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Summary:

Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene 

flow and metabolic outputs. However, ecosystem-level impacts of viral community diversity 

remains difficult to assess due to classification issues and few reference genomes. Here we 

establish a ~12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now 

including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. 

Meta-community analyses revealed five ecological zones throughout the global ocean, including 

two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral 

community diversity were established for both macrodiversity (inter-population diversity) and 

microdiversity (intra-population genetic variation). These patterns sometimes, but not always, 

paralleled those from macro-organisms and revealed temperate and tropical surface waters and the 

Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further 

understanding of ocean viruses is critical for broader inclusion in ecosystem models.

ETOC summary

A global survey of ocean virus genomes vastly expands our understanding of this understudied 

community and reveals the Arctic as un expected hotspot for viral biodiversity.

Graphical Abstract
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Introduction:

Biodiversity is essential for maintaining ecosystem functions and services (reviewed by 

Tilman et al., 2014). In the oceans, the vast majority of biodiversity is contained within the 

microbial fraction containing prokaryotes and eukaryotic microbes, which represents ~60% 

of its biomass (Bar-On et al., 2018). Meta-analyses looking at changes in marine 

biodiversity show that biodiversity loss increasingly impairs the ocean’s capacity to produce 

food, maintain water quality, and recover from perturbations (Worm et al., 2006). To date, 

marine conservation efforts have focused on specific organismal communities, such as 

fisheries or coral reefs, rather than conserving whole ecosystem biodiversity. However, 

emerging studies across diverse environments show that the stability and diversity of higher 

trophic level organisms rely upon diversity throughout the food web (e.g. Soliveres et al., 
2016). Despite being the foundation of the food web, most marine microbial biodiversity 

numbers are based on a few well-studied locations (e.g., Hawaii Ocean Time Series, 

Bermuda Atlantic Time Series, and San Pedro Ocean Time Series). For ocean microbes and 

their viruses, global surveys that parallel century-old global terrestrial and decades-old 

marine macro-organismal global biodiversity surveys (Reiners et al., 2017) are only now 

emerging (e.g. de Vargas et al., 2015; Sunagawa et al., 2015; Brum et al., 2015; Roux et al., 
2016; Ser-Giacomi et al., 2018; Table S1). Key to assessing biodiversity changes across 

marine ecosystems is improving our understanding of current microbial biodiversity levels, 

distribution patterns, and their ecological drivers.

Despite their tiny size, viruses play a large role in marine ecosystems and food webs. For 

example, mortality due to viruses is credited with lysing approximately 20–40% of bacteria 

per day and releasing carbon and other nutrients that impact the food web (reviewed by 

Suttle, 2007). Beyond mortality, viruses can alter evolutionary trajectories of microbial 

communities by transferring ~1029 genes per day globally (Paul, 1999) and biogeochemical 

cycling by metabolically reprogramming host photosynthesis, as well as central carbon 
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metabolism and nitrogen and sulfur cycling (reviewed in Hurwitz & U’Ren, 2016). Finally, 

as the oceans are estimated to capture half of human-caused carbon emissions (Le Quéré et 
al., 2018), it is notable that genes-to-ecosystems modeling has placed viruses as central 

players of the ocean ‘biological pump’ (Guidi et al., 2016). Many of these discoveries are 

very recent as ocean viral genome sequence space is just now being explored at the level of 

viral macrodiversity, i.e., inter-population diversity, throughout the global oceans -- at least 

for the most abundant double-stranded DNA viruses sampled (Table S2).

In spite of this progress in studying marine viral macrodiversity, virtually nothing is known 

about microdiversity, i.e., intra-population genetic variation. This is due to the controversy 

surrounding the existence of viral species (Gregory et al., 2016; Bobay et al., 2018). In 

eukaryotic organisms, where species boundaries are more widely accepted, such 

microdiversity has been studied and is thought to drive adaptation and speciation to promote 

and maintain stability in ecosystems (Hughes et al., 2008; Larkin & Martiny, 2017). This is 

likely also true in viruses since even a few mutations can alter host interactions and 

ecological and evolutionary dynamics for the genotype (e.g. Marston et al., 2012; Petrie et 
al., 2018). In nature, viral microdiversity measurements have been limited to marker genes 

(e.g. genes encoding major capsid proteins), which capture neither community-wide 

variability (Sullivan, 2015) nor genome-wide evidence of selection (e.g. Achtman & 

Wagner, 2008). Recently, deeper metagenomic sequencing and population genetic theory-

grounded species delimitations (Shapiro et al., 2012; Cadillo-Quiroz et al., 2012) have begun 

to reveal such microdiversity in microbes, and this has elucidated unknown features of 

speciation, adaptation, pathogenicity and transmission (e.g. Snitkin et al., 2011; Schloissnig 

et al., 2013; Rosen et al., 2015; Lee et al., 2017; Smillie et al., 2018). Although parallel 

species delimitations are now available for viruses (Gregory et al., 2016; Bobay et al., 2018), 

no datasets are yet available to explore genome-wide microdiversity in viruses, particularly 

at the global scale.

Here we leverage the Tara Oceans global oceanographic research expedition sampling to 

establish a deeply-sequenced, global-scale ocean virome dataset and use it to assess the 

validity of the current viral population definition and to establish and explore baseline 

macro- and micro-diversity patterns with their associated drivers across local to global 

scales. These data have been collected and analyzed in the context of the larger Tara Oceans 

Consortium systematically- sampled, global-scale, viruses-to-fish-larvae datasets (de Vargas 

et al., 2015; Sunagawa et al., 2015; Brum et al., 2015; Lima-Mendez et al., 2015; Pesant et 
al., 2015; Roux et al., 2016), and help establish foundational ecological hypotheses for the 

field and a roadmap for the broader life sciences community to better study viruses in 

complex communities.

Results & Discussion:

The dataset.

The Global Ocean Viromes 2.0 (GOV 2.0) dataset is derived from 3.95 Tb of sequencing 

across 145 samples distributed throughout the world’s oceans (Fig. 1A and Table S3; see 

Methods). These data build on the prior GOV dataset (Roux et al., 2016) by increased 

sequencing for mesopelagic samples (defined in our dataset as waters between 150m to 
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1,000m) and upgrading assemblies, both of which drastically improved sampling of the 

ocean viruses in these samples (results below). Additionally, we added 41 new samples 

derived from the Tara Oceans Polar Circle (TOPC) expedition, which traveled 25,000 km 

around the Arctic Ocean in 2013. These 41 Arctic Ocean viromes were generated to 

represent the most significantly climate-impacted region of the ocean, and an extreme 

environment. No such metagenome-based viral data exist for the Arctic region (Deming & 

Collins, 2017), and more generally, for many planktonic organisms, systematic sampling is 

uneven throughout the Arctic Ocean (CAFF State of the Arctic Marine Biodiversity Report) 

due to geopolitical and physical challenges of sampling these regions.

The first step to studying viral biodiversity from the assembled GOV 2.0 dataset (see 

Methods and Fig. S1A) was to identify contigs that likely derive from viruses using tools 

that collectively utilize homology to viral reference databases, probabilistic models on viral 

genomic features, and viral k-mer signatures (see Methods). These putative viral contigs 

were then assigned to ‘populations’, which are currently defined as viral contigs ≥10 kb 

where ≥70% of the shared genes have ≥95% average nucleotide identity (ANI) across its 

members (Brum et al., 2015; Roux et al., 2016; Roux et al., 2018; population definition also 

discussed below). This process identified 195,728 viral populations in the GOV 2.0 dataset, 

which is a ~12-fold increase over the 15,280 identified in the original GOV dataset and 

assemblies (Roux et al., 2016) and augments prior marine viromic work (Tables S2). Of 

these original GOV viral populations, 12,708 were represented by single contigs and, of 

these, most (92%) were recovered in GOV 2.0 (Fig. 1B-inset), with average lengths 

increased 2.4-fold from 18 kbp to 44 kbp (Fig. 1B). Outside these GOV-known and now 

improved viral populations, an additional 180,448 new GOV 2.0 viral populations were 

identified -- derived mostly (58%) from improved assemblies and deeper sequencing of the 

original GOV samples, and the rest (42%) from the 41 new Arctic Ocean viromes. Finally, 

new methods to identify shorter viral contigs (see Methods) were applied and these 

identified another 292,402 contigs as viral (5–10 kb length and/or circular), which, when 

added to the earlier data and clustered at ≥95% ANI, resulted in a total of 488,130 viral 

populations (N50= 15,395; L50=105,286; mean read depth per population = 17x). Ninety 

percent of the populations could not be taxonomically classified to a known viral family, but 

the 10% that could were predominantly dsDNA viral families and bacteriophages (Fig. 1C, 

D).

Although the focus of this study is DNA viruses, a remarkable diversity of RNA viruses has 

been described in nature, though largely outside of marine systems. For example, 

transcriptome sequencing from plants (Roossinck et al., 2010), arthropods (Shi et al., 2016), 

and birds and bats (reviewed in Greninger, 2018) have shown a genomic and phylogenetic 

diversity of RNA viruses far beyond those in culture (Shi et al., 2018). In the oceans, 

however, RNA viral diversity and abundance remains largely unknown. The few estimates of 

marine RNA virus abundance are based on the relative quantification of RNA and DNA 

from purified viral particles and genome size extrapolations and suggest that up to half of 

the viral particles in seawater are RNA viruses (Steward et al., 2013, Miranda et al., 2016). 

Direct RNA virus counts are not yet available for any environment due to the lack of RNA-

specific stains. To date, our understanding of marine RNA viral diversity is based on single-

gene surveys that target subgroups of viruses (reviewed in Culley, 2018) and a few viromes 
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generated from extracellular viral particles (Culley and Steward, 2007; Culley et al., 2006; 

Miranda et al., 2016; Steward et al., 2013; Urayama et al., 2018, Zeigler-Allen et al., 2017) 

or from RNA viral sequences identified in metatranscriptomes (Carradec et al., 2018; 

Moniruzzaman et al., 2017; Urayama et al., 2018; Zeigler-Allen et al., 2017). Together, these 

studies suggest that the marine RNA virosphere is composed of a large diversity of positive-

polarity ssRNA and dsRNA viruses diverge from established taxa, with an apparent 

predominance of viruses that infect eukaryotes (Culley, 2018). Due to current 

methodological limitations, comprehensive, systematic assessments of marine RNA viral 

diversity on the global scale are not yet available, and are excluded from our analysis.

Validating viral ‘population’ boundaries.

Defining species is controversial for eukaryotes and prokaryotes (Kunz, 2013; Cohan, 2002; 

Fraser et al., 2009) and even more so for viruses (Bobay et al., 2018), largely because of the 

paradigm of rampant mosaicism stemming from rapidly evolving ssDNA and RNA viruses, 

whose evolutionary rates are much higher than dsDNA viruses [reviewed by (Duffy et al., 
2008)]. The biological species concept, often referred to as the gold standard for defining 

species, defines species as interbreeding individuals that remain reproductively isolated from 

other such groups. To adapt this to prokaryotes and viruses, studies have explored patterns of 

gene flow to determine whether they might maintain discrete lineages as reproductive 

isolation does in eukaryotes. Indeed, gene flow and selection define clear boundaries 

between groups of bacteria, archaea and viruses, though the required scale of data are only 

available for cyanophages and mycophages among viruses (Shapiro et al., 2012; Cadillo-

Quiroz et al., 2012; Gregory et al., 2016; Bobay et al., 2018).

Because measuring gene flow requires extensive datasets not yet available for many groups, 

the term ‘species’ is rarely used for prokaryotes or viruses, and instead discrete lineages are 

described as ‘populations’. Separate from these population genetic theory grounded 

observations, evidence of discrete lineages, or sequence-discrete populations, is to use 

metagenomic read-mapping to evaluate naturally occurring sequence variation across 

organisms. Sequence-discrete populations have now been observed for prokaryotes 

(Konstantinidis & Tiedje, 2005) and more recently for some dsDNA viruses (viral-tagged 

metagenomes and 142 isolate genomes for marine cyanophages; Deng et al., 2014, Gregory 

et al., 2016; Table S4). Buoyed by this and signatures of at least some dsDNA viruses 

obeying the biological species concept (Bobay et al., 2018), viral ecologists have established 

the definition of viral populations described above (Brum et al., 2015; Roux et al., 2016; 

Roux et al., 2018). Notably, however, only deeply sequenced groups, cyano- and myco-

phages, have been evaluated to date (Gregory et al., 2016; Bobay et al., 2018), and an 

emergent hypothesis suggests that phages evolve with different modes and tempos driven by 

differing temperate or obligately lytic lifestyles (Mavrich & Hatfull, 2017). Thus, there is a 

need to evaluate how generalizable this empirically-derived ≥95% ANI cut-off viral 

population definition is in nature.

To test this, we permissively mapped metagenomic reads against our 488,130 GOV 2.0 viral 

populations by allowing ‘local’ matching as low as 18% nucleotide identity, and statistically 

identifying ‘breaks’ in the resulting read frequency histograms (see Methods). This revealed 
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that, on average, the break occurred such that reads <92% nucleotide identity failed to map 

(Fig. 2C; full results Table S5), which resulted in a genome-wide signature of ≥95% ANI for 

nearly all (99.9% or 487,875) of the GOV 2.0 viral populations, including the smaller <10 

kb viral populations (Fig. 2D). This implies that the observed viral populations in the dataset 

are predominantly and detectably sequence-discrete. This result is consistent with data from 

viral-tagged metagenomes (Deng et al., 2014) and gene-sharing networks of prokaryotic 

virus genomes (Iranzo et al., 2016, Bolduc et al., 2017), which also showed that sampled 

viral genome sequence space is clustered at each ‘species’ and ‘genus’ levels, respectively. 

Thus, while ssDNA and RNA viruses have variable and elevated genome evolutionary rates 

that can erode species boundaries [reviewed by (Duffy et al., 2008)], it appears that virtually 

all metagenome-assembled dsDNA viral populations form discrete genotypic clusters and 

can be appropriately delineated via a ≥95% genome-wide ANI cut-off.

Meta-community analysis reveals 5 ecological zones.

Having organized this global sequence space into discrete and biologically meaningful 

populations, we next sought to use metagenome-derived abundance estimates to establish 

patterns and drivers of viral population diversity across the global ocean across multiple 

levels of ecological organization (Fig. 3). This revealed that the 145 GOV 2.0 viral 

communities robustly assorted into just five meta-communities, denoted ecological zones, 

whether assessed using Bray-Curtis dissimilarity distances in principal coordinate analysis 

(Fig. 4A), non-metric multidimensional scaling (Fig. S2A), or hierarchical clustering (Fig. 

S2B) and after accounting for variable sample sizes (see Methods). We designated these 5 

emergent ecological zones as the Arctic (ARC), Antarctic (ANT), bathypelagic (BATHY), 

temperate and tropical epipelagic (TT-EPI) and mesopelagic (TT-MES), and used these for 

further study. Depth ranges overlapped with those previously defined (Reygondeau et al., 
2018), with epipelagic, mesopelagic, and bathypelagic being waters of depths 0 to 150 

meters, 150 to 1,000 meters, and deeper than 2,000 meters, respectively.

Comparison of our virome-inferred ecological zones to those inferred for the oceans in other 

ways was telling. Our zones differed from traditional oceanographic biogeographical biomes 

(e.g. Longhurst), where four biomes and ~50 provinces have been designated across surface 

ocean waters based on annual cycles of nutrient chlorophyll a (Longhurst et al., 1995, 

Longhurst, 2007), and from mesopelagic ecoregions and biogeochemical provinces based on 

biogeography and environmental climatology, respectively (Sutton et al., 2017; Reygondeau 

et al., 2018). However, they were similar to those observed for marine bacterial 

communities, which clustered by mid-latitude surface, high-latitude, and deep waters 

(Ghiglione et al., 2012). This implies that the physicochemical structuring of marine 

microbial communities is likely the most important factor in structuring marine viral 

communities, perhaps reflecting a relative stability in host range of viruses in the oceans (de 

Jonge et al., 2018). To evaluate this physicochemical structuring, we examined the universal 

predictors and drivers of viral ecological zones, across one (Fig. 5A) and multiple ordination 

dimensions (Fig. 5B; see Methods). This suggested that temperature was the major driver 

structuring these ecological zones, as previously shown from global microbial surveys 

(Sunagawa et al., 2015) and our own smaller ocean virome surveys, where we posited 

previously that temperature likely directly impacts microbial community structure, and 
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indirectly viral community structure (Brum et al., 2015). Moreover, temperature has been 

shown to play an important role in virus-host interactions, especially in the Arctic (Maat et 
al., 2017).

To look for specific viral adaptations in each ecological zone, we identified genes under 

positive selection by evaluating the ratio of non-synonymous to synonymous mutations 

observed in gene sequences using the pN/pS equation (Schloissnig et al., 2013). Of 

1,139,501 genes tested from populations with enough coverage (≥10x mean read depth; 

mean number of populations assessed per sample: 14,852 viral populations), 124,882 genes 

were identified as being under positive selection in at least one sample. Most (82%) of the 

positively selected genes were functionally unannotatable, with the remaining 18% 

annotatable as predominantly genes related to structure or DNA metabolism (Table S6). In 

model systems, such genes are often under strong selective pressures during adaptations to 

new hosts (Marston et al., 2012; Jian et al., 2012; Enav et al., 2018). Thus, we hypothesize 

that host availability in each ecological zone is a strong selective pressure on our marine 

viral populations. Given the lack of functional annotations for most of the genes, we 

clustered all translated GOV 2.0 viral genes into protein clusters (PCs) based on sequence 

homology (sensu Holm & Sander, 1998) to identify positively selected zone-specific PCs. 

This resulted in 823,193 PCs, of which ~10% (79,588 PCs) appeared under positive 

selection, with a subset of these specific to a single zone (ARC = 80%; ANT = 33%; 

BATHY = 37%; TT-EPI = 75%; TT-MES = 69% of positively selected PCs per zone; see 

Table S6). These findings of many zone-specific positively-selected PCs is indicative of 

niche-differentiation. However, functional stories from these data are challenging as 85% of 

these zone-specific PCs were of unknown function, with the remaining mostly being the 

structural and DNA metabolism genes described above. This suggests that we have a lot to 

learn about the function of genes that most likely drive niche-differentiation across the 

ecological zones.

Viral macro- and micro- diversity, and potential drivers, within and between ecological 
zones.

To explore diversity patterns across ecological zones, we calculated per sample diversity 

using Shannon’s H’ for macrodiversity and a newly established method for community-wide 

microdiversity. This new method for community-wide microdiversity is limited in that it can 

only assess well-sampled, abundant populations because it estimates the average nucleotide 

diversity (or π) from the mean of π from 100 randomly subsampled well-sequenced 

populations sampled 1,000 times (see Methods). These zone-normalized (see Methods) 

comparisons revealed that macrodiversity was highest in TT-EPI (p < 0.05), closely followed 

by the ARC, and lowest in TT-MES and ANT (Fig 4B –bottom), whereas microdiversity 

was highest in TTMES (p < 0.05) and lowest in ARC (Fig. 4B –left). At the zonal level, a 

negative trend between macro- and micro- diversity emerges (Fig. 4B-right), although we 

note that the small number of zonal points limits our statistical inferences, even in this global 

dataset.

Recent work suggests that higher micro-diversity can impede the maintenance of macro-
diversity by promoting competitive exclusion (Hart et al., 2016). Thus we posit that, if the 
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zonal level negative macro/micro diversity trends are real, this may result from increased 

intrapopulation niche variation that reduces interpopulation niche variation resulting in 

competitive exclusion by the superior competitors, which may occur slowly and may be why 

it only appears at this regional scale (Fig. S4). Because estimates of microdiversity in our 

dataset and even currently available single virus genomics approaches (Martínez-Hernández 

et al., 2017) remain limited to only the most abundant populations, testing such a hypothesis 

awaits critically-needed advances and scalability in single-virus genomics technologies.

At the per-sample level, however, macro- and micro- diversity were not correlated, even 

within each zone (Fig. 4B – right). Although these are the first data available for viruses, for 

larger organisms, macro- and micro-diversity are often correlated across habitats sharing 

similar species pools, presumably due to habitat characteristics altering immigration, drift, 

and selection (Vellend & Gerber, 2005). These ecological correlations are generally positive 

and significantly stronger in discrete habitats (e.g. islands) in contrast to more connected 

communities like the ocean [reviewed in (Vellend et al., 2014)]. Thus we posit that the lack 

of correlation between marine viral macro- and micro- diversity at this per-sample level is 

driven by differences in local drivers (Fig. 4C). Consistent with this, local potential drivers 

differed as nutrients strongly (and negatively) correlated with viral macrodiversity, whereas 

photosynthetically active radiation (PAR; an indicator of productivity) best (and positively) 

correlated with viral microdiversity in the epipelagic waters (Fig. 4C).

Mechanistically, these results suggest several possible hypotheses. We interpret that, at the 

viral macrodiversity level, decreased host diversity in algal blooms, which themselves rely 

on nutrient pulses (Farooq & Malfatti, 2007), could skew viral rank abundance curves 

towards dominance by increasing abundance of bloom-associated viral populations. Even 

though algal blooms were not targeted in the Tara Oceans expedition, we did find that viral 

macrodiversity negatively correlated with chlorophyll a (Fig. 5C), and particulate inorganic 

carbon concentration (PIC; Fig. 4C), which is commonly used as a proxy for 

coccolithophore abundance (Groom & Holligan, 1987). Additionally, viral macrodiversity 

negatively correlated with the relative abundance of coccolithophores based on the V9 

region of the 18S rRNA genes in the sequencing reads (Fig. 4C). For viral microdiversity in 

epipelagic waters, we interpret that PAR is potentially the main driver (Fig. 4C). PAR is 

known to impact host diversity, particularly in nutrient-poor surface waters, by inhibiting 

photoautotrophs through overwhelming their photosystems with too many electrons that can 

back up and even damage the photosystems (Feng et al., 2015). Further PAR can inhibit the 

growth of the dominant heterotroph, SAR11 (Ruiz-González et al., 2013), and can stimulate 

other key microbes such as Roseobacter, Gammaproteobacteria and NOR5 (Ruiz-González 

et al., 2013). We hypothesize that the shorter-term impacts of high PAR in the surface waters 

on host communities may create new niches for viruses, whereby microdiversity increases to 

enable differentiation of existing viral populations. As above, advances in single-virus 

genomics would be invaluable for testing this hypothesis.
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Viral macro- and micro- diversity, and potential drivers, against classical ecological 
gradients.

Ecologists have long explored the relationship between diversity and geographic range, 

which in eukaryotes and bacteria are highly (and positively) correlated and thought to be due 

to the accumulation of niche-specific selective mutations across populations with large 

heterogeneous geographic ranges (i.e. the niche variation hypothesis; Van Valen, 1965, 

Hedrick, 2006, Rosen et al., 2015). No parallel studies have looked at viruses. To explore 

this for viruses, we determined the geographic range of viral populations based on their 

distribution within and between ecological zones (Fig. 6A) and then calculated their average 

π (see Methods) to assess patterns in macro- and micro- diversity, respectively. Viral 

populations were designated as ‘multi-zonal’ if they were observed in >1 ecological zone, 

‘zone-specific regional’ if they were observed in only one zone, but ≥2 viral communities, or 

‘zone-specific local’ if they were observed in only 1 viral community within a single zone.

These analyses first revealed differences in the dominant viral geographic ranges across the 

different ecological zones. For example, multi-zonal viral populations dominated ANT and 

BATHY (>60% of viral populations found within zone), both across the zone (Fig. 6B) and 

within each station (Fig. S5), whereas zone-specific regional viral populations dominated 

TTEPI and ARC and the multi-zonal and zone specific viral populations were approximately 

equally represented in TT-MES (Fig. 6B). The high levels of zone-specific viral populations 

in TT-EPI and ARC, as well as the high levels of viral macrodiversity (Fig. 4B-bottom), are 

indicative of high endemism and suggest these regions may be biodiversity hotspots for 

marine viruses. In contrast, the ANT and BATHY are composed mostly of multi-zonal viral 

populations suggesting that they may be sink habitats that are more dependent on migration 

(sensu Watkinson & Sutherland, 1995). However, across all ecological zones, viral 

population microdiversity increased with virus geographic range (Fig. 6C; p < 0.05), 

presumably from varied ecologies providing differing selective niches for the single, widely-

distributed population that then drive differentiation through isolation-by-environment 

processes (sensu Shapiro et al., 2012). Such findings are new for viruses, but parallel the 

results for eukaryotes (Hedrick, 2006) and bacteria (Rosen et al., 2015) and suggest a 

universality to isolation-by-environment processes across organismal kingdoms and viruses.

Ecologists have also long observed, across most flora and fauna, that there are latitudinal 

patterns in diversity across both terrestrial and marine environments. Briefly, the latitudinal 

diversity gradient suggests that both macro- and micro-diversity are highest at mid-latitudes 

and decrease poleward (Pianka 1966, Hillebrand 2004, Mannion et al., 2013, Miraldo et al., 
2016). We found that both viral macro- and micro-diversity followed the latitudinal diversity 

gradient except in ARC, where both increased (Fig. 7A). This high equatorial macro- and 

micro-diversity was consistent across the Indian, Atlantic, and Pacific Oceans as expected 

(Fig. 7B & C). The Arctic Ocean, however, was not only unexpectedly elevated in diversity, 

but it also displayed a unique pattern. Specifically, two distinct zones – definable by 

climatology-derived water mass nutrient stoichiometry (N*; Fig. 7D; see Comparing ARC-H 
and ARC-L in Methods) – emerged as high (ARC-H) and low (ARC-L) diversity regions 

that were significantly differentiable at both macro- and micro-diversity levels (Fig. 7E). 

Further, ARC-H was characterized by low nutrient ratios (N*; >9X lower in ARC-H than 
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ARC-L on average; p < 5E-04) and drove the divergence from the latitude diversity gradient 

(Fig. S6A).

Mechanistically, we interpret these observations as follows. Prior work in this region has 

shown (i) strong denitrification in the Bering Strait (Devol et al., 1997), which explains the 

low N* in the west, and (ii) increasing oligotrophy in the Beaufort Gyre due to increasing 

vertical stratification, which selects against larger algae and for smaller algae and bacteria in 

the ARC-H (Li et al., 2009). As above, we hypothesize that shorter-term increased host 

diversity results in increased viral macro- and micro-diversity in ARC-H. Though our GOV 

2.0 dataset is confounded by seasonality of sampling, we posit that this elevated summer-

time macro- and micro-diversity in ARC may fuel viral ecological differentiation and 

represent an unrecognized ‘cradle’ of viral biodiversity beyond the tropics. Though this 

elevated diversity in the Arctic was surprising, together with a similar deviation seen in 

mollusks (Valdovinos et al., 2003) and recently reported in ray-finned fish (Rabosky et al., 
2018), these results call into question whether this decades-old paradigm needs revisiting 

and suggests that polar regions may be important biodiversity hotspots for viruses, as well as 

larger organisms.

Finally, as ocean exploration accelerates, patterns in diversity through the vertical layers of 

the ocean have become a focus. An emergent depth diversity gradient hypothesis suggests 

that macrodiversity decreases with depth (Costello & Chaudhary, 2017), which has been 

explored across the World Register of Marine Species that includes some microbes and 

viruses (http://www.marinespecies.org/), but microdiversity has not yet been explored for 

any organism. Overall, our virome-inferred diversity patterns were less obviously consistent 

with the depth diversity gradient, although deep water ocean data were limited (Fig. 7F). 

Briefly, viral macrodiversity largely followed the depth diversity gradient with high diversity 

in the surface waters and decreased diversity with depth, whereas viral microdiversity did 

not as it decreased until 200 m depth, but then sharply increased (Fig. 7F). This deep water 

increase coincided with an increase in bacterial macrodiversity in the mesopelagic region 

(Fig. S6B & C), and in TTMES, this bacterial macrodiversity correlated with viral 

microdiversity (Fig. S6D).

If more extensive deep water sampling confirms these patterns, we see several scenarios that 

could explain these data. First, we hypothesize that viral microdiversity may, in part, be 

driven by an increase in macrodiversity of zone-specific bacterial populations in TT-MES, 

which we interpret as an expansion of host ‘niches’ available for infection that could drive 

diversification in viruses (Elena et al., 2009). Second, we hypothesize that the decrease in 

viral macrodiversity may be driven by increased viral microdiversity of some viral 

populations in the mesopelagic region that can promote competitive exclusion (sensu Hart et 
al., 2016) as discussed above. Alternatively, lower cell density in the mesopelagic layer 

(Sunagawa et al., 2015) may result in less encounters between “predator” and “prey”, 

reducing viral speciation (as a function of reduced number of viral generations), but 

selecting for viruses with broader host range. Again, testing these hypotheses will require 

technological advances to measure in situ host ranges and sensitivities of viruses and cells, 

respectively, at scales relevant to the diversity in nature.
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Conclusions:

This study provides a systematic and global-scale view of patterns and drivers of marine 

viral macro- and micro- diversity that reveals three overarching advances. First, five 

ecological zones emerge for the global ocean, which contrasts known Longhurst 

biogeographic patterning in other organisms, but is consistent with observations from the 

largely co-sampled ocean microbiome (Sunagawa et al., 2015). Second, patterns and drivers 

of viral macro- and micro-diversity differ per-sample and positively correlate to geographic 

range. These findings offer hints at underlying mechanisms that impact these two levels of 

diversity that will guide researchers from discovery to hypothesis-testing as technologies, 

such as scalable single virus genomics and in situ host range assays, advance towards 

sampling scales relevant to those in nature. Third, epipelagic waters and the Arctic Ocean 

emerge from our work as biodiversity hotspots for viruses. While this is surprising given the 

latitudinal diversity gradient paradigm that the tropics rather than the poles are the cradles of 

diversity, it is in line with other observations in larger organisms (Valdovinos et al., 2003, 

Rabosky et al., 2018) and emphasizes the importance of these drastically climate-impacted 

Arctic regions for global biodiversity. Together, these advances, along with the parallel 

global-scale ecosystem-wide measurements of Tara Oceans (e.g. de Vargas et al., 2015; 

Sunagawa et al., 2015; Brum et al., 2015; Lima-Mendez et al., 2015; Roux et al., 2016) 

provide the foundation for incorporating viruses into emerging genes-toecosystems models 

(e.g. Guidi et al., 2016, Garza et al., 2018) that guide ocean ecosystem management 

decisions that are likely needed if humans and the Earth System are to survive the current 

epoch of the planet-altering Anthropocene.

STAR Methods Text

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Matthew Sullivan (mbsulli@gmail.com).

Experimental Model and Subject Details

Tara Oceans Polar Circle (TOPC) expedition sample collection and virome 
creation—Between June 2013 and December 2013, 41 samples were collected at different 

depths from 20 different sites near or within the Arctic Ocean (see full list of samples in 

Table S3). Physicochemical measurements, sample collection, and DNA extractions were 

performed using the methods described in (Roux et al., 2016). Extracted DNA was prepared 

for sequencing using library preparation method described in (Alberti et al., 2017) for viral 

samples collected during the TOPC campaign (section 4.2) and sequenced using the HiSeq 

2000 system (101 bp, paired end reads). Importantly, our sample collection and library 

preparation methods have known bias towards <0.2um dsDNA viruses (Roux et al., 2017). 

The TOPC samples were combined with the previously published viromes in (Brum et al., 
2015; Roux et al., 2016). Of the previously published dataset, the mesopelagic samples at 

(Tara stations 37, 39, 56, 68, 70, 76, 78, 111, 122, 137, 138) and the Southern Ocean 

samples (Tara stations 82_DCM, 84, 85) were sequenced deeper. These combined samples 
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comprise the GOV 2.0 dataset. The number of reads found in each sample can be found in 

Table S3.

Methods Details

Tara Oceans Polar Circle (TOPC) expedition sample processing and 
sequencing analyses—Due to different library preparation for the TOPC samples than 

the original Tara Oceans samples, the previously sequenced mesopelagic samples (Tara 
stations 68, 78, 111, 137) were prepped using the TOPC library preparation to determine if it 

impacted our ability to assemble viral populations. We found no significant difference 

between library preparations in terms of the number of viral genomes assembled and the 

average genome length (Fig. S7A & B). Additionally, to directly assess the impact of 

experimental variation between Tara Oceans and TOPC on our ecological interpretations, we 

applied hierarchical clustering on a Bray-Curtis dissimilarity matrix of our viromes and we 

found that all of the mesopelagic samples prepared using the TOPC protocols clustered with 

their respective samples prepared using the original Tara Ocean protocols, and the variation 

between them was far less than the ecological variation across our viromes (see distances in 

hierarchical clustering in Fig. S7D). For two surface samples (Tara Stations 100 and 102), 

we also re-prepped the DNA using the DNA SMART ChIP-Seq kit which allows us to catch 

ssDNA in the library preparation (Takara) and further sequenced these two samples using 

the HiSeq 2000 system.

While the Tara Oceans and Malaspina expeditions used the same sampling and storage 

approaches (described in Roux et al., 2016), the sequencing reads were longer for the latter 

(101 bp for Tara and 151 bp for Malaspina). Given this, we have performed further analyses 

to evaluate whether the contribution of this experimental method variation surpasses the 

ecological variation presented in this study or not. These analyses, which are further 

described below, showed that ecological variation much better explained the data than 

experimental methods. To evaluate this, we compared the deep ocean samples collected from 

the Tara Oceans and Malaspina expeditions to assess their power to predict the correct 

ecological zone (mesopelagic or bathypelagic) based on the depth of collection (ecological 

variation) and the sequencing read length (experimental variation). Using three different 

metrics, namely the r2 value in a univariate regression analysis, the bayesian information 

criterion (BIC) of such constructed univariate model, and the p-value associated with 

different components in a multivariate regression analysis, we found that the depth of 

collection, rather than the experimental variation, best predicts the ecological zone (higher 

r2), with a better model fit (lower BIC), and lower p-value (Fig. S7C). Additionally, we have 

one Malaspina sample from the mesopelagic ecological zone (the rest are Tara samples), and 

there is no significant difference between the Malaspina sample and Tara samples in the 

mesopelagic (Fig. S3C and D). Together these findings demonstrate that the differences 

between the samples collected during the different expeditions are predominantly the result 

of ecology and community structure rather than experimental artifact.

All the remaining STAR Methods we used are quantifications and statistical analyses. All 

the details related to these STAR Methods are therefore provided in the following section, 

Quantification and Statistical Analyses
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Quantification and Statistical Analyses

Viral contig assembly, identification, and dereplication—All samples in the GOV 

2.0 dataset (Roux et al., 2016) as well as the previously sequenced TOPC library-prepped 

mesopelagic samples and the DNA SMART ChIP-Seq kit surface samples were individually 

assembled using metaSPAdes 3.11.1 (Nurk et al., 2017). Prior to assembly, Malaspina 
samples from GOV 2.0 were further quality controlled. Briefly, adaptors and Phix174 reads 

were removed and reads were trimmed using bbduk.sh (https://jgi.doe.gov/data-and-tools/

bbtools/; minlength=30 qtrim=rl maq=20 maxns=0 trimq=14 qtrim=rl). Following assembly, 

contigs ≥1.5kb were piped through VirSorter (Roux et al., 2015) and VirFinder (Ren et al., 
2017) and those that mapped to the human, cat or dog genomes were removed. Contigs ≥5kb 

or ≥1.5kb and circular that were sorted as VirSorter categories 1–6 and/or VirFinder score 

≥0.7 and p <0.05 were pulled for further investigation. Of these contigs, those sorted as 

VirSorter categories 1 and 2, VirFinder score ≥0.9 and p <0.05 or were identified as viral by 

both VirSorter (categories 1–6) and VirFinder (score ≥0.7 and p <0.05) were classified as 

viral. The remaining contigs were run through CAT (Cambuy et al., 2016) and those with 

<40% (based on an average gene size of 1000) of the genome classified as bacterial, 

archaeal, or eukaryotic were considered viral. In total, 848,507 viral contigs were identified. 

Viral contigs were grouped into populations if they shared ≥95% nucleotide identity across 

≥80% of the genome (sensu Brum et al., 2015) using nucmer (Kurtz et al., 2004). This 

resulted in 488,130 total viral populations found in GOV 2.0 (see Table S5 for VirSorter, 

VirFinder, and CAT results), of which 195,728 were ≥10kb.

Viral taxonomy—For each viral population, ORFs were called using Prodigal (Hyatt et al., 
2010) and the resulting protein sequences were used as input for vConTACT2 (Jang et al., in 
press 2018) and for blastp. Viral populations represented by contigs >10kb were clustered 

with Viral RefSeq release 85 viral genomes using vConTACT2. Those that clustered with a 

virus from RefSeq based on amino acid homology based on diamond (Buchfink et al., 2015) 

alignments were able to be assigned to a known viral taxonomic genus and family. For GOV 

2.0 viral populations that could not be assigned taxonomy or were <10kb, family level 

taxonomy was assigned using a majority-rules approach, where if >50% of a genome’s 

proteins were assigned to the same viral family using a blastp bitscore ≥50 with a Viral 

RefSeq virus, it was considered part of that viral family.

Viral population boundaries—To determine if our viral populations had discrete 

sequence boundaries, all reads across the GOV 2.0 dataset (excluding the Tara stations 68, 

78, 111, 137 prepped using the TOPC library preparation methods and the DNA SMART 

ChIP-Seq kit prepped libraries) were pooled and mapped non-deterministically to our viral 

populations using the ‘very-sensitive-local’ setting in bowtie2 (Langmead & Salzberg, 

2012). The percent nucleotide identity (% ID) of each mapped read and the positions in the 

genome where the read mapped were determined. The frequency of reads mapping at a 

specific % IDs were weighted based on the length of each read mapped across the genomes. 

Frequencies of reads mapping at specific % IDs were smoothed using Loess smooth 

functions (span = 1 to be more permissive of lower % ID reads) to create read frequency 

histograms (% ID vs. frequency). To determine break in the distribution of read frequencies 
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between the different % IDs, Euclidean distances calculated were calculated between % ID 

frequencies and then hierarchically clustered in R.

Calculating viral population relative abundances, average read depths, and 
population ranks—To calculate the relative abundances of the different viral populations 

in each sample, reads from each GOV 2.0 virome were first non-deterministically mapped to 

the GOV 2.0 viral population genomes using bowtie2. BamM (https://github.com/

ecogenomics/BamM) was used to remove reads that mapped at <95% nucleotide identity to 

the contigs, bedtools genomecov (Quinlan & Hall, 2010) was used to determine how many 

positions across each genome were covered by reads, and custom Perl scripts were used to 

further filter out contigs without enough coverage across the length of the contig. For 

downstream macrodiversity calculations, contigs ≥5kb in length that had <5kb coverage or 

less than the total length of the contig covered for contigs <5kb were removed. For 

downstream microdiversity calculations, all contigs with <70% of the contig covered were 

removed. BamM was used to calculate the average read depth (‘tpmean’ -minus the top and 

bottom 10% depths) across each contig. For the macrodiversity calculations, the average 

read depth was used as a proxy for abundance and normalized by total read number per 

metagenome to allow for sample-to-sample comparison. The rank abundance of all the viral 

populations was calculated using the normalized abundances and the ‘rankabundance’ in the 

BiodiversityR R package.

Subsampling reads—Unequal sequencing depth can have large impacts on diversity 

measurements, specifically α-diversity measurements (Lemos et al., 2011). Due to 5x more 

sequencing depth in TOPC samples and the deeply sequenced mesopelagic and Southern 

Ocean samples (Table S3), all viromes in the GOV 2.0 dataset were randomly subsampled 

without replacement to 20M reads for Tara or 10M reads for Malaspina (as many Malaspina 
samples were <20M reads and there was no significant difference between the 10M and 

20M reads assemblies; p = 1) using reformat.sh from bbtools suite (https://sourceforge.net/

projects/bbmap/). The subsampled read libraries were assembled using metaSPAdes 3.11.1. 

Contigs ≥1.5kb that shared ≥95% nucleotide identity across ≥80% of the genome with the 

488,130 viral populations in GOV 2.0 were pulled out and grouped into populations to be 

used as the subsampled GOV 2.0 viral populations. In total, there were 46,699 viral 

populations. Relative abundances were calculated per sample as aforementioned for 

macrodiversity calculations, but using the subsampled GOV 2.0 viral populations and the 

subsampled reads.

Macrodiversity calculations—The macrodiversity α- (Shannon’s H) and β- (Bray-

Curtis dissimilarity) diversity statistics were performed using vegan in R (Dixon, 2003). The 

α-diversity calculations were based on the relative abundances produced from the 

subsampled reads. Loess smooth plots with 95% confidence windows in ggplot2 in R were 

used to look at changes in Shannon’s H across latitude (Fig. 7A) and depth (Fig. 7F). For the 

β-diversity, both the subsampled and the total reads abundances were used to look at 

community structure (Fig. S3). Principal Coordinate analysis (function capscale of vegan 

package with no constraints applied) and NMDS analysis (function metaMDS; K=2 and 

trymax=100) were used as the ordination methods on the Bray-Curtis dissimilarity matrices 
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from both the subsampled and total reads calculated from GOV 2.0 (function vegdist; 

method “bray”) after a cube root transformation (function nthroot; n=3). The ecological 

zones that emerged were verified using a permanova test (function “adonis”) and the 

confidence intervals were plotted using function “ordiellipse” at the specified confidence 

limits (95% and 97.5%) using the standard deviation method. There were no significant 

differences in clustering between the subsampled and all reads Bray-Curtis dissimilarity 

PCoA plots (Fig. S3). Hierarchical clustering (function pvclust; method.dist=“cor” and 

method.hclust=“average”) was conducted on the same Bray-Curtis dissimilarity matrices 

using 1000 bootstrap iterations and only the approximately unbiased (AU) bootstrap values 

were reported. The heatmaps were generated using the heatmap3 package with appropriate 

rotations of the branches in the dendrograms. Samples that did not cluster with their 

ecological zone (Tara mesopelagic stations 72, 85, and 102 and Tara surface station 155) 

were considered outliers and removed from further analyses (Fig. S3A & C).

Microdiversity calculations—Viral populations with an average read depth of ≥10x 

across 70% of their representative contig in at least one sample in the GOV 2.0 dataset were 

flagged for microdiversity analyses. We used 10x as the minimum coverage because 

population genetic statistics were found to be relatively consistent down to 10x based on 

previous downsampling coverage analyses (Schloissnig et al., 2013). BAM files containing 

reads mapping at ≥95% nucleotide identity were filtered for just the flagged viral 

populations. Samtools mpileup and bcftools were used to call single nucleotide variants 

(SNVs) across these populations. SNV calls with a quality call > 30 threshold were kept. 

Coverage for each allele for each SNV locus was summed across all the metagenomes. For 

each SNV locus, the consensus allele was re-verified and those with alternative alleles that 

had a frequency >1% (1000 Genomes Project Consortium, 2012), the classical definition of 

a polymorphism, and supported by at least 4 reads were considered SNP loci (Schloissnig et 
al., 2013). Nucleotide diversity (π) per genome were calculated using equation from 

(Schloissnig et al., 2013). Due to the variable coverage across the genome, coverage was 

randomly downsampled to 10x coverage per locus in the genome. For the downsampling, if 

there was not the target 10x coverage for the locus, all of the alleles were sampled. 

Nucleotide diversity (π) was calculated for each genome with an average read depth ≥10x 

across 70% of their contig in each sample. For each sample, π values of 100 viral 

populations were randomly selected and averaged. This was repeated 1000x and the average 

of the all 1000 subsamplings was used as the final microdiversity value for each sample. 

Loess smooth plots with 95% confidence windows in ggplot2 in R were used to look at 

changes in average π across latitude (Fig. 7A) and depth (Fig. 7F).

Annotating Genes & Making Protein Clusters—Genes were annotated by translating 

the sequences into proteins and running a combination of reciprocal best blast hit analyses 

against the KEGG database (Kanehisa et al., 2002), and blast against the UniProt Reference 

Clusters database (Suzek et al., 2007), searching for matches against the InterPro protein 

signature database using InterProScan (Zdobnov et al., 2001), and running HMM searches 

against Pfams (Bateman et al., 2004). A diamond ‘blastall’ alignment search (Buchfink et 
al., 2015) of all the protein sequences was performed against all the protein sequence was 

performed and the protocol “Clustering similarity graphs encoded in BLAST results” with a 
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granularity of I=2 from the MCL website (https://micans.org/mcl/; Enright et al., 2002) was 

used to create protein clusters.

Selection Analyses—Natural selection (pN/pS) was calculated using the method from 

(Schloissnig et al., 2013). The pN/pS method compares the expected ratio of non-

synonymous and synonymous substitutions based on a uniform model of occurrence of 

mutations across the genome with the observed ratio of non-synonymous and synonymous 

substitutions. The original method treats each SNP locus as independent from each other. 

Thus, if two SNPs occur in the same codon, the alternate codon produced from each SNP 

would be considered in the pN/pS calculation. Thus, if two SNPs occur in one codon, the 

effect of the SNPs could potentially cancel each other out or amplify a non-synonymous 

signal leading to false positive selection calls. In order to minimize this bias, SNPs found 

within the same codon in the same gene were tested for linkage in each metagenome. If SNP 

alleles from loci within the same codon had depth coverage within 15% of each other within 

each metagenome, they were considered linked in that sample.

For each codon with SNP loci in a gene, the minimum coverage was identified based on the 

lowest read depth coverage among the three base pair position. The initial number of the 

consensus codon was determined based on the lowest coverage of the consensus alleles at 

the SNP locus or loci if linked. The initial numbers of potential alternate codons was based 

on the coverage of the alternate allele at that position or the lowest coverage between two 

linked SNPs. The final coverage of the each codon per SNP locus was calculated by taking 

the rounded down number of the product of the initial number x (initial number/ minimum 

coverage for the codon). These codons then subsampled down to 10x. The number of 

observed non-synonymous and synonymous substitutions were counted and pN/pS was 

calculated. Genes were considered under positive selection if pN/pS was >1.

Drivers of Macro- and Micro-diversity—Regression analysis between the first 

coordinate of the PCoA (Fig. 5A) and available temperature measurements was conducted 

using the lm function in R. The environmental variables were fitted to the first two 

dimensions of the PCoA using a generalized additive model (function envfit; 

permutations=9999 and na.rm = TRUE). Then, they were correlated with all the PCoA 

dimensions using a mantel test (function mantel; permutations=9999 and method=“spear”) 

after scaling (function scale) and calculating their distance matrices (function vegdist; 

method “euclid” and na.rm = TRUE). Finally, they were correlated with Shannon’s H and π 
using Pearson’s correlation (function cor; use=“pairwise.complete.obs”) after removing 

Shannon’s H outliers based on a boxplot analysis (Fig. S4). Both Pearson’s and Spearman’s 

correlations are provided in (Table S7).

Subsampling macro- and micro- diversity—Due to unequal sampling across each 

ecological zone, we chose to normalize the number of samples between each ecological 

zone by subsampling the down to lowest zone sample size (ANT; n = 5). Shannon’s H 
outliers were not included in the subsampling. Five samples within each zone were 

randomly subsampled without replacement and their macro- and micro- diversity values 

averaged, respectively. We subsampled 1000x and plotted the averages and assessed for 
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significant differences using Mann-Whitney U-tests in ggboxplot from the R package 

ggpubr (Fig. 4B).

Classifying multi-zonal, regional, and local viral populations—To determine 

geographic range, viral populations were evaluated for their distributions across the five 

ecological zones and plotted using the VennDiagram package in R (Fig. 6A). If present in ≥1 

sample in more than one ecological zone, it was considered multi-zonal (58% GOV 2.0 viral 

populations). If present only in samples found within a single zone, it was considered zone-

specific (48% GOV 2.0 viral populations). Zone-specific viral populations were further 

divided into regional (≥2 samples within a zone) and local (only 1 sample within a zone). 

The proportion of multi-zonal, regional, and local viral populations found across each zone 

(Fig. 6B) and across each station (Fig. S6) were calculated by dividing the number of each 

type by the total number of viral populations found across a zone or station, respectively. To 

assess the impact of geographic range on microdiversity per zone, stations were randomly 

subsampled without replacement as described above. Within each sample, π values of 50, 

100, and 20 viral populations of each geographic distribution (multi-zonal, regional, and 

local, respectively) were randomly selected and averaged. All the viral populations with a 

geographic range were sampled and averaged in samples that lacked enough deeply-

sequenced viral populations with particular geographic range. This was repeated 1000x and 

the averages plotted and assessed for significant differences using Mann-Whitney U-tests in 

ggboxplot from the R package ggpubr (Fig. 6C).

Comparing ARC-H and ARC-L—The ARC-H and ARC-L regions were defined based 

on their biogeography; the ARC-H stations were located in the Pacific Arctic region, the 

Arctic Archipelago, and the Davis-Baffin Bay, in addition to one station (Station 189) in the 

Kara-Laptev sea, which was separated by a land mass from the rest of the stations in the 

same area (Fig. 7D). The ARC-L stations were located in the Kara-Laptev Sea (except 

Station 189), the Barents Sea, and subpolar areas (stations 155 and 210). The departure from 

the dissolved N:P stoichiometry in the Redfield ratio (N*) was calculated as in (Tremblay et 
al., 2015) to represent the deficit in dissolved inorganic nitrogen (DIN) in the ratio and as a 

geochemical tracer of pacific and atlantic water masses. Macro- and micro- diversity values 

for each station in ARC-H and ARC-L were plotted and assessed for significant differences 

using Mann-Whitney U-tests in ggboxplot from the R package ggpubr (Fig. 7E).

Comparing GOV to GOV 2.0—Viral populations assembled in the GOV (Roux et al., 
2016) were compared to the GOV 2.0 viral populations (Fig. 1B) using blastn. Unbinned 

GOV viral populations with a nucleotide alignment to a GOV 2.0 viral populations with 

≥95% nucleotide identity and an alignment length ≥50% the length were considered present 

in the GOV 2.0. These results were plotted in a venn diagram using the VennDiagram 

package in R. The frequency of contig lengths of viral populations that were shared across 

both samples were plotted using ggplot2 (function “geom_histogram”; binwidth =5000).

Calculating 16S OTU Macrodiversity—Previously published 16S OTU data were taken 

from (Logares et al., 2014). The macrodiversity α- (Shannon’s H) statistics were performed 

using vegan in R (Dixon, 2003). Loess smooth plots with 95% confidence windows in 
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ggplot2 in R were used to look at changes in bacterial Shannon’s H down the depth gradient. 

Differences between surface, deep chlorophyll maximum, and mesopelagic bacterial 

samples were compared using Mann-Whitney U-tests and plotted in ggboxplot from the R 

package ggpubr. Finally, viral microdiversity was correlated with bacterial Shannon’s H 
using Pearson’s correlation (function cor; use=“pairwise.complete.obs”) and a linear 

regression (Fig. S6D).

Impact of the coast, depth, and seasons—GOV 2.0 samples are largely open ocean 

samples. Even though the arctic samples were more coastal, we didn’t observe any 

significant coastal impact on the global macrodiversity (Pearson’s r = −0.25; Bonferroni-

corrected p-value = 0.15) and microdiversity (Pearson’s r = 0.11; p-value = 0.23) levels (Fig. 

4C). Although nitrate and phosphate levels generally increase with depth, we observed 

higher negative correlations and significantly lower p-values for these nutrients with 

macrodiversity levels than between depth and macrodiversity (Fig. 4C) which suggests an 

impact of nutrients on viral diversity via primary production (Fig. 5C). Additionally, since 

the sampling was largely at discrete depth layers with different densities in the TT region 

(epipelagic, mesopelagic, and bathypelagic), rather than sampling gradients, we discerned a 

clearer signal for the separation between these ecological zones (Fig. 4A). On the other 

hand, all the arctic epipelagic and mesopelagic samples fell within the same ecological zone 

due to the absence of a pycnocline in this area (Fig. 4A). Finally, the circumnavigation of the 

Arctic Ocean spanned multiple seasons (spring, summer, and fall). Based on our previous 

observation from a time-series data in a sub-arctic system (Hurwitz & Sullivan, 2013), our 

viral macrodiversity is expected to be lowest during the spring and summer and increase 

towards the winter season. However, our calculated N* values are not dependant on the 

season and represent the largest magnitude of change among all of the environmental 

variables that correlated with macrodiversity between the ARC-H and ARC-L regions.

Assessment of microbial contamination—To quantifying microbial contamination 

across our samples, we screened our metagenomic reads using singleM (github.com/wwood/

singlem) for 16S sequences using the dedicated 16S SingleM package. We found that our 

viromes are exceptionally clean. Specifically, the number of 16S sequences in our samples 

ranged from 0–40 per million reads (Table S3), and hence the samples are considered to 

have “likely negligible bacterial contamination” according to the metric proposed by authors 

evaluating such signals in published viromes (threshold was 200 16S sequences per million; 

Roux et al., 2013). In spite of our viromes being exceptionally clean, we sought to evaluate 

the impact of any variation in 16S, and hence bacterial contamination, however small, on our 

findings. We found that even though microbial contamination increases with depth (most 

probably due to the decrease in cell size; linear regression r2 = 0.89), this increase was 

driven mainly by the bathypelagic samples. Briefly, the average contamination in BATHY 

was 28.7 per million reads (standard deviation = 6.8) as compared to the rest of the samples 

(average contamination = 1.7 per million reads and standard deviation = 2). These 

bathypelagic samples were not included in any of the ecological driver analyses due to the 

unavailability of the environmental data to us. Further, it is clear that our estimates of 

diversity were not influenced by the minor variations in the negligible contamination in our 

viroomes as a linear regression between Shannon’s H and the number of 16S reads from 
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deep ocean samples resulted in a negligible r2 value (0.06). These data (used for conducting 

the regression analysis) represent a large range of diversity (3.3–7.8) and the full range of 

contamination (0–40), but avoid the convolution from the ecological difference between the 

surface and deep ocean layers. Thus, we conclude that the diversity observations we make in 

this study are driven by ecological variation far greater than microbial contamination.

Data and Software Availability

Code availability—Scripts used in this manuscript are available on the Sullivan laboratory 

bitbucket under GOV 2.0.

Data availability—All raw reads are available through ENA (Tara Oceans and TOPC) or 

IMG (Malapsina) using the identifiers listed in Table S3. Processed data are available 

through iVirus, including all assembled contigs, viral populations and genes.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Metagenomic assembly of 145 marine viromes uncovered 195,728 viral 

populations

• Read mapping revealed discrete sequence boundaries among >99% viral 

populations

• Viral communities separated into 5 distinct ecological zones in the global 

ocean

• Viral macro- and micro-diversity did not follow the latitudinal diversity 

gradient
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Fig. 1. The Global Ocean Viromes 2.0.
(A) Arctic projection of the global ocean highlighting the new sampling stations of viromes 

in the GOV 2.0 dataset. Datasets from non-arctic samples were previously published in 

(Brum et al., 2015; Roux et al., 2016). (B) Histograms of the average assembled contig 

lengths for viral populations >10 kb shared between GOV and GOV 2.0. B-inset. More than 

92% of the unbinned GOV viral populations were reassembled and identified in GOV 2.0 

>10 kb populations. (C) Pie charts showing how many of the 488,130 total viral populations 

comprising GOV 2.0 can be annotated and, of those, their viral family level taxonomy. (D) 
Barplot showing the host affiliations for each viral population at the domain level.
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Fig. 2. GOV 2.0 viral population have discrete population boundaries.
(A) Barplots showing the read mapping results for the most abundant viral population >10kb 

in length for each of the top four viral families. Despite differences in read boundaries across 

the representative viral populations, there is no difference in the average read boundaries 

across the different viral families. (B) Histogram showing the read distribution frequency 

break (i.e. read boundary) between spuriously mapped reads and legitimate reads mapping to 

the genome. (C) Histograms showing the average percent identity of reads mapped to each 

genome after removing spuriously mapped reads.
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Fig. 3. Ecological levels of organization.
Schematic showing the different ecological levels of organization studied in this paper.
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Fig. 4. Viral communities partition into five ecological zones with different macro- and micro- 
diversity levels.
(A) Principal coordinate analysis (PCoA) of a Bray-Curtis dissimilarity matrix calculated 

from GOV 2.0. Analyses show that viromes significantly (Permanova p = 0.001) structure 

into five distinct global ecological zones: ARC, ANT, BATHY, TT-EPI, and TT-MES zones. 

Ellipses in the PCoA plot are drawn around the centroids of each group at 95% (inner) and 

97.5% (outer) confidence intervals. Four outlier viromes that did not cluster with their 

ecological zones were removed (Fig. S3A) and all the sequencing reads were used (see Fig. 

S3B and Methods). (B – right) Scatterplots showing correlations between macro- 
(Shannon’s H’) and micro- (average π for viral populations with ≥ 10x median read depth 

coverage; see Methods) diversity values for each sample across GOV 2.0. The larger circles 

represent the average per zone. (B – left) Boxplots showing median and quartiles of average 

microdiversity per ecological zone. (B – bottom) Boxplots showing median and quartiles of 

macrodiversity for each ecological zone. Zonal samples were randomly downsampled to n = 

5 to account for zone sampling difference. All pairwise comparisons shown were statistically 

significant (p<0.01) using two-tailed Mann-Whitney U-tests. (C) Positive (blue) and 

negative (red) Pearson’s correlation results comparing macro- (upper) and micro- (lower) 

diversity with different biogeographical and biogeochemical parameters at the global scale 

(see Fig. S3E, Table S3 for all abbreviations, and Methods). The significance of the 

correlations is indicated by the size of the black circles on top of the bars, and the variables 

on the x-axis are ordered from the strongest to the weakest correlation with macrodiversity 

(except for the top four variables correlating with microdiversity for readability).

Gregory et al. Page 31

Cell. Author manuscript; available in PMC 2020 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Ecological drivers of global viral macrodiversity.
(A) Regression analysis between the first coordinate of a PCoA (Fig. 4A) and temperature 

showed that samples were separated by their local temperatures with an r2 of 0.82. (B) 
Potential ecological drivers & predictors of beta-diversity across GOV 2.0 for the first two 

dimensions (Goodness of fit r2 using a generalized additive model) and across all 

dimensions (Mantel test based on Spearman’s correlation). Temperature was uniformly 

reported as the best predictor of viral beta-diversity globally. (C) Regression analysis 

between viral macrodiversity at the deep chlorophyll maximum (DCM) layer and areal 

chlorophyll a concentration (after cube transformation) showed that the negative correlation 

between viral macrodiversity and nutrients (Fig. 4C) is mediated (at least partially) by 

primary productivity. The Shannon’s H outlier 32_DCM (Fig. S3) and a chlorophyll a 

concentration outlier (173_DCM; Fig. 5D) have been excluded from the regression analysis. 

(D) Boxplot analysis of areal chlorophyll a concentrations showing a single outlier 

concentration that fell above the fourth quantile of the data points (function geom_boxplot 

of ggplot).
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Fig. 6. Size of geographic range positively correlates with microdiversity.
(A) Venn diagram showing the number of viral populations found only in one zone (zone-

specific) and those that are shared between and among the five ecological zones (multi-

zonal). (B) Stacked barplots showing the number of multi-zonal, regional, and local viral 

populations found within the species pool of each ecological zone. (C) Boxplots showing 

median and quartiles of microdiversity (average π for viral populations with ≥ 10x median 

read depth coverage) per populations found within each zone defined as multi-zonal, 

regional, or local. Statistics were the same as in Fig. 2.
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Fig. 7. Viral macro- and micro- diversity global biodiversity trends.
(A) Loess smooth plots showing the latitudinal distributions of macro- and micro-diversity. 

(B & C) Equirectangular projections of the globe showing macro- and micro-diversity levels 

within each sample, respectively, across the global ocean. Samples collected at different 

depths from the same latitude and longitude are overlaid and the colors representing their 

macro- and micro- diversity values are merged. (D) Arctic projection of the global ocean 

showing the geographical division between ARC-H and ARC-L stations. The patterns are 

largely concordant with the Arctic division by climatology-derived N*. While we did sample 

across different seasons, the calculated N* values are not dependent on the season (see 

impact of the coast, depth, and seasons in Methods). (E) Boxplots showing median and 

quartiles of macro- (left) and micro-(right) diversity of the ARC-H and ARC-L regions. 

Statistics were the same as in Fig. 2. (F) Loess smooth plots showing the depth distributions 

of macro- and micro- population diversity. On all the smooth plots, the line represents the 
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Loess best fit, while the lighter band corresponds to the 95% confidence window of the fit. 

Abbreviations: N*, the departure from dissolved N:P stoichiometry in the Redfield ratio and 

a geochemical tracer of Pacific and Atlantic water mass (see Methods).
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Key Resources Table

Reagent or Resource Source Identifier(s)

Sequencing Reagents and Kits

NEBNext DNA Sample 
Prep Master Mix

New England Biolabs, Ipswich, MA Cat n° E6040S

NEXTflex PCR free 
barcodes

Bioo Scientific, Austin, TX Cat n° NOVA-514110

Kapa Hifi Hot Start 
Library Amplification kit

KAPA Biosystems, Wilmington, MA Cat n° KK2611

DNA SMART ChIPSeq 
Kit

Takara Bio USA, Mountain View, CA Cat N° 634865

Deposited Data

Tara Oceans Viromes Raw 
Reads

Brum et al., 2015; Roux et al., 2016 European Nucleotide Archive (ENA) - see Table S3 for details

Tara Oceans Polar Circle 
Raw Reads

This paper European Nucleotide Archive (ENA) - see Table S3 for details

Malaspania Viromes Raw 
Reads

Roux et al., 2016 Integrated Microbial Genomes (IMG) with Joint Genome Institute - see 
Table S3 for details

16S rRNA gene Tara 
Oceans data

Logares et al., 2014 Supplementary materials in Logares et al., 2014

Biogeographical and 
Physicochemical data

Pesant et al., 2015 PANGAEA (Data Publisher for Earth & Environmental Science) - see 
Table S3 for details

N* Arctic Data This paper Table S3

Software and Algorithms

nucmer (MUMmer3.23) Kurtz et al., 2004 https://sourceforge.net/projects/mummer/

bbmap 37.57 https://jgi.doe.gov/data-and-tools/bbtools/ https://jgi.doe.gov/data-and-tools/bbtools/

metaSPAdes 3.11 Nurk et al.,2017 https://github.com/ablab/spades/releases

prodigal 2.6.1 Hyatt et al., 2010 https://github.com/hyattpd/Prodigal

diamond Buchfink et al.,2014 https://github.com/bbuchfink/diamond

VirSorter v2 Roux et al.,2015 https://github.com/simroux/VirSorter

VirFinder Ren et al., 2017 https://github.com/jessieren/VirFinder

CAT Cambuy et al.,2016 https://github.com/dutilh/CAT

blast 2.4.0+ ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/ ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

vConTACT2 Jang et al., in press 2018 https://bitbucket.org/MAVERICLab/vcontact2

bowtie2 Langmead & Salzberg, 2012 https://github.com/BenLangmead/bowtie2

BamM https://github.com/Ecogenomics/BamM https://github.com/Ecogenomics/BamM

Bedtools Quinlan & Hall, 2010 https://github.com/arq5x/bedtools2/blob/master/docs/content/overview.rst

Vegan (R package) Dixon, 2003 https://cran.r-project.org/web/packages/vegan/index.html

BiodiversityR (R package) https://cran.r-project.org/web/packages/BiodiversityR/index.html https://cran.r-project.org/web/packages/BiodiversityR/index.html

heatmap3 (R package) https://cran.r-project.org/web/packages/heatmap3/index.html https://cran.r-project.org/web/packages/heatmap3/index.html

ggplot2 (R package) https://cran.r-project.org/web/packages/ggplot2/index.html https://cran.r-project.org/web/packages/ggplot2/index.html

ggpubr (R package) https://cran.r-project.org/web/packages/ggpubr/index.html https://cran.r-project.org/web/packages/ggpubr/index.html

Cell. Author manuscript; available in PMC 2020 May 16.

https://sourceforge.net/projects/mummer/
https://jgi.doe.gov/data-and-tools/bbtools/
https://jgi.doe.gov/data-and-tools/bbtools/
https://github.com/ablab/spades/releases
https://github.com/hyattpd/Prodigal
https://github.com/bbuchfink/diamond
https://github.com/simroux/VirSorter
https://github.com/jessieren/VirFinder
https://github.com/dutilh/CAT
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
https://bitbucket.org/MAVERICLab/vcontact2
https://github.com/BenLangmead/bowtie2
https://github.com/Ecogenomics/BamM
https://github.com/Ecogenomics/BamM
https://github.com/arq5x/bedtools2/blob/master/docs/content/overview.rst
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/BiodiversityR/index.html
https://cran.r-project.org/web/packages/BiodiversityR/index.html
https://cran.r-project.org/web/packages/heatmap3/index.html
https://cran.r-project.org/web/packages/heatmap3/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggpubr/index.html
https://cran.r-project.org/web/packages/ggpubr/index.html

	Summary:
	ETOC summary
	Graphical Abstract
	Introduction:
	Results & Discussion:
	The dataset.
	Validating viral ‘population’ boundaries.
	Meta-community analysis reveals 5 ecological zones.
	Viral macro- and micro- diversity, and potential drivers, within and between ecological zones.
	Viral macro- and micro- diversity, and potential drivers, against classical ecological gradients.

	Conclusions:
	STAR Methods Text
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Tara Oceans Polar Circle (TOPC) expedition sample collection and virome creation

	Methods Details
	Tara Oceans Polar Circle (TOPC) expedition sample processing and sequencing analyses

	Quantification and Statistical Analyses
	Viral contig assembly, identification, and dereplication
	Viral taxonomy
	Viral population boundaries
	Calculating viral population relative abundances, average read depths, and population ranks
	Subsampling reads
	Macrodiversity calculations
	Microdiversity calculations
	Annotating Genes & Making Protein Clusters
	Selection Analyses
	Drivers of Macro- and Micro-diversity
	Subsampling macro- and micro- diversity
	Classifying multi-zonal, regional, and local viral populations
	Comparing ARC-H and ARC-L
	Comparing GOV to GOV 2.0
	Calculating 16S OTU Macrodiversity
	Impact of the coast, depth, and seasons
	Assessment of microbial contamination

	Data and Software Availability
	Code availability
	Data availability


	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Table T1

