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Abstract

In this paper, we consider a finite volume approach for modelling multiphase flow coupled to
geochemistry in porous media. Reactive multiphase flows are modelled by a highly nonlinear system
of degenerate partial differential equations coupled with algebraic and ordinary differential equations.
We propose a fully implicit scheme using a direct substitution approach (DSA) implemented in the
framework of the parallel open-source platform DuMuX . We focus on the particular case where
porosity changes due to mineral dissolution/precipitation are taken into account. This alteration of
the porosity can have significant effects on the permeability and the tortuosity. The accuracy and
effectiveness of the implementation of permeability/porosity and tortuosity/porosity relationships
related to mineral dissolution/precipitation for single-phase and two-phase flows are demonstrated
through numerical simulations.

1 Introduction

Reactive transport modelling is involved in many applications related to subsurface energy and envi-
ronmental issues. We can mention, no exhaustively, the geological sequestration of CO2 in saline
aquifers, the management of nuclear waste, enhancement of oil recovery, groundwater remediation or
deep geothermal energy. A detailed description of these applications and the numerical codes dedicated
to reactive transport modelling can be found for instance in [1], [2] or [3].

Equations governing such phenomena consists of a set of nonlinear degenerate system of advection-
diffusion partial differential equations (related to the flow) coupled to algebraic relations and ordinary
differential equations (related to the chemistry). In the literature, several strategies can be considered to
deal with this set of coupled equations. In the pioneering contribution [4], the authors present several
implicit and sequential approaches for solving reactive transport problems. Global implicit approaches
(GIA) tackle the full system of equations while sequential approaches decouple the flow and the chem-
istry. Due to the strong coupling of the flow and reactive transport equations, a standard approach is to
use a GIA to ensure stability in the solution. Although this guarantees numerical stability of the solution,
it does not guarantee a nonlinear convergence. This complexity makes difficult the analysis of the entire
nonlinear problem. A separation of the different physics can improve the understanding and result in a
better design of nonlinear solvers for the reactive transport problem. It is why sequential approaches are
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more widespread than GIA. Moreover, sequential approaches are easier for implementation since exist-
ing codes and specific methods can be used for each sub-problem (flow, transport, chemistry). In [5, 6, 7],
we developed and integrated in the DuMuX framework a sequential approach. DuMuX [8, 9] is a free and
open-source parallel simulator for flow and transport processes in porous media, based on the Distributed
and Unified Numerics Environment DUNE [10]. Our strategy splits the global problem into two sub-
problems. The first sub-problem computes a two-phase compositional flow where only species present in
both phases are treated implicitly. Exchanges between phases are totally solved in this step and the con-
tribution of the other species is treated explicitly. The second sub-problem calculates a reactive transport
problem where flow properties (Darcy’s velocity for each phase, saturation of each phase, temperature,
density,...) are given by the first step. Nonetheless, sequential approaches introduce operator splitting
errors[11, 12] and restrictions on the time-step are mandatory to ensure mass conservation. In [4], the
authors described the GIA as “research tools for one-dimensional investigations” due to their complexity
and their high computational requirements. Thanks to the advance of high-performance computing in
the last decades, these restrictions are no longer relevant. So, to improve the robustness of the scheme
and the possible accuracy loss due to the time-splitting involved by sequential approaches, we switched
to a GIA for a single-phase multicomponent flow with reactive transport in [13]. Our strategy has been
validated by numerous numerical examples including 2D and 3D simulations and parallel calculations.

In this work, we propose to extend GIA developed in [13] to deal with reactive two-phase flows
and consequently to drop out the sequential approach considered in [5, 6, 7]. Moreover, we are inter-
ested in expanding the range of possible applications by considering some examples where porosity and
permeability changes must be taken into account. Indeed, the simulation of permeability and tortuosity
evolution due to porosity changes can be of crucial importance in the simulation of several processes.
These porosity changes can occur due to the dissolution or precipitation of minerals. If the porosity is
increased, new pathways can develop, facilitating solute transport while the decrease of porosity can lead
to a total clogging, with a possible annihilation of any flow and/or solute transport (see for instance [14],
[15] or [16] where permeability-porosity and tortuosity-porosity changes related to mineral dissolution-
precipitation are studied).

The rest of the paper is organized as follows. In Section 2, we describe the governing equations
for two-phase multicomponent flow with reactive transport where permeability-porosity and tortuosity-
porosity changes involved by mineral dissolution-precipitation are taken into account. In Section 3, we
present some numerical results. More precisely, a brief description of the numerical strategy is proposed
and our method is validated by two test cases performed in [16] including single-phase and two-phase
flow simulations. The two-phase simulation is compared in terms of CPU time with a non-reactive
two-phase simulation.

2 Mathematical formulation of the problem

In this section, we present the geochemical and mathematical models for two-phase multicomponent
flow with reactive transport in porous media where permeability-porosity changes are considered. For a
general discussion on the physical principles we refer e.g. to [17, 18]. We recall here the basic facts and
we introduce notation to be used throughout this paper.
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2.1 Geochemical model

We adopt here the same notation as in [13]. Precisely, I denotes the set of all the Nc chemical components
involved in the Nr chemical reactions. In this contribution, only equilibrium reactions are considered.
Following the Morel formalism, these components are split into primary and secondary components that
are noted respectively Ip and Is such that I = Ip ∪ Is. The set of primary components Ip is then divided
into mobile primary components Ipm and immobile primary components Ipi such that Ip = Ipm ∪ Ipi. In
the same way, the set of secondary components Is is decomposed into mobile secondary components Ism,
immobile secondary components Isi and components involved in equilibrium dissolution/precipitation
reactions Ispe (Is = Ism∪ Isi∪ Ispe). The chemical system can be written as:

Nc

∑
j=1

νi jA j = 0, i = 1, . . . ,Nr,

where νi j is the stoichiometric coefficient of the component A j in the reaction i.
Each equilibrium reaction gives rise to an algebraic relation called mass action law, relating the

activities of the components involved in the reaction:

a j
α = K j ∏

i∈Ip

(ai
α)

ν ji , j ∈ Ism∪ Isi, (1)

where a j
α is the activity of component j in its phase α , K j is the equilibrium constant of reaction j. The

activity of water and solid species are set equal to 1. The activity of aqueous species is often written in

terms of molality: a j
l = γ

j
l

m j
l

m0
, where γ

j
l is the activity coefficient for species j in the aqueous phase, m j

l

is the molality of species j [mol.kg−1] in the aqueous phase, and m0 is standard molality often taken as
1 mol.kg−1. For each aqueous species j, the molality m j

l and the mole fraction of species j in aqueous

phase x j
l are related by m j

l =
x j

l

MH2OxH2O
l

, where MH2O is the molar mass of water and xH2O
l is the molar

fraction of water in the aqueous phase. The activity of gaseous species is often represented by fugacity:

a j
g = ϕ

j
g

P j
g

P0
, where ϕ

j
g is the fugacity coefficient for species j in the gas phase, P j

g the partial pressure of
gas j and P0 the standard pressure (1 atm). In the sequel, we consider ideal models for liquid activity
(γ j

l = 1) and gas fugacity (ϕ j
g=1).

For each solid species involved in an equilibrium dissolution/precipitation reaction, a solubility prod-
uct must be respected:

if K j ∏
i∈Ip

(ai
α)

ν ji < 1 then c j
s = 0, else K j ∏

i∈Ip

(ai
α)

ν ji = 1, j ∈ Ispe, (2)

where c j
s denotes the molar concentration of solid species j [mol.m−3]. This complementarity problem

is often reformulated as:

min

(
c j

s ,1−K j ∏
i∈Ip

(ai
α)

ν ji

)
= 0, (3)

or using for instance the Fischer-Burmeister complementarity function [19]:√√√√(c j
s)2 +

(
1−K j ∏

i∈Ip

(ai
α)

ν ji

)2

− c j
s−

(
1−K j ∏

i∈Ip

(ai
α)

ν ji

)
= 0. (4)
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2.2 Mathematical model for two-phase multicomponent flow with reactive transport

In the sequel, the index α ∈ {l,g,s} (l for liquid, g for gas and s for solid) refers to the phase, while
the superscript i refers to the component. We define the phase-species correspondence by setting αi

to the index of the phase that contains species i. Using the convention used in[20], the general mass
conservation equations for fluid species (α ∈ {l,g}) and solid species (α = s) write:

∂

∂ t
(φSαiρmol,αix

i
αi
)+∇ · (ρmol,αix

i
αi
~qαi)−∇ · (ρmol,αiDαi∇xi

αi
) = ∑

j∈Is

ν jir j, i ∈ Ipm, (5)

∂ci
s

∂ t
= ∑

j∈Is

ν jir j, i ∈ Ipi, (6)

∂

∂ t
(φSαiρmol,αix

i
αi
)+∇ · (ρmol,αix

i
αi
~qαi)−∇ · (ρmol,αiDαi∇xi

αi
) = −ri, i ∈ Ism, (7)

∂ci
s

∂ t
= −ri, i ∈ Isi∪ Ispe, (8)

where φ [-] is the porosity of the medium, Sαi [-] denotes the saturation of fluid phase αi, ρmol,αi

[mol.m−3] is the molar density of fluid phase αi, xi
αi

is the molar fraction of fluid species i in the phase
αi,~qαi [m.s−1] is the Darcy-Muskat velocity of fluid phase αi, Dαi [m2.s−1] denotes the diffusivity of the
fluid phase αi and ci

s is the molar concentration of solid species i.

The Darcy-Muskat velocity of the fluid phase α is expressed as follows:

~qα =−krα(Sl)

µα

K(∇Pα −ρα~g), (9)

where krα [-] denotes the relative permeability of fluid phase α , µα [Pa.s] is the dynamic viscosity of
fluid phase α , K [m2] is the absolute permeability tensor, Pα [Pa] is the pressure of fluid phase α , ρα

[kg.m−3] is the mass density of the fluid phase α and~g [m.s−2] is the gravitational acceleration.
The phase pressures are connected by the capillary pressure law:

Pc(Sl) = Pg−Pl. (10)

Finally, r j [mol.m−3.s−1] is the rate of equilibrium reaction j.
We choose to reformulate equations (5) and (7) in terms of molar concentration for fluid species

ci
α = ρmol,αxi

α (α ∈ {l,g}). By neglecting the gradient of molar density ∇ρmol,αi resulting from the
diffusive flux, equations (5) -(8) can be written as follows:

∂

∂ t
(φSαic

i
αi
)+∇ · (ci

αi
~qαi)−∇ · (Dαi∇ci

αi
) = ∑

j∈Is

ν jir j, i ∈ Ipm, (11)

∂ci
s

∂ t
= ∑

j∈Is

ν jir j, i ∈ Ipi, (12)

∂

∂ t
(φSαic

i
αi
)+∇ · (ci

αi
~qαi)−∇ · (Dαi∇ci

αi
) = −ri, i ∈ Ism, (13)

∂ci
s

∂ t
= −ri, i ∈ Isi∪ Ispe. (14)

For the sake of simplicity, we introduce the advection-diffusion operator Lαi given by:

Lαi(c
i
αi
) = ∇ · (ci

αi
~qαi)−∇ · (Dαi∇ci

αi
). (15)
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Our strategy consists in eliminating the equilibrium reaction rates r j in equations (11)-(12). For this
purpose, we make linear combinations between equations (13)-(14) with each equation (11)-(12). This
introduces Np new conservation laws written as:

∂

∂ t

(
φSαic

i
αi
+ ∑

j∈Ism

ν jiφSα j c
j
α j + ∑

j∈Isi∪Ispe

ν jic j
s

)
+Lαi(c

i
αi
)+ ∑

j∈Ism

ν jiLα j(c
j
α j) = 0, i ∈ Ipm, (16)

∂

dt

(
ci

s + ∑
j∈Isi∪Ispe

ν jic j
s

)
= 0, i ∈ Ipi. (17)

To retrieve the same number of equations as there are unknowns, the Ns equations (13)-(14) are replaced
by card{Ism ∪ Isi} mass actions laws defined by (1) and card{Ispe} complementarity problems defined
by (3) or (4) corresponding to the dissolution/precipitation equilibrium reactions.

2.3 Formulation of the global implicit approach

We adopt a global implicit approach using a direct substitution method as in [13], where only single
phase multicomponent flow was studied. To deal with equilibrium dissolution/precipitation reactions, we
reformulate the complementarity problem using expression (3). The full system of equations describing
the problem writes:

∂

∂ t

(
φSαic

i
αi
+ ∑

j∈Ism

φν jiSαic
j
α j + ∑

j∈Isi∪Ispe

c j
s

)
+Lαi(c

i
αi
)+ ∑

j∈Ism

ν jiLα j(c
j
α j) = 0, i ∈ Ipm, (18)

∂

∂ t

(
ci

s + ∑
j∈Isi∪Ispe

ν jic j
s

)
= 0, i ∈ Ipi, (19)

a j
α j = K j ∏

i∈Ip

(ai
αi
)ν ji , j ∈ Ism∪ Isi, (20)

min

(
c j

s ,1−K j ∏
i∈Ip

(ai
αi
)ν ji

)
= 0, j ∈ Ispe. (21)

The direct substitution method that is considered here, consists in incorporating mass actions laws (20)
in mass balance equations (18)-(19).

2.4 Evolution of transport properties

Mineral dissolution/precipitation affects the porosity of the rock matrix. More precisely, the porosity φ

depends on the concentrations of the minerals according to the relationship:

φ = 1−
Nm

∑
j=1

ν
jc j

s , (22)

where Nm is the number of reactive minerals, ν j and c j
s represent respectively the molar volume [m3.mol−1]

and the molar concentration [mol.m−3] of reactive solid species j.
The diffusion coefficient Dα is also subject to modification due to the dissolution/precipitation reac-
tions. This dependence is modelled by empirical relationships. For single phase flow, Archie’s law is
considered [21]:

Dl = D0
l

(
φ

φ 0

)n

, (23)
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where D0
l and φ 0 are respectively the initial diffusion coefficient in liquid phase and initial porosity while

n is Archie’s empirical coefficient. For two-phase flow, Millington-Quirk’s relationship [22] is used:

Dα = D0
αφ

4/3S10/3
α , (24)

where D0
α is the initial diffusion coefficient in phase α .

Finally, Kozeny-Carman’s relationship is used to deal with the porosity dependence of the permeability:

K=K0

(
1−φ 0

1−φ

)2(
φ

φ 0

)3

, (25)

where K0 is the initial permeability.
Let us note that the relationship (22), as well as all the dependencies between the transport properties
and porosity are treated implicitly.

3 Numerical results

In this section, we present a brief description of our numerical strategy. In order to validate our strategy
taking into account the evolution of porosity and permeability of the porous medium, we consider two
tests cases proposed in [16]. The first one is devoted to a single-phase flow while the second one considers
a two-phase flow. Since we considered only one-dimensional cases, all computations were performed on
a laptop with Intel Core i7-5600U Processor (2.6 GHz) and 8 GB RAM.

3.1 Numerical developments

All our developments have been implemented in DuMuX [8, 9]. In [13], we have developed and im-
plemented in the DuMuX framework a GIA to deal with reactive single-phase multicomponent flow.
Then in [7], we coupled this fully implicit module with a fully implicit compositional two-phase flow
through a sequential algorithm. Here, we propose to drop out the sequential strategy and to extend the
GIA considered in [13] to the full system of equations (18)-(21). Moreover, we take into account some
porosity changes due to dissolution/precipitation process that induce some permeability and tortuosity
alterations.
The spatial discretization is performed using a fully coupled fully implicit conservative finite volume
method. A fully upwinding scheme is implemented to treat the convective terms and a conforming finite
element scheme with piecewise linear elements is used to calculate the diffusive terms, also referred to
as the control volume finite element method [23]. The time discretization is done by an implicit Euler
method. A detailed description of the finite-volume discretization can be found in [13] and [7]. The
non-linear system is solved by a Newton method and a preconditioned Biconjugate Gradient Stabilized
(BiCGSTAB) method is used to solve the linear system. Numerical differentiation techniques are used
to approximate the derivatives in the calculation of the Jacobian matrix. The control of the time-step is
based on the number of iterations required by the Newton method to achieve convergence for the last time
iteration. The time-step is reduced, if the number of iterations exceeds a specified threshold, whereas it
is increased if the method converges within less iterations.
Let us mention that the validation of numerical simulation for reactive multiphase multicomponent flow
is a tricky task. Some benchmarks exist for the single-phase case. In [13], we have validated our approach
on several examples including the reactive transport benchmark of MoMaS [24]. For the two-phase con-
figuration, we note that we encountered difficulties to find reliable and well documented benchmarks. In
many articles, some data are missing. We think that a well documented benchmark for two-phase flow
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with reactive transport in porous media would be very useful for the community. Up to now, to validate
our approach, we can only compare with results previously published and by performing a convergence
study.

3.2 Single-phase flow

3.2.1 Description of the test case

This first example is adapted from the single-phase example considered in [16]. The one-dimensional
geometry is depicted in Figure 1. The domain consists of three zones with different diffusivity.
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Figure 1: Illustration of the geometry for the single-phase example.

The chemical system and the characteristics of the three different minerals are given in Table 1.
Initial physical parameters are presented in Table 2.

Reactions log K Molar volume
ν [m3.mol−1]

Amin −−⇀↽−− Aaq + 2H2O 1 0.068×10−3

BCmin −−⇀↽−− Baq + Caq + H2O 2 0.188×10−3

ADmin −−⇀↽−− Daq + Aaq 3 0.218×10−3

OH– −−⇀↽−− H2O – H+ 14 −

Table 1: Chemical reactions and mineral data for the single-phase example.

Dirichlet boundary conditions are enforced for the liquid pressure (Pl = 105) and for the concentra-
tions (equal to the initial conditions) on the left and right borders. Table 3 exhibits the chemical initial
conditions expressed in molality [mol.kg−1] for the aqueous components and in molar concentration
[mol.m−3] for the minerals. The time of simulation is 10 years.

The goal of this test is to compute the evolution of porosity due to mineral dissolution/precipitation.
This changes in porosity and permeability will induce a flow in an problem that is initially purely diffu-
sive. Aqueous component Baq and Caq will react to form mineral BCmin, consuming water. Mineral Amin
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Parameter Left Center Right unit
Diffusion D0

l 8×10−11 2×10−11 8×10−11 m2.s−1

Porosity φ 0 0.4 0.4 0.4 -
Liquid pressure Pl 105 105 105 Pa
Permeability K0 9.1×10−18 9.1×10−18 9.1×10−18 m−2

Archie’s coefficient n 3 3 3 -
Viscosity µl 8.9×10−4 8.9×10−4 8.9×10−4 Pa.s
Density ρl 997 997 997 kg.m−3

Table 2: Initial Hydrodynamic parameters for the single-phase example.

will dissolve, releasing Aaq that will react with Daq to precipitate ADmin.

Component Left Center Right Unit
Amin 0 2×103 0 mol.m−3

rock
BCmin 0 0 0 mol.m−3

rock
ADmin 0 0 0 mol.m−3

rock
Aaq 0 0.1 0 molal
Baq 0.3 0 0 molal
Caq 0 0 0.2 molal
Daq 0.02 0 0 molal
pH 7 7 7 -

Table 3: Chemical initial conditions for the single-phase example.

3.2.2 Results and analysis

Firstly, a numerical convergence analysis has been performed. Several one-dimensional meshes have
been considered for this test case. Figure 2 represents the profiles for the porosity and the concentration
of the mineral ADmin at the end of the simulation for several grid resolutions. As expected, the quantities
converge toward a reference solution when the grid resolution increases.

Figure 3 exhibits the evolution of the porosity and the concentrations of the three minerals for a total
of 60 nodes as in [16]. As expected, from the beginning of the simulation, mineral Amin is dissolved
at both ends of the domain where a constant pressure is enforced. The porosity increases, reducing the
pressure and generating a flow rate whose evolutions are depicted in Figure 4. Meanwhile, on the left
part of the domain, Aaq is released by the dissolution of Amin and it reacts with Daq that is initially present
to precipitate ADmin. The precipitation of BCmin occurs later, after the diffusion of Baq and Caq that are
represented in Figure 5. This precipitation leads to a pressure build-up in the centre of the domain. These
results are in good agreement with those obtained in [16] where a detailed description and interpretation
of the results are provided.

Finally, Figure 6 represents the time-step used during the computations and the number of iterations
in Newton’s algorithm for a mesh composed of 1000 elements. We have to specify that a maximum
time-step equal to 106 s was enforced. As expected, the time-step is reduced when a high number of
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Figure 2: Porosity and ADmin profiles at t = 10 years for different grid resolutions (note that only an area
of interest between x=0.02 and x=0.08 is presented).
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Figure 3: Evolution of porosity and mineral profiles (note that only an area of interest between x=0.02
and x=0.08 is presented).

iterations is required to reach convergence in Newton’s algorithm.
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Pressure versus time.
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3.3 Two-phase flow

3.3.1 Description of the test case

The second test deals with a two-phase reactive flow. It is adapted from the two-phase example presented
in [16]. The chemical system is depicted in Table 4. In comparison with the previous example, a gas
phase consisting of N2(g) and Dg is present. N2(aq) is in equilibrium with N2(g) and the molar fractions of
N2(g) in gas phase and the activity of N2(aq) in liquid phase are related by Henry’s law:

x
N2(g)
g

Pg

P0
= KN2 a

N2(aq)
l .

The gaseous component Dg will be dissolved in water to form D– and H+. The molar fractions of Dg in
gas phase and the activity of D– in liquid phase are related by a mass action law that writes:

xDg
g

Pg

P0
= KD aD−

l aH+

l .

D– will react with Aaq to form ADmin.
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Figure 6: Time step and number of iterations in Newton’s algorithm versus time for the single-phase
example.

Figure 7 represents the geometry of the example. Initially, the rock zone (right part) contains the
mineral Amin while Dg is only present in the atmospheric zone (left part). On the left boundary, a
constant saturation and a constant partial pressure of gaseous component Dg are imposed while no-flow
boundary conditions are enforced on the right border. Chemical initial conditions are provided in Table 5
and the other physical parameters are given in Table 6. Finally, Table 7 depicts the parameters for van
Genuchten’s relationships used for capillary pressure and relative permeabilities laws :

Pc(Sl) =
1

αV G

(
Sl
− 1

m −1
)1−m

, (26)

krl(Sl) = Sl
1
2
(

1− (1−Sl
1
m )m
)2

, (27)

krg(Sl) = (1−Sl)
1
3

(
1−Sl

1
m
)2m

, (28)

with Sl =
Sl−Sr

l
1−Sr

l −Sr
g

. The time of simulation is 1 year.

Reactions log K Molar volume
ν (m3.mol−1)

Amin −−⇀↽−− Aaq + 2H2O 1 0.068×10−3

ADmin −−⇀↽−− D– + Aaq + H+ 10 0.218×10−3

OH– −−⇀↽−− H2O – H+ 14 −
Dg −−⇀↽−− D– + H+ – H2O 5 −
N2(g) −−⇀↽−− N2(aq) 3.189 −

Table 4: Chemical reactions and mineral data for the two-phase example.
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Figure 7: Illustration of the geometry for the two-phase example.

Component Atmospheric zone Rock zone Unit
Amin 0 1.6×103 mol.m−3

rock
ADmin 0 0 mol.m−3

rock
Aaq 0 0.1 molal
D– 5×10−4 0 molal
pH 5 7 -

Table 5: Chemical initial conditions for the two-phase example.

Parameter Atmospheric zone Rock zone Unit
Diffusion D0

l 1×10−8 1×10−8 m2.s−1

Diffusion D0
g 3×10−6 3×10−6 m2.s−1

Porosity φ 0 0.4 0.4 -
Saturation Sl 0.6 0.8 -
Gas pressure Pg 105 105 Pa
Permeability K0 2×10−15 2×10−15 m2

Viscosity µl 8.9×10−4 8.9×10−4 Pa.s
Viscosity µg 1.78×10−5 1.78×10−5 Pa.s
Density ρl 997 997 kg.m−3

Density ρg 1.13 1.13 kg.m−3

Table 6: Initial hydrodynamic parameters for the two-phase example.

3.3.2 Results and analysis

As for the single-phase example, a numerical convergence analysis has been performed using several
grid resolutions. Figure 8 represents the profiles for the porosity and the concentration of the mineral
ADmin at the end of the simulation as a function of the number of elements composing the meshes. We
still observe the convergence for both quantities toward a reference solution when refining the mesh.

For a mesh composed of 100 nodes, Figure 9 depicts the evolution of the saturation that illustrates
the drying of the material. Moreover it shows the evolution of the different minerals and the porosity:
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Parameter Value Unit
m 0.481 -
Sr

l 0.01 -
Sr

g 0.01 -
αV G 10−4 Pa−1

Table 7: Parameters for the van Genuchten relationship.
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Figure 8: Porosity and ADmin profiles at t = 1year for different meshes (only an area of interest close to
the interface is presented).

mineral Amin is dissolved while mineral ADmin precipitates, reducing the porosity close to the interface.
Similar results can be observed in [16].

Table 8 compares the CPU time for the different meshes with the CPU time consumed for a simple
two-phase flow. This highlights the complexity of the test case since even for one dimensional simula-
tions, the computation time is far from negligible in comparison with the simple two-phase case. This is
due to the strong non-linearities generated by the geochemical reactions and to the significant difference
in sizes of the two problems (9 unknowns per element for the reactive case versus 2 unknowns per mesh
for the non-reactive case).

Number of elements CPU time (s) CPU time (s)
for reactive for non-reactive
two-phase flow two-phase flow

100 165.2 19.3
200 379.4 37.8
500 1187.7 92.6
1000 4923.1 175.4

Table 8: CPU time (s) as a function of the grid resolution for reactive and non-reactive two-phase flows.

As for the single-phase simulation, Figure 10 displays the time-step used during the computations
and the number of iterations in Newton’s algorithm that are still strongly correlated. In this case, a mesh
composed of 500 elements and a maximum time-step equal to 104 s have been considered.
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Figure 9: Evolution of saturation, porosity and mineral profiles for the two-phase simulation (note that
except for saturation, only an area of interest close to the interface is presented).
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Figure 10: Time-step and number of iterations in Newton’s algorithm versus time for the two-phase
example.

4 Conclusion

We proposed a fully coupled, fully implicit finite volume approach for solving a system of coupled par-
tial differential and algebraic or ordinary differential equations describing multiphase flow with reactive14



geochemical transport in the subsurface. All the developments have been implemented in the framework
of the parallel open-source platform DuMuX . To validate our strategy, we focused on examples where
changes of permeability and tortuosity induced by porosity alteration are taken into account. Indeed,
in many applications, it can be crucial to consider the feedback between multiphase flow and reactive
transport: mineral dissolution will enhance porosity while precipitation can lead to a complete clogging.
Single-phase and two-phase numerical examples have been performed. In both cases, numerical con-
vergence analyses were carried out and numerical results are in good agreement with those obtained in
[16]. They provided validation of our implementation of permeability/porosity and tortuosity/porosity
relationships related to mineral dissolution/precipitation. Next, we are planning to validate our fully
implicit approach for reactive multiphase flows through more complicated cases including complex 3D
geometries or/and complex chemical systems. An advanced comparison with the sequential approach
developed in [7] is in progress.
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