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Abstract: This work considers the problem of modified portmanteau tests for testing the
adequacy of FARIMA models under the assumption that the errors are uncorrelated but not
necessarily independent (i.e. weak FARIMA). We first study the joint distribution of the
least squares estimator and the noise empirical autocovariances. We then derive the asymp-
totic distribution of residual empirical autocovariances and autocorrelations. We deduce the
asymptotic distribution of the Ljung-Box (or Box-Pierce) modified portmanteau statistics
for weak FARIMA models. We also propose another method based on a self-normalization
approach to test the adequacy of FARIMA models. Finally some simulation studies are pre-
sented to corroborate our theoretical work. An application to the Standard & Poor’s 500 and
Nikkei returns also illustrate the practical relevance of our theoretical results.
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1. Introduction

To model the long memory phenomenon, a widely used model is the fractional autoregressive
integrated moving average (FARIMA, for short) model (see for instance Granger and Joyeux (1980),
Fox and Taqqu (1986), Dahlhaus (1989), Hosking (1981), Beran et al. (2013), Palma (2007),
among others). This model plays an important role in many scientific disciplines and applied fields
such as hydrology, climatology, economics, finance, to name a few.

We consider a centered stationary process X := (Xt)t∈Z satisfying a FARIMA(p, d0, q) repre-
sentation of the form

a(L)(1 − L)d0Xt = b(L)ǫt , (1)

where d0 is the long memory parameter, L stands for the back-shift operator and a(L) = 1 −
∑p

i=1 aiL
i , respectively b(L) = 1 −∑q

i=1 biL
i , is the autoregressive, respectively the moving av-

erage, operator. These operators represent the short memory part of the model (by convention
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a0 = b0 = 1). In the standard situation ǫ := (ǫt)t∈Z is assumed to be a sequence of independent
and identically distributed (iid for short) random variables with zero mean and with a common
variance. In this standard framework, ǫ is said to be a strong white noise and the representation
(1) is called a strong FARIMA(p, d0, q) process. In contrast with this previous definition, the rep-
resentation (1) is said to be a weak FARIMA(p, d0, q) if the noise process ǫ is a weak white noise,
that is, if it satisfies

(A0): E(ǫt) = 0, Var (ǫt) = σ2
0 and Cov (ǫt , ǫt−h) = 0 for all t ∈ Z and all h 6= 0.

A strong white noise is obviously a weak white noise because independence entails uncorrelatedness.
Of course the converse is not true. The strong FARIMA model was introduced by Hosking (1981).
The particular strong FARIMA(0, d0, 0) process was discussed by Granger and Joyeux (1980). To
ensure the stationarity and the invertibility of the model defined by (1), we assume that 0 < d0 <
1/2 and all roots of a(z)b(z) = 0 are outside the unit disk (see Granger and Joyeux (1980) and
Hosking (1981) for details). It is also assumed that a(z) and b(z) have no common factors in order
to insure unique identifiability of the parameters.

The validity of the different steps of the traditional methodology of Box and Jenkins (identifi-
cation, estimation and validation) depends on the noise properties. After estimating the FARIMA
process, the next important step in the modeling consists in checking if the estimated model fits
satisfactorily the data. Thus, under the null hypothesis that the model has been correctly identified,
the residuals (ǫ̂t) are approximately a white noise. This adequacy checking step allows to validate or
invalidate the choice of the orders p and q. The choice of p and q is particularly important because
the number of parameters (p + q + 1) quickly increases with p and q, which entails statistical
difficulties. In particular, the selection of too large orders p and q may introduce terms that are
not necessarily relevant in the model. In other terms, overidentification generally leads to a loss of
precision in parameter estimation. Conversely, the selection of too small orders p and q causes loss
of some information, that can be detected by the correlation of the residuals.

Thus it is important to check the validity of a FARIMA(p, d0, q) model, for given orders p

and q. Based on the residual empirical autocorrelation, Box and Pierce (1970) have proposed a
goodness-of-fit test, the so-called portmanteau test, for strong ARMA models. The intuition behind
these portmanteau tests is that if a given time series model with iid innovation is appropriate for
the data at hand, the autocorrelations of the residuals ǫ̂t should be close to zero, which is the
theoretical value of the autocorrelations of ǫt (see Assumption (A0) below). A modification of
the test of Box and Pierce (1970) has been proposed by Ljung and Box (1978) which is nowadays
one of the most popular diagnostic checking tools in strong ARMA modeling of time series. A
modified portmanteau test statistic was proposed by Li and McLeod (1986) for checking the overall
significance of the residual autocorrelations of a strong FARIMA(p, d0, q) model. All these above
test statistics have been obtained under the iid assumption on the noise and they may be invalid
when the series is uncorrelated but dependent (see Romano and Thombs (1996), Francq et al.
(2005), Boubacar Maïnassara and Saussereau (2018), Zhu and Li (2015), Lobato et al. (2001),
Lobato et al. (2002), to name a few).

As mentioned above, the works on the portmanteau statistic are generally performed under
the assumption that the errors ǫt are independent (see for instance Li and McLeod (1986)). This
independence assumption is often considered too restrictive by practitioners. It precludes conditional
heteroscedasticity and/or other forms of nonlinearity (see Francq and Zakoïan (2005) for a review
on weak univariate ARMA models) which can not be generated by FARIMA models with iid noises.1

1 To cite few examples of nonlinear processes, let us mention: the generalized autoregressive conditional het-
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Relaxing this independence assumption allows to cover linear representations of general nonlinear
processes and to extend the range of application of the FARIMA models.

This paper is devoted to the problem of the validation step of weak FARIMA processes. For the
asymptotic theory of weak FARIMA model validation, recently Shao (2011) studied the diagnostic
checking for long memory time series models with nonparametric conditionally heteroscedastic
martingale difference errors. This author also generalized the test statistic based on the kernel-
based spectral proposed by Hong (1996) under weak assumptions on the innovation process. As
mentioned by the author, his work is no longer valid for d0 ∈ [1/4, 1/2[ (see Remark 3.3 in Shao
(2011)). Note also that Ling and Li (1997) have studied the Box and Pierce (1970) type test for
FARIMA-GARCH models by assuming a parametric form for the GARCH model.

To our knowledge, it does not exist any diagnostic checking methodology for FARIMA models
when the (possibly dependent) error is subject to unknown conditional heteroscedasticity. We think
that this is due to the difficulty that arises when one has to estimate the asymptotic covariance ma-
trix. In our paper, thanks to the asymptotic results obtained by Boubacar Maïnassara et al. (2019),
we are able to extend for weak FARIMA models the diagnostic checking methodology proposed by
Francq et al. (2005) as well as the self-normalized approach proposed by Boubacar Maïnassara and Saussereau
(2018). We strength the fact that, contrarily to Shao (2011), our results are valid for d0 ∈]0, 1/2[.

The paper is organized as follows. In Section 2, we recall the results on the least-squares estimator
asymptotic distribution of weak FARIMA models obtained by Boubacar Maïnassara et al. (2019).
In Section 3, a modified version of the portmanteau test is proposed thanks to the investigation
of the asymptotic distribution of the residual autocorrelations. Our first main result is stated
in Theorem 2. The second main result of this section is obtained in Theorem 7 by means of
a self-normalized approach. Two examples are also proposed in order to illustrate our results.
Some numerical illustrations are gathered in Section 4. They corroborate our theoretical work. An
application to the Standard & Poor’s 500 and Nikkei returns also illustrate the practical relevance
of our theoretical results. All our proofs are given in Section A and figures and tables are brought
together in Section 5.

2. Assumptions and estimation procedure

In this section, we recall the results on the least-squares estimator asymptotic distribution of weak
FARIMA models obtained by Boubacar Maïnassara et al. (2019) in order to have a self-containing
paper.

Let Θ∗ be the compact space

Θ∗ :=
{

(θ1, θ2, . . . , θp+q) ∈ R
p+q, where aθ(z) = 1−

p
∑

i=1

θiz
i , and bθ(z) = 1−

q
∑

j=1

θp+jz
j

have all their zeros outside the unit disk and have no zero in common
}

.

Denote by Θ the cartesian product Θ∗ × [d1, d2], where [d1, d2] ⊂ ]0, 1/2[ with d1 ≤ d0 ≤ d2.
The unknown parameter of interest θ0 = (a1, a2, . . . , ap , b1, b2, . . . , bq , d0)

′

is supposed to belong
to the parameter space Θ.

eroscedastic (GARCH) model (see Francq and Zakoïan (2010)), the self-exciting threshold autoregressive (SETAR),
the smooth transition autoregressive (STAR), the exponential autoregressive (EXPAR), the bilinear, the random
coefficient autoregressive (RCA), the functional autoregressive (FAR) (see Tong (1990) and Fan and Yao (2008),
for references on these nonlinear time series models).
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The fractional difference operator (1− L)d0 is defined, using the generalized binomial series, by

(1− L)d0 =
∑

j≥0

αj(d0)L
j ,

where for all j ≥ 0, αj(d0) = Γ (j−d0)/ {Γ (j + 1)Γ (−d0)} and Γ (·) is the Gamma function. Using
the Stirling formula we obtain that for large j , αj(d0) ∼ j−d0−1/Γ (−d0) (one refers to Beran et al.
(2013) for further details).

For all θ ∈ Θ we define (ǫt(θ))t∈Z as the second order stationary process which is the solution
of

ǫt(θ) =
∑

j≥0

αj(d)Xt−j −
p
∑

i=1

θi
∑

j≥0

αj(d)Xt−i−j +

q
∑

j=1

θp+jǫt−j(θ). (2)

Observe that, for all t ∈ Z, ǫt(θ0) = ǫt a.s. Given a realization X1, . . . ,Xn of length n, ǫt(θ) can
be approximated, for 0 < t ≤ n, by ǫ̃t(θ) defined recursively by

ǫ̃t(θ) =

t−1
∑

j=0

αj (d)Xt−j −
p
∑

i=1

θi

t−i−1
∑

j=0

αj (d)Xt−i−j +

q
∑

j=1

θp+j ǫ̃t−j(θ), (3)

with ǫ̃t(θ) = Xt = 0 if t ≤ 0.
As shown in Lemma 4 of Boubacar Maïnassara et al. (2019), these initial values are asymptot-

ically negligible uniformly in θ and in particular it holds that ǫt(θ) − ǫ̃t(θ) → 0 almost surely as
t → ∞. Thus the choice of the initial values has no influence on the asymptotic properties of the
model parameters estimator. Let Θ∗

δ denotes the compact set

Θ∗
δ =

{

θ ∈ R
p+q; the roots of the polynomials aθ(z) and bθ(z) have modulus ≥ 1 + δ

}

.

We define the set Θδ as the cartesian product of Θ∗
δ by [d1, d2], i.e. Θδ = Θ∗

δ × [d1, d2], where δ
is a strictly positive constant chosen such that θ0 belongs to Θδ.

The least square estimator is defined, almost-surely, by

θ̂n = argmin
θ∈Θδ

Qn(θ), where Qn(θ) =
1

n

n
∑

t=1

ǫ̃2t (θ). (4)

To ensure the strong consistency of the least square estimator, we assume as in Boubacar Maïnassara et al.
(2019) that the parametrization satisfies the following condition.

(A1): The process (ǫt)t∈Z is strictly stationary and ergodic.

The strong consistency of the estimator is obtained under the assumptions (A0) and (A1). Addi-
tional assumptions are required in order to establish the asymptotic normality of the least square
estimator. We assume that θ0 is not on the boundary of the parameter space Θ.

(A2): We have θ0 ∈
◦
Θ, where

◦
Θ denotes the interior of Θ.

The stationary process ǫ is not supposed to be an independent sequence. So one needs to control
its dependency by means of its strong mixing coefficients {αǫ(h)}h∈N defined by

αǫ (h) = sup
A∈F t

−∞
,B∈F∞

t+h

|P (A ∩ B)− P(A)P(B)| ,

where F t
−∞ = σ(ǫu , u ≤ t) and F∞

t+h = σ(ǫu, u ≥ t + h).
We shall need an integrability assumption on the moment of the noise ǫ and a summability

condition on the strong mixing coefficients (αǫ(k))k≥0.
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(A3): There exists an integer τ such that for some ν ∈]0, 1], we have E|ǫt |τ+ν < ∞ and
∑∞

h=0(h + 1)k−2 {αǫ(h)}
ν

k+ν < ∞ for k = 1, . . . , τ .

Note that (A3) implies the following weak assumption on the joint cumulants of the innovation
process ǫ (see Doukhan and León (1989), for more details).

(A3’): There exists an integer τ ≥ 2 such that Cτ :=
∑

i1,...,iτ−1∈Z
|cum(ǫ0, ǫi1 , . . . , ǫiτ−1)| < ∞ .

In the above expression, cum(ǫ0, ǫi1 , . . . , ǫiτ−1) denotes the τ−th order joint cumulant of the sta-
tionary process. Due to the fact that the ǫt ’s are centered, we notice that for fixed (i , j , k)

cum(ǫ0, ǫi , ǫj , ǫk) = E [ǫ0ǫiǫjǫk ]− E [ǫ0ǫi ]E [ǫjǫk ]− E [ǫ0ǫj ]E [ǫi ǫk ]− E [ǫ0ǫk ]E [ǫiǫj ] .

Assumption (A3) is a usual technical hypothesis which is useful when one proves the asymptotic
normality (see Francq and Zakoïan (1998) for example). Let us notice however that we impose
a stronger convergence speed for the mixing coefficients than in the works on weak ARMA pro-
cesses. This is due to the fact that the coefficients in the infinite AR or MA representation of
ǫt(θ) have no more exponential decay because of the fractional operator (see Subsection 6.1 in
Boubacar Maïnassara et al. (2019) for details and comments).

As mentioned before, Hypothesis (A3) implies (A3’) which is also a technical assumption usually
used in the fractional ARIMA processes framework (see for instance Shao (2010b, 2011)) or even
in an ARMA context (see Francq and Zakoïan (2007); Zhu and Li (2015)).

Under the assumptions (A0), (A1), (A2) and (A3) with τ = 4, Boubacar Maïnassara et al.
(2019) showed that θ̂n → θ0 a.s. as n → ∞ and

√
n(θ̂n − θ0) is asymptotically normal with mean

0 and covariance matrix Σθ̂ := J−1I J−1, where J = J(θ0) and I = I (θ0), with

I (θ) = lim
n→∞

Var

{√
n
∂

∂θ
On(θ)

}

and J(θ) = lim
n→∞

[

∂2

∂θi∂θj
On(θ)

]

a.s. where On(θ) =
1

n

n
∑

t=1

ǫ2t (θ).

Remind that the sequence (ǫt(θ))t∈Z is given by (2).

3. Diagnostic checking in weak FARIMA models

After the estimation phase, the next important step consists in checking if the estimated model
fits satisfactorily the data. In this section we derive the limiting distribution of the residual auto-
correlations and that of the portmanteau statistics (based on the standard and the self-normalized
approaches) in the framework of weak FARIMA models.

For t ≥ 1, let êt = ǫ̃t(θ̂n) be the least-square residuals. By (3) we notice that êt = 0 for t ≤ 0
and t > n. By (1) it holds that

êt =
t−1
∑

j=0

αj (d̂)X̂t−j −
p
∑

i=1

θ̂i

t−i−1
∑

j=0

αj (d̂)X̂t−i−j +

q
∑

j=1

θ̂p+j êt−j ,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.
For a fixed integer m ≥ 1 consider the vector of residual autocovariances

γ̂m = (γ̂(1), . . . , γ̂(m))′ where γ̂(h) =
1

n

n
∑

t=h+1

êt êt−h for 0 ≤ h < n.
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In the sequel we will also need the vector of the first m sample autocorrelations

ρ̂m = (ρ̂(1), . . . , ρ̂(m))′ where ρ̂(h) = γ̂(h)/γ̂(0).

Since the papers by Box and Pierce (1970) and Ljung and Box (1978), portmanteau tests have
been popular diagnostic checking tools in the ARMA modeling of time series. Based on the residual
empirical autocorrelations, their test statistics are defined respectively by

Qbp

m = n

m
∑

h=1

ρ̂2(h) and Qlb

m = n(n+ 2)

m
∑

h=1

ρ̂2(h)

n − h
. (5)

These statistics are usually used to test the null hypothesis

(H0): (Xt)t∈Z satisfies a FARIMA(p, d0, q) representation;

against the alternative

(H1): (Xt)t∈Z does not admit a FARIMA representation or admits a FARIMA(p
′

, d0, q
′

) represen-
tation with p

′

> p or q
′

> q.

These tests are very useful tools to check the global significance of the residual autocorrelations.

3.1. Asymptotic distribution of the residual autocorrelations

First of all, the mixing assumption (A3) will entail the asymptotic normality of the "empirical"
autocovariances

γm = (γ(1), . . . , γ(m))′ where γ(h) =
1

n

n
∑

t=h+1

ǫt ǫt−h for 0 ≤ h < n. (6)

It should be noted that γ(h) is not a computable statistic because it depends on the unobserved
innovations ǫt = ǫt(θ0). They are introduced as a device to facilitate future derivations. Let Ψm

be the m × (p + q + 1) matrix defined by

Ψm = E

















ǫt−1
...

ǫt−m







∂ǫt
∂θ′











. (7)

By a Taylor expansion of
√
nγ̂m, one should prove that (see Section A.3)

√
nγ̂m =

√
nγm +Ψm

√
n
(

θ̂n − θ0

)

+ oP(1), (8)

where Ψm is given in (7). We shall also prove (see Section A.3 again) that

√
nρ̂m =

√
n
γ̂m
σ2
ǫ

+ oP(1). (9)

Thus from (9) the asymptotic distribution of the residual autocorrelations
√
nρ̂m depends on the

distribution of γ̂m. In view of (8) the asymptotic distribution of the residual autocovariances
√
nγ̂m

will be obtained from the joint asymptotic behavior of
√
n(θ̂′n − θ

′

0, γ
′

m)
′

.
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In view of Theorem 1 in Boubacar Maïnassara et al. (2019) and (A2), we have almost surely

θ̂n → θ0 ∈
◦
Θ. Thus ∂Qn(θ̂n)/∂θ = 0 for sufficiently large n and a Taylor expansion gives

√
n
∂

∂θ
On(θ0) + J(θ0)

√
n(θ̂n − θ0) = oP(1). (10)

The equation (10) is proved in Boubacar Maïnassara et al. (2019) (see the proof of Theorem 2).
Consequently from (10) we have

√
n(θ̂n − θ0) = − 2√

n

n
∑

t=1

J−1(θ0)ǫt(θ0)
∂ǫt(θ0)

∂θ
+ oP (1) . (11)

For integers m,m′ ≥ 1, one needs the matrix Γm,m′ = [Γ (ℓ, ℓ
′

)]1≤ℓ≤m,1≤ℓ′≤m′ where

Γ (ℓ, ℓ
′

) =

∞
∑

h=−∞

E
[

ǫtǫt−ℓǫt−hǫt−h−ℓ
′

]

.

The existence of Γ (ℓ, ℓ
′

) will be justified in Lemma 3 of the appendix.

Proposition 1. Under the assumptions (A0), (A1), (A2) and (A3) with τ = 4, the random
vector

√
n

(

(

θ̂n − θ0

)′

, γ
′

m

)′

has a limiting centered normal distribution with covariance matrix

Ξ =





Σθ̂ Σθ̂,γm

Σ
′

θ̂,γm
Γm,m



 =
∞
∑

h=−∞

E

[

UtU
′

t−h

]

,

where from (6) and (11) we have

Ut =

(

U1t

U2t

)

=

(

−2J−1(θ0)ǫt(θ0)
∂
∂θ ǫt(θ0)

(ǫt−1, . . . , ǫt−m)
′

ǫt

)

. (12)

The proof of the proposition is given in Subsection A.2 of the appendix.
The following theorem which is an extension of the result given in Francq et al. (2005) provides

the limit distribution of the residual autocovariances and autocorrelations of weak FARIMA models.

Theorem 2. Under the assumptions of Proposition 1, we have

√
nγ̂m

D−→
n→∞

N (0,Σγ̂m) where Σγ̂m = Γm,m +ΨmΣθ̂Ψ
′

m +ΨmΣθ̂,γm
+ Σ

′

θ̂,γm
Ψ

′

m (13)

and √
nρ̂m

D−→
n→∞

N (0,Σρ̂m) where Σρ̂m =
1

σ4
ǫ

Σγ̂m . (14)

The detailed proof of this result is postponed to the Subsection A.3 of Appendix.

Remark 1. It is clear from Theorem 2 that for a given FARIMA(p, d0, q) model, the asymptotic
distribution of the residual autocorrelations depends only on the noise distribution through the
quantities Γ (ℓ, ℓ

′

) (which depends on the fourth-order structure of the noise). It is also worth
noting that this asymptotic distribution depends on the asymptotic normality of the least square
estimator of the FARIMA(p, d0, q) only through the matrix Σθ̂.
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Remark 2. In the standard strong FARIMA case, i.e. when (A1) is replaced by the assumption that
(ǫt) is iid, Boubacar Maïnassara et al. (2019) have showed in Remark 2 that I (θ0) = 2σ2

ǫ J(θ0).
Thus the asymptotic covariance matrix is then reduced as Σθ̂ = 2σ2

ǫ J
−1(θ0). In the strong case,

we also have: Γ (ℓ, ℓ′) = 0 when ℓ 6= ℓ′ and Γ (ℓ, ℓ) = σ4
ǫ for h = 0. Thus Γm,m is reduced as

Γm,m = σ4
ǫ Im, where Im denotes the m ×m identity matrix. Because Σθ̂ = 2σ2

ǫ J
−1(θ0) we obtain

that

Σθ̂,γm
= −2

∞
∑

h=−∞

E

{

ǫtJ
−1(θ0)

∂ǫt(θ0)

∂θ

}

















ǫt−1−h
...

ǫt−m−h






ǫt−h











′

= −
(

2σ2
ǫ J

−1(θ0)
)











E













ǫt−1
...

ǫt−m







∂ǫt(θ0)

∂θ′

















′

= −Σθ̂Ψ
′
m.

We denote by Σ s

γ̂m
and Σ s

ρ̂m
the asymptotic variances obtained respectively in (13) and (14) for

the strong FARIMA case. Thus we obtain, in the strong case, the following simpler expressions

Σ s

γ̂m = σ4
ǫ Im − 2σ2

ǫΨmJ
−1(θ0)Ψ

′
m and Σ s

ρ̂m = Im − 2

σ2
ǫ

ΨmJ
−1(θ0)Ψ

′
m,

which are the matrices obtained by Li and McLeod (1986).

To validate a FARIMA(p, d0, q) model, the most basic technique is to examine the autocorrela-
tion function of the residuals. Theorem 2 can be used to obtain asymptotic significance limits for
the residual autocorrelations. However, the asymptotic variance matrices Σγ̂m and Σρ̂m depend on
the unknown matrices Ξ , Ψm and the strictly positive scalar σ2

ǫ which need to be estimated. This
is the purpose of the following discussion.

3.2. Modified version of the portmanteau test

From Theorem 2 we can deduce the following result, which gives the limiting distribution of the
standard portmanteau statistics (5) under general assumptions on the innovation process of the
fitted FARIMA(p, d0, q) model.

Theorem 3. Under the assumptions of Theorem 2 and (H0), the statistics Qbp

m and Qlb

m defined
by (5) converge in distribution, as n → ∞, to

Zm(ξm) =
m
∑

k=1

ξk,mZ
2
k ,

where ξm = (ξ1,m, . . . , ξm,m)
′

is the vector of the eigenvalues of the matrix Σρ̂m = σ−4
ǫ Σγ̂m and

Z1, . . . ,Zm are independent N (0, 1) variables.

It is possible to evaluate the distribution of a quadratic form of a Gaussian vector by means of
the Imhof algorithm (see Imhof (1961)).

Remark 3. In view of remark 2 when m is large, Σ s

ρ̂m
≃ Im − 2σ−2

ǫ ΨmJ
−1(θ0)Ψ

′
m is close to a

projection matrix. Its eigenvalues are therefore equal to 0 and 1. The number of eigenvalues equal to
1 is Tr(Im−2σ−2

ǫ ΨmJ
−1(θ0)Ψ

′
m) = Tr(Im−(p+q+1)) = m−(p+q+1) and p+q+1 eigenvalues equal
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to 0, Tr(·) denotes the trace of a matrix. Therefore we retrieve the well-known result obtained by
Li and McLeod (1986). More precisely, under (H0) and in the strong FARIMA case, the asymptotic
distributions of the statistics Qbp

m and Qlb

m are approximated by a X 2
m−(p+q+1), where m > p+q+1

and X 2
k denotes the chi-squared distribution with k degrees of freedom. Theorem 3 shows that this

approximation is no longer valid in the framework of weak FARIMA(p, d , q) models and that the
asymptotic null distributions of the statistics Qbp

m and Qlb

m are more complicated.

The limit distribution Zm(ξm) depends on the nuisance parameter σ2
ǫ , the matrix Ψm and the

elements of Ξ . Therefore, the asymptotic distribution of the portmanteau statistics (5), under
weak assumptions on the noise, requires a computation of a consistent estimator of the asymptotic
covariance matrix Σρ̂m . The m× (p+q+1) matrix Ψm and the noise variance σ2

ǫ can be estimated
by its empirical counterpart. Thus we may use

Ψ̂m =
1

n

n
∑

t=1

{

(êt−1, . . . , êt−m)
′ ∂êt
∂θ′

}

and σ̂2
ǫ = γ̂(0) =

1

n

n
∑

t=1

ê2t .

A consistent estimator of Ξ is obtained by means of an autoregressive spectral estimator, as in
Boubacar Maïnassara et al. (2019) (see also Berk (1974), Boubacar Mainassara et al. (2012) and
den Haan and Levin (1997), to name a few for a more comprehensive exposition of this method).
In view of (12), the matrix Ξ can be interpreted as 2π times the spectral density of the stationary
process (Ut)t∈Z = ((U

′

1t ,U
′

2t)
′

)t∈Z evaluated at frequency 0 (see p. 459 of Brockwell and Davis
(1991)). So this estimation is based on the following expression

Ξ = ∆−1(1)Σv∆
′−1(1)

when (Ut)t∈Z satisfies an AR(∞) representation of the form

∆(L)Ut := Ut −
∞
∑

k=1

∆kUt−k = vt , (15)

such that
∑∞

k=1 ‖∆k‖ < ∞ and det {∆(z)} 6= 0 for all |z | ≤ 1 and where (vt)t∈Z is a (p+q+1+
m)-variate weak white noise with variance matrix Σv . It is proved in Boubacar Maïnassara (2009);
Lütkepohl (2005) that one may find a constant K and 0 < ρ < 1 such that

‖∆k‖ ≤ K ρk . (16)

Since Ut is unobservable, we introduce Ût ∈ R
p+q+1+m obtained by replacing ǫt(θ0) by ǫ̃t(θ̂n)

and J(θ0) by its empirical or observable counterpart Ĵn in (12). Let ∆̂r (z) = Ip+q+1+m −
∑r

k=1 ∆̂r ,kz
k , where ∆̂r ,1, . . . , ∆̂r ,r denote the coefficients of the least squares regression of Ût on

Ût−1, . . . , Ût−r . Let v̂r ,t be the residuals of this regression, and let Σ̂v̂r be the empirical variance
of v̂r ,1, . . . , v̂r ,n. We are now able to state Theorem 4 which is an extension of a result given in
Boubacar Mainassara et al. (2012).

Theorem 4. We assume (A0), (A1), (A2) and Assumption (A3’) with τ = 8. In addition,
we assume that the process (Ut)t∈Z defined in (12) admits a multivariate AR(∞) representation
(15) such that the coefficients satisfy (16) and Σv = Var(vt) is non-singular. Then the spectral
estimator of Ξ satisfies

Ξ̂ SP
n := ∆̂−1

r (1)Σ̂v̂r ∆̂
′−1
r (1)

P−−−→
n→∞

Ξ = ∆−1(1)Σv∆
−1(1)

where r depends on n and satisfies limn→∞ r5(n)/n1−2(d2−d1) = 0 (remind that d0 ∈ [d1,d2] ⊂
]0,1/2[).
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The proof of this theorem is similar to the proof of Theorem 3 in Boubacar Maïnassara et al.
(2019) and it is omitted.

We are now in a position to define the modified versions of the Box-Pierce (BP) and Ljung-Box
(LB) goodness-of-fit portmanteau tests. The standard versions of the portmanteau tests are useful
tools to detect if the orders p and q of a FARIMA(p, d0, q) model are well chosen, provided the
error terms (ǫt)t∈Z of the FARIMA(p, d0, q) equation be a strong white noise and provided the
number m of residual autocorrelations is not too small (see Remark 3). Now we define the modified
versions which are aimed to detect if the orders p and q of a weak FARIMA(p, d0, q) model are
well chosen. These tests are also asymptotically valid for strong FARIMA(p, d0, q) even for small
m. The modified versions of the portmanteau tests will be denoted by BPw and LBw, the subscript
w referring to the term weak.

Let Σ̂ρ̂m be the matrix obtained by replacing Ξ by Ξ̂ and σ2
ǫ by σ̂2

ǫ in Σρ̂m . Denote by ξ̂m =

(ξ̂1,m, . . . , ξ̂m,m)
′

the vector of the eigenvalues of Σ̂ρ̂m . At the asymptotic level α, the BPw test
(resp. the LBw test) consists in rejecting the null hypothesis of the weak FARIMA(p, d0, q) model
(the adequacy of the weak FARIMA(p, d0, q) model) when

Qbp

m > Sm(1− α) (resp. Qlb

m > Sm(1− α)),

where Sm(1−α) is such that P(Zm(ξ̂m) > Sm(1−α)) = α. We emphasize the fact that the proposed
modified versions of the Box-Pierce and Ljung-Box statistics are more difficult to implement because
their critical values have to be computed from the data while the critical values of the standard
method are simply deduced from a χ2-table. We shall evaluate the p-values

P

{

Zm(ξ̂m) > Qbp

m

}

and P

{

Zm(ξ̂m) > Qlb

m

}

,with Zm(ξ̂m) =

m
∑

i=1

ξ̂i ,mZ
2
i ,

by means of the Imhof algorithm (see Imhof (1961)).
A second method avoiding the estimation of the asymptotic matrix is proposed in the next

Subsection.

3.3. Self-normalized asymptotic distribution of the residual autocorrelations

In view of Theorem 3, the asymptotic distributions of the statistics defined in (5) are a mixture
of chi-squared distributions, weighted by eigenvalues of the asymptotic covariance matrix Σρ̂m of
the vector of autocorrelations obtained in Theorem 2. However, this asymptotic variance matrix
depends on the unknown matrices Ξ , Ψm and the noise variance σ2

ǫ . Consequently, in order to obtain
a consistent estimator of the asymptotic covariance matrix Σρ̂m of the residual autocorrelations
vector we have used an autoregressive spectral estimator of the spectral density of the stationary
process (Ut)t∈Z to get a consistency estimator of the matrix Ξ (see Theorem 4). However, this
approach presents the problem of choosing the truncation parameter. Indeed this method is based
on an infinite autoregressive representation of the stationary process (Ut)t∈Z (see (15)). So the
choice of the order of truncation is crucial and difficult.

In this section, we propose an alternative method where we do not estimate an asymptotic covari-
ance matrix which is an extension to the results obtained by Boubacar Maïnassara and Saussereau
(2018). It is based on a self-normalization approach to construct a test-statistic which is asymptoti-
cally distribution-free under the null hypothesis. This approach has been studied by Boubacar Maïnassara and Saussereau
(2018) in the weak ARMA case, by proposing new portmanteau statistics. In this case the crit-
ical values are not computed from the data since they are tabulated by Lobato (2001). In some
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sense this method is finally closer to the standard method in which the critical values are simply
deduced from a X 2-table. The idea comes from Lobato (2001) and has been already extended by
Boubacar Maïnassara and Saussereau (2018), Kuan and Lee (2006), Shao (2010b), Shao (2010a)
and Shao (2012) to name a few in more general frameworks. See also Shao (2015) for a review on
some recent developments on the inference of time series data using the self-normalized approach.

We denote by Λ the block matrix of Rm×(p+q+1+m) defined by Λ = (Ψm|Im). In view of (8) and
(11) we deduce that

√
nγ̂m =

1√
n

n
∑

t=1

ΛUt + oP(1).

At this stage, we do not rely on the classical method that would consist in estimating the asymptotic
covariance matrix Ξ . We rather try to apply Lemma 1 in Lobato (2001). So we need to check that
a functional central limit theorem holds for the process U := (Ut)t≥1. For that sake, we define the
normalization matrix Cm of Rm×m by

Cm =
1

n2

n
∑

t=1

StS
′

t where St =

t
∑

j=1

(ΛUj − γm) .

To ensure the invertibility of the normalization matrix Cm (it is the result stated in the next
proposition), we need the following technical assumption on the distribution of ǫt .

(A4): The process (ǫt)t∈Z has a positive density on some neighbourhood of zero.

Proposition 5. Under the assumptions of Theorem 2 and (A4), the matrix Cm is almost surely
non singular.

The proof of this proposition is given in Subsection A.4 of the appendix.
Let (BK (r))r≥0 be a K -dimensional Brownian motion starting from 0. For K ≥ 1, we denote by

UK the random variable defined by:

UK = B
′

K (1)V
−1
K BK (1), (17)

where

VK =

∫ 1

0
(BK (r)− rBK (1)) (BK (r)− rBK (1))

′

dr. (18)

The critical values of UK have been tabulated by Lobato (2001).
The following theorem states the asymptotic distributions of the sample autocovariances and

autocorrelations.

Theorem 6. Under the assumptions of Theorem 2, (A4) and under the null hypothesis (H0) we
have

nγ̂
′

mC
−1
m γ̂m

in law−−−→
n→∞

Um and nσ4
ǫ ρ̂

′

mC
−1
m ρ̂m

in law−−−→
n→∞

Um.

The proof of this theorem is given in Subsection A.5 of Appendix.
Of course, the above theorem is useless for practical purpose because the normalization matrix

Cm and the nuisance parameter σ2
ǫ are not observable. This gap will be fixed below (see Theorem 7)

when one replaces the matrix Cm and the scalar σ2
ǫ by their empirical or observable counterparts.

Then we denote

Ĉm =
1

n2

n
∑

t=1

Ŝt Ŝ
′

t where Ŝt =

t
∑

j=1

(

Λ̂Ûj − γ̂m

)

,
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with Λ̂ = (Ψ̂m|Im) and where Ût and σ̂2
ǫ are defined in Subsection 3.2.

The above quantities are all observable and the following result is the applicable counterpart of
Theorem 6.

Theorem 7. Under the assumptions of Theorem 6, we have

nγ̂
′

mĈ
−1
m γ̂m

in law−−−→
n→∞

Um and Qsn

m = nσ̂4
ǫ ρ̂

′

mĈ
−1
m ρ̂m

in law−−−→
n→∞

Um.

The proof of this result is postponed in Subsection A.6 of Appendix.
Based on the above result, we propose a modified version of the Ljung-Box statistic when one

uses the statistic
Q̃sn

m = nσ̂4
ǫ ρ̂

′

mD
1/2
n,mĈ

−1
m D

1/2
n,mρ̂m,

where Dn,m ∈ R
m×m is diagonal with (n + 2)/(n − 1), . . . , (n + 2)/(n − m) as diagonal terms.

These modified versions of the portmanteau tests will be denoted by BPsn and LBsn, the subscript
sn referring to the term self-normalized.

3.4. Example of explicit calculation of Σρ̂m and Cm

The results of the previous subsections 3.2 and 3.3 are particularized in the FARIMA(1, d , 0) and
FARIMA(0, d , 1) cases. First we consider the case of a FARIMA(1, d , 0) model of the form

(1− L)d (Xt − aXt−1) = ǫt , (19)

where the unknown parameter is θ0 = (a, d). We assume that in (19) the innovation process
(ǫt)t∈Z is a GARCH(1, 1) process given by the model

{

ǫt = σtηt
σ2
t = ω + α1ǫ

2
t−1 + β1σ

2
t−1,

(20)

with ω > 0, α1 ≥ 0 and where (ηt)t∈Z is a sequence of iid centered Gaussian random variables
with variance 1. We also assume that α2

1κ + β2
1 + 2α1β1 < 1,2 where κ := Eη41 and we assume

that κ > 1.
For the sake of simplicity we assume that the variables (ηt) have a symmetric distribution. More

precisely, we have the following symmetry assumption

E[ǫt1ǫt2ǫt3ǫt4 ] = 0 when t1 6= t2, t1 6= t3 and t1 6= t4, (21)

made in Francq and Zakoïan (2009); Boubacar Mainassara et al. (2012). For this particular GARCH(1, 1)
model with fourth-order moments and symmetric innovations satisfying (21), it can be shown that

E [ǫtǫt−ℓǫt−hǫt−h−ℓ′ ] =







E
[

ǫ2t ǫ
2
t−ℓ

]

if h = 0 and ℓ = ℓ′

0 otherwise.

(22)

Now we need to compute the autocovariance structure of (ǫ2t ). We will use the fact that the
GARCH process (ǫt) is fourth-order stationary, then (ǫ2t ) is a solution of the following ARMA(1, 1)
model

ǫ2t = ω + (α1 + β1)ǫ
2
t−1 + νt − β1νt−1, t ∈ Z (23)

2This is a necessary and sufficient condition for the existence of a nonanticipative stationary solution process
(ǫt)t∈Z with fourth-order moments (see (Francq and Zakoïan, 2010, Example 2.3)).
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where νt = ǫ2t − σ2
t is the innovation of (ǫ2t ). From (23) the autocovariances of (ǫ2t ) take the form

γǫ2(ℓ) := Cov(ǫ2t , ǫ
2
t−ℓ) = γǫ2(1)(α1 + β1)

ℓ−1, ℓ ≥ 1, (24)

where

γǫ2(1) =
(κ− 1)(α1 − α1β

2
1 − α2

1β1)

1− β2
1 − 2α1β1 − α2

1κ
σ4
ǫ ,

γǫ2(0) := Var(ǫ2t ) =
(κ− 1)(1 − β2

1 − 2α1β1)

1− β2
1 − 2α1β1 − α2

1κ
σ4
ǫ ,

and σ2
ǫ :=

ω

1− α1 − β1
.

From (22) and (24) we deduce that for any ℓ ≥ 1

Γ (ℓ, ℓ) = E
[

ǫ2t ǫ
2
t−ℓ

]

= Cov(ǫ2t , ǫ
2
t−ℓ) + E

[

ǫ2t
]

E
[

ǫ2t−ℓ

]

=

{

1 +
1

σ4
ǫ

γǫ2(1)(α1 + β1)
ℓ−1

}

σ4
ǫ . (25)

3.4.1. Examples of analytic and numerical computations of Σρ̂m

As mentioned before, the subject of this subsection is to give an explicit expression of the asymptotic
variance of residual autocorrelations Σρ̂m defined in (14) in the particular case of model (19). For
that sake, we need the following additional expressions. It is classical that the noise derivatives
(∂ǫt(θ0)/∂a, ∂ǫt(θ0)/∂d)

′

in (19) can be represented as





∂ǫt(θ0)
∂a

∂ǫt(θ0)
∂d



 = −
∑

j≥1

(

aj−1

1
j

)

ǫt−j . (26)

We compute the information matrices J(θ0) and I (θ0) by using (26). Then we have

J(θ0) = 2σ2
ǫ





1
1−a2

− ln(1−a)
a

− ln(1−a)
a

π2

6



 . (27)

A simple calculation implies that

J−1(θ0) =
1

2σ2
ǫ c(a)





π2

6
ln(1−a)

a

ln(1−a)
a

1
1−a2



 , (28)

where

c(a) =
π2

6(1− a2)
−
(

ln(1− a)

a

)2

. (29)

We now investigate a similar tractable expression for I (θ0). Using (26) and (21) we have

I (θ0) = 2σ2
ǫ J(θ0) + 4σ4

ǫ

(κ− 1)(α1 − α1β
2
1 − α2

1β1)

1− β2
1 − 2α1β1 − α2

1κ





1
1−a2(α1+β1)

− ln[1−a(α1+β1)]
a(α1+β1)

− ln[1−a(α1+β1)]
a(α1+β1)

Li2(α1+β1)
α1+β1



 , (30)
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where Li2 is the Spence function defined by Li2(z) =
∑∞

k=1 z
kk−2. Note that we retrieve the well

know result: I (θ0) = 2σ2
ǫ J(θ0) in the strong FARIMA case (i.e. when α1 = β1 = 0 in (30)).

The matrix defined in (7) can be rewritten as

Ψm = −σ2
ǫ

(

1 a . . . am−1

1 1
2 . . . 1

m

)′

. (31)

Using (25) and under the symmetry assumption (21), the matrix Γm,m takes the simple following
diagonal form

Γm,m = σ4
ǫ Im + σ4

ǫ

(κ− 1)(α1 − α1β
2
1 − α2

1β1)

1− β2
1 − 2α1β1 − α2

1κ
diag(1, (α1 + β1), . . . , (α1 + β1)

m−1). (32)

Using (21), (26) and (28), the matrix Σ ′
θ̂,γm

is given by

Σ ′

θ̂,γm
=

1

σ2
ǫc(a)

















{

π2

6 + ln(1−a)
a

}

Γm,m(1, 1)
{

1
1−a2

+ ln(1−a)
a

}

Γm,m(1, 1)
{

aπ2

6 + ln(1−a)
2a

}

Γm,m(2, 2)
{

1
2(1−a2) + ln(1− a)

}

Γm,m(2, 2)

...
...

{

am−1 π2

6 + ln(1−a)
ma

}

Γm,m(m,m)
{

1
m(1−a2) + am−2 ln(1 − a)

}

Γm,m(m,m)

















, (33)

where for any 1 ≤ i , j ≤ m, Γm,m(i , j) is given by (32).
From Remark 2, in the strong FARIMA case the asymptotic variance of residual autocorrelations

takes a simpler form

Σ s

ρ̂m = Im − 1

c(a)

[

π2

6

(

ai+j−2
)

+
1

1− a2

(

1

i j

)

+
ln(1− a)

a

(

aj−1

i
+

ai−1

j

)]

1≤i ,j≤m

where c(a) is the constant given in (29).
From the above explicit expressions we deduce that the asymptotic variance of residual autocor-

relations for this model is in the form

Σρ̂m = Σ s

ρ̂m +
(κ− 1)(α1 − α1β

2
1 − α2

1β1)

1− β2
1 − 2α1β1 − α2

1κ

[

(α1 + β1)
i−111{i=j} +

1

c(a)
M(i , j)

−
{

(α1 + β1)
i−1 + (α1 + β1)

j−1
} 1

c(a)

{

π2

6

(

ai+j−2
)

+
1

1− a2

(

1

i j

)

+
ln(1− a)

a

(

aj−1

i
+

ai−1

j

)}]

1≤i ,j≤m

,

where

M(i , j) =

[

ln(1− a)

a

1

1− a2(α1 + β1)
− 1

1− a2
ln(1− a(α1 + β1))

a(α1 + β1)

] [

π2

6

aj−1

i
+

1

i j

ln(1− a)

a

]

+

[

Li2(α1 + β1)

α1 + β1

1

1− a2
− ln(1− a)

a

ln(1− a(α1 + β1))

a(α1 + β1)

] [

ln(1− a)

a

aj−1

i
+

1

i j

1

1− a2

]

+

[

π2

6

1

1− a2(α1 + β1)
− ln(1− a)

a

ln(1− a(α1 + β1))

a(α1 + β1)

] [

π2

6
ai+j−2 +

ai−1

j

ln(1− a)

a

]

+

[

Li2(α1 + β1)

α1 + β1

ln(1− a)

a
− π2

6

ln(1− a(α1 + β1))

a(α1 + β1)

] [

ln(1− a)

a
ai+j−2 +

ai−1

j

1

1− a2

]

.

For simplicity, we take in the sequel β1 = 0 to consider the case of an ARCH(1) model. For instance
when m = 3, κ = 3, ω = 1 and a = −0.55 we have
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Σρ̂3 Eigenvalues ξ3 = (ξ1,3, ξ2,3, ξ3,3) Z3(ξ3)

α1 = 0





0.1383 0.0859 −0.2720
0.0859 0.2490 0.0053
−0.2720 0.0053 0.9135



 (1.0000, 0.2791, 0.0217) χ2
1+ 0.2791χ2

1+ 0.0217χ2
1

α1 = 0.55





0.6989 0.3825 −1.6041
0.3825 0.9351 −0.2342
−1.6041 −0.2342 4.7979



 (5.3780, 1.0025, 0.0513) 5.3780χ2
1+ 1.0025χ2

1+ 0.0513χ2
1

It is clear that for α1 = 0.55, the Li and McLeod (1986) approximation by a χ2
1 distribution will

be disastrous. The eigenvalues ξm can be very different from those of strong FARIMA models which
are close to 1 or 0 when the lag m is large enough (see Remark 3). More precisely, for instance for
α1 = 0 and m = 12 we obtain

ξ12 = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.0665, 0.0000)′ ,

In this weak FARIMA(1, d , 0) with α1 = 0.55 and m = 12 we also obtain

ξ12 = (5.4628, 3.7524, 2.3222, 1.7930, 1.4152, 1.2405, 1.1295, 1.0723, 1.0387, 1.0207, 0.0827, 0.0000)′ .

The same result holds for FARIMA(0, d , 1) model with a replaced by b in θ0.

3.4.2. Explicit form of the matrix Cm

The following example gives an explicit form of the normalization matrix Cm for the model given
in (19). For reading convenience, we restrict ourselves to the case m = 3. Using the expression of
J−1(θ0) given in (28) and Equation (26), we obtain that for all 1 ≤ j ≤ n

−2J−1(θ0)ǫj





∂ǫj (θ0)
∂a

∂ǫj (θ0)
∂d



 =





v
(1)
j (a)

v
(2)
j (a)



 ,

where

v
(1)
j (a) =

1

σ2
ǫ c(a)

∑

k≥1

{

π2

6
ak−1 +

ln(1− a)

a

1

k

}

ǫjǫj−k

and

v
(2)
j (a) =

1

σ2
ǫ c(a)

∑

k≥1

{

ln(1− a)

a
ak−1 +

1

1− a2
1

k

}

ǫjǫj−k .

Thus, the vector ΛUj is given by

ΛUj =











−σ2
ǫ v

(1)
j (a)− σ2

ǫ v
(2)
j (a) + ǫjǫj−1

−σ2
ǫ av

(1)
j (a)− σ2

ǫ v
(2)
j (a)/2 + ǫjǫj−2

−σ2
ǫ a

2v
(1)
j (a)− σ2

ǫ v
(2)
j (a)/3 + ǫjǫj−3











.

A simple calculation shows that, for any 1 ≤ j1, j2 ≤ n,

(ΛUj1) (ΛUj2)
′

=















K
(1)
j1

(a)K
(1)
j2

(a) K
(1)
j1

(a)K
(2)
j2

(a) K
(1)
j1

(a)K
(3)
j2

(a)

K
(2)
j1

(a)K
(1)
j2

(a) K
(2)
j1

(a)K
(2)
j2

(a) K
(2)
j1

(a)K
(3)
j2

(a)

K
(3)
j1

(a)K
(1)
j2

(a) K
(3)
j1

(a)K
(2)
j2

(a) K
(3)
j1

(a)K
(3)
j2

(a)















,
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where

K
(1)
j (a) = −σ2

ǫ v
(1)
j (a)− σ2

ǫ v
(2)
j (a) + ǫjǫj−1,

K
(2)
j (a) = −σ2

ǫ av
(1)
j (a)− σ2

ǫ v
(2)
j (a)/2 + ǫjǫj−2

and K
(3)
j (a) = −σ2

ǫ a
2v

(1)
j (a)− σ2

ǫ v
(2)
j (a)/3 + ǫjǫj−3.

Therefore we deduce that for all positive integer t

St =
t
∑

j=1

(ΛUj − γ3) =
t
∑

j=1











−σ2
ǫ v

(1)
j (a)− σ2

ǫ v
(2)
j (a) + ǫjǫj−1

−σ2
ǫ av

(1)
j (a)− σ2

ǫ v
(2)
j (a)/2 + ǫjǫj−2

−σ2
ǫ a

2v
(1)
j (a)− σ2

ǫ v
(2)
j (a)/3 + ǫjǫj−3











− t

n









∑n
j=2 ǫjǫj−1

∑n
j=3 ǫjǫj−2

∑n
j=4 ǫjǫj−3









.

The same result holds for FARIMA(0, d , 1) model with a replaced by b in θ0.

4. Numerical illustrations

In this section, by means of Monte Carlo experiments, we investigate the finite sample properties of
the asymptotic results that we introduced in this work. The numerical illustrations of this section
are made with the open source statistical software R (see http://cran.r-project.org/).

4.1. Simulation studies and empirical sizes

We study numerically the behavior of the least square estimator for FARIMA models of the form

(1− L)d (Xt − aXt−1) = ǫt − bǫt−1, (34)

where the unknown parameter is θ = (a, b, d). First we assume that in (34) the innovation process
(ǫt)t∈Z is an iid centered Gaussian process with common variance 1 which corresponds to the
strong FARIMA case. We consider that in (34) the innovation process (ǫt)t∈Z follows firstly a
GARCH(1, 1) given by (20) and secondly a noise defined by

ǫt = η2t ηt−1 (35)

where (ηt)t∈Z is a sequence of iid centered Gaussian random variables with variance 1.
We simulate N = 1, 000 independent trajectories of size n = 10, 000 of models (34). The same

series is partitioned as three series of sizes n = 1, 000, n = 5, 000 and n = 10, 000. For each of
these N replications, we use the least square estimation method to estimate the coefficient θ0 and
we apply portmanteau tests to the residuals for different values of m ∈ {1, 2, 3, 6, 12, 15}, where
m is the number of autocorrelations used in the portmanteau test statistic. For the nominal level
α = 5%, the empirical size over the N independent replications should vary between the significant
limits 3.6% and 6.4% with probability 95%. When the relative rejection frequencies are outside the
95% significant limits, they are displayed in bold type in Tables 1, 2, 3, 4, 5 and 6.

For the standard Box-Pierce test, the model is therefore rejected when the statistic Qbp

m or
Qlb

m is larger than χ2
(m−p−q−1)(0.95) in a FARIMA(p, d , q) case (see Li and McLeod (1986)).

Consequently the empirical size is not available (n.a.) for the statistic Qbp

m or Qlb

m because they
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are not applicable for m ≤ p + q + 1. For the proposed self-normalized test BPsn or LBsn, the
model is rejected when the statistic Qsn

m or Q̃sn

m is larger than Um(0.95), where the critical values
UK (0.95) (for K = 1, . . . , 20) are tabulated in Lobato (see Table 1 in Lobato (2001)).

Tables 1 and 4 display the relative rejection frequencies of the null hypothesis (H0) that the data
generating process (DGP for short) follows a strong FARIMA model (34), over the N independent
replications. When p = q = 1 (resp. p = q = 0) for all tests, the percentages of rejection belong to
the confident interval with probabilities 95%, except for LBs and BPs (see Table 1). Consequently
all these tests well control the error of first kind.

We draw the conclusion that in these strong FARIMA cases the proposed modified version may
be clearly preferable to the standard ones.

Now, we repeat the same experiments on two weak FARIMA models. As expected Tables 2, 3, 5
and 6 show that the standard LBs or BPs test poorly performs in assessing the adequacy of these
particular weak FARIMA models. Indeed, we observe that

• the observed relative rejection frequencies of LBs and BPs are definitely outside the significant
limits

• the errors of the first kind are only globally well controlled by the proposed tests when n is
large.

We also investigate the case where the GARCH model (20) have infinite fourth moments. As
showing in Figures 5,. . . ,10 the results are qualitatively similar to what we observe here in Tables
2, 3, 5 and 6.

Figures 5,. . . ,10 display the residual autocorrelations of a realization of size n = 2, 000 for weak
FARIMA models (34)–(20) with ω = 0.04, α1 = 0.13, β1 = 0.88 and three values of d , and their
5% significance limits under the strong FARIMA and weak FARIMA assumptions. These figures
confirm clearly the conclusions drawn in Subsection 4.1. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA assumption. The solid
lines (red color) and dashed lines (green color) correspond also to the 5% significant limits under
the weak FARIMA assumption. The full lines correspond to the asymptotic significance limits for
the residual autocorrelations obtained in Theorem 2. The dashed lines (green color) correspond
to the self-normalized asymptotic significance limits for the residual autocorrelations obtained in
Theorem 7.

4.2. Empirical power

In this section, we repeat the same experiments as in Section 4.1 to examine the power of the tests
for the null hypothesis of Model (34) against the following FARIMA alternative defined by

(1− L)d (Xt − aXt−1) = ǫt − b1ǫt−1 − b2ǫt−2, (36)

with θ0 = (a, b1, b2, d0) and where the innovation process (ǫt)t∈Z follows a strong or weak white
noise introduced in Section 4.1.

For each of these N replications we fit a FARIMA(1, d , 1) model (34) and perform standard and
modified tests based on m = 1, 2, 3, 6, 12 and 15 residual autocorrelations.

Tables 7, 8 and 9 (resp. Tables 10 and 11) compare the empirical powers of Model (36) with
θ0 = (0.9, 1,−0.2, d0) (resp. with θ0 = (0, 0.2, 0, d0)) over the N independent replications. For
these particular strong and weak FARIMA models, we notice that the standard BPs and LBs and
our proposed tests have very similar powers except for BPsn and LBsn when n = 1, 000.
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In these Monte Carlo experiments, we illustrate that the proposed test statistics have reasonable
finite sample performance. Under nonindependent errors, it appears that the standard test statistics
are generally non reliable, overrejecting severely, while the proposed tests statistics offer satisfactory
levels. Even for independent errors, they seem preferable to the standard ones when the number
m of autocorrelations is small. Moreover, the error of first kind is well controlled. Contrarily to
the standard tests based on BPs or LBs, the proposed tests can be used safely for m small (see
for instance Figure 5). For all these above reasons, we think that the modified versions that we
propose in this paper are preferable to the standard ones for diagnosing FARIMA models under
nonindependent errors.

4.3. Illustrative example

We now consider an application to the daily log returns (also simply called the returns) of the
Nikkei and Standard & Poor’s 500 indices (S&P 500, for short). The returns are defined by rt =
log(pt/pt−1) where pt denotes the price index of the S&P 500 index at time t. The observations
of the S&P 500 (resp. the Nikkei) index cover the period from January 3, 1950 to to February 14,
2019 (resp. from January 5, 1965 to February 14, 2019). The length of the series is n = 17, 391
(resp. n = 13, 319) for the S&P 500 (resp. the Nikkei) index. The data can be downloaded from the
website Yahoo Finance: http://fr.finance.yahoo.com/. Figure 1 (resp. Figure 3) plots the returns
and the sample autocorrelations of squared returns of the S&P 500 (resp. of the Nikkei).

In Financial Econometrics the returns are often assumed to be a white noise. In view of the
so-called volatility clustering, it is well known that the strong white noise model is not adequate for
these series (see for instance Francq and Zakoïan (2010); Lobato et al. (2001); Boubacar Mainassara et al.
(2012); Boubacar Maïnassara and Saussereau (2018)). A long-range memory property of the stock
market returns series was also largely investigated by Ding et al. (1993) (see also Beran et al.
(2013), Palma (2007), Baillie et al. (1996) and Ling and Li (1997)). The squared returns (r2t )t≥1

have significant positive autocorrelations at least up to lag 80 (see Figure 1 and Figure 3) which
confirm the claim that stock market returns have long-term memory (see for instance Ding et al.
(1993), for more details). In particular the returns (rt)t≥1 process is characterized by substantially
more correlation between absolute or squared returns than between the returns themselves.

Therefore we focus on the dynamics of the squared returns and we first fit a FARIMA(1, d , 1)
model to the squares of the S&P 500 and Nikkei returns. Denoting by (Xt)t≥1 the mean corrected
series of the squared returns, we adjust the following model

(1− L)d (Xt − aXt−1) = ǫt − bǫt−1. (37)

Let θ̂SP500n and θ̂Nikkei
n be respectively the least squares estimators of the parameter θ = (a, b, d) for

the model (37) in the case of the S&P 500 and Nikkei. The least square estimators were obtained
as

θ̂SP500n =





−0.3371 [0.1105] (0.0023)
−0.1795 [0.0788] (0.0227)
0.2338 [0.0367] (0.0000)



 and σ̂2
ǫ = 22.9076 × 10−8

and

θ̂Nikkei
n =





−0.0217 [0.1105] (0.9528)
0.1579 [0.0788] (0.6050)
0.3217 [0.0367] (0.0000)



 and σ̂2
ǫ = 25.6844 × 10−8, (38)
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where the estimated asymptotic standard errors obtained from Σθ̂ := J−1I J−1 (respectively the
p-values), of the estimated parameters (first column), are given into brackets (respectively in
parentheses). Note that for these series, the estimated coefficients |̂an| and |b̂n| are smaller than
one. This is in accordance with the assumptions that the power series a−1

θ and b−1
θ are well defined

(remind that the moving average polynomial is denoted bθ and the autoregressive polynomials aθ).
We also observe that the estimated long-range dependence coefficients d̂n is significant for any
reasonable asymptotic level and is inside ]0, 0.5[. So we think that the assumption (A2) is satisfied
and thus our asymptotic normality theorem on the residual autocorrelations can be applied.

Concerning the S&P 500, the estimators of the parameters a and b are significant whereas it is
not the case for the Nikkei (see (38)). In the Nikkei case, the coefficients could reasonably be set
to zero. So we adjust a FARIMA(0, d , 0) for the squares of Nikkei returns and (38) is reduced as

θ̂Nikkei
n =

(

0.2132 [0.0259] (0.0000)
)

and σ̂2
ǫ = 25.9793 × 10−8.

We thus apply portmanteau tests to the residuals of FARIMA(1, d , 1) model for the squares of
S&P 500 and FARIMA(0, d , 0) model for the squares of Nikkei. Table 12 (resp. Table 13) displays
the statistics and the p-values of the standard and modified versions of BP and LB tests of
model (37) (resp. of FARIMA(0, d , 0)). From Tables 12 and 13, we draw the conclusion that
the strong FARIMA(1, 0.2338, 1) and FARIMA(0, 0.2132, 0) models are rejected but the weak
FARIMA(1, 0.2338, 1) and FARIMA(0, 0.2132, 0) models are not rejected.

Figure 2 (resp. Figure 4) displays the residual autocorrelations and their 5% significance limits
under the strong FARIMA and weak FARIMA assumptions. In view of Figures 2 and 4, the
diagnostic checking of residuals does not indicate any inadequacy for the proposed tests. All of
the sample autocorrelations should lie between the bands (at 95%) shown as dashed lines (green
color) and solid lines (red color) for the modified tests, while the horizontal dotted (blue color) for
standard test indicate that strong FARIMA is not adequate. Figure 2 (resp. Figure 4) confirms the
conclusions drawn from Table 12 (resp. Table 13).
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5. Figures and tables
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Fig 1. Returns and the sample autocorrelations of squared returns of the S&P 500.
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Autocorrelogram residuals of FARIMA(1,d,1)

Fig 2. Autocorrelation of the FARIMA(1, 0.2338, 1) residuals for the squares of the S&P 500 returns. The horizontal
dotted lines (blue color) correspond to the 5% significant limits obtained under the strong FARIMA assumption.
The solid lines (red color) and dashed lines (green color) correspond also to the 5% significant limits under the weak
FARIMA assumption. The full lines correspond to the asymptotic significance limits for the residual autocorrelations
obtained in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic significance
limits for the residual autocorrelations obtained in Theorem 7.
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Table 1

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a strong
FARIMA(1, d0, 1) defined by (34) with θ0 = (0.9, 0.2, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 5.8 5.7 7.4 7.3 n.a. n.a.

2 5.0 5.0 7.4 7.3 n.a. n.a.

0.05 n = 1, 000 3 4.3 4.3 5.8 5.8 n.a. n.a.

6 4.1 4.1 5.6 5.5 10.9 10.9

12 5.1 4.6 4.7 4.5 6.9 6.6

15 5.0 4.7 5.0 4.8 6.9 5.9

1 6.0 6.0 7.4 7.4 n.a. n.a.

2 6.5 6.5 7.9 7.9 n.a. n.a.

0.05 n = 5, 000 3 4.7 4.7 6.7 6.7 n.a. n.a.

6 3.5 3.5 5.2 5.1 11.0 10.9

12 5.3 5.3 5.8 5.8 7.9 7.6

15 4.5 4.5 5.8 5.5 7.0 6.9

1 4.2 4.2 6.1 6.1 n.a. n.a.

2 4.2 4.2 6.3 6.4 n.a. n.a.

0.05 n = 10, 000 3 3.8 3.8 5.9 5.9 n.a. n.a.

6 3.5 3.5 4.7 4.7 10.4 10.4

12 4.2 4.2 6.1 6.1 7.6 7.6

15 4.0 3.8 5.7 5.7 7.4 7.4

1 5.8 5.8 9.2 9.1 n.a. n.a.

2 4.9 4.9 7.5 7.5 n.a. n.a.

0.20 n = 1, 000 3 4.6 4.5 5.9 5.9 n.a. n.a.

6 4.2 4.1 5.6 5.4 10.3 10.2

12 5.4 4.9 4.7 4.4 6.4 5.9

15 5.5 4.9 5.1 4.4 6.8 6.2

1 6.4 6.4 6.1 6.2 n.a. n.a.

2 6.8 6.8 6.9 6.9 n.a. n.a.

0.20 n = 5, 000 3 4.3 4.3 5.9 5.8 n.a. n.a.

6 3.8 3.8 4.6 4.6 10.0 10.0

12 5.2 5.2 5.7 5.6 7.6 7.5

15 4.5 4.5 5.6 5.3 6.8 6.7

1 4.5 4.5 5.5 5.5 n.a. n.a.

2 4.1 4.1 5.8 5.8 n.a. n.a.

0.20 n = 10, 000 3 3.1 3.1 5.3 5.3 n.a. n.a.

6 3.7 3.6 4.3 4.3 10.1 10.1

12 3.8 3.8 6.1 6.1 7.5 7.5

15 3.7 3.7 5.8 5.7 7.0 6.9

1 4.3 4.3 8.7 8.7 n.a. n.a.

2 3.0 3.0 5.9 5.9 n.a. n.a.

0.45 n = 1, 000 3 3.7 3.7 4.4 4.4 n.a. n.a.

6 3.8 3.8 4.7 4.5 8.1 7.8

12 5.1 4.6 4.3 4.2 5.1 4.9

15 4.6 4.5 4.7 4.3 5.0 4.7

1 5.6 5.5 6.0 6.0 n.a. n.a.

2 5.2 5.2 6.4 6.4 n.a. n.a.

0.45 n = 5, 000 3 4.0 4.0 5.9 5.9 n.a. n.a.

6 3.8 3.8 4.6 4.6 10.1 9.9

12 5.2 5.2 5.4 5.4 7.2 7.1

15 4.6 4.6 5.0 4.9 6.7 6.6

1 4.3 4.3 5.3 5.3 n.a. n.a.

2 3.2 3.2 5.7 5.7 n.a. n.a.

0.45 n = 10, 000 3 3.1 3.0 5.4 5.4 n.a. n.a.

6 3.7 3.7 4.3 4.3 9.8 9.8

12 4.3 4.3 5.8 5.8 7.2 7.0

15 3.6 3.3 5.7 5.7 6.8 6.8
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Table 2

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (34) with θ0 = (0.9, 0.2, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3 in
(20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.9 4.9 6.7 6.7 n.a. n.a.

2 3.8 3.8 6.3 6.3 n.a. n.a.

0.05 n = 1, 000 3 3.2 3.2 5.2 5.2 n.a. n.a.

6 3.9 3.8 4.9 4.8 18.5 18.3

12 2.3 2.3 4.1 4.0 10.2 9.7

15 2.7 2.3 4.4 4.2 9.7 9.3

1 5.1 5.1 5.6 5.6 n.a. n.a.

2 4.9 4.9 5.4 5.4 n.a. n.a.

0.05 n = 5, 000 3 2.6 2.6 5.0 5.0 n.a. n.a.

6 3.5 3.5 4.4 4.4 19.6 19.6

12 2.7 2.7 3.3 3.2 11.4 11.4

15 3.4 3.4 4.2 4.1 10.8 10.7

1 4.8 4.8 6.9 6.9 n.a. n.a.

2 4.8 4.8 6.7 6.7 n.a. n.a.

0.05 n = 10, 000 3 4.7 4.7 5.5 5.5 n.a. n.a.

6 3.3 3.3 6.4 6.4 20.2 20.2

12 4.2 4.2 6.3 6.3 12.4 12.3

15 3.6 3.6 5.5 5.5 11.6 11.6

1 5.3 5.3 7.8 7.7 n.a. n.a.

2 3.6 3.4 5.7 5.7 n.a. n.a.

0.20 n = 1, 000 3 3.1 3.1 4.9 4.8 n.a. n.a.

6 3.3 3.2 4.5 4.5 17.6 17.4

12 2.3 2.0 4.1 4.1 9.4 8.9

15 2.4 2.1 4.4 4.2 9.0 8.1

1 4.6 4.6 4.3 4.3 n.a. n.a.

2 4.3 4.3 4.4 4.4 n.a. n.a.

0.20 n = 5, 000 3 3.1 3.1 4.4 4.3 n.a. n.a.

6 4.1 4.1 3.9 3.9 19.0 19.0

12 2.6 2.6 2.9 2.9 10.9 10.6

15 3.4 3.3 4.0 4.0 10.0 9.9

1 4.8 4.8 5.1 5.1 n.a. n.a.

2 4.7 4.7 5.0 5.0 n.a. n.a.

0.20 n = 10, 000 3 4.5 4.5 4.8 4.8 n.a. n.a.

6 3.5 3.5 5.6 5.6 19.1 19.1

12 4.1 4.1 5.9 5.9 12.1 12.1

15 3.7 3.7 5.3 5.3 11.3 11.3

1 4.4 4.4 11.1 11.0 n.a. n.a.

2 3.4 3.4 5.4 5.3 n.a. n.a.

0.45 n = 1, 000 3 3.1 3.1 4.9 4.9 n.a. n.a.

6 3.1 2.9 4.5 4.4 15.3 15.1

12 2.2 2.1 4.0 4.0 7.9 7.5

15 2.1 2.0 4.4 4.3 7.0 6.5

1 3.9 3.9 4.2 4.2 n.a. n.a.

2 3.4 3.4 4.2 4.2 n.a. n.a.

0.45 n = 5, 000 3 2.9 2.9 4.4 4.4 n.a. n.a.

6 3.5 3.5 3.9 3.9 18.4 18.4

12 2.4 2.4 2.8 2.7 9.9 9.8

15 3.2 3.2 3.9 3.8 9.2 9.2

1 4.6 4.6 5.3 5.3 n.a. n.a.

2 4.3 4.3 5.1 5.0 n.a. n.a.

0.45 n = 10, 000 3 3.5 3.5 5.0 5.0 n.a. n.a.

6 2.8 2.8 5.3 5.3 19.3 19.3

12 4.2 4.2 5.5 5.5 12.2 12.2

15 3.6 3.5 5.5 5.5 11.4 11.4
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Table 3

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (34)–(35) with θ0 = (0.9, 0.2, d0). The nominal asymptotic level of the tests

is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 5.1 5.1 7.3 7.3 n.a. n.a.

2 3.6 3.6 6.9 6.9 n.a. n.a.

0.05 n = 1, 000 3 2.9 2.9 4.3 4.1 n.a. n.a.

6 2.6 2.5 3.1 3.0 10.3 10.3

12 0.9 0.9 1.2 1.1 8.7 8.3

15 0.4 0.4 1.0 0.8 8.0 7.3

1 3.9 3.9 5.4 5.4 n.a. n.a.

2 3.9 3.9 5.9 5.9 n.a. n.a.

0.05 n = 5, 000 3 3.9 3.9 5.5 5.5 n.a. n.a.

6 3.2 3.1 3.8 3.8 10.6 10.6

12 2.4 2.4 3.5 3.4 8.3 8.2

15 2.7 2.7 3.3 3.3 8.4 8.3

1 5.0 5.0 5.2 5.2 n.a. n.a.

2 4.9 4.9 4.5 4.5 n.a. n.a.

0.05 n = 10, 000 3 3.8 3.8 5.6 5.6 n.a. n.a.

6 3.6 3.6 4.5 4.5 10.4 10.4

12 3.3 3.3 4.3 4.3 8.5 8.4

15 4.7 4.7 3.8 3.8 7.7 7.4

1 5.7 5.6 10.1 10.0 n.a. n.a.

2 3.4 3.4 5.5 5.5 n.a. n.a.

0.20 n = 1, 000 3 3.7 3.7 4.0 4.0 n.a. n.a.

6 2.9 2.8 2.5 2.4 10.2 9.7

12 0.9 0.9 1.1 1.1 7.9 7.2

15 0.5 0.5 0.8 0.8 7.5 6.9

1 3.5 3.5 4.0 3.9 n.a. n.a.

2 3.7 3.7 4.3 4.3 n.a. n.a.

0.20 n = 5, 000 3 4.1 4.1 5.0 5.0 n.a. n.a.

6 3.1 3.1 3.5 3.5 10.0 10.0

12 2.8 2.8 3.3 3.3 8.2 8.2

15 2.4 2.4 3.1 3.1 7.9 7.8

1 5.1 5.1 4.8 4.8 n.a. n.a.

2 4.7 4.7 4.2 4.2 n.a. n.a.

0.20 n = 10, 000 3 3.8 3.8 4.7 4.7 n.a. n.a.

6 3.8 3.8 4.1 4.1 10.1 10.1

12 3.4 3.4 4.0 4.0 8.0 8.0

15 4.8 4.8 3.6 3.6 7.5 7.4

1 3.8 3.8 12.1 12.0 n.a. n.a.

2 2.4 2.4 4.4 4.4 n.a. n.a.

0.45 n = 1, 000 3 2.7 2.6 3.8 3.7 n.a. n.a.

6 3.2 3.0 2.3 2.3 8.3 7.9

12 1.1 0.9 1.0 0.9 6.4 6.3

15 0.3 0.3 1.4 1.1 6.8 6.4

1 3.1 3.1 4.4 4.4 n.a. n.a.

2 2.7 2.7 4.5 4.5 n.a. n.a.

0.45 n = 5, 000 3 3.2 3.2 4.9 4.9 n.a. n.a.

6 3.2 3.1 3.4 3.4 9.7 9.7

12 3.3 3.3 3.3 3.3 7.3 7.3

15 2.4 2.4 3.2 3.1 7.2 7.0

1 5.1 5.1 4.8 4.8 n.a. n.a.

2 4.9 4.9 4.3 4.3 n.a. n.a.

0.45 n = 10, 000 3 3.6 3.6 4.9 4.9 n.a. n.a.

6 3.5 3.5 4.3 4.2 10.2 10.2

12 3.7 3.7 3.7 3.7 7.7 7.6

15 4.8 4.8 3.9 3.9 7.2 7.1
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Table 4

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a strong
FARIMA(0, d0, 0) defined by (34) with θ0 = (0, 0, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 4.6 4.5 n.a. n.a.

2 4.5 4.5 4.9 4.9 5.8 5.8

0.05 n = 1, 000 3 5.2 5.1 4.7 4.4 4.9 4.8

6 5.8 5.8 4.6 4.5 5.1 5.0

12 6.0 5.6 5.3 4.6 5.2 5.0

15 5.6 5.2 4.7 4.3 5.3 4.7

1 6.8 6.8 6.6 6.6 n.a. n.a.

2 6.8 6.8 6.4 6.4 7.9 7.9

0.05 n = 5, 000 3 6.6 6.6 5.7 5.7 5.8 5.8

6 6.5 6.4 5.6 5.6 5.7 5.6

12 6.4 6.4 5.3 5.3 6.0 5.9

15 6.1 6.0 4.7 4.6 5.3 5.2

1 4.9 4.9 5.3 5.3 n.a. n.a.

2 5.4 5.4 6.6 6.6 7.8 7.8

0.05 n = 10, 000 3 5.7 5.7 5.9 5.9 6.2 6.2

6 5.9 5.8 4.5 4.5 4.6 4.6

12 5.3 5.3 5.4 5.4 5.6 5.6

15 4.4 4.3 4.8 4.8 4.9 4.9

1 3.6 3.5 4.3 4.3 n.a. n.a.

2 4.7 4.7 4.7 4.7 5.8 5.7

0.20 n = 1, 000 3 5.2 5.0 4.3 4.3 4.9 4.7

6 6.0 5.9 4.7 4.5 5.0 4.9

12 5.7 5.4 5.3 4.7 5.2 4.9

15 5.9 5.6 4.8 4.2 5.2 4.8

1 6.6 6.6 6.5 6.5 n.a. n.a.

2 6.6 6.6 6.4 6.4 7.9 7.9

0.20 n = 5, 000 3 6.7 6.7 5.7 5.7 5.8 5.8

6 6.3 6.3 5.6 5.6 5.7 5.5

12 6.3 6.2 5.5 5.3 6.0 5.9

15 6.1 5.9 4.7 4.6 5.3 5.2

1 4.8 4.8 5.3 5.3 n.a. n.a.

2 5.4 5.4 6.6 6.6 7.8 7.8

0.20 n = 10, 000 3 5.5 5.5 5.9 5.9 6.3 6.3

6 5.8 5.8 4.5 4.5 4.6 4.6

12 5.4 5.3 5.5 5.5 5.6 5.6

15 4.4 4.3 4.7 4.7 4.9 4.9

1 3.9 3.8 4.9 4.9 n.a. n.a.

2 5.1 5.0 4.8 4.6 5.9 5.9

0.45 n = 1, 000 3 5.2 5.2 4.3 4.3 4.8 4.8

6 6.2 6.0 4.7 4.3 4.9 4.9

12 5.8 5.4 4.8 4.7 4.9 4.8

15 5.6 5.5 4.5 4.2 5.0 4.8

1 6.6 6.6 6.6 6.6 n.a. n.a.

2 6.7 6.7 6.5 6.5 8.0 8.0

0.45 n = 5, 000 3 6.6 6.6 5.7 5.7 5.8 5.8

6 6.3 6.3 5.4 5.4 5.6 5.5

12 6.2 6.2 5.5 5.5 6.0 5.9

15 6.2 5.9 4.6 4.6 5.5 5.3

1 5.0 5.0 5.3 5.3 n.a. n.a.

2 5.4 5.4 6.6 6.6 7.9 7.9

0.45 n = 10, 000 3 5.3 5.3 5.9 5.9 6.3 6.3

6 5.8 5.8 4.7 4.6 4.7 4.7

12 5.4 5.4 5.5 5.5 5.7 5.7

15 4.6 4.5 4.9 4.8 4.9 4.9
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Table 5

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(0, d0, 0) defined by (34) with θ0 = (0, 0, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3 in (35).

The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.4 4.4 5.4 5.4 n.a. n.a.

2 4.3 4.2 5.7 5.7 15.6 15.5

0.05 n = 1, 000 3 5.9 5.9 5.3 5.0 14.2 14.0

6 5.2 5.1 6.0 6.0 14.6 14.4

12 4.5 4.1 4.2 4.0 11.0 10.7

15 4.0 3.9 4.2 3.9 11.1 10.6

1 4.3 4.3 5.1 5.1 n.a. n.a.

2 4.4 4.4 5.8 5.8 16.9 16.8

0.05 n = 5, 000 3 5.0 5.0 5.5 5.5 16.5 16.5

6 5.6 5.6 4.5 4.5 14.8 14.6

12 5.1 5.1 5.0 4.9 12.6 12.5

15 5.2 5.1 4.9 4.7 11.8 11.6

1 5.7 5.7 5.3 5.1 n.a. n.a.

2 5.0 5.0 4.5 4.5 17.4 17.4

0.05 n = 10, 000 3 5.5 5.5 4.7 4.6 17.2 17.2

6 5.3 5.3 5.0 5.0 14.2 14.1

12 4.9 4.9 4.7 4.7 11.0 11.0

15 4.9 4.8 4.7 4.6 10.2 10.2

1 4.9 4.9 4.3 4.3 n.a. n.a.

2 4.0 4.0 5.7 5.6 15.5 15.4

0.20 n = 1, 000 3 6.0 6.0 5.0 4.8 14.0 13.8

6 5.2 5.1 5.7 5.6 14.3 14.2

12 4.4 4.0 4.3 4.0 10.8 10.5

15 3.9 3.8 4.2 3.9 10.8 10.1

1 4.3 4.3 5.0 5.0 n.a. n.a.

2 4.3 4.3 5.9 5.8 16.9 16.9

0.20 n = 5, 000 3 5.2 5.2 5.4 5.4 16.7 16.7

6 5.6 5.5 4.6 4.5 14.8 14.7

12 5.2 5.2 5.0 4.9 12.5 12.4

15 5.2 5.2 4.8 4.6 11.7 11.7

1 5.7 5.7 5.2 5.2 n.a. n.a.

2 5.1 5.1 4.5 4.5 17.3 17.3

0.20 n = 10, 000 3 5.7 5.6 4.7 4.7 17.2 17.2

6 5.1 5.1 4.9 4.9 14.2 14.2

12 4.8 4.8 4.7 4.7 11.0 11.0

15 4.9 4.7 4.6 4.6 10.2 10.2

1 4.5 4.5 5.4 5.4 n.a. n.a.

2 4.1 4.1 6.0 6.0 16.2 16.1

0.45 n = 1, 000 3 5.9 5.7 5.3 5.3 14.6 14.5

6 5.2 4.8 5.5 5.4 14.4 14.1

12 4.0 3.7 4.2 4.2 11.2 10.8

15 3.8 3.7 4.3 3.9 10.6 10.4

1 4.6 4.6 5.0 5.0 n.a. n.a.

2 4.3 4.3 5.9 5.9 16.7 16.7

0.45 n = 5, 000 3 4.9 4.9 5.4 5.4 16.8 16.7

6 5.7 5.6 4.6 4.6 15.1 14.9

12 5.3 5.3 5.1 5.1 12.7 12.4

15 5.1 5.0 4.8 4.8 11.7 11.7

1 5.7 5.7 5.2 5.2 n.a. n.a.

2 5.0 5.0 4.7 4.7 17.2 17.2

0.45 n = 10, 000 3 5.8 5.7 4.7 4.7 17.5 17.4

6 5.1 5.1 5.0 4.9 14.3 14.3

12 4.8 4.8 4.7 4.7 10.9 10.9

15 4.9 4.7 4.6 4.6 10.2 10.2
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Table 6

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of weak
FARIMA(0, d0, 0) defined by (34)–(35) with θ0 = (0, 0, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 8.7 8.6 n.a. n.a.

2 3.8 3.7 6.1 6.1 16.9 16.9

0.05 n = 1, 000 3 3.5 3.5 4.8 4.7 14.8 14.8

6 3.3 3.2 4.0 4.0 14.1 14.0

12 1.0 0.9 2.5 2.4 13.0 12.8

15 1.0 0.9 2.3 2.1 12.8 12.2

1 3.9 3.9 5.3 5.3 n.a. n.a.

2 4.8 4.8 5.2 5.2 18.7 18.7

0.05 n = 5, 000 3 5.6 5.6 5.3 5.3 15.1 15.0

6 4.8 4.8 4.3 4.3 12.4 12.4

12 3.9 3.9 3.3 3.3 11.2 11.1

15 3.5 3.5 2.7 2.7 10.2 10.1

1 5.4 5.4 5.2 5.2 n.a. n.a.

2 5.6 5.6 5.3 5.3 18.6 18.6

0.05 n = 10, 000 3 4.9 4.9 5.3 5.2 16.6 16.5

6 4.8 4.8 5.5 5.4 13.3 13.3

12 4.1 4.0 4.0 4.0 12.2 12.2

15 5.0 5.0 3.5 3.5 11.2 11.2

1 3.3 3.3 4.9 4.9 n.a. n.a.

2 4.2 4.1 4.4 4.3 14.7 14.7

0.20 n = 1, 000 3 3.7 3.7 3.4 3.2 12.8 12.8

6 3.6 3.4 2.7 2.7 12.9 12.8

12 1.1 1.0 1.9 1.7 11.8 11.3

15 0.9 0.6 1.8 1.7 12.0 11.5

1 3.8 3.8 5.5 5.5 n.a. n.a.

2 4.7 4.7 5.1 5.1 18.8 18.8

0.20 n = 5, 000 3 5.8 5.8 5.2 5.2 15.0 15.0

6 4.9 4.9 4.3 4.3 12.5 12.4

12 3.9 3.9 3.4 3.4 11.1 11.1

15 3.5 3.3 2.7 2.7 10.2 10.1

1 5.4 5.4 5.1 5.1 n.a. n.a.

2 5.6 5.6 5.3 5.3 18.8 18.8

0.20 n = 10, 000 3 5.0 5.0 5.2 5.2 16.6 16.6

6 4.8 4.8 5.4 5.4 13.3 13.3

12 4.0 4.0 4.0 4.0 12.1 12.1

15 5.3 5.3 3.4 3.4 11.2 11.2

1 3.5 3.5 9.0 9.0 n.a. n.a.

2 4.1 4.1 5.9 5.9 17.5 17.5

0.45 n = 1, 000 3 3.9 3.7 5.0 4.8 15.0 14.6

6 3.4 3.4 3.7 3.7 14.1 13.9

12 0.9 0.9 2.0 2.0 12.9 12.2

15 1.0 0.5 1.9 1.7 13.1 12.8

1 4.1 4.1 5.4 5.4 n.a. n.a.

2 4.6 4.6 5.2 5.2 18.8 18.7

0.45 n = 5, 000 3 5.6 5.6 5.2 5.2 15.2 15.2

6 5.1 5.0 4.4 4.4 12.5 12.4

12 4.0 3.8 3.5 3.5 11.1 11.1

15 3.5 3.5 2.6 2.6 10.0 9.9

1 5.5 5.5 5.1 5.1 n.a. n.a.

2 5.6 5.6 5.3 5.3 18.7 18.6

0.45 n = 10, 000 3 4.7 4.7 5.2 5.2 16.6 16.6

6 4.8 4.8 5.3 5.3 13.3 13.3

12 4.0 4.0 4.0 4.0 12.1 12.1

15 5.2 5.2 3.5 3.5 11.1 11.1



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Validation of weak FARIMA models 28

Table 7

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a
strong FARIMA(1, d0, 2) defined by (36) with θ0 = (0.9, 1,−0.2, d0). The nominal asymptotic level of the

tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 7.1 7.1 15.0 15.0 n.a. n.a.

2 7.4 7.4 15.4 15.3 n.a. n.a.

0.05 n = 1, 000 3 9.7 9.5 8.8 8.8 n.a. n.a.

6 10.9 10.6 9.7 8.8 13.0 12.7

12 11.2 10.8 6.9 6.4 8.1 7.9

15 11.8 10.6 4.4 3.9 7.3 7.1

1 24.5 24.5 37.9 37.9 n.a. n.a.

2 28.8 28.8 46.1 46.1 n.a. n.a.

0.05 n = 5, 000 3 36.7 36.7 22.2 22.1 n.a. n.a.

6 55.7 55.7 40.6 40.3 47.6 47.6

12 54.9 54.7 27.2 27.2 28.3 28.0

15 54.0 53.6 18.0 17.8 27.9 27.7

1 44.9 44.9 62.8 62.7 n.a. n.a.

2 51.4 51.3 76.1 76.0 n.a. n.a.

0.05 n = 10, 000 3 62.8 62.8 39.9 39.9 n.a. n.a.

6 86.5 86.5 80.9 80.8 84.7 84.7

12 85.8 85.8 64.9 64.8 66.4 66.2

15 82.0 82.0 43.2 43.2 60.8 60.8

1 4.7 4.7 26.2 26.2 n.a. n.a.

2 7.4 7.3 30.3 30.2 n.a. n.a.

0.20 n = 1, 000 3 9.2 9.1 15.7 15.7 n.a. n.a.

6 9.3 9.2 23.2 22.4 27.2 26.8

12 11.5 11.0 13.0 12.4 18.2 17.9

15 10.8 10.5 3.5 3.3 16.0 15.7

1 14.0 14.0 58.0 57.9 n.a. n.a.

2 22.2 22.2 71.1 71.1 n.a. n.a.

0.20 n = 5, 000 3 24.1 23.8 40.7 40.7 n.a. n.a.

6 32.1 32.0 74.4 74.4 78.5 78.5

12 52.3 52.2 62.4 62.2 67.7 67.6

15 51.6 51.3 14.1 14.0 62.1 61.7

1 21.4 21.4 84.9 85.0 n.a. n.a.

2 30.6 30.6 93.1 93.1 n.a. n.a.

0.20 n = 10, 000 3 35.6 35.6 65.9 65.7 n.a. n.a.

6 44.1 44.1 96.9 96.9 97.8 97.8

12 76.3 76.2 93.2 93.2 94.3 94.3

15 73.7 73.7 43.9 43.9 91.6 91.6

1 0.2 0.2 67.0 66.8 n.a. n.a.

2 9.3 9.0 94.9 94.9 n.a. n.a.

0.45 n = 1, 000 3 18.4 18.3 99.7 99.7 n.a. n.a.

6 21.6 21.3 99.6 99.6 99.7 99.7

12 22.2 21.2 99.4 99.4 99.4 99.4

15 23.4 21.8 99.2 99.2 99.3 99.3

1 0.0 0. 100.0 100.0 n.a. n.a.

2 49.1 49.1 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 69.0 69.0 100.0 100.0 n.a. n.a.

6 76.7 76.6 100.0 100.0 100.0 100.0

12 86.8 86.7 100.0 100.0 100.0 100.0

15 90.9 90.7 100.0 100.0 100.0 100.0

1 0.0 0.0 100.0 100.0 n.a. n.a.

2 77.9 77.9 100.0 100.0 n.a. n.a.

0.45 n = 10, 000 3 90.3 90.2 100.0 100.0 n.a. n.a.

6 94.2 94.2 100.0 100.0 100.0 100.0

12 98.9 98.9 100.0 100.0 100.0 100.0

15 99.5 99.4 100.0 100.0 100.0 100.0
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Table 8

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 2) defined by (36) with θ0 = (0.9, 1,−0.2, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3
in (20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 6.2 6.2 13.1 13.3 n.a. n.a.

2 6.9 6.9 14.3 14.0 n.a. n.a.

0.05 n = 1, 000 3 9.0 9.0 7.7 7.6 n.a. n.a.

6 10.1 9.9 7.4 7.3 18.3 18.2

12 8.3 8.2 5.4 5.1 9.1 8.6

15 6.9 6.0 4.6 4.2 9.8 9.1

1 22.5 22.5 32.8 32.7 n.a. n.a.

2 27.3 27.3 41.7 41.8 n.a. n.a.

0.05 n = 5, 000 3 32.4 32.3 20.1 20.0 n.a. n.a.

6 52.1 52.0 34.0 34.0 55.8 55.7

12 54.1 54.1 23.5 23.5 34.2 34.1

15 53.9 53.4 17.1 16.9 31.9 31.8

1 36.1 36.1 53.2 53.2 n.a. n.a.

2 44.9 44.9 64.5 64.5 n.a. n.a.

0.05 n = 10, 000 3 56.5 56.5 33.1 33.1 n.a. n.a.

6 83.1 83.1 71.2 71.2 86.4 86.2

12 84.0 83.9 59.0 59.0 70.4 70.2

15 80.6 80.5 40.1 40.1 67.4 67.2

1 4.8 4.8 25.1 24.6 n.a. n.a.

2 8.1 7.8 25.9 25.8 n.a. n.a.

0.20 n = 1, 000 3 8.1 8.1 14.9 14.5 n.a. n.a.

6 8.9 8.7 19.6 19.3 32.8 32.3

12 8.5 7.9 11.9 11.7 20.4 19.8

15 6.8 5.7 4.4 4.2 17.9 17.8

1 14.6 14.5 51.0 50.9 n.a. n.a.

2 21.8 21.8 67.1 67.1 n.a. n.a.

0.20 n = 5, 000 3 22.4 22.3 37.7 37.7 n.a. n.a.

6 32.3 32.3 68.3 68.3 81.9 81.9

12 51.6 51.5 55.9 55.8 68.7 68.5

15 51.7 51.6 14.2 14.1 64.8 64.6

1 22.8 22.8 74.1 74.0 n.a. n.a.

2 29.6 29.6 86.2 86.2 n.a. n.a.

0.20 n = 10, 000 3 32.9 32.9 56.6 56.5 n.a. n.a.

6 43.1 43.1 92.3 92.3 97.1 97.1

12 72.9 72.8 88.3 88.3 93.8 93.8

15 71.2 71.1 39.1 38.9 92.0 92.0

1 0.5 0.5 66.1 66.0 n.a. n.a.

2 9.0 9.0 92.4 92.4 n.a. n.a.

0.45 n = 1, 000 3 13.6 13.5 98.1 98.1 n.a. n.a.

6 18.3 18.3 99.2 99.2 99.6 99.6

12 16.8 16.2 97.8 97.8 99.3 99.3

15 15.6 14.5 97.6 97.4 99.2 99.2

1 0.0 0.0 99.8 99.8 n.a. n.a.

2 40.1 40.1 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 57.9 57.9 100.0 100.0 n.a. n.a.

6 65.7 65.7 100.0 100.0 100.0 100.0

12 78.8 78.5 100.0 100.0 100.0 100.0

15 84.7 84.6 100.0 100.0 100.0 100.0

1 0.0 0.0 99.9 99.9 n.a. n.a.

2 72.2 72.2 100.0 99.9 n.a. n.a.

0.45 n = 10, 000 3 84.8 84.8 100.0 100.0 n.a. n.a.

6 89.8 89.7 100.0 100.0 100.0 100.0

12 97.7 97.7 100.0 100.0 100.0 100.0

15 99.0 99.0 100.0 100.0 100.0 100.0
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Table 9

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a
weak FARIMA(1, d0, 2) defined by (36)–(35) with θ0 = (0.9, 1,−0.2, d0). The nominal asymptotic level of

the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 10.1 10.1 18.2 18.2 n.a. n.a.

2 8.1 8.1 16.8 16.8 n.a. n.a.

0.05 n = 1, 000 3 8.6 8.6 10.1 9.9 n.a. n.a.

6 9.6 9.2 8.0 7.8 11.4 11.3

12 4.7 4.4 3.9 3.7 9.1 8.8

15 2.6 2.4 1.7 1.6 8.8 8.5

1 27.6 27.6 42.6 42.7 n.a. n.a.

2 32.7 32.6 51.4 51.3 n.a. n.a.

0.05 n = 5, 000 3 36.9 36.9 23.7 23.7 n.a. n.a.

6 53.3 53.0 39.7 39.7 46.0 45.9

12 49.6 49.3 23.7 23.7 29.3 29.2

15 44.4 44.2 17.5 17.4 28.5 28.1

1 48.5 48.5 68.3 68.3 n.a. n.a.

2 58.7 58.6 76.6 76.5 n.a. n.a.

0.05 n = 10, 000 3 66.8 66.8 42.5 42.5 n.a. n.a.

6 84.2 84.0 77.0 76.9 83.2 83.2

12 79.9 79.9 62.7 62.6 66.0 66.0

15 75.8 75.8 40.5 40.5 61.4 61.3

1 5.1 5.1 30.1 30.3 n.a. n.a.

2 8.0 8.0 33.8 33.7 n.a. n.a.

0.20 n = 1, 000 3 7.9 7.9 18.1 18.1 n.a. n.a.

6 7.4 7.2 23.4 22.9 25.4 25.3

12 4.7 4.4 9.5 9.0 17.8 17.3

15 2.9 2.5 2.5 2.3 16.3 15.6

1 15.3 15.3 62.4 62.5 n.a. n.a.

2 23.5 23.4 74.6 74.6 n.a. n.a.

0.20 n = 5, 000 3 25.9 25.9 45.3 45.2 n.a. n.a.

6 34.0 34.0 73.1 72.9 78.5 78.4

12 51.3 50.8 56.8 56.6 64.5 64.4

15 46.3 45.8 15.0 14.9 60.1 60.1

1 23.0 23.0 85.2 85.2 n.a. n.a.

2 33.8 33.8 93.6 93.6 n.a. n.a.

0.20 n = 10, 000 3 36.5 36.5 68.3 68.3 n.a. n.a.

6 46.8 46.7 95.4 95.4 97.1 97.1

12 81.7 81.7 90.8 90.8 93.7 93.6

15 79.0 78.7 44.2 44.0 91.7 91.7

1 0.3 0.3 65.2 65.3 n.a. n.a.

2 9.4 9.2 90.2 90.2 n.a. n.a.

0.45 n = 1, 000 3 15.6 15.6 95.1 95.1 n.a. n.a.

6 16.5 16.0 94.8 94.8 96.4 96.4

12 9.7 9.2 94.7 94.7 96.4 96.4

15 12.5 12.0 93.0 93.0 96.0 96.0

1 0.0 0.0 99.9 99.9 n.a. n.a.

2 51.9 51.9 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 66.7 66.7 100.0 100.0 n.a. n.a.

6 73.6 73.6 100.0 100.0 100.0 100.0

12 83.1 83.0 100.0 100.0 100.0 100.0

15 85.5 85.4 100.0 100.0 100.0 100.0

1 0.0 0.0 100.0 99.9 n.a. n.a.

2 79.2 79.2 100.0 100.0 n.a. n.a.

0.45 n = 10, 000 3 90.8 90.8 100.0 100.0 n.a. n.a.

6 93.6 93.6 100.0 100.0 100.0 100.0

12 97.8 97.8 100.0 100.0 100.0 100.0

15 99.1 99.1 100.0 100.0 100.0 100.0
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Table 10

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 2) defined by (36) with θ0 = (0., 0.2, 0., d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3 in

(20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 2.9 2.9 98.8 98.8 n.a. n.a.

2 13.3 13.2 95.0 95.0 98.1 98.1

0.05 n = 1, 000 3 18.9 18.7 92.5 92.4 97.6 97.6

6 25.6 25.1 85.9 85.9 95.7 95.6

12 20.8 19.9 78.8 78.4 90.8 90.6

15 19.6 19.1 74.5 74.2 87.7 87.1

1 0.1 0.1 100.0 100.0 n.a. n.a.

2 55.7 55.7 100.0 100.0 100.0 100.0

0.05 n = 5, 000 3 75.7 75.7 100.0 100.0 100.0 100.0

6 87.1 87.1 100.0 100.0 100.0 100.0

12 87.0 86.8 100.0 100.0 100.0 100.0

15 87.3 87.2 100.0 100.0 100.0 100.0

1 0.0 0.0 100.0 100.0 n.a. n.a.

2 79.5 79.4 100.0 100.0 100.0 100.0

0.05 n = 10, 000 3 95.2 95.2 100.0 100.0 100.0 100.0

6 98.0 98.0 100.0 100.0 100.0 100.0

12 98.6 98.6 100.0 100.0 100.0 100.0

15 99.0 99.0 100.0 100.0 100.0 100.0

1 58.4 58.3 82.7 82.5 n.a. n.a.

2 47.7 47.6 56.2 56.1 78.7 78.6

0.20 n = 1, 000 3 40.1 39.9 53.9 53.7 75.6 75.5

6 32.2 31.2 49.0 48.7 70.3 69.8

12 23.0 22.3 43.8 43.0 63.0 62.1

15 21.0 20.0 40.4 39.9 58.0 57.6

1 98.2 98.2 99.9 99.9 n.a. n.a.

2 94.6 94.6 99.5 99.5 100.0 100.0

0.20 n = 5, 000 3 92.3 92.3 99.6 99.6 100.0 100.0

6 91.0 91.0 99.6 99.6 100.0 100.0

12 88.8 88.7 99.8 99.8 100.0 100.0

15 88.6 88.6 99.8 99.8 100.0 100.0

1 99.7 99.7 100.0 100.0 n.a. n.a.

2 99.2 99.2 100.0 100.0 100.0 100.0

0.20 n = 10, 000 3 99.3 99.2 100.0 100.0 100.0 100.0

6 98.8 98.8 100.0 100.0 100.0 100.0

12 99.3 99.3 100.0 100.0 100.0 100.0

15 99.3 99.3 100.0 100.0 100.0 100.0

1 59.0 59.0 82.4 82.4 n.a. n.a.

2 47.7 47.7 56.7 56.4 78.7 78.6

0.45 n = 1, 000 3 41.0 41.0 54.6 54.2 76.4 76.4

6 33.1 32.9 49.9 49.7 70.5 70.4

12 24.1 23.1 44.3 43.9 63.5 63.3

15 21.9 20.6 41.0 40.7 58.2 58.0

1 98.2 98.2 99.8 99.8 n.a. n.a.

2 94.4 94.3 99.5 99.5 100.0 100.0

0.45 n = 5, 000 3 92.4 92.4 99.6 99.6 100.0 100.0

6 90.9 90.8 99.6 99.6 100.0 100.0

12 88.9 88.9 99.8 99.8 100.0 100.0

15 88.8 88.5 99.8 99.8 100.0 100.0

1 99.7 99.7 100.0 100.0 n.a. n.a.

2 99.0 99.0 100.0 100.0 100.0 100.0

0.45 n = 10, 000 3 99.2 99.2 100.0 100.0 100.0 100.0

6 98.9 98.9 100.0 100.0 100.0 100.0

12 99.3 99.3 100.0 100.0 100.0 100.0

15 99.3 99.3 100.0 100.0 100.0 100.0
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Table 11

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a
weak FARIMA(1, d0, 2) defined by (36)–(35) with θ0 = (0., 0.2, 0., d0). The nominal asymptotic level of

the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 2.7 2.7 91.7 91.7 n.a. n.a.

2 11.1 11.0 85.5 85.4 93.4 93.3

0.05 n = 1, 000 3 15.7 15.6 82.7 82.7 91.2 91.2

6 15.8 15.7 77.1 77.0 87.1 87.1

12 6.5 5.8 65.8 65.7 80.5 80.4

15 3.9 3.5 62.3 61.8 78.6 78.4

1 0.3 0.3 99.9 99.9 n.a. n.a.

2 56.7 56.6 99.9 99.9 99.9 99.9

0.05 n = 5, 000 3 69.1 69.1 99.9 99.9 99.9 99.9

6 75.9 75.9 99.9 99.9 99.9 99.9

12 71.9 71.4 99.9 99.9 99.9 99.9

15 68.5 68.0 99.9 99.9 99.9 99.9

1 0.0 0.0 100.0 100.0 n.a. n.a.

2 81.8 81.8 100.0 100.0 100.0 100.0

0.05 n = 10, 000 3 90.3 90.3 100.0 100.0 100.0 100.0

6 93.9 93.9 100.0 100.0 100.0 100.0

12 93.8 93.8 100.0 100.0 100.0 100.0

15 93.7 93.7 100.0 100.0 100.0 100.0

1 43.3 43.2 64.5 64.5 n.a. n.a.

2 31.3 31.1 53.2 53.1 75.1 75.1

0.20 n = 1, 000 3 26.6 26.5 50.1 49.8 71.2 71.2

6 18.6 18.4 43.1 42.8 66.5 66.4

12 7.9 7.7 32.9 32.3 55.1 54.4

15 5.2 4.6 29.0 28.4 51.8 51.3

1 92.3 92.3 99.9 99.9 n.a. n.a.

2 86.1 86.0 98.6 98.6 99.8 99.8

0.20 n = 5, 000 3 82.3 82.3 99.2 99.1 99.8 99.8

6 80.0 80.0 98.9 98.9 99.9 99.9

12 73.1 72.8 98.7 98.7 99.6 99.6

15 68.3 68.0 98.4 98.4 99.5 99.5

1 99.2 99.2 100.0 100.0 n.a. n.a.

2 96.4 96.4 100.0 100.0 100.0 100.0

0.20 n = 10, 000 3 94.6 94.6 100.0 100.0 100.0 100.0

6 95.1 95.1 100.0 100.0 100.0 100.0

12 95.2 95.2 100.0 100.0 100.0 100.0

15 94.0 94.0 100.0 100.0 100.0 100.0

1 43.6 43.2 64.6 64.6 n.a. n.a.

2 31.9 31.8 53.4 53.1 75.7 75.6

0.45 n = 1, 000 3 27.1 27.0 50.2 50.0 71.8 71.6

6 18.8 18.2 43.4 43.3 67.1 67.0

12 8.7 8.1 33.7 33.2 55.6 54.8

15 5.5 4.7 29.1 28.5 52.8 52.0

1 92.4 92.4 99.9 99.9 n.a. n.a.

2 85.6 85.6 98.6 98.6 99.8 99.8

0.45 n = 5, 000 3 82.1 82.0 99.3 99.3 99.8 99.8

6 80.3 80.3 98.9 98.9 99.9 99.9

12 73.0 72.7 98.7 98.7 99.6 99.6

15 68.2 68.1 98.4 98.4 99.5 99.5

1 99.2 99.2 100.0 100.0 n.a. n.a.

2 96.4 96.4 100.0 100.0 100.0 100.0

0.45 n = 10, 000 3 94.8 94.8 100.0 100.0 100.0 100.0

6 95.2 95.2 100.0 100.0 100.0 100.0

12 95.0 95.0 100.0 100.0 100.0 100.0

15 94.0 94.0 100.0 100.0 100.0 100.0
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Table 12

Modified and standard versions of portmanteau tests to check the null hypothesis that the S&P 500
squared returns follow a FARIMA(1, 0.2338, 1) model (37).

Lag m 1 2 3 4 5 6 7
ρ̂(m) 0.0002 -0.0033 -0.0350 -0.0393 0.0893 -0.0040 -0.0179
LBsn 0.0653 18.150 41.924 58.057 186.72 313.78 341.38
BPsn 0.0653 18.146 41.912 58.037 186.64 313.64 341.20
LBw 0.0008 0.1885 21.445 48.248 186.95 187.23 192.77
BPw 0.0008 0.1884 21.439 48.232 186.88 187.15 192.67
plb

w
0.8525 0.6985 0.0916 0.3137 0.0678 0.0717 0.0752

pbp

w
0.8525 0.6986 0.0917 0.3138 0.0679 0.0718 0.0753

plb

s
n.a. n.a. n.a. 0.0000 0.0000 0.0000 0.0000

pbp

s
n.a. n.a. n.a. 0.0000 0.0000 0.0000 0.0000

Lag m 8 9 10 11 12 13 14
ρ̂(m) 0.0047 0.0137 -0.0040 0.0295 0.0093 -0.0077 -0.0286
LBsn 397.27 397.38 415.22 465.52 468.76 567.87 573.02
BPsn 397.04 397.13 414.93 465.17 468.33 567.38 572.49
LBw 193.16 196.42 196.69 211.82 213.31 214.34 228.55
BPw 193.09 196.34 196.61 211.74 213.22 214.25 228.45
plb

w
0.0758 0.0786 0.0986 0.1053 0.1148 0.1226 0.1047

pbp

w
0.0758 0.0787 0.0987 0.1054 0.1150 0.1228 0.1048

plb

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 15 16 17 18 19 20 21
ρ̂(m) 0.0021 0.0086 0.0097 0.0137 -0.0023 0.0016 0.0132
LBsn 588.61 701.16 738.23 738.58 749.24 778.88 788.01
BPsn 588.04 700.44 737.42 737.73 748.33 777.90 786.97
LBw 228.63 229.91 231.54 234.83 234.92 234.97 238.00
BPw 228.52 229.80 231.44 234.72 234.81 234.86 237.89
plb

w
0.1079 0.1113 0.2212 0.2138 0.2127 0.2169 0.2324

pbp

w
0.1080 0.1114 0.2214 0.2140 0.2130 0.2171 0.2327

plb

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 13

Modified and standard versions of portmanteau tests to check the null hypothesis that the Nikkei squared
returns follow a FARIMA(0, 0.2132, 0) model as in (37) with a = b = 0.

Lag m 1 2 3 4 5 6 7
ρ̂(m) -0.0678 0.0400 0.0634 -0.0022 0.0165 0.0320 -0.0158
LBsn 5.7332 29.005 34.758 34.779 66.692 288.57 324.46
BPsn 5.7319 28.997 34.745 34.764 66.657 288.40 324.24
LBw 61.211 82.507 136.13 136.20 139.84 153.46 156.78
BPw 61.198 82.487 136.09 136.16 139.76 153.41 156.73
plb

w
0.1086 0.2186 0.1830 0.2551 0.3002 0.3519 0.3609

pbp

w
0.1086 0.2187 0.1831 0.2552 0.3003 0.3521 0.3611

plb

s
n.a. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
n.a. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 8 9 10 11 12 13 14
ρ̂(m) 0.0295 0.0384 0.0121 0.0133 0.0503 0.0076 0.0068
LBsn 387.88 512.70 575.09 600.81 791.67 808.20 808.27
BPsn 387.59 512.28 574.57 600.22 790.83 807.29 807.30
LBw 168.41 188.08 190.01 192.36 226.12 226.89 227.50
BPw 168.35 187.10 189.93 192.29 225.10 226.76 227.39
plb

w
0.3627 0.3757 0.3802 0.3825 0.3320 0.3447 0.3526

pbp

w
0.3629 0.3759 0.3804 0.3827 0.3323 0.3450 0.3529

plb

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 15 16 17 18 19 20 21
ρ̂(m) 0.0538 0.0073 0.0173 0.0067 -0.0027 -0.0057 0.0153
LBsn 839.87 842.24 842.31 845.36 885.74 935.70 946.03
BPsn 838.80 841.10 841.11 844.10 884.35 934.15 944.40
LBw 266.16 266.88 270.85 271.45 271.56 271.99 275.13
BPw 265.99 266.71 270.68 271.28 271.38 271.82 274.94
plb

w
0.3105 0.3163 0.3161 0.3264 0.3289 0.3329 0.3366

pbp

w
0.3108 0.3166 0.3165 0.3268 0.3293 0.3333 0.3369

plb

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig 3. Returns and the sample autocorrelations of squared returns of the Nikkei.
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Fig 4. Autocorrelation of the FARIMA(0, 0.2132, 0) residuals for the squares of the Nikkei returns. The horizontal
dotted lines (blue color) correspond to the 5% significant limits obtained under the strong FARIMA assumption.
The solid lines (red color) and dashed lines (green color) correspond also to the 5% significant limits under the weak
FARIMA assumption. The full lines correspond to the asymptotic significance limits for the residual autocorrelations
obtained in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic significance
limits for the residual autocorrelations obtained in Theorem 7.
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Fig 5. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.01, 1) model (34)–(20) with
θ0 = (0.9, 0.2, 0.01) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color)
and dashed lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The
full lines correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2.
The dashed lines (green color) correspond to the self-normalized asymptotic significance limits for the residual
autocorrelations obtained in Theorem 7.
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Fig 6. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.25, 1) model (34)–(20) with
θ0 = (0.9, 0.2, 0.25) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color)
and dashed lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The
full lines correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2.
The dashed lines (green color) correspond to the self-normalized asymptotic significance limits for the residual
autocorrelations obtained in Theorem 7.



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Validation of weak FARIMA models 39

0 10 20 30 40 50

−
0.

15
−

0.
05

0.
05

0.
15

Lag

A
C

F

Autocorrelogram residuals of FARIMA(1,0.49,1)

Fig 7. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.49, 1) model (34)–(20) with
θ0 = (0.9, 0.2, 0.49) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color)
and dashed lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The
full lines correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2.
The dashed lines (green color) correspond to the self-normalized asymptotic significance limits for the residual
autocorrelations obtained in Theorem 7.
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Fig 8. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.01, 0) model (34)–(20) with
θ0 = (0, 0, 0.01) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color) correspond
to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color) and dashed
lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The full lines
correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2. The dashed
lines (green color) correspond to the self-normalized asymptotic significance limits for the residual autocorrelations
obtained in Theorem 7.
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Fig 9. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.25, 0) model (34)–(20) with
θ0 = (0, 0, 0.25) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color) correspond
to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color) and dashed
lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The full lines
correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2. The dashed
lines (green color) correspond to the self-normalized asymptotic significance limits for the residual autocorrelations
obtained in Theorem 7.
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Fig 10. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.49, 0) model (34)–(20) with
θ0 = (0, 0, 0.49) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color) correspond
to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color) and dashed
lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The full lines
correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2. The dashed
lines (green color) correspond to the self-normalized asymptotic significance limits for the residual autocorrelations
obtained in Theorem 7.
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Appendix A: Supplemental material: Proofs

The following proofs are quite technical and are adaptations of the arguments used in Francq and Zakoïan
(1998), Francq et al. (2005) and Boubacar Maïnassara and Saussereau (2018).

The results of Boubacar Maïnassara et al. (2019) which will be needed for all the proofs are
collected in the following Subsection A.1 in order to have a self-containing paper.

In all our proofs, K is a strictly positive constant that may vary from line to line.

A.1. Preliminary results

In this subsection, we shall give some results on estimations of the coefficient of formal power series
that will arise in our study.

We begin by recalling the following properties on power series. If for |z | ≤ R , the power series
f (z) =

∑

i≥0 aiz
i and g(z) =

∑

i≥0 biz
i are well defined, then one has (f g)(z) =

∑

i≥0 ciz
i is

also well defined for |z | ≤ R with the sequence (ci )i≥0 which is given by c = a ∗b where ∗ denotes
the convolution product between a and b defined by ci =

∑i
k=0 akbi−k =

∑i
k=0 ai−kbk . We will

make use of the Young inequality that states that if the sequence a ∈ ℓp and b ∈ ℓq and such that
1
p
+ 1

q
= 1 + 1

r
with 1 ≤ p, q, r ≤ ∞, then

‖a ∗ b‖ℓr ≤ ‖a‖ℓp × ‖b‖ℓq .

Now we come back to the power series that arise in our context. Remind that for the true value
of the parameter,

aθ0(L)(1 − L)d0Xt = bθ0(L)ǫt . (39)

Thanks to the assumptions on the moving average polynomials bθ and the autoregressive polyno-
mials aθ, the power series a−1

θ and b−1
θ are well defined.

Thus the functions ǫt(θ) defined in (2) can be written as

ǫt(θ) = b−1
θ (L)aθ(L)(1 − L)dXt (40)

= b−1
θ (L)aθ(L)(1 − L)d−d0a−1

θ0
(L)bθ0(L)ǫt (41)

and if we denote γ(θ) = (γi (θ))i≥0 the sequence of coefficients of the power series b−1
θ (z)aθ(z)(1−

z)d (which is absolutely convergent for at least for |z | ≤ 1), we may write for all t ∈ Z:

ǫt(θ) =
∑

i≥0

γi (θ)Xt−i . (42)

In the same way, by (40) one has

Xt = (1 − L)−da−1
θ (L)bθ(L)ǫt(θ)

and if we denote η(θ) = (ηi (θ))i≥0 the coefficients of the power series (1− z)−da−1
θ (z)bθ(z) one

has

Xt =
∑

i≥0

ηi (θ)ǫt−i(θ) . (43)

We strength the fact that γ0(θ) = η0(θ) = 1 for all θ.
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For large j , Hallin et al. (1999) have shown that uniformly in θ the sequences γ(θ) and η(θ)
satisfy

∂kγj(θ)

∂θi1 · · · ∂θik
= O

(

j−1−d {log(j)}k
)

, for k = 0, 1, 2, 3, (44)

and
∂kηj(θ)

∂θi1 · · · ∂θik
= O

(

j−1+d {log(j)}k
)

, for k = 0, 1, 2, 3. (45)

Note that, in view of (42), (43) and (44), for all θ ∈ Θδ, ǫt(θ) belongs to L
2, that (ǫt(θ))t∈Z is

an ergodic sequence and that, for all t ∈ Z, the function ǫt(·) is a continuous function.
One difficulty that has to be addressed is that (42) includes the infinite past (Xt−i)i≥0 whereas

only a finite number of observations (Xt)1≤t≤n are available to compute the estimators defined in
(4). The simplest solution is truncation which amounts to setting all unobserved values equal to
zero. Thus, for all θ ∈ Θ and 1 ≤ t ≤ n one defines

ǫ̃t(θ) =
t−1
∑

i=0

γi (θ)Xt−i =
∑

i≥0

γti (θ)Xt−i (46)

where the truncated sequence γt(θ) = (γti (θ))i≥0 is defined by

γti (θ) =

{

γi (θ) if 0 ≤ j ≤ t − 1 ,
0 otherwise.

Since our assumptions are made on the noise in (1), it will be useful to express the random variables
ǫt(θ) and its partial derivatives with respect to θ, as a function of (ǫt−i )i≥0.

From (41), there exists a sequence λ(θ) = (λi (θ))i≥0 such that

ǫt(θ) =
∞
∑

i=0

λi (θ) ǫt−i , (47)

where the sequence λ(θ) is given by the sequence of the coefficients of the power series b−1
θ (z)aθ(z)(1−

z)d−d0a−1
θ0

(z)bθ0(z). Consequently λ(θ) = γ(θ) ∗ η(θ0) or, equivalently,

λi (θ) =
i
∑

j=0

γj(θ)ηi−j(θ0). (48)

We proceed in the same way as regard to the derivatives of ǫt(θ). More precisely, for any θ ∈ Θ,

t ∈ Z and 1 ≤ k , l ≤ p + q + 1 there exists sequences
.

λk(θ) = (
.

λi ,k(θ))i≥1 and
..

λk,l (θ) =

(
..

λi ,k,l(θ))i≥1 such that

∂ǫt(θ)

∂θk
=

∞
∑

i=1

.

λi ,k (θ) ǫt−i (49)

∂2ǫt(θ)

∂θk∂θl
=

∞
∑

i=1

..

λi ,k,l (θ) ǫt−i . (50)

Of course it holds that
.

λk(θ) =
∂γ(θ)
∂θk

∗ η(θ0) and
..

λk,l(θ) =
∂2γ(θ)
∂θk∂θl

∗ η(θ0).
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Similarly we have

ǫ̃t(θ) =

∞
∑

i=0

λt
i (θ) ǫt−i , (51)

∂ǫ̃t(θ)

∂θk
=

∞
∑

i=1

.

λ
t

i ,k (θ) ǫt−i and (52)

∂2ǫ̃t(θ)

∂θk∂θl
=

∞
∑

i=1

..

λ
t

i ,k,l (θ) ǫt−i , (53)

where λt(θ) = γt(θ) ∗ η(θ0),
.

λ
t

k(θ) =
∂γt (θ)
∂θk

∗ η(θ0) and
..

λ
t

k,l (θ) =
∂2γt(θ)
∂θk∂θl

∗ η(θ0).
In order to handle the truncation error ǫt(θ)− ǫ̃t(θ), one needs some information on the sequence

λ(θ)− λt(θ). In Boubacar Maïnassara et al. (2019) the following lemmas are proved.

Lemma 1. For 2 ≤ r ≤ ∞, 1 ≤ k ≤ p + q + 1 and θ ∈ Θ, we have

‖ λ (θ)− λt (θ) ‖ℓr = O
(

t−1+ 1
r
−(d−d0)

)

and
‖

.

λk (θ)−
.

λ
t

k (θ) ‖ℓr = O
(

t−1+ 1
r
−(d−d0)

)

.

Lemma 2. For any 2 ≤ r ≤ ∞, 1 ≤ k ≤ p + q + 1 and θ ∈ Θ, there exists a constant K such
that we have

‖ λt
k (θ) ‖ℓr ≤ K and

‖
.

λ
t

k (θ) ‖ℓr ≤ K .

A.2. Proof of Proposition 1

First we remark that the asymptotic normality of the joint distribution of
√
n(θ̂′n − θ

′

0, γ
′

m)
′

can be
established along the same lines as the proof of Theorem 2 in Boubacar Maïnassara et al. (2019).
The detailed proof is omitted. From (6) and (11) we have

√
n

(

θ̂n − θ0

γm

)

=
1√
n

n
∑

t=1

(

−2J−1(θ0)ǫt
∂
∂θ ǫt(θ0)

(ǫt−1, . . . , ǫt−m)
′

ǫt

)

+

(

oP(1)
0m

)

=
1√
n

n
∑

t=1

Ut + oP(1),

where 0m is the vector of Rm×1 with zero components. It is clear that Ut is a measurable function
of ǫt , ǫt−1, . . . Thus by using the same arguments as in Boubacar Maïnassara et al. (2019) (see
proof of Theorem 2), the central limit theorem (CLT) for strongly mixing processes (Ut)t∈Z of
Herrndorf (1984) implies that (1/

√
n)
∑n

t=1Ut has a limiting normal distribution with mean 0 and
covariance matrix Ξ .

For i ≥ 1, we denote Λi(θ0) = (
.

λi ,1(θ0), . . . ,
.

λi ,p+q+1(θ0))
′. From (49) we deduce that

∂ǫt(θ0)

∂θ
=

∞
∑

i=1

Λi(θ0)ǫt−i . (54)
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In view of (11) and (54), by applying the CLT for mixing processes we directly obtain

Σθ̂ = lim
n→∞

Var

(

2J−1 1√
n

n
∑

t=1

ǫt
∂

∂θ
ǫt(θ0)

)

:= J−1I J−1

= 4J−1
∞
∑

ℓ,ℓ′=1

Λℓ (θ0)Λ
′
ℓ′ (θ0)

∞
∑

h=−∞

E (ǫtǫt−ℓǫt−hǫt−ℓ′−h) J
−1

= 4J−1
∞
∑

ℓ,ℓ′=1

Λℓ (θ0)Λ
′
ℓ′ (θ0) Γ (ℓ, ℓ

′)J−1,

which gives the first block of the asymptotic covariance matrix of Proposition 1.
By the stationarity of (ǫt)t∈Z and Lebesgue’s dominated convergence theorem, we obtain the

(ℓ, ℓ
′

)-th entry of the matrix Γm,m:

lim
n→∞

Cov(
√
nγ(ℓ),

√
nγ(ℓ

′

)) = lim
n→∞

1

n

n
∑

t=ℓ+1

n
∑

s=ℓ
′
+1

E
[

ǫtǫt−ℓǫsǫs−ℓ′
]

=
∞
∑

h=−∞

E
[

ǫtǫt−ℓǫt−hǫt−h−ℓ′
]

:= Γ (ℓ, ℓ
′

).

We thus have Γm,m = [Γ (ℓ, ℓ
′

)]1≤ℓ,ℓ′≤m.
Finally, by the stationarity of (ǫt)t∈Z and (ǫt∂ǫt(θ0)/∂θ)t∈Z we have

Cov

(

−2J−1 1√
n

n
∑

t=1

ǫt
∂

∂θ
ǫt(θ0),

√
nγ(ℓ

′

)

)

= −2J−1 1

n

n
∑

t=1

n
∑

t′=ℓ
′
+1

Cov

(

ǫt
∂

∂θ
ǫt(θ0), ǫt′ǫt′−ℓ′

)

= −2J−1 1

n

n−1
∑

h=−n+1

(n − |h|)Cov
(

ǫt
∂ǫt(θ0)

∂θ
, ǫt−hǫt−ℓ′−h

)

.

By the dominated convergence theorem and from (54), it follows that

lim
n→∞

Cov

(

−2J−1 1√
n

n
∑

t=1

ǫt
∂

∂θ
ǫt(θ0),

√
nγ(ℓ

′

)

)

= −2J−1
∞
∑

h=−∞

Cov

(

ǫt
∂

∂θ
ǫt(θ0), ǫt−hǫt−ℓ′−h

)

= −2J−1
∑

j≥1

Λj (θ0)
∞
∑

h=−∞

E
(

ǫtǫt−jǫt−hǫt−ℓ′−h

)

= −2J−1
∑

j≥1

Λj (θ0)Γ (j , ℓ
′) := Σθ̂,γm

(·, ℓ′).

It is clear that the existence of the above matrices is ensured by the existence of Γ (ℓ, ℓ
′

) and
∑∞

ℓ,ℓ′=1 ‖Λℓ(θ0)Λ
′
ℓ′(θ0)Γ (ℓ, ℓ

′

)‖. The proof will thus follow from Lemma 3 below. �

We now justify the existence of the Γ (ℓ, ℓ
′

) and
∑∞

ℓ,ℓ′=1 ‖Λℓ(θ0)Λ
′
ℓ′(θ0)Γ (ℓ, ℓ

′

)‖ in the following
result.
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Lemma 3. Under the assumptions (A0) and (A3’) with τ = 4, we have for (ℓ, ℓ′) 6= (0, 0)

Γ (ℓ, ℓ
′

) =
∞
∑

h=−∞

E
(

ǫtǫt−ℓǫt−hǫt−h−ℓ′
)

< ∞ and (55)

∞
∑

ℓ,ℓ′=1

∥

∥

∥
Λℓ (θ0)Λ

′
ℓ′ (θ0) Γ (ℓ, ℓ

′

)
∥

∥

∥
< ∞. (56)

Proof. Note that, for all h ∈ Z and all (ℓ, ℓ′) 6= (0, 0) we have

∣

∣E
[

ǫtǫt−ℓǫt−hǫt−h−ℓ′
]∣

∣ ≤
∣

∣cum
(

ǫt , ǫt−ℓ, ǫt−h, ǫt−h−ℓ′
)∣

∣+ |E [ǫtǫt−ℓ]|
∣

∣E
[

ǫt−hǫt−h−ℓ′
]∣

∣

+ |E [ǫtǫt−h]|
∣

∣E
[

ǫt−ℓǫt−h−ℓ′
]∣

∣+
∣

∣E
[

ǫtǫt−h−ℓ′
]∣

∣ |E [ǫt−ℓǫt−h]| .

Then, using the stationarity of (ǫt)t∈Z, and under the assumptions (A0) and (A3’) with τ = 4 it
follows that

Γ (ℓ, ℓ
′

) ≤
[

E
(

ǫ2t
)]2

+

∞
∑

h=−∞

∣

∣cum
(

ǫ0, ǫ−ℓ, ǫ−h, ǫ−h−ℓ′
)∣

∣ ≤ K

which proves (55). Similarly, we obtain

∞
∑

ℓ,ℓ′=1

∥

∥

∥
Λℓ (θ0)Λ

′
ℓ′ (θ0)Γ (ℓ, ℓ

′

)
∥

∥

∥
≤

∞
∑

h=−∞

∞
∑

ℓ,ℓ′=1

∣

∣cum
(

ǫ0, ǫ−ℓ, ǫ−h, ǫ−h−ℓ′
)∣

∣

+
[

E
(

ǫ2t
)]2

∞
∑

ℓ=1

‖Λℓ (θ0)‖2

≤ K

where we have used Lemma 2. The conclusion follows.

A.3. Proof of Theorem 2

The proof is divided in two steps.

A.3.1. Step 1: Taylor’s expansion of
√
nγ̂m and

√
nρ̂m

The aim of this step is to prove (8) and (9). First we prove that for h = 1, . . . ,m

√
nγ̂(h) =

√
nγ(h) +

(

E

[

ǫt−h

∂

∂θ
′
ǫt(θ0)

])√
n
(

θ̂n − θ0

)

+ oP(1). (57)

A Taylor expansion of (1/
√
n)
∑n

t=1+h ǫ̃t(·)ǫ̃t−h(·) around θ0 gives

√
nγ̂(h) =

1√
n

n
∑

t=1+h

ǫ̃t(θ0)ǫ̃t−h(θ0) +

(

1

n

n
∑

t=1+h

D̃t(θ
∗
n)

)

√
n
(

θ̂n − θ0

)

=
√
nγ(h) + (E [Dt(θ0)])

√
n
(

θ̂n − θ0

)

+ Rn,h,1 + Rn,h,2 + Rn,h,3,
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where

D̃t(θ) =
∂ǫ̃t(θ)

∂θ′
ǫ̃t−h(θ) + ǫ̃t(θ)

∂ǫ̃t−h(θ)

∂θ′
,

Dt(θ0) =
∂ǫt(θ0)

∂θ
′

ǫt−h + ǫt
∂ǫt−h(θ0)

∂θ
′

,

Rn,h,1 =
1√
n

n
∑

t=1+h

{ǫ̃t(θ0)ǫ̃t−h(θ0)− ǫt(θ0)ǫt−h(θ0)} ,

Rn,h,2 =

(

1

n

n
∑

t=1+h

(

D̃t(θ
∗
n)− Dt(θ0)

)

)

√
n
(

θ̂n − θ0

)

,

Rn,h,3 =

(

1

n

n
∑

t=1+h

Dt(θ0)− E [Dt(θ0)]

)

√
n
(

θ̂n − θ0

)

,

and where θ∗n is between θ̂n and θ0. Using the orthogonality between ǫt and any linear combination
of the past values of ǫt (in particular ∂ǫt−h/∂θ), we have

√
nγ̂(h) =

√
nγ(h) +

(

E

[

ǫt−h
∂

∂θ′
ǫt(θ0)

])√
n
(

θ̂n − θ0

)

+ Rn,h,1 + Rn,h,2 + Rn,h,3. (58)

Thus, to obtain (57), we just need to prove that in (58) the sequences of random variables (Rn,h,1)n,
(Rn,h,2)n and (Rn,h,3)n converge in probability to 0.

One of the three above term is easy to handle. Indeed, by the ergodic theorem, we have
n−1

∑n
t=1+h Dt(θ0) − E [Dt(θ0)] → 0 almost-surely as n → ∞. Thus using the tightness of

the sequence (
√
n(θ̂n − θ0))n, we deduce that Rn,h,3 = oP(1).

The proof of (57) will thus follow from Lemmas 4 and 5 in which the two others terms Rn,h,1

and Rn,h,2 are discussed. These lemmas are stated and proved hereafter (see subsections A.3.3 and
A.3.4).

We now remark that in Equation (57), E[ǫt−h(∂ǫt(θ0)/∂θ
′

)] is the line h of the matrix Ψm ∈
R
m×(p+q+1) defined by (7). So for h = 1, . . . ,m, Equation (57) becomes

√
nγ̂m =

(√
nγ̂(1), . . . ,

√
nγ̂(m)

)′

=
√
nγm +Ψm

√
n
(

θ̂n − θ0

)

+ oP(1).

Therefore the Taylor expansion (8) of γ̂m is proved.
Now, it is clear that the asymptotic distribution of the residual autocovariances

√
nγ̂m is related

to the asymptotic behavior of
√
n(θ̂′n − θ

′

0, γ
′

m)
′

obtained in Subsection A.2. We come back to the
vector ρ̂m = (ρ̂(1), . . . , ρ̂(m))′. Note that from (57), we have

√
n(γ̂(0)− γ(0)) = oP(1). Applying

the CLT for mixing processes (see Herrndorf (1984)) to the process (ǫ2t )t∈Z, we obtain

√
n
(

σ̂2
ǫ − σ2

ǫ

)

=
1√
n

n
∑

t=1

(

ǫ2t − E[ǫ2t ]
)

+ oP(1)
in law−−−→
n→∞

N
(

0,
∞
∑

h=−∞

Cov
(

ǫ2t , ǫ
2
t−h

)

)

.

So we have
√
n(σ̂2

ǫ − σ2
ǫ ) = OP(1) and

√
n(γ(0)− σ2

ǫ ) = OP(1). Now, using (13) and the ergodic
theorem, we have

n

(

γ̂(h)

γ̂(0)
− γ̂(h)

σ2
ǫ

)

=
√
nγ̂(h)

√
n
(

σ2
ǫ − γ̂(0)

)

σ2
ǫ γ̂(0)

= OP(1),
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which means
√
nρ̂(h) =

√
nγ̂(h)/σ2

ǫ +OP(n
−1/2). For h = 1, . . . ,m, it follows that

√
nρ̂m =

√
nγ̂m
σ2
ǫ

+ oP(1),

and the Taylor expansion (9) of ρ̂m is proved. This ends our first step.
The next step deals with the asymptotic distributions of

√
nγ̂m and

√
nρ̂m.

A.3.2. Step 2: Asymptotic distributions of
√
nγ̂m and

√
nρ̂m

The joint asymptotic distribution of
√
nγm and

√
n(θ̂n−θ0) shows that

√
nγ̂m has a limiting normal

distribution with mean zero and covariance matrix

lim
n→∞

Var
(√

nγ̂m
)

= lim
n→∞

Var
(√

nγm
)

+Ψm lim
n→∞

Var
(√

n(θ̂n − θ0)
)

Ψ
′

m

+Ψm lim
n→∞

Cov
(√

n(θ̂n − θ0),
√
nγm

)

+ lim
n→∞

Cov
(√

nγm,
√
n(θ̂n − θ0)

)

Ψ
′

m

= Γm,m +ΨmΣθ̂Ψ
′

m +ΨmΣθ̂,γm
+ Σ

′

θ̂,γm
Ψ

′

m.

Consequently, we have

lim
n→∞

Var
(√

nρ̂m
)

= lim
n→∞

Var

(√
n
γ̂m
σ2
ǫ

)

=
1

σ4
ǫ

Σγ̂m .

This ends our second step and the proof is completed. �

In the following, we justify the convergence of Rn,h,1, Rn,h,2.

A.3.3. Step 3: convergence of Rn,h,1

Lemma 4. Under the assumptions of Theorem 2, the sequence of random variables

Rn,h,1 =
1√
n

n
∑

t=1+h

{ǫ̃t(θ0)ǫ̃t−h(θ0)− ǫt(θ0)ǫt−h(θ0)} . (59)

tends to zero in probability as n → ∞.

Proof. Throughout this proof, θ = (θ1, . . . , θp+q, d)
′ ∈ Θδ is such that d0 < d ≤ d2 where d2 is

the upper bound of the support of the long-range parameter d0. Let

R1
n,h,1 =

1√
n

n
∑

t=1+h

{ǫ̃t(θ0)− ǫt(θ0)} ǫ̃t−h(θ0) and (60)

R2
n,h,1 =

1√
n

n
∑

t=1+h

ǫt(θ0) {ǫ̃t−h(θ0)− ǫt−h(θ0)} . (61)

The lemma will be proved as soon as we show that R1
n,h,1 and R2

n,h,1 tend to zero in probability
when n → ∞.

Proof of the convergence in probability of R1
n,h,1

The arguments follow the one of Lemma 5 in Boubacar Maïnassara et al. (2019) in a simpler
context. The proof is quite long so we divide it in four steps.
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⋄ Step 1: preliminaries. We have

R1
n,h,1 =

1√
n

n
∑

t=1+h

{ǫ̃t(θ0)− ǫ̃t(θ)} ǫ̃t−h(θ0)

+
1√
n

n
∑

t=1+h

{ǫ̃t(θ)− ǫt(θ)} ǫ̃t−h(θ0)

+
1√
n

n
∑

t=1+h

{ǫt(θ)− ǫt(θ0)} ǫ̃t−h(θ0)

= ωn,h,1(θ) + ωn,h,2(θ) + ωn,h,3(θ),

where

ωn,h,1(θ) =
1√
n

n
∑

t=1+h

{ǫ̃t(θ0)− ǫ̃t(θ)} ǫ̃t−h(θ0),

ωn,h,2(θ) =
1√
n

n
∑

t=1+h

{ǫ̃t(θ)− ǫt(θ)} ǫ̃t−h(θ0) and

ωn,h,3(θ) =
1√
n

n
∑

t=1+h

{ǫt(θ)− ǫt(θ0)} ǫ̃t−h(θ0).

Therefore, if we prove that the two sequences of random variables (ωn,h,2(θ))n and (ωn,h,1(θ) +
ωn,h,3(θ))n converge in probability towards 0, then the convergence in probability of R1

n,h,1 to zero
will be true.

⋄ Step 2: convergence in probability of (ωn,h,2(θ))n to 0
For all β > 0, we have

P (|ωn,h,2| ≥ β) ≤ 1√
nβ

n
∑

t=1+h

E [|ǫ̃t(θ)− ǫt(θ)| |ǫ̃t−h(θ0)|]

≤ 1√
nβ

n
∑

t=1+h

‖ǫ̃t(θ)− ǫt(θ)‖L2 ‖ǫ̃t−h(θ0)‖L2 .

First, from (51) and using Lemma 2, we have

‖ǫ̃t−h(θ0)‖2L2 = E





(

∞
∑

i=0

λt
i (θ0) ǫt−i−h

)2




=

∞
∑

i=1

∞
∑

j=1

λt
i (θ0)λ

t
j (θ0)E [ǫt−i−hǫt−j−h] + σ2

ǫ

{

λt
0 (θ0)

}2

= σ2
ǫ

∞
∑

i=1

{

λt
i (θ0)

}2
+ σ2

ǫ

≤ K . (62)
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In view of (47), (51) and (62), we may write

P (|ωn,h,2(θ)| ≥ β) ≤ K

β
√
n

n
∑

t=1+h

(

E

[

(ǫ̃t−h(θ)− ǫt−h(θ))
2
])1/2

≤ K

β
√
n

n
∑

t=1+h





∑

i≥0

∑

j≥0

(

λt
i (θ)− λi (θ)

) (

λt
j (θ)− λj(θ)

)

E [ǫt−i−hǫt−j−h]





1/2

≤ σǫK

β
√
n

n
∑

t=1





∑

i≥0

(

λt
i (θ)− λi (θ)

)2





1/2

≤ σǫK

β
√
n

n
∑

t=1

∥

∥λ(θ)− λt(θ)
∥

∥

ℓ2
.

We use Lemma 1, the fact that d > d0 and the fractional version of Cesàro’s Lemma3 to obtain

P (|ωn,h,2(θ)| ≥ β) ≤ σǫK

β

1√
n

n
∑

t=1

1

t1/2+(d−d0)
−−−→
n→∞

0.

This proves the expected convergence in probability.

⋄ Step 3: Convergence of (ωn,h,1(θ) + ωn,h,3(θ))n
Note now that, for all n ≥ 1, we have

ωn,h,1(θ) + ωn,h,3(θ) =
1√
n

n
∑

t=1+h

{

(ǫt(θ)− ǫ̃t(θ))− (ǫt(θ0)− ǫ̃t(θ0))
}

ǫ̃t−h(θ0).

By the mean value theorem, there exists 0 < cω < 1 such that

∣

∣

∣(ǫt(θ)− ǫ̃t(θ))− (ǫt(θ0)− ǫ̃t(θ0))
∣

∣

∣ ≤
∥

∥

∥

∥

∂(ǫt − ǫ̃t)

∂θ
((1− cω)θ + cωθ0)

∥

∥

∥

∥

Rp+q+1

‖θ − θ0‖Rp+q+1 .

(63)

3Recall that the fractional version of Cesàro’s Lemma states that for (ht)t a sequence of positive real numbers,
κ > 0 and c ≥ 0 we have

lim
t→∞

htt
1−κ = |κ| c ⇒ lim

n→∞

1

nκ

n∑

t=0

ht = c.
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Following the same method than in Step 2 we obtain

E

(

(ǫt(θ)− ǫ̃t(θ))− (ǫt(θ0)− ǫ̃t(θ0))
)2

≤ ‖θ − θ0‖2Rp+q+1

p+q+1
∑

k=1

E

[

∣

∣

∣

∣

∂(ǫt − ǫ̃t)

∂θk
((1− cω)θ + cωθ0)

∣

∣

∣

∣

2
]

≤ ‖θ − θ0‖2Rp+q+1

p+q+1
∑

k=1

sup
θ

E

[

∣

∣

∣

∣

∂(ǫt − ǫ̃t)

∂θk
(θ)

∣

∣

∣

∣

2
]

≤ ‖θ − θ0‖2Rp+q+1

p+q+1
∑

k=1

σ2
ǫ sup

θ

∥

∥

∥(
.

λk −
.

λ
t

k)(θ)
∥

∥

∥

2

ℓ2

≤ K ‖θ − θ0‖2Rp+q+1 sup
d;d0≤d≤d2

(

1

t1/2+(d−d0)

)2

≤ K ‖θ − θ0‖2Rp+q+1

1

t
, (64)

where we have used the fact that the function

θ 7→ E

[

∣

∣

∣

∣

∂(ǫt − ǫ̃t)

∂θk
(θ)

∣

∣

∣

∣

2
]

is bounded and continuous. By (62) and (64), it follows that

P (|ωn,h,1(θ) + ωn,h,3(θ)| ≥ β) ≤ K

β
‖θ − θ0‖Rp+q+1

1√
n

n
∑

t=1

1

t1/2

and the fractional version of Cesàro’s Lemma implies

lim
n→∞

P (|ωn,h,1(θ) + ωn,h,3(θ)| ≥ β) ≤ K

β
‖θ − θ0‖Rp+q+1 . (65)

⋄ Step 4: end of the proof of the convergence in probability of R1
n,h,1 to 0.

For any ε > 0, we choose θ such that (K/β) ‖θ − θ0‖Rp+q+1 ≤ ε. Then, from (65), there exists n0
such that for all n ≥ n0,

P (|ωn,h,1(θ) + ωn,h,3(θ)| ≥ β) ≤ ε.

By Step 2, one also has for n ≥ n0

P (|ωn,h,2(θ)| ≥ β) ≤ ε.

Therefore, for all n ≥ n0,

P
(∣

∣R1
n,h,1

∣

∣ ≥ 2β
)

≤ P (|ωn,h,1(θ) + ωn,h,3(θ)| ≥ β) + P (|ωn,h,2(θ)| ≥ β) ≤ ε

and the expected convergence is proved.

Proof of the convergence in probability of R2
n,h,1

Under Assumption (A3) with τ = 2 it follows that ǫt(θ0) belongs to L
2. Thus the proof of the

convergence in probability of R2
n,h,1 to zero is shown in the same way as the proof of the convergence

in probability of R1
n,h,1 to 0.
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Conclusion : convergence in probability of Rn,h,1

The conclusion is a consequence of the above convergences.

A.3.4. Step 4: convergence of Rn,h,2

Lemma 5. Under the assumptions of Theorem 2, the sequences of random variables

Rn,h,2 =

(

1

n

n
∑

t=1+h

(

D̃t(θ
∗
n)− Dt(θ0)

)

)

√
n
(

θ̂n − θ0

)

(66)

tend to zero in probability as n → ∞ and where θ∗n is between θ̂n and θ0.

Proof. Since (
√
n(θ̂n − θ0))n is a tight sequence, we have

√
n(θ̂n − θ0) = OP(1). Hence, to prove

the convergence in probability of (Rn,h,2)n to 0, it suffices to show that

1

n

n
∑

t=1+h

(

D̃t(θ
∗
n)− Dt(θ0)

)

= oP(1). (67)

This will be proved using Lemma 1 and Cesàro’s Lemma. Nevertheless, the proof is quite long so
we divide it in four steps.

⋄ Step 1: preliminaries. We have

1

n

n
∑

t=1+h

(

D̃t(θ
∗
n)− Dt(θ0)

)

= Tn,h,1(θ
∗
n) + Tn,h,2(θ

∗
n) + Tn,h,3(θ

∗
n) + Tn,h,4(θ

∗
n) + Tn,h,5(θ

∗
n),

where

Tn,h,1(θ) =
1

n

n
∑

t=1+h

∂ǫ̃t(θ)

∂θ′
(ǫ̃t−h(θ)− ǫt−h(θ)) ,

Tn,h,2(θ) =
1

n

n
∑

t=1+h

(ǫ̃t(θ)− ǫt(θ))
∂ǫ̃t−h(θ)

∂θ′
,

Tn,h,3(θ) =
1

n

n
∑

t=1+h

(

∂ǫ̃t(θ)

∂θ
′

− ∂ǫt(θ)

∂θ
′

)

ǫt−h(θ),

Tn,h,4(θ) =
1

n

n
∑

t=1+h

ǫt(θ)

(

∂ǫ̃t−h(θ)

∂θ′
− ∂ǫt−h(θ)

∂θ′

)

and

Tn,h,5(θ) =
1

n

n
∑

t=1+h

(Dt(θ)−Dt(θ0)) .

Therefore, if we prove that the five sequences of random variables (Tn,h,i (θ))n (for i = 1, . . . , 5)
converge in probability towards 0, then (67) will be true.



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Validation of weak FARIMA models 56

⋄ Step 2: convergence in probability of (Tn,h,1(θ))n to 0
For all β > 0, we have

P (‖Tn,h,1(θ)‖ ≥ β) ≤ 1

nβ

n
∑

t=1+h

E

[∥

∥

∥

∥

∂ǫ̃t(θ)

∂θ′

∥

∥

∥

∥

|ǫ̃t−h(θ)− ǫt−h(θ)|
]

≤ 1

nβ

n
∑

t=1+h

‖ǫ̃t−h(θ)− ǫt−h(θ)‖L2

∥

∥

∥

∥

∂ǫ̃t(θ)

∂θ′

∥

∥

∥

∥

L2

.

First, from (51) and using Lemma 2 we have for 1 ≤ k ≤ p + q + 1

∥

∥

∥

∥

∂

∂θk
ǫ̃t(θ)

∥

∥

∥

∥

2

L2

= E





(

∞
∑

i=1

.

λ
t

i ,k(θ)ǫt−i

)2




=
∞
∑

i=1

∞
∑

j=1

.

λ
t

i ,k(θ)
.

λ
t

j ,k(θ)E [ǫt−iǫt−j ]

= σ2
ǫ

∞
∑

i=1

{ .

λ
t

i ,k(θ)
}2

≤ K . (68)

In view of (47), (51), (68) and following the same way as the step 2 of Lemma 4 we have

P (|Tn,h,1(θ)| ≥ β) ≤ K

βn

n
∑

t=1+h

(

E

[

(ǫ̃t−h(θ)− ǫt−h(θ))
2
])1/2

≤ K

βn

n
∑

t=1+h





∑

i≥0

∑

j≥0

(

λt
i (θ)− λi (θ)

) (

λt
j (θ)− λj(θ)

)

E [ǫt−i−hǫt−j−h]





1/2

≤ σǫK

βn

n
∑

t=1





∑

i≥0

(

λt
i (θ)− λi(θ)

)2





1/2

≤ σǫK

βn

n
∑

t=1

∥

∥λ(θ)− λt(θ)
∥

∥

ℓ2
.

We use Lemma 1, the fact that |d − d0| < 1/2 and the Cesàro Lemma to obtain

P (|Tn,h,1(θ)| ≥ β) ≤ σǫK

β

1

n

n
∑

t=1

1

t1/2+(d−d0)
−−−→
n→∞

0.

This proves the expected convergence in probability of Tn,h,1(θ).
The same calculations holds for the sequences of random variables (Tn,h,2(θ))n, (Tn,h,3(θ))n and

(Tn,h,4(θ))n.
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⋄ Step 3: convergence in probability of (Tn,h,5(θ))n to 0
For 1 ≤ i , j ≤ p + q + 1 and in view of (42), (44), we have

sup
θ∈Θδ

∣

∣

∣

∣

∂

∂θi
ǫt(θ)

∂

∂θj
ǫt(θ)

∣

∣

∣

∣

= sup
θ∈Θδ

∣

∣

∣

∣

∣

∣

∑

k1,k2≥1

∂

∂θi
γk1(θ)

∂

∂θj
γk2(θ)Xt−k1Xt−k2

∣

∣

∣

∣

∣

∣

≤
∑

k1,k2≥1

sup
θ∈Θδ

∣

∣

∣

∣

∂

∂θi
γk1(θ)

∣

∣

∣

∣

sup
θ∈Θδ

∣

∣

∣

∣

∂

∂θj
γk2(θ)

∣

∣

∣

∣

|Xt−k1 | |Xt−k2 |

≤ K
∑

k1,k2≥1

log(k1)k
−1−d1
1 log(k2)k

−1−d1
2 |Xt−k1 | |Xt−k2 | .

Consequently we obtain

Eθ0

[

sup
θ∈Θδ

∣

∣

∣

∣

∂

∂θi
ǫt(θ)

∂

∂θj
ǫt(θ)

∣

∣

∣

∣

]

≤ K
∑

k1,k2≥1

log(k1)k
−1−d1
1 log(k2)k

−1−d1
2 sup

t∈Z
Eθ0 |Xt |2

≤ K . (69)

Following the same approach used to obtain (69), we have

Eθ0

[

sup
θ∈Θδ

∣

∣

∣

∣

ǫt(θ)
∂2

∂θi∂θj
ǫt(θ)

∣

∣

∣

∣

]

< ∞. (70)

A Taylor expansion of Dt(·) around θ0 implies that

‖Tn,h,5(θ)‖ ≤ 1

n

n
∑

t=1

sup
θ∈Θδ

∥

∥

∥

∥

∂

∂θ
Dt(θ)

∥

∥

∥

∥

‖θ∗n − θ0‖ .

From (69) and (70), it follows that

E

[

sup
θ∈Θδ

∥

∥

∥

∥

∂

∂θ
Dt(θ)

∥

∥

∥

∥

]

= E

[

sup
θ∈Θδ

∥

∥

∥

∥

ǫt−h(θ)
∂2

∂θ∂θ′
ǫt(θ) +

∂

∂θ
ǫt−h(θ)

∂

∂θ′
ǫt(θ)

+
∂

∂θ
ǫt(θ)

∂

∂θ′
ǫt−h(θ) + ǫt(θ)

∂2

∂θ∂θ′
ǫt−h(θ)

∥

∥

∥

∥

]

≤ K . (71)

Using Equation (71), the ergodic theorem and the almost-sure convergence of (θ̂n−θ0)n to 0 imply
that Tn,h,5(θ) tends to 0 almost-surely.

⋄ Step 4: end of the proof of the convergence in probability of Rn,h,2 to zero.
By Step 2 and 3 we deduce that

Rn,h,2 = oP(1)

and the convergence in probability is proved.
The proof of the lemma is completed.
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A.4. Proof of Proposition 5

The following proofs are quite technical and are adaptations of the arguments used in Boubacar Maïnassara and Saussereau
(2018).

To prove the invertibility of the normalized matrix Cm, we need to introduce the following
notation.

Let St(i) be the i -th component of the vector St =
∑t

j=1 (ΛUj − γm) ∈ R
m. We remark that

St−1(i) = St(i)−
p+q+1
∑

k=1

δi ,kǫt
∂

∂θk
ǫt(θ0)− ǫtǫt−i + γ(i), (72)

where δi ,k is the (i , k)−th entry of the m × (p + q + 1) matrix ∆ := −2ΨmJ
−1.

If the matrix Cm is not invertible, there exists some real constants c1, . . . , cm not all equal to
zero, such that we have

m
∑

i=1

m
∑

j=1

cjCm(j , i)ci =
1

n2

n
∑

t=1

m
∑

i=1

m
∑

j=1

cjSt(j)St(i)ci =
1

n2

n
∑

t=1

(

m
∑

i=1

ciSt(i)

)2

= 0,

which implies that
∑m

i=1 ciSt(i) = 0 for all t ≥ 1.
Then by (72), it would imply that

m
∑

i=1

p+q+1
∑

k=1

ciδi ,kǫt
∂

∂θk
ǫt(θ0) +

m
∑

i=1

ci ǫtǫt−i =
m
∑

i=1

ciγ(i). (73)

By the ergodic Theorem, we also have
∑m

i=1 ciγ(i) → 0 almost-surely as n goes to infinity.
Consequently replacing this convergence in (73) implies that for all t ≥ 1

m
∑

i=1

p+q+1
∑

k=1

ciδi ,kǫt
∂

∂θk
ǫt(θ0) +

m
∑

i=1

ci ǫtǫt−i = 0, a.s.

Using (47), it yields that

ǫt







∑

ℓ≥1

(

m
∑

i=1

p+q+1
∑

k=1

ciδi ,k
.

λℓ,k (θ0)

)

ǫt−ℓ +
m
∑

ℓ=1

cℓǫt−ℓ







= 0, a.s.

Or equivalently,

ǫt







m
∑

ℓ=1

(

m
∑

i=1

ci

p+q+1
∑

k=1

δi ,k
.

λℓ,k (θ0) + cℓ

)

ǫt−ℓ +
∑

ℓ≥m+1

(

m
∑

i=1

ci

p+q+1
∑

k=1

δi ,k
.

λℓ,k (θ0)

)

ǫt−ℓ







= 0, a.s.

Thanks to Assumption (A4), ǫt has a positive density in some neighborhood of zero and then
ǫt 6= 0 almost-surely. Hence we obtain

m
∑

ℓ=1

(

m
∑

i=1

ci

p+q+1
∑

k=1

δi ,k
.

λℓ,k (θ0) + cℓ

)

ǫt−ℓ +
∑

ℓ≥m+1

(

m
∑

i=1

ci

p+q+1
∑

k=1

δi ,k
.

λℓ,k (θ0)

)

ǫt−ℓ = 0, a.s.
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Since the variance of the linear innovation process in not equal to zero, we deduce that










∑m
i=1 ci

∑p+q+1
k=1 δi ,k

.

λℓ,k (θ0) + cℓ = 0 for all ℓ ∈ {1, . . . ,m}

∑m
i=1 ci

∑p+q+1
k=1 δi ,k

.

λℓ,k (θ0) = 0 for all ℓ ∈ {m + 1, . . . } .

Then we would have c1 = · · · = cm = 0 which is impossible. Thus we have a contradiction and
the matrix Cm ∈ R

m×m is non singular. �

A.5. Proof of Theorem 6

We recall that the Skorohod space D
ℓ[0,1] is the set of Rℓ−valued functions on [0,1] which are

right-continuous and have left limits everywhere. It is endowed with the Skorohod topology and

the weak convergence on D
ℓ[0,1] is mentioned by

Dℓ

−→. The integer part of x will be denoted by
⌊x⌋.

The proof is divided in two steps.

A.5.1. Functional central limit theorem for (ΛUt)t≥1

In view of (8) and (12), we deduce that

√
nγ̂m =

√
nγm +

√
nΨm

(

θ̂n − θ0

)

+ oP(1)

=
1√
n

n
∑

t=1

U2t +Ψm

(

1√
n

n
∑

t=1

U1t + oP(1)

)

+ oP(1)

=
1√
n

n
∑

t=1

ΛUt + oP(1). (74)

Now, it is clear that the asymptotic behaviour of γ̂m is related to the limit distribution of Ut =
(U

′

1t ,U
′

2t)
′

. Our first goal is to show that there exists a lower triangular matrix Π with nonnegative
diagonal entries such that

1√
n

⌊nr⌋
∑

t=1

ΛUt
D
m

−→
n→∞

(

ΠΠ
′
)1/2

Bm(r), (75)

where (Bm(r))r≥0 is a m−dimensional standard Brownian motion. Using (47), Ut can be rewritten
as

Ut =

(

−2

{

∞
∑

i=1

.

λi ,1 (θ0) ǫtǫt−i , . . . ,

∞
∑

i=1

.

λi ,p+q+1 (θ0) ǫtǫt−i

}

J−1′ , ǫtǫt−1, . . . , ǫtǫt−m

)′

.

The non-correlation between ǫt ’s implies that the process (Ut)t∈Z of R
p+q+1+m is centered. In

order to apply the functional central limit theorem for strongly mixing process (see Herrndorf
(1984)), we need to identify the asymptotic covariance matrix in the classical central limit theorem
for the sequence (Ut)t∈Z. It is proved in Proposition 1 that

1√
n

n
∑

t=1

Ut
in law−−−→
n→∞

N (0,Ξ := 2πfU (0)) ,
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where fU(0) is the spectral density of the stationary process (Ut)t∈Z evaluated at frequency 0. The
existence of the matrix Ξ has already been discussed in Lemma 3.

Since the matrix Ξ is positive definite, it can be factorized as Ξ = ΥΥ
′

, where the (p + q +
1 +m)× (p + q + 1 +m) lower triangular matrix Υ has nonnegative diagonal entries. Therefore,
we have

1√
n

n
∑

t=1

ΛUt
in law−−−→
n→∞

N
(

0,ΛΞΛ
′
)

,

and the new variance matrix can also been factorized as ΛΞΛ
′

= (ΛΥ)(ΛΥ)
′

:= ΠΠ
′

, where
Π ∈ R

m×(p+q+1). Thus

n−1/2
n
∑

t=1

(ΠΠ
′

)−1/2ΛUt
in law−→
n→∞

N (0, Im),

where (ΠΠ
′

)−1/2 is the Moore-Penrose inverse (see Magnus and Neudecker (1999), p. 36) of
(ΠΠ

′

)1/2.
Using the same arguments as in the proof of Theorem 2 in Boubacar Maïnassara et al. (2019),

the asymptotic distribution of n−1/2
∑n

t=1 Ut when n tends to infinity is obtained by introducing
the random vector Uk

t defined for any strictly positive integer k by

Uk
t =

(

−2

{

k
∑

i=1

.

λi ,1 (θ0) ǫtǫt−i , . . . ,
k
∑

i=1

.

λi ,p+q+1 (θ0) ǫtǫt−i

}

J−1′ , ǫtǫt−1, . . . , ǫtǫt−m

)
′

.

Since Uk
t depends on a finite number of values of the noise-process (ǫt)t∈Z, it also satisfies a

mixing property (see Theorem 14.1 in Davidson (1994), p. 210). Then applying the central limit
theorem for strongly mixing process of Herrndorf (1984) shows that its asymptotic distribution is
normal with zero mean and variance matrix Ξk that converges when k tends to infinity to Ξ . More
precisely we have

1√
n

n
∑

t=1

Uk
t

in law−−−→
n→∞

N (0,Ξk) .

The above arguments also apply to matrix Ξk with some matrix Πk which is defined analogously
as Π. Consequently we obtain

1√
n

n
∑

t=1

ΛUk
t

in law−−−→
n→∞

N
(

0,ΛΞkΛ
′
)

and we also have n−1/2
∑n

t=1(ΠkΠ
′

k)
−1/2ΛUk

t
in law−−−→
n→∞

N (0, Im).

Now we are able to apply the functional central limit theorem (see Herrndorf (1984)) and we
obtain that

1√
n

⌊nr⌋
∑

t=1

(ΠkΠ
′

k)
−1/2ΛUk

t
Dm

−→
n→∞

Bm(r).

Since for all t ∈ {1, . . . , ⌊nr⌋} we write

(ΠΠ
′

)−1/2ΛUk
t =

(

(ΠΠ
′

)−1/2 − (ΠkΠ
′

k)
−1/2

)

ΛUk
t + (ΠkΠ

′

k)
−1/2ΛUk

t ,
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we obtain the following weak convergence on D
m [0, 1]:

1√
n

⌊nr⌋
∑

t=1

(ΠΠ
′

)−1/2ΛUk
t

Dm

−→
n→∞

Bm(r).

In order to conclude that (75) is true, it remains to observe that uniformly with respect to n

Y k
n (r) :=

1√
n

⌊nr⌋
∑

t=1

(ΠΠ
′

)−1/2ΛZ k
t

D
m

−→
k→∞

0, (76)

where

Z k
t =

(

−2

{

∞
∑

i=k+1

.

λi ,1 (θ0) ǫtǫt−i , . . . ,

∞
∑

i=k+1

.

λi ,p+q+1 (θ0) ǫtǫt−i

}

J−1′ , ǫtǫt−1, . . . , ǫtǫt−m

)′

.

Using the same arguments as those used in the proof of Theorem 2 in Boubacar Maïnassara et al.
(2019), we have

sup
n

Var

(

1√
n

n
∑

t=1

Z k
t

)

−→
k→∞

0

and since ⌊nr⌋ ≤ n,

sup
0≤r≤1

sup
n

{∥

∥

∥Y
k
n (r)

∥

∥

∥

}

−→
k→∞

0.

Thus (76) is true and the proof of (75) is achieved.

A.5.2. Limit theorem

To conclude the prove of Theorem 6, we follow the arguments developed in Boubacar Maïnassara and Saussereau
(2018). Note that the previous step ensures us that Assumption 1 in Lobato (2001) is satisfied for
the sequence (ΛUt)t≥1. Firstly from (75) we deduce that

1√
n
S⌊nr⌋ =

1√
n

⌊nr⌋
∑

t=1

ΛUt −
⌊nr⌋
n

(

1√
n

n
∑

t=1

ΛUt

)

D
m

−→
n→∞

(ΠΠ
′

)1/2Bm(r)− r(ΠΠ
′

)1/2Bm(1). (77)

Observe now that the continuous mapping theorem implies

Cm =
1

n

n
∑

t=1

(

1√
n
St

)(

1√
n
St

)′

D
m

−→
n→∞

(ΠΠ
′

)1/2
[
∫ 1

0
{Bm(r)− rBm(1)} {Bm(r)− rBm(1)}

′

dr

]

(ΠΠ
′

)1/2 = (ΠΠ
′

)1/2Vm(ΠΠ
′

)1/2.

Using (74), (77) and again the continuous mapping theorem on the Skorohod space, one finally
obtains

nγ̂
′

mC
−1
m γ̂m

Dm

−→
n→∞

{

(ΠΠ
′

)1/2Bm(1)
}′ {

(ΠΠ
′

)1/2Vm(ΠΠ
′

)1/2
}−1 {

(ΠΠ
′

)1/2Bm(1)
}

= B
′

m(1)V
−1
m Bm(1) := Um.
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Consequently, from (9) it follows that

nσ4
ǫ ρ̂

′

mC
−1
m ρ̂m

Dm

−→
n→∞

Um,

which completes the proof of Theorem 6. �

A.6. Proof of Theorem 7

The proof follows the same line than in the proof of Theorem 2 in Boubacar Maïnassara and Saussereau
(2018) (see also the proof of in Boubacar Maïnassara et al. (2019)).

Appendix B: Supplemental material: Additional Monte Carlo experiments

B.1. Small sample size

The following tables deal with the same numerical experiments that in Section 4 when the sample
sizes are less than 500.
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Table 14

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a strong
FARIMA(1, d0, 1) defined by (34) with θ0 = (0.9, 0.2, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.7 4.4 23.2 22.9 n.a. n.a.

2 3.9 3.6 8.1 7.5 n.a. n.a.

0.05 n = 100 3 4.3 4.0 6.9 6.1 n.a. n.a.

6 4.7 3.6 5.4 3.7 8.4 5.9

12 5.1 2.9 4.2 2.3 5.0 2.6

15 6.2 3.5 4.9 2.5 5.8 2.5

1 5.3 5.3 10.8 10.7 n.a. n.a.

2 3.6 3.3 6.8 6.8 n.a. n.a.

0.05 n = 250 3 4.0 3.7 5.7 5.4 n.a. n.a.

6 4.2 3.7 5.4 5.1 10.6 9.6

12 3.1 2.2 5.3 4.2 6.5 5.7

15 3.3 2.5 5.6 4.3 6.4 5.2

1 4.6 4.6 6.9 6.8 n.a. n.a.

2 4.3 4.2 5.8 5.6 n.a. n.a.

0.05 n = 500 3 4.3 4.2 5.7 5.5 n.a. n.a.

6 5.0 4.8 6.7 6.5 11.0 10.7

12 4.9 4.2 5.5 4.6 7.1 6.2

15 5.6 4.3 5.7 4.5 7.1 6.2

1 5.1 4.8 27.1 25.9 n.a. n.a.

2 4.0 3.8 8.7 8.2 n.a. n.a.

0.20 n = 100 3 4.1 4.0 7.5 6.9 n.a. n.a.

6 5.5 3.9 5.3 3.9 7.6 6.2

12 4.9 3.0 4.3 2.6 4.3 2.9

15 6.9 2.4 5.1 2.9 5.2 2.7

1 5.1 5.0 14.0 13.9 n.a. n.a.

2 3.4 3.1 7.3 7.2 n.a. n.a.

0.20 n = 250 3 4.3 4.1 6.2 5.9 n.a. n.a.

6 4.7 4.3 6.0 5.5 10.3 9.8

12 3.8 2.6 5.1 4.3 5.7 5.1

15 3.9 2.8 5.9 4.4 5.7 5.0

1 5.6 5.6 12.1 12.1 n.a. n.a.

2 4.9 4.9 7.0 6.9 n.a. n.a.

0.20 n = 500 3 5.0 4.9 6.7 6.4 n.a. n.a.

6 5.5 5.2 6.2 5.7 10.1 9.6

12 5.6 4.8 5.3 4.6 6.3 5.3

15 5.7 4.4 5.4 4.5 5.9 5.1

1 3.2 3.1 32.0 31.6 n.a. n.a.

2 3.5 3.4 8.3 7.3 n.a. n.a.

0.45 n = 100 3 2.9 2.5 6.9 6.4 n.a. n.a.

6 3.8 2.9 3.6 2.8 4.6 3.5

12 3.6 1.3 2.7 1.8 2.1 1.2

15 4.1 1.9 3.7 1.5 2.2 0.9

1 3.4 3.3 18.3 18.0 n.a. n.a.

2 3.2 3.2 6.4 6.1 n.a. n.a.

0.45 n = 250 3 3.6 3.4 5.2 5.1 n.a. n.a.

6 3.8 3.3 4.8 4.4 7.9 7.3

12 3.1 2.3 4.0 3.2 4.4 3.7

15 3.2 2.3 4.7 3.3 4.0 3.1

1 3.6 3.6 14.5 14.4 n.a. n.a.

2 3.4 3.4 5.3 5.3 n.a. n.a.

0.45 n = 500 3 3.4 3.4 5.5 5.5 n.a. n.a.

6 5.0 4.7 4.9 4.6 7.2 7.0

12 5.2 4.7 4.4 3.9 4.2 4.0

15 5.0 4.3 4.4 3.6 4.2 3.7
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Table 15

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (34) with θ0 = (0.9, 0.2, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3 in
(20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.1 3.1 19.7 18.7 n.a. n.a.

2 2.0 1.7 7.8 7.3 n.a. n.a.

0.05 n = 100 3 1.7 1.6 6.8 6.2 n.a. n.a.

6 1.4 0.9 6.1 4.7 15.6 12.5

12 1.5 0.9 5.1 3.7 13.5 8.9

15 2.0 1.2 5.1 2.6 13.1 8.9

1 2.5 2.4 10.6 10.0 n.a. n.a.

2 2.1 1.7 6.6 6.4 n.a. n.a.

0.05 n = 250 3 1.2 1.1 5.7 5.2 n.a. n.a.

6 0.8 0.8 5.3 4.7 25.0 24.2

12 0.8 0.7 3.7 3.3 23.5 21.5

15 1.1 1.1 3.8 3.0 24.7 21.8

1 2.4 2.4 8.1 8.1 n.a. n.a.

2 1.7 1.7 7.1 7.0 n.a. n.a.

0.05 n = 500 3 0.8 0.7 6.1 6.0 n.a. n.a.

6 0.7 0.6 4.6 4.2 31.5 31.0

12 1.1 1.1 3.9 3.8 33.5 32.3

15 1.0 0.9 4.6 4.0 35.0 33.4

1 2.6 2.6 24.0 23.4 n.a. n.a.

2 1.7 1.6 9.0 8.4 n.a. n.a.

0.20 n = 100 3 2.3 1.7 6.7 6.2 n.a. n.a.

6 1.5 0.8 5.5 4.2 15.2 12.3

12 1.4 0.6 4.5 3.1 12.0 7.7

15 2.0 0.8 4.7 2.8 11.2 7.5

1 3.5 3.5 17.1 16.8 n.a. n.a.

2 1.9 1.9 8.5 8.0 n.a. n.a.

0.20 n = 250 3 1.1 1.0 5.5 5.0 n.a. n.a.

6 0.7 0.7 4.3 4.1 24.2 23.4

12 0.6 0.6 3.3 2.9 22.1 19.7

15 0.6 0.5 3.8 3.1 22.9 20.1

1 2.5 2.4 12.0 11.8 n.a. n.a.

2 2.0 2.0 7.7 7.7 n.a. n.a.

0.20 n = 500 3 1.4 1.4 6.1 5.6 n.a. n.a.

6 0.8 0.8 4.3 4.0 30.2 29.6

12 0.8 0.7 3.4 3.2 33.2 31.7

15 0.7 0.6 4.3 3.8 34.3 32.7

1 2.4 2.3 33.2 32.9 n.a. n.a.

2 1.4 1.3 8.5 7.8 n.a. n.a.

0.45 n = 100 3 1.5 1.2 6.3 5.4 n.a. n.a.

6 1.4 0.8 4.5 3.5 10.5 8.3

12 0.8 0.3 4.3 2.7 7.0 5.0

15 1.5 0.4 4.1 2.4 7.5 4.3

1 2.1 2.1 20.1 20.1 n.a. n.a.

2 1.7 1.7 5.9 5.8 n.a. n.a.

0.45 n = 250 3 1.1 0.8 5.2 4.9 n.a. n.a.

6 0.9 0.9 4.1 3.7 18.8 18.0

12 0.4 0.4 2.6 2.1 17.4 15.4

15 0.2 0.2 4.2 3.0 18.4 15.7

1 2.1 2.1 13.3 13.2 n.a. n.a.

2 1.2 1.2 5.8 5.7 n.a. n.a.

0.45 n = 500 3 1.1 1.0 4.9 4.9 n.a. n.a.

6 0.6 0.6 4.0 3.8 27.3 26.4

12 0.2 0.2 3.1 2.8 28.3 27.0

15 0.2 0.1 4.3 3.8 28.4 26.8
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Table 16

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (34) with θ0 = (0.9, 0.2, d0) and where ω = 0.04, α1 = 0.12 and β1 = 0.85
in (20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.1 3.1 19.7 18.7 n.a. n.a.

2 2.0 1.7 7.8 7.3 n.a. n.a.

0.05 n = 100 3 1.7 1.6 6.8 6.2 n.a. n.a.

6 1.4 0.9 6.1 4.7 15.6 12.5

12 1.5 0.9 5.1 3.7 13.5 8.9

15 2.0 1.2 5.1 2.6 13.1 8.9

1 2.5 2.4 10.6 10.0 n.a. n.a.

2 2.1 1.7 6.6 6.4 n.a. n.a.

0.05 n = 250 3 1.2 1.1 5.7 5.2 n.a. n.a.

6 0.8 0.8 5.3 4.7 25.0 24.2

12 0.8 0.7 3.7 3.3 23.5 21.5

15 1.1 1.1 3.8 3.0 24.7 21.8

1 2.4 2.4 8.1 8.1 n.a. n.a.

2 1.7 1.7 7.1 7.0 n.a. n.a.

0.05 n = 500 3 0.8 0.7 6.1 6.0 n.a. n.a.

6 0.7 0.6 4.6 4.2 31.5 31.0

12 1.1 1.1 3.9 3.8 33.5 32.3

15 1.0 0.9 4.6 4.0 35.0 33.4

1 2.6 2.6 24.0 23.4 n.a. n.a.

2 1.7 1.6 9.0 8.4 n.a. n.a.

0.20 n = 100 3 2.3 1.7 6.7 6.2 n.a. n.a.

6 1.5 0.8 5.5 4.2 15.2 12.3

12 1.4 0.6 4.5 3.1 12.0 7.7

15 2.0 0.8 4.7 2.8 11.2 7.5

1 3.5 3.5 17.1 16.8 n.a. n.a.

2 1.9 1.9 8.5 8.0 n.a. n.a.

0.20 n = 250 3 1.1 1.0 5.5 5.0 n.a. n.a.

6 0.7 0.7 4.3 4.1 24.2 23.4

12 0.6 0.6 3.3 2.9 22.1 19.7

15 0.6 0.5 3.8 3.1 22.9 20.1

1 2.5 2.4 12.0 11.8 n.a. n.a.

2 2.0 2.0 7.7 7.7 n.a. n.a.

0.20 n = 500 3 1.4 1.4 6.1 5.6 n.a. n.a.

6 0.8 0.8 4.3 4.0 30.2 29.6

12 0.8 0.7 3.4 3.2 33.2 31.7

15 0.7 0.6 4.3 3.8 34.3 32.7

1 2.4 2.3 33.2 32.9 n.a. n.a.

2 1.4 1.3 8.5 7.8 n.a. n.a.

0.45 n = 100 3 1.5 1.2 6.3 5.4 n.a. n.a.

6 1.4 0.8 4.5 3.5 10.5 8.3

12 0.8 0.3 4.3 2.7 7.0 5.0

15 1.5 0.4 4.1 2.4 7.5 4.3

1 2.1 2.1 20.1 20.1 n.a. n.a.

2 1.7 1.7 5.9 5.8 n.a. n.a.

0.45 n = 250 3 1.1 0.8 5.2 4.9 n.a. n.a.

6 0.9 0.9 4.1 3.7 18.8 18.0

12 0.4 0.4 2.6 2.1 17.4 15.4

15 0.2 0.2 4.2 3.0 18.4 15.7

1 2.1 2.1 13.3 13.2 n.a. n.a.

2 1.2 1.2 5.8 5.7 n.a. n.a.

0.45 n = 500 3 1.1 1.0 4.9 4.9 n.a. n.a.

6 0.6 0.6 4.0 3.8 27.3 26.4

12 0.2 0.2 3.1 2.8 28.3 27.0

15 0.2 0.1 4.3 3.8 28.4 26.8
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Table 17

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a strong
FARIMA(0, d0, 0) defined by (34) with θ0 = (0, 0, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.9 3.6 10.1 9.6 n.a. n.a.

2 3.3 3.2 8.1 7.4 7.6 7.1

0.05 n = 100 3 3.8 3.1 5.9 5.2 8.1 6.8

6 3.1 2.7 5.0 3.9 6.9 5.9

12 2.4 1.3 3.9 2.1 5.8 3.8

15 2.8 1.0 4.5 2.3 6.9 4.3

1 5.3 5.2 7.6 7.3 n.a. n.a.

2 5.0 4.7 5.4 5.3 6.1 6.0

0.05 n = 250 3 4.7 4.5 5.6 5.5 5.8 5.6

6 5.2 4.8 6.4 6.1 6.7 6.3

12 5.0 3.8 4.4 3.7 6.2 5.3

15 4.6 3.2 4.4 3.5 6.0 4.9

1 5.0 5.0 5.6 5.6 n.a. n.a.

2 5.5 5.5 5.7 5.6 6.0 5.8

0.05 n = 500 3 5.9 5.7 5.9 5.7 6.6 6.5

6 5.3 5.1 5.6 5.2 6.0 5.9

12 5.1 4.3 5.0 4.7 5.9 5.0

15 5.4 4.5 4.6 4.2 6.0 5.2

1 4.5 4.0 5.9 5.3 n.a. n.a.

2 4.1 3.7 6.5 6.0 6.5 5.8

0.20 n = 100 3 4.1 3.5 5.3 4.9 6.4 6.1

6 3.3 2.9 4.6 3.7 6.1 4.9

12 3.6 1.5 4.1 2.0 5.5 3.4

15 2.9 0.9 4.4 2.0 6.5 3.5

1 5.8 5.7 5.8 5.7 n.a. n.a.

2 5.2 5.1 5.2 4.8 5.8 5.6

0.20 n = 250 3 5.1 5.0 5.5 5.4 5.4 5.1

6 5.7 5.4 5.9 5.3 6.3 5.7

12 5.6 4.0 4.2 3.8 5.8 5.1

15 4.8 3.6 4.5 3.6 6.2 4.7

1 5.7 5.5 5.0 5.0 n.a. n.a.

2 5.4 5.4 5.4 5.3 5.5 5.3

0.20 n = 500 3 6.2 6.1 5.7 5.6 6.3 6.2

6 5.4 5.0 5.5 5.0 5.6 5.6

12 5.1 4.4 5.0 4.7 6.0 5.0

15 5.2 4.3 4.4 4.2 5.9 5.1

1 4.3 4.1 9.4 8.9 n.a. n.a.

2 3.9 3.4 8.3 7.5 7.7 7.3

0.45 n = 100 3 4.0 3.3 6.5 5.7 7.0 6.5

6 3.3 2.4 4.7 3.5 6.5 5.3

12 3.5 1.7 3.9 2.3 5.5 3.2

15 3.9 1.4 4.2 2.2 6.1 3.7

1 5.4 5.4 8.2 7.9 n.a. n.a.

2 5.0 4.9 5.3 5.1 5.5 5.3

0.45 n = 250 3 5.1 5.0 5.8 5.3 5.3 5.0

6 5.6 5.2 6.0 5.2 6.2 5.4

12 5.4 3.9 4.6 3.9 5.8 5.2

15 5.1 4.0 4.7 3.7 6.2 5.0

1 5.4 5.2 5.6 5.6 n.a. n.a.

2 5.2 5.2 5.4 5.3 5.9 5.8

0.45 n = 500 3 5.9 5.8 6.3 6.1 6.4 6.4

6 6.0 5.6 5.6 5.0 5.6 5.5

12 4.9 3.9 5.6 4.8 5.7 5.1

15 5.2 4.3 4.6 4.2 6.1 4.9
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Table 18

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(0, d0, 0) defined by (34) with θ0 = (0, 0, d0) with ω = 0.4, α1 = 0.3 and β1 = 0.3 in (35). The

nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 2.3 2.3 10.1 9.6 n.a. n.a.

2 2.6 2.6 5.9 5.3 13.1 12.4

0.05 n = 100 3 1.9 1.6 4.0 3.1 11.1 9.9

6 1.4 1.1 3.0 2.5 12.8 11.2

12 1.0 0.3 3.5 2.0 14.5 10.8

15 0.8 0.1 2.6 0.8 16.1 11.0

1 3.0 3.0 8.1 8.1 n.a. n.a.

2 2.6 2.4 5.3 5.2 16.4 16.4

0.05 n = 250 3 1.9 1.8 4.3 3.9 16.2 15.6

6 0.7 0.4 4.3 4.1 20.1 18.8

12 0.6 0.5 3.6 2.6 24.6 22.4

15 0.2 0.2 4.0 2.9 25.7 22.4

1 3.4 3.4 7.2 7.0 n.a. n.a.

2 2.0 2.0 6.3 6.3 20.4 20.3

0.05 n = 500 3 1.5 1.5 5.1 5.0 21.1 20.7

6 0.9 0.9 4.6 4.6 28.0 27.6

12 0.4 0.4 4.0 3.2 34.2 32.8

15 0.1 0.0 3.3 3.0 36.2 34.7

1 2.8 2.7 5.3 5.0 n.a. n.a.

2 3.1 3.1 4.9 4.2 10.9 10.1

0.20 n = 100 3 1.8 1.6 3.8 2.9 9.9 8.3

6 1.9 1.1 2.9 2.0 10.8 9.0

12 0.8 0.3 3.1 1.8 13.1 9.7

15 0.7 0.1 2.3 0.7 14.7 9.6

1 3.2 3.2 5.5 5.4 n.a. n.a.

2 3.0 3.0 4.3 4.2 14.4 14.3

0.20 n = 250 3 2.4 2.3 3.6 3.4 14.9 14.2

6 0.7 0.7 4.3 3.8 18.3 17.3

12 0.6 0.4 3.5 2.6 23.6 21.2

15 0.4 0.1 3.8 2.5 23.9 21.0

1 3.8 3.8 5.3 5.3 n.a. n.a.

2 2.4 2.3 6.1 6.1 18.9 18.9

0.20 n = 500 3 1.8 1.7 4.9 4.6 19.9 19.6

6 0.9 0.9 4.4 4.3 26.5 26.2

12 0.4 0.4 3.7 3.2 33.5 31.5

15 0.1 0.1 3.3 3.0 35.4 33.8

1 2.8 2.6 8.9 8.3 n.a. n.a.

2 2.5 2.2 6.9 6.5 12.1 11.4

0.45 n = 100 3 1.6 1.5 5.0 4.1 11.4 10.0

6 1.6 1.2 3.4 2.2 10.9 8.4

12 0.9 0.5 3.2 1.9 13.5 10.0

15 0.9 0.3 2.2 0.8 14.3 9.0

1 3.3 3.1 8.7 8.6 n.a. n.a.

2 3.3 3.1 6.1 6.1 16.8 16.2

0.45 n = 250 3 2.6 2.5 4.3 4.2 15.5 15.1

6 1.0 0.9 4.5 4.3 19.0 18.0

12 0.6 0.4 3.9 2.8 23.7 21.8

15 0.4 0.3 3.6 2.5 24.5 21.6

1 3.6 3.5 6.7 6.6 n.a. n.a.

2 2.4 2.3 6.9 6.8 20.0 20.0

0.45 n = 500 3 1.7 1.7 5.4 5.2 21.3 21.2

6 1.0 0.9 4.8 4.5 26.9 26.4

12 0.5 0.4 3.7 3.5 33.2 32.0

15 0.1 0.1 3.5 3.1 36.3 34.8
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Table 19

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(0, d0, 0) defined by (34)–(35) with θ0 = (0, 0, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 2.2 2.1 20.0 19.5 n.a. n.a.

2 1.5 1.5 15.2 14.7 18.3 17.3

0.05 n = 100 3 1.1 0.9 10.7 10.1 15.3 14.4

6 0.4 0.2 6.0 5.2 10.4 9.7

12 0.0 0.0 3.2 2.5 8.2 5.9

15 0.2 0.0 2.4 1.7 7.7 5.0

1 3.2 2.9 14.4 14.2 n.a. n.a.

2 3.1 2.9 10.7 10.6 18.7 18.3

0.05 n = 250 3 1.9 1.8 7.8 7.6 16.3 16.0

6 0.9 0.6 4.5 4.2 12.6 12.0

12 0.4 0.3 2.0 1.5 10.6 8.8

15 0.2 0.2 1.3 1.3 10.0 8.2

1 4.3 4.3 11.7 11.6 n.a. n.a.

2 3.7 3.7 8.7 8.6 18.7 18.6

0.05 n = 500 3 2.9 2.7 6.5 6.4 16.7 16.6

6 1.8 1.6 3.4 3.2 14.4 14.1

12 0.3 0.2 2.2 1.7 10.9 10.4

15 0.2 0.2 1.1 1.0 10.2 9.7

1 3.9 3.7 11.9 11.3 n.a. n.a.

2 1.5 1.5 7.4 6.8 12.3 11.4

0.20 n = 100 3 1.4 1.4 5.2 4.5 10.7 9.6

6 0.3 0.2 2.3 1.8 8.4 7.6

12 0.1 0.0 1.1 0.8 6.5 4.2

15 0.2 0.0 0.9 0.4 5.8 3.4

1 3.9 3.8 7.1 6.9 n.a. n.a.

2 3.6 3.4 6.1 5.7 13.2 13.1

0.20 n = 250 3 1.9 1.8 3.8 3.4 11.7 11.3

6 0.9 0.6 2.6 2.3 9.8 9.3

12 0.3 0.3 1.0 0.6 8.8 7.6

15 0.2 0.2 0.5 0.5 8.9 7.2

1 5.3 5.3 6.3 6.1 n.a. n.a.

2 4.0 3.9 5.4 5.3 15.8 15.6

0.20 n = 500 3 3.3 3.3 3.7 3.6 12.9 12.9

6 1.9 1.5 1.4 1.4 11.9 11.5

12 0.2 0.1 1.2 0.9 9.8 9.2

15 0.3 0.2 0.5 0.5 9.2 8.9

1 3.9 3.8 21.5 20.2 n.a. n.a.

2 1.6 1.5 13.1 11.9 16.5 16.4

0.45 n = 100 3 1.2 0.9 7.5 7.2 13.7 12.7

6 0.7 0.7 3.1 2.4 10.6 9.2

12 0.1 0.0 1.3 0.8 6.9 5.2

15 0.2 0.0 1.3 0.3 6.2 3.8

1 5.0 5.0 15.7 15.5 n.a. n.a.

2 3.0 3.0 10.4 10.0 18.6 18.2

0.45 n = 250 3 2.3 2.3 7.5 7.3 16.1 15.9

6 0.6 0.4 3.6 3.6 12.1 11.4

12 0.4 0.3 1.5 1.1 9.7 8.6

15 0.2 0.2 1.1 0.8 10.1 8.8

1 4.8 4.8 12.5 12.5 n.a. n.a.

2 4.2 4.0 8.9 8.7 19.6 19.5

0.45 n = 500 3 3.2 3.2 5.7 5.6 16.6 16.6

6 2.0 1.8 2.6 2.5 13.7 13.4

12 0.1 0.1 1.5 1.1 10.8 10.3

15 0.3 0.2 0.6 0.6 10.4 10.1
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B.2. GARCH process with infinite moment

In order the see if the test procedures remain reliable for GARCH process with infinite moment (for
α1 + β1 ≥ 1), we replicate the numerical experiments made on Model (34)–(20) with ω = 0.04,
α1 = 0.13 and β1 = 0.88.
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Table 20

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (34) with θ0 = (0.9, 0.2, d0) and where ω = 0.04, α1 = 0.12 and β1 = 0.85
in (20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 8.9 8.9 n.a. n.a.

2 2.5 2.5 7.5 7.5 n.a. n.a.

0.05 n = 1, 000 3 2.1 2.1 5.4 5.3 n.a. n.a.

6 1.1 1.0 4.3 4.1 38.4 38.1

12 0.6 0.6 3.7 3.2 43.3 42.7

15 0.2 0.2 3.5 3.5 45.7 44.6

1 4.4 4.4 5.4 5.4 n.a. n.a.

2 3.5 3.5 5.0 5.0 n.a. n.a.

0.05 n = 10, 000 3 3.3 3.3 6.3 6.3 n.a. n.a.

6 2.3 2.2 4.5 4.4 57.7 57.6

12 1.6 1.6 4.0 3.9 68.9 68.8

15 1.3 1.3 4.6 4.6 73.8 73.8

1 4.6 4.6 5.2 5.2 n.a. n.a.

2 4.3 4.3 5.0 5.0 n.a. n.a.

0.05 n = 20, 000 3 3.9 3.9 4.8 4.8 n.a. n.a.

6 2.5 2.5 5.0 4.8 41.7 41.7

12 3.8 3.8 4.2 4.2 51.1 51.1

15 3.3 3.2 3.7 3.7 52.8 52.7

1 3.5 3.4 9.9 9.7 n.a. n.a.

2 2.4 2.4 6.4 6.4 n.a. n.a.

0.20 n = 1, 000 3 2.2 2.1 4.9 4.9 n.a. n.a.

6 1.1 0.8 3.5 3.4 37.4 37.2

12 0.3 0.3 3.5 3.3 42.9 42.4

15 0.0 0.0 3.6 3.5 44.4 43.2

1 4.2 4.2 4.0 4.0 n.a. n.a.

2 3.4 3.4 4.1 4.1 n.a. n.a.

0.20 n = 10, 000 3 3.3 3.3 5.3 5.3 n.a. n.a.

6 2.2 2.2 4.3 4.3 55.8 55.8

12 1.6 1.6 3.9 3.9 67.7 67.7

15 1.3 1.3 4.1 4.1 72.9 72.9

1 5.0 5.0 4.3 4.3 n.a. n.a.

2 4.6 4.6 4.4 4.4 n.a. n.a.

0.20 n = 20, 000 3 3.9 3.9 4.7 4.7 n.a. n.a.

6 2.7 2.7 4.7 4.7 41.0 41.0

12 3.7 3.7 4.0 4.0 50.3 50.3

15 3.4 3.4 3.6 3.5 51.9 51.8

1 3.0 3.0 12.1 12.2 n.a. n.a.

2 1.8 1.8 5.5 5.4 n.a. n.a.

0.45 n = 1, 000 3 1.7 1.6 4.4 4.4 n.a. n.a.

6 0.6 0.6 3.4 3.3 34.7 34.4

12 0.4 0.4 3.3 3.0 38.6 38.0

15 0.2 0.2 3.6 3.5 40.0 38.9

1 3.7 3.6 3.7 3.7 n.a. n.a.

2 3.0 3.0 3.7 3.8 n.a. n.a.

0.45 n = 10, 000 3 3.0 3.0 5.1 5.1 n.a. n.a.

6 2.0 2.0 4.7 4.7 55.3 55.3

12 1.7 1.7 3.8 3.8 67.6 67.4

15 1.3 1.3 4.1 4.1 72.0 71.8

1 5.0 5.0 4.1 4.1 n.a. n.a.

2 4.5 4.5 4.1 4.1 n.a. n.a.

0.45 n = 20, 000 3 3.7 3.7 4.8 4.8 n.a. n.a.

6 2.9 2.9 4.5 4.4 40.5 40.5

12 3.7 3.7 3.8 3.8 49.8 49.7

15 3.5 3.5 3.6 3.6 51.3 51.3
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