σ1,∗
(x1 − x0)3

n2

n∑
l=1

σ2
l

n∑
j=1

λ2(j)φ2
j
(zl)

= 2σ1,∗
(x1 − x0)3

n2

n∑
j=1

λ2(j)
n∑
l=1

σ2
l
φ2
j
(zl) = 2σ1,∗(x1 − x0)Pn(λ) .

In order to bound the terme M1,2 we have

E [γ2
2,l
|GN0

] = σ2
l

l−1∑
r=1

σ2
r

 n∑
j=1

λ(j)φj(zl)φj(zr)

2

≤ σ1,∗σ
2
l

n∑
r=1

n∑
j,k=1

λ(j)λ(k)φj(zl)φk(zl)φj(zr)φk(zr)

= σ1,∗σ
2
l

n∑
j,k=1

λ(j)λ(k)φj(zl)φk(zl)
n∑
r=1

φj(zr)φk(zr)

= σ1,∗
n

(x1 − x0)
σ2
l

n∑
j=1

λ2(j)φ2
j
(zl) ,

where the last equality follows from the property (5.1). Therefore, we obtain
that the term M1,2 can be estimated as

M1,2 ≤ 4σ1,∗
(x1 − x0)3

n2

n∑
l=1

σ2
l

n∑
j=1

λ2(j)φ2
j
(zl) = 4σ1,∗(x1 − x0)Pn(λ) .

The upper bounds for M1,1 and M1,2 imply

E
(
B2(λ)|GN0

)
= M1,1 +M1,2 ≤ 6σ1,∗(x1 − x0)Pn(λ) .

Hence Proposition 7.2. �
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8 Proofs

8.1 Proof of Theorem 6.1

First of all, note that on the set G∗ we can represent the empirical squared
error Errn(λ) in the form

Errn(λ) = Jn(λ) + 2
n∑
j=1

λ(j)θ̌j,n + ‖S‖2
n
− ρ P̂n(λ) (8.1)

with θ̌j,n = θ̃j,n − θj,nθ̂j,n. From (5.5) and (5.11) one obtains

θ̌j,n = θj,nζj,n +
x1 − x0

n
(ξ̃j,n − σ̃j,n) + 2

√
x1 − x0

n
ξj,ngj,n + g2

j,n
,

where ξ̃j,n = ξ2
j,n
− σj,n and σ̃j,n = σ̂j,n − σj,n. Setting now

M(λ) =
n∑
j=1

λ(j) θj,n ζj,n and D(λ) =
n∑
j=1

λ(j) σ̃j,n , (8.2)

we have from (8.1)

Errn(λ) = Jn(λ) + 2M(λ) + 2M1(λ)− 2(x1 − x0)

n
D(λ)

+ ‖S‖2
n
− ρPn(λ)− ρP̌n(λ) , (8.3)

where P̌n(λ) = P̂n(λ)− Pn(λ) =
x1−x0

n

∑n
j=1 λ

2(j)σ̃j,n ,

M1(λ) =
1√
n

B(λ) + ∆(λ) with ∆(λ) = ∆1(λ) + ∆2(λ) . (8.4)

The function B(λ) is given in (7.1) and

∆1(λ) =
n∑
j=1

λ(j) g2
j,n

and ∆2(λ) = 2

√
x1 − x0

n

n∑
j=1

λ(j) ξj,ngj,n .

In view of Proposition 7.2, for any λ ∈ [0, 1]n,

Eϑ

(
B2(λ)| GN0

)
≤ 6σ∗(x1 − x0)Pn(λ) . (8.5)

To estimate the second term in (8.4) note that

sup
λ∈[0,1]n

∆1(λ) ≤
n∑
j=1

g2
j,n

= ‖g‖2
n
. (8.6)
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To study the function ∆2(λ) we recall that, for any ε > 0 and any x, y ∈ R ,

2xy ≤ εx2 + ε−1y2 . (8.7)

Therefore, for any 0 < ε < 1,

|∆2(λ)| ≤ ε
x1 − x0

n

n∑
j=1

λ2(j) ξ2
j,n

+
‖g‖2

n

ε

= εPn(λ) + ε
|B(λ2)|√

n
+
‖g‖2

n

ε
,

where the vector λ2 = (λ2(j))1≤j≤n. Thus, for any λ ∈ [0, 1]n,

|∆(λ)| ≤ εPn(λ) + ε
|B(λ2)|√

n
+ 2ε−1‖g‖2

n
.

This implies

2|M1(λ)| ≤ 2
|B(λ)|√

n
+ 2
|B(λ2)|√

n
+ 2εPn(λ) + 4ε−1‖g‖2

n
. (8.8)

Then, taking into account here that Pn(λ2) ≤ Pn(λ), one gets, for any 0 <
ε < 1 and any λ ∈ Λ,

2
|B(λ)|√

n
+ 2
|B(λ2)|√

n
≤ εPn(λ) +

2

ε n

(
B2(λ)

Pn(λ)
+

B2(λ2)

Pn(λ2)

)
(8.9)

Note that the inequalities (4.7) imply that

P0,n(λ) ≤ Pn(λ) ≤ P1,n(λ) , (8.10)

where

P0,n(λ) =
σ0,∗(x1 − x0)|λ|2

n
and P1,n(λ) =

σ1,∗(x1 − x0)|λ|2

n
.

From the inequalities (8.9)-(8.10) it follows

2
|B(λ)|√

n
+ 2
|B(λ2)|√

n
≤ εPn(λ) +

2

ε σ0,∗(x1 − x0)
B∗(λ) , (8.11)

where

B∗(λ) =

(
B2(λ)

|λ|2
+

B2(λ2)

|λ2|2

)
.
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By choosing ε = ρ/3 one has from (8.8)

2|M1(λ)| ≤ ρPn(λ) +
6

ρ
Υn(λ) , (8.12)

where

Υn(λ) =
B∗(λ)

σ0,∗(x1 − x0)
+ 2‖g‖2

n
.

To obtain an upper bound for the empirical risk we evaluate the maximal
value of the term D(·), i.e.

D∗ = max
λ∈Λ
|D(λ− λ0)| .

One can check directly that

Eϑ D∗ ≤ 2
∑
λ∈Λ

Eϑ |D(λ)| ≤ 2ν Λ∗
n

$∗
T
, (8.13)

where $∗
T

is defined in (4.12). Moreover, we need to study the term

P̌n(λ) = P̂n(λ)− Pn(λ) =
x1 − x0

n

n∑
j=1

λ2(j)σ̃j,n . (8.14)

To this end, denoting
P ∗ = sup

λ∈Λ
|P̌n(λ)| ,

we obtain that

Eϑ P
∗ ≤

∑
λ∈Λ

Eϑ|P̌n(λ)| ≤
∑
λ∈Λ

x1 − x0

n

n∑
j=1

λ2(j)Eϑ|σ̂j,n − σj,n|

≤
∑
λ∈Λ

x1 − x0

n2
|λ|2$∗

T
≤ x1 − x0

n2
Λ∗ν$

∗
T
. (8.15)

From (8.3) we obtain that, for some fixed λ0 ∈ Λ,

Errn(λ̂)− Errn(λ0) = Jn(λ̂)− Jn(λ0) + 2M(µ̂)− 2(x1 − x0)

n
D(µ̂)

+ 2(M1(λ̂)−M1(λ0))− ρ(Pn(λ̂)− Pn(λ0))

− ρ(P̌n(λ̂)− P̌n(λ0)) ,
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where µ̂ = λ̂− λ0. By the definition of λ̂ in (5.17) we obtain on the set G∗

Errn(λ̂) ≤ Errn(λ0) + 2M(µ̂) +
6

ρ
Υn(λ̂)

+
2(x1 − x0)

n
D∗ + 2ρPn(λ0)− ρ(P̌n(λ̂)− P̌n(λ0)) . (8.16)

To study the terme Υn(λ) in the previous inequality, we begin with the terme
B∗(λ). From (8.5) and (8.10) it follows that

Eϑ 1G∗
B∗(λ) ≤ Eϑ

(
B2(λ)

|λ|2
+
B2(λ2)

|λ2|2

)
≤ 6σ1,∗(x1 − x0) Eϑ

(
Pn(λ)

|λ|2
+
Pn(λ2)

|λ2|2

)

≤ 12
σ2

1,∗(x1 − x0)2

n
.

To estimate the norm ‖g‖2
n

note that glgk = 0 for l 6= k. Therefore,

Eϑ 1G∗
‖g‖2

n
= Eϑ 1G∗

n∑
j=1

g2
j,n

≤ (x1 − x0)2

n2
Eϑ

n∑
j=1

(
n∑
l=1

glφj(zl)

)2

=
(x1 − x0)2

n2
Eϑ

n∑
j=1

n∑
l=1

g2
l φ

2
j(zl) ≤ (x1 − x0)

g∗T
T
,

where g∗
T

is given by (4.8). This implies

Eϑ1G∗
Υn = Eϑ1G∗

(
B∗(λ)

σ0,∗(x1 − x0)
+ 2‖g‖2

n

)

≤ 2(x1 − x0)

(
6σ2

1,∗

nσ0,∗
+

g∗
T

T

)
. (8.17)

Let us study now the term M in (8.3). For any λ ∈ Λ, we represent it as

M(µ) = Z(µ) + V (µ) and µ = λ− λ0 , (8.18)
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where

Z(µ) =

√
x1 − x0

n

n∑
j=1

µ(j) θj,nξj,n and V (µ) =
n∑
j=1

µ(j) θj,ngj,n .

We begin with the weighted discrete Fourier transformation, i.e. we set

Šµ =
n∑
j=1

µ(j) θj,nφj . (8.19)

Due to definition of ξj,n in (5.5), we can estimate the term Z(µ) as

Eϑ1G∗
Z2(µ) ≤

σ1,∗(x1 − x0)

n
‖Šµ‖2

n
. (8.20)

Moreover, using the inequality (8.7) with ε = ρ, we obtain

2V (µ) = 2
n∑
j=1

µ(j) θj,ngj,n ≤ ρ ‖Šµ‖2
n

+
‖g‖2

n

ρ
. (8.21)

Therefore, on the set G∗

2M(µ) ≤ 2ρ‖Šµ‖2
n

+
Z∗

nρ
+
‖g‖2

n

ρ
, (8.22)

where

Z∗ = sup
µ∈Λ−λ0

nZ2(µ)

‖Šµ‖2
n

.

It is clear, that the upper bound (8.20) yields

Eϑ 1G∗
Z∗ ≤

∑
µ∈Λ−λ0

nEϑ 1G∗
Z2(µ)

‖Šµ‖2
n

≤ νσ1,∗(x1 − x0) . (8.23)

To estimate the norm ‖Šµ‖2
n

note that in view of (5.5) on the set G∗

‖Šµ‖2
n
− ‖Ŝµ‖2

n
=

n∑
j=1

µ2(j)(θ2
j,n
− θ̂2

j,n
) ≤ − 2

n∑
j=1

µ2(j) θj,n ζj,n

= −2Z1(µ)− 2V1(µ) , (8.24)

where

Z1(µ) =

√
x1 − x0

n

n∑
j=1

µ2(j)θj,nξj,n and V1(µ) =
n∑
j=1

µ2(j) θj,ngj,n .
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Taking into account that |µ(j)| ≤ 1, similarly to inequality (8.20), we find

Eϑ 1G∗
Z2

1
(µ) ≤

σ1,∗(x1 − x0)

n
‖Šµ‖2

n
.

Moreover, for the random variable

Z∗
1

= sup
µ∈Λ−λ0

nZ2
1
(µ)

‖Šµ‖2
n

,

we obtain the same upper bound as in (8.23), i.e.

Eϑ Z
∗
1

1G∗
≤ νσ1,∗(x1 − x0) . (8.25)

Furthermore, similarly to (8.21) we estimate the second term in (8.24) as

2|V1(µ)| ≤ ρ‖Šµ‖2
n

+
‖g‖2

n

ρ
.

Therefore, on the set G∗

‖Šµ‖2
n
≤ ‖Ŝµ‖2

n
+ 2ρ‖Šµ‖2

n
+
Z∗

1

nρ
+
‖g‖2

n

ρ
,

i.e.

‖Šµ‖2
n
≤ 1

1− 2ρ
‖Ŝµ‖2

n
+

1

(1− 2ρ)ρ

(
Z∗

1

n
+ ‖g‖2

n

)
. (8.26)

Using this inequality in (8.22) and putting Z∗
2

= Z∗+Z∗
1

yield on the set G∗

2M(µ̂) ≤ 2ρ

1− 2ρ
‖Ŝµ̂‖2

n
+

1

ρ(1− 2ρ)

(
Z∗

2

n
+ ‖g‖2

n

)

≤ 4ρ(Errn(λ̂) + Errn(λ0))

1− 2ρ
+

1

ρ(1− 2ρ)

(
Z∗

2

n
+ ‖g‖2

n

)
.

Using this bound in (8.16), we obtain that

Errn(λ̂) ≤ 1 + 2ρ

1− 6ρ
Errn(λ0) +

2ρ(1− 2ρ)

1− 6ρ
Pn(λ0) +

1

ρ(1− 6ρ)

(
Z∗

2

n
+ ‖g‖2

n

)
+

1− 2ρ

1− 6ρ

(
6

ρ
Υn(λ̂) +

4(x1 − x0)

n
D∗ − ρ(P̌n(λ̂)− P̌n(λ0))

)
.
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Using here (8.13), (8.15), (8.17), (8.23), (8.25), we get

EϑErrn(λ̂)1G∗
≤ 1 + 2ρ

1− 6ρ
EϑErrn(λ0)1G∗

+
2ρ(1− 2ρ)

1− 6ρ
Eϑ1G∗

Pn(λ0)

+
(x1 − x0)

ρ(1− 6ρ)

(
(74− 144ρ)σ1,∗(ν + σ∗)

n
+

(13− 24ρ)g∗
T

T

)
+ (x1 − x0)

(1− 2ρ)(8 + 2ρ)

(1− 6ρ)n2
νΛ∗$

∗
T
,

where σ∗ = σ1,∗/σ0,∗. From Proposition A.4 with ε = 2ρ it follows

EϑErrn(λ̂)1G∗
≤ K0 EϑErrn(λ0)1G∗

+ (x1 − x0)

(
K1

σ1,∗

ρ(1− 6ρ)n
+K2

g∗T
T

+K3

νΛ∗$
∗
T

n2

)

+
2‖S‖n

√
(x1 − x0)σ1,∗

n

√
Pϑ(Gc

∗) , (8.27)

where

K0 =
1− 12ρ2

(1− 4ρ)(1− 6ρ)
, K1 = ρ(1− 2ρ) + (74− 144ρ)(ν + σ∗),

K2 =
13− 75ρ+ 94ρ2

ρ(1− 4ρ)(1− 6ρ)
and K3 =

(1− 2ρ)(8 + 2ρ)

(1− 6ρ)
.

It is easy to see that, for 0 < ρ ≤ 1/8,

1 + 4ρ

1− 6ρ
< K0 ≤

1 + 5ρ

1− 6ρ
, K1 < 1 + 74(ν + σ∗),

K2 <
39

ρ(1− 6ρ)
and K3 <

8

1− 6ρ
.

Using these bounds and replacing in (8.27)

EϑErrn(λ̂)1G∗
and EϑErrn(λ0)1G∗

by Eϑ‖Ŝ∗−S‖2
n
−‖S‖2

n
Pϑ(Gc

∗) and Eϑ‖Ŝλ0−S‖
2
n
−‖S‖2

n
Pϑ(Gc

∗), respectively,
we come to the inequality (6.2):

Eϑ‖Ŝ∗ − S‖2
n
≤ 1 + 5ρ

1− 6ρ
Eϑ‖Ŝλ0 − S‖

2
n

+ ľ
UT

ρ T
, (8.28)
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where

UT =
ν

υ3
T

(1 + g∗
T

+ Λ∗$
∗
T

) +
√

(T/υT ) sup
ϑ∈Θ

√
Pϑ(Gc

∗) ,

ľ = sup
T>0

max

{
4(x1 − x0) max

[
bmax(υ2

T
(1 + 74ν) + 74b)

ν
,
39υ3

T

ν
, 1

]
, B

}

with b = bmax/bmin, B = 2Mbmax

√
x1 − x0.

The weight λ0 ∈ Λ being arbitrary in (8.28), we come to the oracle in-
equality (6.2). The property (6.3) follows directly from asymptotic behaviour
of the right-hand part components of the function UT . Hence Theorem 6.1.

8.2 Proof of Proposition 4.1

First, note that from (4.2) we can represent the term Bk in the following
form

Bk = B1,k +B2,k +B3,k

where

B1,k =
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)%j , %j =

∫ tj

tj−1

(S(yu)− S(ytj−1
))du ,

B2,k =
1

Hk

τk∑
j=N0+1

κ̃j,kχj,k(h) (S(ytj−1
)− S(zk)) ,

B3,k =
1

Hk

τk∑
j=N0+1

(1−
√

κ̃j,k)
√

κ̃j,kχj,k(h)S(ytj−1
) .

In Appendix we show that there exists some constant C∗ > 0 such that

max
1≤k≤n

sup
ϑ∈Θ

EϑB
2
1,k
≤ C∗ δ . (8.29)

Moreover, using the definition (2.1), we obtain that

|B2,k| ≤
Mh

Hk

and |B3,k| ≤
M

Hk

.
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Taking into account here the property (2.9), the definition of the bandwidth
h in (3.4) and that for sufficiently large T the threshold Hk ≥ hN

√
υT/2, we

obtain that
lim
T→∞

T sup
ϑ∈Θ

EϑB
2
k

= 0 .

Moreover, the term B̃k defined in (4.4) we can represent as

B̃k = B̃1,k + B̃2,k ,

where

B̃1,k =
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)$∗

j
, $∗

j
=

∫ tj

tj−1

(b(yu)− b(ytj−1
))dWu ,

B̃2,k =
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)

(
b(ytj−1

)− b(zk)
)

∆Wtj
.

In Appendix we show that there exists some constant C∗ > 0 such that for
sufficiently large T

max
1≤k≤n

sup
ϑ∈Θ

Eϑ B̃
2
1,k
≤ 8C∗b2

maxδ

hT
√
υT

. (8.30)

and

max
1≤k≤n

sup
ϑ∈θ

Eϑ B̃
2
2,k
≤

8b2
max

h

T
√
υT

. (8.31)

From here we obtain the limit equation (4.9). Hence Proposition 4.1.
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A Appendix

A.1 Concentration inequalities

In this section we remind the concentration inequalities from [20] which will
be used to study non asymptotic properties of the sequential estimation pro-
cedures. We set
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DN,h(z) =
N∑
j=1

(
1

h
χ

(ytj − z
h

)
− q

ϑ,h
(z)

)
δ , (A.1)

where N = [T/δ], the frequency δ is defined in (2.9) – (2.10) and q
ϑ,h

(z) =∫ 1

−1
qϑ(z + uh)du.

Theorem A.1. Assume that the condition (3.9) holds. Then, for any z∗ > 0
and a > 0,

lim
T→∞

T a max
1≤n≤N

sup
h≥T−1/2

sup
|z|≤z∗

sup
ϑ∈Θ

Pϑ

(
|Dn,h(z)| ≥ υT T

)
= 0 . (A.2)

The proof of this result follows directly from Theorem 2.3 in [20].
If we consider the deviation problem for the first N0 observations with

the N0 defined in (3.3), we have to check the conditions (3.9) for the time
duration

T0 = δN0 ≈
T 2γ−1

l1−γT

as T →∞ .

Therefore, the frequency has be represented as

δ =
1

T0l0(T )
and l0(T ) =

T lT
T0

≈ T 2−2γ l2−γ
T

as T →∞ .

So, we need to check the conditions (3.9) by replacing T with T0 and lT
with l0(T ), respectively. It is clear that these conditions hold if we take , for
example, υT = ln−ι(T + 1) and lT = ln1+6ι T , for some ι > 0.

Corollary A.2. Assume that the condition (3.9) holds. Then, for any z∗ > 0
and a > 0,

lim
T→∞

T a sup
h≥T−1/2

0

sup
|z|≤z∗

sup
ϑ∈Θ

Pϑ

(
|DN0,h

(z)| ≥ υT T0

)
= 0 , (A.3)

where N0 is defined in (3.3) and T0 = δN0.

A.2 Proof of Proposition 3.1

First note that Corollary A.2 implies directly that, for any a > 0,

lim
T→∞

T a P(Γc∗,k) = 0 .
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Using the model (1.3) in (3.14), we obtain that

ytj − ytj−1
=
√
δb(ytj−1

)ηj + Uj ,

where ηj = (Wtj
−Wtj−1

)/
√
δ ∼ N (0, 1) and

Uj =

∫ tj

tj−1

S(yu)du+

∫ tj

tj−1

(
b(yu)− b(ytj−1

)
)

dWu .

Due to the bound (A.6), there exists some positive constant C∗ such that,
for any j ≥ 1,

sup
ϑ∈Θ

Eϑ

(
U2
j
|Ftj−1

)
≤ C∗δ2

(
1 + y2

tj−1

)
. (A.4)

So, the squared difference can be represented as

(ytj − ytj−1
)2 = δb2(ytj−1

)η2
j

+ Ũj and Ũj = U2
j

+ 2
√
δb(ytj−1

)ηjUj .

From (A.4) we obtain that, for some positive constant C∗ and for any j ≥ 1,

sup
ϑ∈Θ

Eϑ

(
|Ũj| | Ftj−1

)
≤ C∗δ

√
δ
(

1 + y2
tj−1

)
. (A.5)

Therefore, on the set Γ∗,k we obtain that

b̂k =

∑τ∗,k
j=1 χj,k(h0) b2(ytj−1

)

H∗
+ Υ1,T + Υ2,T ,

where

Υ1,T =

∑τ∗,k
j=1 χj,k(h0) b2(ytj−1

) η̃j

H∗
and Υ2,T =

∑τ∗,k
j=1 χj,k(h0) Ũj

δ H∗
,

and η̃j = η2
j
− 1. Note now, that on the set Γ∗,k

0 ≤
τ∗,k∑
j=1

χj,k(h0)−H∗ ≤ χτ∗,k,k(h0) ≤ 1

and on Γc∗,k
τ∗,k∑
j=1

χj,k(h0) ≤ H∗ .
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Hence,
τ∗,k∑
j=1

χj,k(h0) ≤ H∗ + 1 a.s.

Therefore, for some constant C∗ > 0

Eϑ |̂bk − b2(zk)| ≤ C∗
(
h0 +

1

H∗

)
+ Eϑ |Υ1,T |+ Eϑ |Υ2,T |+ b2(zk) P(Γc∗,k) .

Note here, that

Eϑ Υ2
1,T

=
1

H2
∗

Eϑ

τ∗,k∑
j=1

χj,k(h0) b4(ytj−1
) η̃2

j
≤ 2b4

max

H∗ + 1

H2
∗
≤ 4

H∗
b4
max

and

Eϑ |Υ2,T | ≤
1

δ H∗

N0∑
j=1

Eϑ1{j≤τ∗,k} χj,k(h0) Eϑ

(
|Ũj| | Ftj−1

)

≤ C∗
√
δ

H∗

N0∑
j=1

Eϑ1{j≤τ∗,k} χj,k(h0)
(

1 + y2
tj−1

)
≤ C∗

√
δ .

Finally, for some constant C∗ > 0 and for sufficiently large T →∞,

Eϑ |̂bk − b2(zk)| ≤ C∗

(
h0 +

1√
H∗

+
√
δ + P(Γc∗,k)

)
.

Hence Proposition 3.1.

A.3 Proof of Proposition 4.4

First of all note that

Eϑ|σ̂l − σ2
l
| ≤ 1

υT δ(N −N0)h
Eϑ|̂bl − b2(zl)| .

Taking into account that according to the definition N0 in (3.3) we obtain
through Proposition 3.1 the equality (4.13). Hence Proposition 4.4. �
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A.4 Technical results

Lemma A.3. Let f be an absolutely continuous [x0,x1] → R function with
‖ḟ‖ <∞ and g be [x0,x1]→ R a step-wise function of the form

g(t) =
n∑
j=1

cj χ(zj−1,zj ]
(t),

where cj are some constants and the sequence (zj)0≤j≤n is given in (3.1).
Then for all ε̃ > 0, the function ∆ = f − g satisfies the following inequalities

‖∆‖2 ≤ (1 + ε̃)‖∆‖2
n

+

(
1 +

1

ε̃

)
‖ḟ‖2

n2
(x1 − x0)2 ,

and

‖∆‖2
n
≤ (1 + ε̃)‖∆‖2 +

(
1 +

1

ε̃

)
‖ḟ‖2

n2
(x1 − x0)2 .

The proof is given in Lemma A.2 from [31].

A.5 Proof of the upper bound (8.29)

First, note that

τk∑
j=N0+1

√
κ̃j,kχj,k(h) =

τk∑
j=N0+1

κ̃j,kχj,k(h) +

τk∑
j=N0+1

(√
κ̃j,k − κ̃j,k

)
χj,k(h)

= Hk + (
√κk − κk)χτk,k(h) ≤ Hk + 1 .

So, by the Bunyakovskii - Cauchy - Schwarz inequality,

EϑB
2
1,k
≤ Eϑ

1

δ2Hk

τk∑
j=N0+1

√
κ̃j,kχj,k(h) Eϑ

1

Hk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)%2

j

≤ 2

δ2
Eϑ

1

Hk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)Eϑ

(
%2
j
|Ftj−1

)
.

Moreover, taking into account that the function S from the class (2.1) is
lipschitzian with the constant L1 = M ∨ L, we obtain that

Eϑ

(
%2
j
|Ftj−1

)
≤ δL2

1

∫ tj

tj−1

Eϑ

(
(yu − ytj−1

)2|Ftj−1

)
du .
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Note here that, for tj−1 ≤ u ≤ tj,

Eϑ((yu − ytj−1
)2|Ftj−1

) ≤ 2δ

(∫ u

tj−1

Eϑ(S2(yv)|Ftj−1
) dv + b2

max

)

≤ 2δ

(
2L2

1

∫ u

tj−1

(1 + Eϑ(y2
v
|Ftj−1

) )dv + b2
max

)
.

Due to Proposition A.6 from [22], one has for tj−1 ≤ v ≤ tj,

Eϑ(y2
v
|Ftj−1

) ≤ D∗L+ y2
tj−1

,

where D∗ = (M + Lx∗ + 2x∗)
2(L + M) + b2

max
. So, for tj−1 ≤ u ≤ tj and

0 < δ < 1,

Eϑ

((
yu − ytj−1

)2

|Ftj−1

)
≤ 2δ

(
c1 + c2y

2
tj−1

+ b2
max

)
, (A.6)

where c1 = 2L2
1

(D∗L+ 1) and c2 = 2L2
1
. Taking into account that

χj,k(h)y2
tj−1
≤ 2(h2 + z2

k
) ,

we obtain that, for some constant C∗ > 0,

sup
tj−1≤u≤tj

sup
ϑ∈Θ

χj,k(h) Eϑ

(
(yu − ytj−1

)2|Ftj−1

)
≤ C∗ δ (A.7)

and, therefore,

sup
ϑ∈Θ

EϑB
2
1,k
≤ C∗δ sup

ϑ∈Θ

Eϑ

1

Hk

τk∑
j=N0+1

√
κ̃j,kχj,k(h) ≤ C∗ δ .

Hence the upper bound (8.29).

A.6 Proof of the upper bounds (8.30)–(8.31)

Due to orthogonality of stochastic integral increaments, we obtain that

Eϑ B̃
2
1,k

=
1

δ2
Eϑ

1

H2
k

τk∑
j=N0+1

κ̃j,kχj,k(h) Eϑ

(
($∗

j
)2|Ftj−1

)

≤
2b2
max

δ2
Eϑ

1

H2
k

τk∑
j=N0+1

κ̃j,kχj,k(h)

∫ tj

tj−1

Eϑ

(
(yu − ytj−1

)2|Ftj−1

)
du .
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By using the bound (A.7) for the last conditional expectation we get

Eϑ B̃
2
1,k
≤ 4C∗b2

max
Eϑ

1

Hk

.

This inequality and (3.12), (3.4) provide the inequality (8.30). Moreover, one
has

Eϑ B̃
2
2,k

=
1

δ2
Eϑ

1

H2
k

τk∑
j=N0+1

κ̃j,k χj,k(h)
(
b(ytj−1

)− b(zk)
)2

(∆Wtj
)2

≤
2b2

max

δ
Eϑ

1

H2
k

τk∑
j=N0+1

κ̃j,k χj,k(h)(ytj−1
− zk)2 ≤

4b2
max

h2

δ
Eϑ

1

Hk

.

Hence the upper bound (8.31).

A.7 Proof of Proposition A.4

Proposition A.4. For any 0 < ε < 1/2,

Eϑ 1G∗
Pn(λ0) ≤ 1

1− 2ε
EϑErrn(λ0)1G∗

+
(x1 − x0)g∗

T

ε(1− 2ε)T

+
2(x1 − x0)σ1,∗

nε
+

2‖S‖n
√

(x1 − x0)σ1,∗
√
n

√
Pϑ (Gc

∗) ,

where the term g∗
T

is given in (4.6).

Proof. Note that on the set G∗

Errn(λ) =
n∑
j=1

(λ(j)θ̂j,n − θj,n)2 =
n∑
j=1

λ2(j)ζ2
j,n

− 2
n∑
j=1

(1− λ(j))λ(j)θj,nζj,n +
n∑
j=1

(1− λ(j))2θ2
j,n
.

Taking into account here that

ζ2
j,n

= g2
j,n

+
x1 − x0

n
ξ2
j,n

+ 2

√
x1 − x0

n
gj,nξj,n ,
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we obtain

Errn(λ) ≥ x1 − x0

n

n∑
j=1

λ2(j)ξ2
j,n

+ 2

√
x1 − x0

n
I1 − 2

√
x1 − x0

n
I2 ,

where I1 =
∑n

j=1
λ2(j)gj,nξj,n and I2 =

∑n

j=1
(1−λ(j))λ(j)θj,nξj,n. Moreover,

note that, for any 0 < ε < 1,

2

√
x1 − x0

n
I1 ≤

1

ε
‖g‖2

n +
ε(x1 − x0)

n

n∑
j=1

λ2(j)ξ2
j,n
.

Therefore

Errn(λ0) ≥ (1− ε)(x1 − x0)

n

n∑
j=1

λ2(j)ξ2
j,n
− 2
√

x1 − x0√
n

I2 −
1

ε
‖g‖2

n

and

Eϑ1G∗
Errn(λ0) ≥ (1− ε)(x1 − x0)

n
Eϑ1G∗

n∑
j=1

λ2(j)ξ2
j,n

− 2
√

x1 − x0√
n

Eϑ1G∗
I2 −

1

ε
Eϑ1G∗

‖g‖2
n
.

Taking into account here the definition of B(·) in (7.1) and that EϑI2 = 0
we can rewrite the last inequality as

Eϑ1G∗
Errn(λ0) ≥ (1− ε)Eϑ1G∗

Pn(λ) +
(1− ε)√

n
Eϑ1G∗

B(λ2)

+
2
√

x1 − x0√
n

Eϑ1(G∗)c I2 −
1

ε
Eϑ1G∗

‖g‖2
n
.

Now Propositions 7.1 – 7.2 imply that

Eϑ1G∗
Errn(λ0) ≥ (1− 2ε)Eϑ1G∗

Pn(λ)−
2(x1 − x0)σ1,∗

nε

−
2‖S‖n

√
(x1 − x0)σ1,∗
√
n

√
Pϑ (Gc) − 1

ε
Eϑ1G∗

‖g‖2
n
.

Hence Proposition A.4.
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