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Abstract: This work considers the problem of modified portmanteau tests for testing the
adequacy of FARIMA models under the assumption that the errors are uncorrelated but not
necessarily independent (i.e. weak FARIMA). We first study the joint distribution of the
least squares estimator and the noise empirical autocovariances. We then derive the asymp-
totic distribution of residual empirical autocovariances and autocorrelations. We deduce the
asymptotic distribution of the Ljung-Box (or Box-Pierce) modified portmanteau statistics
for weak FARIMA models. We also propose another method based on a self-normalization
approach to test the adequacy of FARIMA models. Finally some simulation studies are pre-
sented to corroborate our theoretical work. An application to the Standard & Poor’s 500 and
Nikkei returns also illustrate the practical relevance of our theoretical results.
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1. Introduction

To model the long memory phenomenon, a widely used model is the fractional autoregressive
integrated moving average (FARIMA, for short) model (see for instance Granger and Joyeux (1980),
Fox and Taqqu (1986), Dahlhaus (1989), Hosking (1981), Beran et al. (2013), Palma (2007),
among others). This model plays an important role in many scientific disciplines and applied fields
such as hydrology, climatology, economics, finance, to name a few.

We consider a centered stationary process X := (Xt)t∈Z satisfying a FARIMA(p, d0, q) repre-
sentation of the form

a(L)(1− L)d0Xt = b(L)εt , (1)

where d0 is the long memory parameter, L stands for the back-shift operator and a(L) = 1 −∑p
i=1 ai L

i , respectively b(L) = 1 −
∑q

i=1 bi L
i , is the autoregressive, respectively the moving av-

erage, operator. These operators represent the short memory part of the model (by convention
1
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a0 = b0 = 1). In the standard situation ε := (εt)t∈Z is assumed to be a sequence of independent
and identically distributed (iid for short) random variables with zero mean and with a common
variance. In this standard framework, ε is said to be a strong white noise and the representation
(1) is called a strong FARIMA(p, d0, q) process. In contrast with this previous definition, the rep-
resentation (1) is said to be a weak FARIMA(p, d0, q) if the noise process ε is a weak white noise,
that is, if it satisfies

(A0): E(εt) = 0, Var (εt) = σ20 and Cov (εt , εt−h) = 0 for all t ∈ Z and all h 6= 0.

A strong white noise is obviously a weak white noise because independence entails uncorrelatedness.
Of course the converse is not true. The strong FARIMA model was introduced by Hosking (1981).
The particular strong FARIMA(0, d0, 0) process was discussed by Granger and Joyeux (1980). To
ensure the stationarity and the invertibility of the model defined by (1), we assume that −1/2 <
d0 < 1/2 and all roots of a(z)b(z) = 0 are outside the unit disk (see Granger and Joyeux (1980)
and Hosking (1981) for details). It is also assumed that a(z) and b(z) have no common factors in
order to insure unique identifiability of the parameters.

The validity of the different steps of the traditional methodology of Box and Jenkins (identifi-
cation, estimation and validation) depends on the noise properties. After estimating the FARIMA
process, the next important step in the modeling consists in checking if the estimated model fits
satisfactorily the data. Thus, under the null hypothesis that the model has been correctly identified,
the residuals (ε̂t) are approximately a white noise. This adequacy checking step allows to validate or
invalidate the choice of the orders p and q. The choice of p and q is particularly important because
the number of parameters (p + q + 1) quickly increases with p and q, which entails statistical
difficulties. In particular, the selection of too large orders p and q may introduce terms that are
not necessarily relevant in the model. Conversely, the selection of too small orders p and q causes
loss of some information, that can be detected by the correlation of the residuals.

Thus it is important to check the validity of a FARIMA(p, d0, q) model, for given orders p
and q. Based on the residual empirical autocorrelation, Box and Pierce (1970) have proposed a
goodness-of-fit test, the so-called portmanteau test, for strong ARMA models. The intuition behind
these portmanteau tests is that if a given time series model with iid innovation is appropriate for
the data at hand, the autocorrelations of the residuals ε̂t should be close to zero, which is the
theoretical value of the autocorrelations of εt (see Assumption (A0) below). A modification of the
test of Box and Pierce (1970) has been proposed by Ljung and Box (1978) which is nowadays
one of the most popular diagnostic checking tools in strong ARMA modeling of time series. A
modified portmanteau test statistic was proposed by Li and McLeod (1986) for checking the overall
significance of the residual autocorrelations of a strong FARIMA(p, d0, q) model. All these above
test statistics have been obtained under the iid assumption on the noise and they may be invalid
when the series is uncorrelated but dependent (see Romano and Thombs (1996), Francq et al.
(2005), Boubacar Maïnassara and Saussereau (2018), Zhu and Li (2015), Lobato et al. (2001),
Lobato et al. (2002), Wang and Sun (2020), to name a few).

As mentioned above, the works on the portmanteau statistic are generally performed under
the assumption that the errors εt are independent (see for instance Li and McLeod (1986)). This
independence assumption is often considered too restrictive by practitioners. It precludes conditional
heteroscedasticity and/or other forms of nonlinearity (see Francq and Zakoïan (2005) for a review
on weak univariate ARMA models) which can not be generated by FARIMA models with iid noises.1

1 To cite few examples of nonlinear processes, let us mention: the generalized autoregressive conditional het-
eroscedastic (GARCH) model (see Francq and Zakoïan (2010)), the self-exciting threshold autoregressive (SETAR),
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Relaxing this independence assumption allows to cover linear representations of general nonlinear
processes and to extend the range of application of the FARIMA models.

This paper is devoted to the problem of the validation step of weak FARIMA processes. For the
asymptotic theory of weak FARIMA model validation, recently Shao (2011) studied the diagnostic
checking for long memory time series models with nonparametric conditionally heteroscedastic
martingale difference errors. This author also generalized the test statistic based on the kernel-
based spectral proposed by Hong (1996) under weak assumptions on the innovation process. Note
also that Ling and Li (1997) have studied the Box and Pierce (1970) type test for FARIMA-GARCH
models by assuming a parametric form for the GARCH model.

To our knowledge, it does not exist any diagnostic checking methodology for FARIMA models
when the (possibly dependent) error is subject to unknown conditional heteroscedasticity. We think
that this is due to the difficulty that arises when one has to estimate the asymptotic covariance
matrix of the parameter estimates. In our paper, thanks to the asymptotic results obtained by
Boubacar Maïnassara et al. (2019), we are able to extend for weak FARIMA models the diagnostic
checking methodology proposed by Francq et al. (2005) as well as the self-normalized approach
proposed by Boubacar Maïnassara and Saussereau (2018).

The paper is organized as follows. In Section 2, we recall the results on the least squares estimator
asymptotic distribution of weak FARIMA models obtained by Boubacar Maïnassara et al. (2019).
In Section 3, a modified version of the portmanteau test is proposed thanks to the investigation
of the asymptotic distribution of the residual autocorrelations. Our first main result is stated in
Theorem 2. The second main result of this section is obtained in Theorem 7 by means of a self-
normalized approach. Two examples are also proposed in Section B in order to illustrate our results.
Some numerical illustrations are gathered in Section 4. They corroborate our theoretical work. An
application to the Standard & Poor’s 500 and Nikkei returns also illustrate the practical relevance
of our theoretical results. All our proofs are given in Section A and figures and tables are brought
together in Section 5.

2. Assumptions and estimation procedure

In this section, we recall the results on the least squares estimator asymptotic distribution of weak
FARIMA models obtained by Boubacar Maïnassara et al. (2019) in order to have a self-containing
paper.

Let Θ∗ be the parameter space

Θ∗ :=
{
(θ1, θ2, . . . , θp+q) ∈ Rp+q, where aθ(z) = 1−

p∑
i=1

θi z
i , and bθ(z) = 1−

q∑
j=1

θp+j z
j

have all their zeros outside the unit disk
}
.

Denote by Θ the cartesian product Θ∗×[d1, d2], where [d1, d2] ⊂ ]−1/2, 1/2[ with d1−d0 > −1/2.
The unknown parameter of interest θ0 = (a1, a2, . . . , ap, b1, b2, . . . , bq, d0)

′
is supposed to belong

to the parameter space Θ.
The fractional difference operator (1− L)d0 is defined, using the generalized binomial series, by

(1− L)d0 =
∑
j≥0

αj(d0)L
j ,

the smooth transition autoregressive (STAR), the exponential autoregressive (EXPAR), the bilinear, the random
coefficient autoregressive (RCA), the functional autoregressive (FAR) (see Tong (1990) and Fan and Yao (2008),
for references on these nonlinear time series models).
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where for all j ≥ 0, αj(d0) = Γ (j−d0)/ {Γ (j + 1)Γ (−d0)} and Γ (·) is the Gamma function. Using
the Stirling formula we obtain that for large j , αj(d0) ∼ j−d0−1/Γ (−d0) (one refers to Beran et al.
(2013) for further details).

For all θ ∈ Θ we define (εt(θ))t∈Z as the second order stationary process which is the solution
of

εt(θ) =
∑
j≥0

αj(d)Xt−j −
p∑

i=1

θi

∑
j≥0

αj(d)Xt−i−j +

q∑
j=1

θp+jεt−j(θ). (2)

Observe that, for all t ∈ Z, εt(θ0) = εt a.s. Given a realization X1, . . . ,Xn of length n, εt(θ) can
be approximated, for 0 < t ≤ n, by ε̃t(θ) defined recursively by

ε̃t(θ) =
t−1∑
j=0

αj(d)Xt−j −
p∑

i=1

θi

t−i−1∑
j=0

αj(d)Xt−i−j +

q∑
j=1

θp+j ε̃t−j(θ), (3)

with ε̃t(θ) = Xt = 0 if t ≤ 0.
As shown in of Boubacar Maïnassara et al. (2019), these initial values are asymptotically neg-

ligible and in particular it holds that εt(θ) − ε̃t(θ) → 0 in L2 as t → ∞. Thus the choice of the
initial values has no influence on the asymptotic properties of the model parameters estimator. Let
Θ∗δ denotes the compact set

Θ∗δ =
{
θ ∈ Rp+q; the roots of the polynomials aθ(z) and bθ(z) have modulus ≥ 1 + δ

}
.

We define the set Θδ as the cartesian product of Θ∗δ by [d1, d2], i.e. Θδ = Θ∗δ × [d1, d2], where δ
is a positive constant chosen such that θ0 belongs to Θδ.

The least squares estimator is defined, almost-surely, by

θ̂n = argmin
θ∈Θδ

Qn(θ), where Qn(θ) =
1

n

n∑
t=1

ε̃2t (θ). (4)

The asymptotic properties of this estimator are well known when the innovation process (εt)t∈Z
is a strong or a semi-strong white noise (see for instance Hualde and Robinson (2011), Nielsen
(2015) and Cavaliere et al. (2017) who have considered the problem of conditional sum-of squares
estimation with d0 allowed to lie in an arbitrary large compact set). To ensure the consistency of
the least squares estimator in our context, we assume as in Boubacar Maïnassara et al. (2019) that
the parametrization satisfies the following condition.

(A1): The process (εt)t∈Z is strictly stationary and ergodic.

The consistency of the estimator is obtained under the assumptions (A0) and (A1). Additional as-
sumptions are required in order to establish the asymptotic normality of the least squares estimator.
We assume that θ0 is not on the boundary of the parameter space Θδ.

(A2): We have θ0 ∈
◦
Θδ, where

◦
Θδ denotes the interior of Θδ.

The stationary process ε is not supposed to be an independent sequence. So one needs to control
its dependency by means of its strong mixing coefficients {αε(h)}h∈N defined by

αε (h) = sup
A∈F t

−∞,B∈F∞t+h

|P (A ∩ B)− P(A)P(B)| ,

where F t
−∞ = σ(εu, u ≤ t) and F∞t+h = σ(εu, u ≥ t + h).

We shall need an integrability assumption on the moment of the noise ε and a summability
condition on the strong mixing coefficients (αε(h))h≥0.
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(A3): There exists an integer τ such that for some ν ∈]0, 1], we have E|εt |τ+ν < ∞ and∑∞
h=0(h + 1)k−2 {αε(h)}

ν
k+ν <∞ for k = 1, . . . , τ .

Note that (A3) implies the following weak assumption on the joint cumulants of the innovation
process ε (see Doukhan and León (1989), for more details).

(A3’): There exists an integer τ ≥ 2 such that Cτ :=
∑

i1,...,iτ−1∈Z |cum(ε0, εi1 , . . . , εiτ−1)| <∞ .

In the above expression, cum(ε0, εi1 , . . . , εiτ−1) denotes the τ−th order joint cumulant of the sta-
tionary process ε. Due to the fact that the εt ’s are centered, we notice that for fixed (i , j , k)

cum(ε0, εi , εj , εk) = E [ε0εiεjεk ]− E [ε0εi ]E [εjεk ]− E [ε0εj ]E [εiεk ]− E [ε0εk ]E [εiεj ] .

Assumption (A3) is a usual technical hypothesis which is useful when one proves the asymptotic
normality (see Francq and Zakoïan (1998) for example). Let us notice however that we impose
a stronger convergence speed for the mixing coefficients than in the works on weak ARMA pro-
cesses. This is due to the fact that the coefficients in the infinite AR or MA representation of
εt(θ) have no more exponential decay because of the fractional operator (see Subsection 6.1 in
Boubacar Maïnassara et al. (2019) for details and comments).

As mentioned before, Hypothesis (A3) implies (A3’) which is also a technical assumption usually
used in the fractional ARIMA processes framework (see for instance Shao (2010b, 2011)) or even
in an ARMA context (see Francq and Zakoïan (2007); Zhu and Li (2015)).

For all t ∈ Z, let

Ht(θ) = 2εt(θ)
∂

∂θ
εt(θ) =

(
2εt(θ)

∂

∂θ1
εt(θ), . . . , 2εt(θ)

∂

∂θp+q+1
εt(θ)

)′
.

Remind that the sequence (εt(θ))t∈Z is given by (2). Under the assumptions (A0), (A1), (A2) and
(A3) with τ = 4, Boubacar Maïnassara et al. (2019) showed that θ̂n → θ0 in probability as n→∞
and
√

n(θ̂n − θ0) is asymptotically normal with mean 0 and covariance matrix Σθ̂ := J−1I J−1,
where J = J(θ0) and I = I (θ0), with

I (θ) =
+∞∑

h=−∞
Cov (Ht(θ),Ht−h(θ)) and J(θ) = 2E

(
∂

∂θ
εt(θ)

∂

∂θ′
εt(θ)

)
a.s.

3. Diagnostic checking in weak FARIMA models

After the estimation phase, the next important step consists in checking if the estimated model
fits satisfactorily the data. In this section we derive the limiting distribution of the residual auto-
correlations and that of the portmanteau statistics (based on the standard and the self-normalized
approaches) in the framework of weak FARIMA models.

For t ≥ 1, let êt = ε̃t(θ̂n) be the least squares residuals. By (3) we notice that êt = 0 for t ≤ 0
and t > n. By (1) it holds that

êt =
t−1∑
j=0

αj(d̂)X̂t−j −
p∑

i=1

θ̂i

t−i−1∑
j=0

αj(d̂)X̂t−i−j +

q∑
j=1

θ̂p+j êt−j ,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.
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For a fixed integer m ≥ 1 consider the vector of residual autocovariances

γ̂m = (γ̂(1), . . . , γ̂(m))′ where γ̂(h) =
1

n

n∑
t=h+1

êt êt−h for 0 ≤ h < n.

In the sequel we will also need the vector of the first m sample autocorrelations

ρ̂m = (ρ̂(1), . . . , ρ̂(m))′ where ρ̂(h) = γ̂(h)/γ̂(0).

Since the papers by Box and Pierce (1970) and Ljung and Box (1978), portmanteau tests have
been popular diagnostic checking tools in the ARMA modeling of time series. Based on the residual
empirical autocorrelations, their test statistics are defined respectively by

Qbp
m = n

m∑
h=1

ρ̂2(h) and Qlb
m = n(n + 2)

m∑
h=1

ρ̂2(h)

n − h
. (5)

These statistics are usually used to test the null hypothesis

(H0): (Xt)t∈Z satisfies a FARIMA(p, d0, q) representation;

against the alternative

(H1): (Xt)t∈Z does not admit a FARIMA representation or admits a FARIMA(p
′
, d0, q

′
) represen-

tation with p
′
> p or q

′
> q.

These tests are very useful tools to check the global significance of the residual autocorrelations.

3.1. Asymptotic distribution of the residual autocorrelations

First of all, the mixing assumption (A3) will entail the asymptotic normality of the "empirical"
autocovariances

γm = (γ(1), . . . , γ(m))′ where γ(h) =
1

n

n∑
t=h+1

εt εt−h for 0 ≤ h < n. (6)

It should be noted that γ(h) is not a computable statistic because it depends on the unobserved
innovations εt = εt(θ0). They are introduced as a device to facilitate future derivations. Let Ψm

be the m × (p + q + 1) matrix defined by

Ψm = E


 εt−1

...
εt−m

 ∂εt

∂θ′

 . (7)

By a Taylor expansion of
√

nγ̂m, one should prove that (see Section A.3)

√
nγ̂m =

√
nγm + Ψm

√
n
(
θ̂n − θ0

)
+ oP(1), (8)

where Ψm is given in (7). We shall also prove (see Section A.3 again) that

√
nρ̂m =

√
n
γ̂m

σ2ε
+ oP(1). (9)
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Thus from (9) the asymptotic distribution of the residual autocorrelations
√

nρ̂m depends on the
distribution of γ̂m. In view of (8) the asymptotic distribution of the residual autocovariances

√
nγ̂m

will be obtained from the joint asymptotic behavior of
√

n(θ̂′n − θ
′
0, γ

′
m)
′
.

In view of Theorem 1 in Boubacar Maïnassara et al. (2019) and (A2), we have θ̂n → θ0 ∈
◦

Θ in
probability. Thus ∂Qn(θ̂n)/∂θ = 0 for sufficiently large n and a Taylor expansion gives

√
n
∂

∂θ
On(θ0) + J(θ0)

√
n(θ̂n − θ0) = oP(1), (10)

where On(θ) = n−1
∑n

t=1 ε
2
t (θ) and the sequence (εt(θ))t∈Z is given by (2). The equation (10)

is proved in Boubacar Maïnassara et al. (2019) (see the proof of Theorem 2). Consequently from
(10) we have

√
n(θ̂n − θ0) = −

2√
n

n∑
t=1

J−1(θ0)εt(θ0)
∂εt(θ0)

∂θ
+ oP (1) . (11)

For integers m,m′ ≥ 1, one needs the matrix Γm,m′ = [Γ (`, `
′
)]1≤`≤m,1≤`′≤m′ where

Γ (`, `
′
) =

∞∑
h=−∞

E
[
εtεt−`εt−hεt−h−`′

]
.

The existence of Γ (`, `
′
) will be justified in Lemma 3 of the appendix.

Proposition 1. Under the assumptions (A0), (A1), (A2) and (A3) with τ = 4, the random
vector

√
n

((
θ̂n − θ0

)′
, γ
′
m

)′
has a limiting centered normal distribution with covariance matrix

Ξ =

 Σθ̂ Σθ̂,γm

Σ
′

θ̂,γm
Γm,m

 =
∞∑

h=−∞
E
[
UtU

′
t−h

]
, (12)

where from (6) and (11) we have

Ut =

(
U1t

U2t

)
=

(
−2J−1(θ0)εt(θ0)

∂
∂θ εt(θ0)

(εt−1, . . . , εt−m)
′
εt

)
. (13)

The proof of the proposition is given in Subsection A.2 of the appendix.
The following theorem which is an extension of the result given in Francq et al. (2005) provides

the limit distribution of the residual autocovariances and autocorrelations of weak FARIMA models.

Theorem 2. Under the assumptions of Proposition 1, we have

√
nγ̂m

D−→
n→∞
N (0,Σγ̂m) where Σγ̂m = Γm,m + ΨmΣθ̂Ψ

′
m + ΨmΣθ̂,γm

+ Σ
′

θ̂,γm
Ψ
′
m (14)

and √
nρ̂m

D−→
n→∞
N (0,Σρ̂m) where Σρ̂m =

1

σ4ε
Σγ̂m . (15)
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The detailed proof of this result is postponed to the Subsection A.3 of Appendix.

Remark 1. It is clear from Theorem 2 that for a given FARIMA(p, d0, q) model, the asymptotic
distribution of the residual autocorrelations depends only on the noise distribution through the
quantities Γ (`, `

′
) (which depends on the fourth-order structure of the noise). It is also worth

noting that this asymptotic distribution depends on the asymptotic normality of the least squares
estimator of the FARIMA(p, d0, q) only through the matrix Σθ̂.

Remark 2. In the standard strong FARIMA case, i.e. when (A1) is replaced by the assumption that
(εt)t∈Z is iid, Boubacar Maïnassara et al. (2019) have showed in Remark 2 that I (θ0) = 2σ2ε J(θ0).
Thus the asymptotic covariance matrix is then reduced as Σθ̂ = 2σ2ε J−1(θ0). In the strong case,
we also have: Γ (`, `′) = 0 when ` 6= `′ and Γ (`, `) = σ4ε . Thus Γm,m is reduced as Γm,m = σ4ε Im,
where Im denotes the m ×m identity matrix. Because Σθ̂ = 2σ2ε J−1(θ0) we obtain that

Σθ̂,γm
= −2

∞∑
h=−∞

E
{
εtJ−1(θ0)

∂εt(θ0)

∂θ

}
 εt−1−h

...
εt−m−h

 εt−h


′

= −
(
2σ2ε J−1(θ0)

)E


 εt−1

...
εt−m

 ∂εt(θ0)

∂θ′



′

= −Σθ̂Ψ ′m.

We denote by Σ s
γ̂m

and Σ s
ρ̂m

the asymptotic variances obtained respectively in (14) and (15) for
the strong FARIMA case. Thus we obtain, in the strong case, the following simpler expressions

Σ s
γ̂m

= σ4ε Im − 2σ2εΨmJ−1(θ0)Ψ
′
m and Σ s

ρ̂m
= Im −

2

σ2ε
ΨmJ−1(θ0)Ψ

′
m,

which are the matrices obtained by Li and McLeod (1986).

To validate a FARIMA(p, d0, q) model, the most basic technique is to examine the autocorrela-
tion function of the residuals. Theorem 2 can be used to obtain asymptotic significance limits for
the residual autocorrelations. However, the asymptotic variance matrices Σγ̂m and Σρ̂m depend on
the unknown matrices Ξ , Ψm and the positive scalar σ2ε which need to be estimated. This is the
purpose of the following discussion.

3.2. Modified version of the portmanteau test

From Theorem 2 we can deduce the following result, which gives the limiting distribution of the
standard portmanteau statistics (5) under general assumptions on the innovation process of the
fitted FARIMA(p, d0, q) model.

Theorem 3. Under the assumptions of Theorem 2 and (H0), the statistics Qbp
m and Qlb

m defined
by (5) converge in distribution, as n→∞, to

Zm(ξm) =
m∑

k=1

ξk,mZ 2
k ,

where ξm = (ξ1,m, . . . , ξm,m)
′
is the vector of the eigenvalues of the matrix Σρ̂m = σ−4ε Σγ̂m and

Z1, . . . ,Zm are independent N (0, 1) variables.



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Validation of weak FARIMA models 9

It is possible to evaluate the distribution of a quadratic form of a Gaussian vector by means of
the Imhof algorithm (see Imhof (1961)).

Remark 3. In view of remark 2 when m is large, Σ s
ρ̂m
' Im − 2σ−2ε ΨmJ−1(θ0)Ψ

′
m is close to a

projection matrix. Its eigenvalues are therefore equal to 0 and 1. The number of eigenvalues equal to
1 is Tr(Im−2σ−2ε ΨmJ−1(θ0)Ψ

′
m) = Tr(Im−(p+q+1)) = m−(p+q+1) and p+q+1 eigenvalues equal

to 0, Tr(·) denotes the trace of a matrix. Therefore we retrieve the well-known result obtained by Li
and McLeod (1986). More precisely, under (H0) and in the strong FARIMA case, the asymptotic
distributions of the statistics Qbp

m and Qlb
m are approximated by a X 2

m−(p+q+1), where m > p+q+1

and X 2
k denotes the chi-squared distribution with k degrees of freedom. Theorem 3 shows that this

approximation is no longer valid in the framework of weak FARIMA(p, d , q) models and that the
asymptotic null distributions of the statistics Qbp

m and Qlb
m are more complicated.

The limit distribution Zm(ξm) depends on the nuisance parameter σ2ε , the matrix Ψm and the
elements of Ξ . Therefore, the asymptotic distribution of the portmanteau statistics (5), under
weak assumptions on the noise, requires a computation of a consistent estimator of the asymptotic
covariance matrix Σρ̂m . The m× (p+q+1) matrix Ψm and the noise variance σ2ε can be estimated
by its empirical counterpart. Thus we may use

Ψ̂m =
1

n

n∑
t=1

{
(êt−1, . . . , êt−m)

′ ∂êt

∂θ′

}
and σ̂2ε = γ̂(0) =

1

n

n∑
t=1

ê2t .

A consistent estimator of Ξ is obtained by means of an autoregressive spectral estimator, as in
Boubacar Maïnassara et al. (2019) (see also Berk (1974), Boubacar Mainassara et al. (2012) and
den Haan and Levin (1997), to name a few for a more comprehensive exposition of this method).
The stationary process (Ut)t∈Z admits the Wold decomposition

Ut = vt +
∞∑

i=1

$i vt−i ,

where (vt)t∈Z is a (p + q + 1 + m)-variate weak white noise. Assume that the covariance matrix
Σv := Var(vt) is non-singular, that

∑∞
i=1 ‖$i‖ < ∞, where ‖ · ‖ denotes any norm on the space

of the real (p+q+1+m)× (p+q+1+m) matrices, and that det
{

Ip+q+1+m +
∑∞

i=1$i z
i
}
6= 0

if |z | ≤ 1. Then (Ut)t∈Z admits an AR(∞) representation (see Akutowicz (1957)) of the form

∆(L)Ut := Ut −
∞∑

i=1

∆i Ut−i = vt , (16)

such that
∑∞

i=1 ‖∆i‖ < ∞ and det {∆(z)} 6= 0 if |z | ≤ 1. In view of (12), the matrix Ξ can be
interpreted as 2π times the spectral density of the stationary process (Ut)t∈Z = ((U

′
1t ,U

′
2t)
′
)t∈Z

evaluated at frequency 0 (see p. 459 of Brockwell and Davis (1991)). We then obtain that

Ξ = ∆−1(1)Σv ∆
′−1(1)

Since Ut is unobservable, we introduce Ût ∈ Rp+q+1+m obtained by replacing εt(θ0) by ε̃t(θ̂n) and
J(θ0) by its empirical or observable counterpart Ĵn in (13). Let ∆̂r (z) = Ip+q+1+m−

∑r
k=1 ∆̂r ,k zk ,

where ∆̂r ,1, . . . , ∆̂r ,r denote the coefficients of the least squares regression of Ût on Ût−1, . . . , Ût−r .
Let v̂r ,t be the residuals of this regression, and let Σ̂v̂r be the empirical variance of v̂r ,1, . . . , v̂r ,n.
We are now able to state Theorem 4 which is an extension of a result given in Boubacar Mainassara
et al. (2012).
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Theorem 4. We assume (A0), (A1), (A2) and Assumption (A3’) with τ = 8. In addition,
we assume that the innovation process (εt)t∈Z of the FARIMA(p, d0, q) model (1) is such that
the process (Ut)t∈Z defined in (13) admits a multivariate AR(∞) representation (16), where
‖∆i‖ = o(i−2) as i →∞, the roots of det(∆(z)) = 0 are outside the unit disk, and Σv = Var(vt)
is non-singular. Then the spectral estimator of Ξ satisfies

Ξ̂SP
n := ∆̂−1r (1)Σ̂v̂r ∆̂

′−1
r (1) −→ Ξ = ∆−1(1)Σv ∆−1(1)

in probability when r = r(n) → ∞ and r5(n)/n1−2(d0−d1) → 0 as n → ∞ (remind that d0 ∈
[d1,d2] ⊂]− 1/2,1/2[).

The proof of this theorem is similar to the proof of Theorem 3 in Boubacar Maïnassara et al.
(2019) and it is omitted.

We are now in a position to define the modified versions of the Box-Pierce (BP) and Ljung-Box
(LB) goodness-of-fit portmanteau tests. The standard versions of the portmanteau tests are useful
tools to detect if the orders p and q of a FARIMA(p, d0, q) model are well chosen, provided the
error terms (εt)t∈Z of the FARIMA(p, d0, q) equation be a strong white noise and provided the
number m of residual autocorrelations is not too small (see Remark 3). Now we define the modified
versions which are aimed to detect if the orders p and q of a weak FARIMA(p, d0, q) model are
well chosen. These tests are also asymptotically valid for strong FARIMA(p, d0, q) even for small
m. The modified versions of the portmanteau tests will be denoted by BPw and LBw, the subscript
w referring to the term weak.

Let Σ̂ρ̂m be the matrix obtained by replacing Ξ by Ξ̂ and σ2ε by σ̂2ε in Σρ̂m . Denote by ξ̂m =

(ξ̂1,m, . . . , ξ̂m,m)
′
the vector of the eigenvalues of Σ̂ρ̂m . At the asymptotic level α, it holds under

the assumptions of Theorem 2 and (H0) that

lim
n→∞

P (Qbp
m > Sm(1− α)) = lim

n→∞
P (Qlb

m > Sm(1− α)) = α,

where Sm(1−α) is such that P(Zm(ξ̂m) > Sm(1−α)) = α. We emphasize the fact that the proposed
modified versions of the Box-Pierce and Ljung-Box statistics are more difficult to implement because
their critical values have to be computed from the data while the critical values of the standard
method are simply deduced from a χ2-table. We shall evaluate the p-values

P
{

Zm(ξ̂m) > Qbp
m

}
and P

{
Zm(ξ̂m) > Qlb

m

}
,with Zm(ξ̂m) =

m∑
i=1

ξ̂i ,mZ 2
i ,

by means of the Imhof algorithm (see Imhof (1961)).
A second method avoiding the estimation of the asymptotic matrix is proposed in the next

Subsection.

3.3. Self-normalized asymptotic distribution of the residual autocorrelations

In view of Theorem 3, the asymptotic distributions of the statistics defined in (5) are a mixture
of chi-squared distributions, weighted by eigenvalues of the asymptotic covariance matrix Σρ̂m of
the vector of autocorrelations obtained in Theorem 2. However, this asymptotic variance matrix
depends on the unknown matrices Ξ , Ψm and the noise variance σ2ε . Consequently, in order to obtain
a consistent estimator of the asymptotic covariance matrix Σρ̂m of the residual autocorrelations
vector we have used an autoregressive spectral estimator of the spectral density of the stationary
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process (Ut)t∈Z to get a consistency estimator of the matrix Ξ (see Theorem 4). However, this
approach presents the problem of choosing the truncation parameter. Indeed this method is based
on an infinite autoregressive representation of the stationary process (Ut)t∈Z (see (16)). So the
choice of the order of truncation is crucial and difficult.

In this section, we propose an alternative method where we do not estimate an asymptotic
covariance matrix which is an extension to the results obtained by Boubacar Maïnassara and
Saussereau (2018). It is based on a self-normalization approach to construct a test-statistic which
is asymptotically distribution-free under the null hypothesis. This approach has been studied by
Boubacar Maïnassara and Saussereau (2018) in the weak ARMA case, by proposing new port-
manteau statistics. In this case the critical values are not computed from the data since they are
tabulated by Lobato (2001). In some sense this method is finally closer to the standard method in
which the critical values are simply deduced from a X 2-table. The idea comes from Lobato (2001)
and has been already extended by Boubacar Maïnassara and Saussereau (2018), Kuan and Lee
(2006), Shao (2010b), Shao (2010a) and Shao (2012) to name a few in more general frameworks.
See also Shao (2015) for a review on some recent developments on the inference of time series
data using the self-normalized approach.

Other alternative methods that avoid the estimation of the covariance of the parameter esti-
mates by directly eliminating the estimation effect of the test statistics can be found in Delgado and
Velasco (2011) or Velasco and Wang (2015). Delgado and Velasco (2011) developed an asymptot-
ically distribution-free transform of the sample autocorrelations of residuals in general parametric
linear time-series models and shown that the proposed Box-Pierce-type test statistic based on the
transformed autocorrelation is not affected by the estimation effect. Velasco and Wang (2015)
proposed an asymptotic simultaneous distribution-free transform of the sample autocorrelations of
standardized residuals and their squares, which extended the approach developed by Delgado and
Velasco (2011) to the conditional mean and variance models diagnosis.

We denote by Λ the block matrix of Rm×(p+q+1+m) defined by Λ = (Ψm|Im). In view of (8) and
(11) we deduce that

√
nγ̂m =

1√
n

n∑
t=1

ΛUt + oP(1).

At this stage, we do not rely on the classical method that would consist in estimating the asymptotic
covariance matrix Ξ . We rather try to apply Lemma 1 in Lobato (2001). So we need to check that
a functional central limit theorem holds for the process U := (Ut)t≥1. For that sake, we define the
normalization matrix Cm of Rm×m by

Cm =
1

n2

n∑
t=1

StS
′
t where St =

t∑
j=1

(ΛUj − γm) .

To ensure the invertibility of the normalization matrix Cm (it is the result stated in the next
proposition), we need the following technical assumption on the distribution of εt .

(A4): The process (εt)t∈Z has a positive density on some neighbourhood of zero.

Proposition 5. Under the assumptions of Theorem 2 and (A4), the matrix Cm is almost surely
non singular.

The proof of this proposition is given in Subsection A.4 of the appendix.
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Let (BK (r))r≥0 be a K -dimensional Brownian motion starting from 0. For K ≥ 1, we denote by
UK the random variable defined by:

UK = B
′
K (1)V

−1
K BK (1), (17)

where

VK =

∫ 1

0
(BK (r)− rBK (1)) (BK (r)− rBK (1))

′
dr. (18)

The critical values of UK have been tabulated by Lobato (2001).
The following theorem states the asymptotic distributions of the sample autocovariances and

autocorrelations.

Theorem 6. Under the assumptions of Theorem 2, (A4) and under the null hypothesis (H0) we
have

nγ̂
′
mC−1m γ̂m

in law−−−→
n→∞

Um and nσ4ε ρ̂
′
mC−1m ρ̂m

in law−−−→
n→∞

Um.

The proof of this theorem is given in Subsection A.5 of Appendix.
Of course, the above theorem is useless for practical purpose because the normalization matrix

Cm and the nuisance parameter σ2ε are not observable. This gap will be fixed below (see Theorem 7)
when one replaces the matrix Cm and the scalar σ2ε by their empirical or observable counterparts.
Then we denote

Ĉm =
1

n2

n∑
t=1

Ŝt Ŝ
′
t where Ŝt =

t∑
j=1

(
Λ̂Ûj − γ̂m

)
,

with Λ̂ = (Ψ̂m|Im) and where Ût and σ̂2ε are defined in Subsection 3.2.
The above quantities are all observable and the following result is the applicable counterpart of

Theorem 6.

Theorem 7. Under the assumptions of Theorem 6, we have

nγ̂
′
mĈ−1m γ̂m

in law−−−→
n→∞

Um and Qsn
m = nσ̂4ε ρ̂

′
mĈ−1m ρ̂m

in law−−−→
n→∞

Um.

The proof of this result is postponed in Subsection A.6 of Appendix.
Based on the above result, we propose a modified version of the Ljung-Box statistic when one

uses the statistic
Q̃sn

m = nσ̂4ε ρ̂
′
mD

1/2
n,mĈ−1m D

1/2
n,mρ̂m,

where Dn,m ∈ Rm×m is diagonal with (n + 2)/(n − 1), . . . , (n + 2)/(n − m) as diagonal terms.
These modified versions of the portmanteau tests will be denoted by BPsn and LBsn, the subscript
sn referring to the term self-normalized.

4. Numerical illustrations

In this section, by means of Monte Carlo experiments, we investigate the finite sample properties of
the asymptotic results that we introduced in this work. The numerical illustrations of this section
are made with the open source statistical software R (see http://cran.r-project.org/).
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4.1. Simulation studies and empirical sizes

We study numerically the behavior of the least squares estimator for FARIMA models of the form

(1− L)d0 (Xt − aXt−1) = εt − bεt−1, (19)

where the unknown parameter is θ0 = (a, b, d0). First we assume that in (19) the innovation
process (εt)t∈Z is an iid centered Gaussian process with common variance 1 which corresponds
to the strong FARIMA case. For the weak FARIMA case, we consider that in (19) the innovation
process (εt)t∈Z follows firstly a GARCH(1, 1) process given by the model{

εt = σtηt

σ2t = ω + α1ε
2
t−1 + β1σ

2
t−1,

(20)

with ω > 0, α1 ≥ 0 and where (ηt)t∈Z is a sequence of iid centered Gaussian random variables
with variance 1. Secondly we consider that in (19) a noise defined by

εt = η2t ηt−1. (21)

The example (21) is an extension of a noise process in Romano and Thombs (1996). Contrary
to the GARCH(1, 1) process, the noise defined in Equation (21) is not a martingale difference
sequence for which the limit theory is more classical.

We simulate N = 1, 000 independent trajectories of size n = 10, 000 of models (19). The same
series is partitioned as three series of sizes n = 1, 000, n = 5, 000 and n = 10, 000. For each of
these N replications, we use the least squares estimation method to estimate the coefficient θ0 and
we apply portmanteau tests to the residuals for different values of m ∈ {1, 2, 3, 6, 12, 15}, where
m is the number of autocorrelations used in the portmanteau test statistic. For the nominal level
α = 5%, the empirical size over the N independent replications should vary between the significant
limits 3.6% and 6.4% with probability 95%. When the relative rejection frequencies are outside the
95% significant limits, they are displayed in bold type in Tables 1, 2 and 3.

For the standard Box-Pierce test, the model is therefore rejected when the statistic Qbp
m or

Qlb
m is larger than χ2

(m−p−q−1)(0.95) in a FARIMA(p, d0, q) case (see Li and McLeod (1986)).
Consequently the empirical size is not available (n.a.) for the statistic Qbp

m or Qlb
m because they

are not applicable for m ≤ p + q + 1. For the proposed self-normalized test BPsn or LBsn, the
model is rejected when the statistic Qsn

m or Q̃sn
m is larger than Um(0.95), where the critical values

UK (0.95) (for K = 1, . . . , 20) are tabulated in Lobato (see Table 1 in Lobato (2001)).
Table 1 displays the relative rejection frequencies of the null hypothesis (H0) that the data

generating process (DGP for short) follows a strong FARIMA(0, d0, 0) model (19), over the N
independent replications. For all tests, the percentages of rejection belong globally to the confident
interval with probabilities 95%, except for LBs and BPs (see Table 8).

Now, we repeat the same experiments on two weak FARIMA models. As expected Tables 2
and 3 show that the standard LBs or BPs test poorly performs in assessing the adequacy of these
particular weak FARIMA models. Indeed, we observe that the observed relative rejection frequencies
of LBs and BPs are definitely outside the significant limits. Thus we draw the conclusion that the
error of the first kind is globally well controlled by all the tests in the strong case, but only by the
proposed tests in the weak cases.
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4.2. Empirical power

In this section, we repeat the same experiments as in Section 4.1 to examine the power of the
tests for the null hypothesis of Model (19) with a = b = 0 (i.e. a FARIMA(0, d0, 0)) against the
FARIMA(0, d0, 1) alternative defined by Model (19) with θ0 = (0, b, d0) and where the innovation
process (εt)t∈Z follows the two weak white noises introduced in Section 4.1.

For each of these N replications we fit a FARIMA(0, d0, 0) model (19) and perform standard
and modified tests based on m = 1, 2, 3, 6, 12 and 15 residual autocorrelations.

Tables 4 and 5 compare the empirical powers of Model (19) with θ0 = (0, 0.2, d0) over the N
independent replications. For these particular weak FARIMA models, we notice that the standard
BPs and LBs and our proposed tests have very similar powers except for BPsn and LBsn when
n = 5, 000.

In these Monte Carlo experiments, we illustrate that the proposed test statistics have reasonable
finite sample performance. Under nonindependent errors, it appears that the standard test statistics
are generally non reliable, overrejecting severely, while the proposed tests statistics offer satisfactory
levels. Even for independent errors, they seem preferable to the standard ones when the number
m of autocorrelations is small. Moreover, the error of first kind is well controlled. Contrarily to the
standard tests based on BPs or LBs, the proposed tests can be used safely for m small.For all these
above reasons, we think that the modified versions that we propose in this paper are preferable to
the standard ones for diagnosing FARIMA models under nonindependent errors.

4.3. Illustrative example

We now consider an application to the daily log returns (also simply called the returns) of the
Nikkei and Standard & Poor’s 500 indices (S&P 500, for short). The returns are defined by rt =
100 log(pt/pt−1) where pt denotes the price index of the S&P 500 index at time t. The observations
of the S&P 500 (resp. the Nikkei) index cover the period from January 3, 1950 to to February 14,
2019 (resp. from January 5, 1965 to February 14, 2019). The length of the series is n = 17, 391
(resp. n = 13, 319) for the S&P 500 (resp. the Nikkei) index. The data can be downloaded from
the website Yahoo Finance: http://fr.finance.yahoo.com/.

In Financial Econometrics the returns are often assumed to be a white noise. In view of the
so-called volatility clustering, it is well known that the strong white noise model is not adequate for
these series (see for instance Francq and Zakoïan (2010); Lobato et al. (2001); Boubacar Mainassara
et al. (2012); Boubacar Maïnassara and Saussereau (2018)).

A long-range memory property of the stock market returns series was largely investigated by
Ding et al. (1993) which shown that there are more correlation beetwen power transformation of
the absolute return |rt |v (v > 0) than returns themselves (see also Beran et al. (2013), Palma
(2007), Baillie et al. (1996) and Ling and Li (1997)). We choose here the case where v = 2
which corresponds to the squared returns (r2t )t≥1 process. The mean and the standard deviation
of (r2t )t≥1 are 0, 9347 and 5, 0036 (resp. 1, 6167 and 5, 4759) for the S&P 500 (resp. the Nikkei)
index. Following a similar way as in Ling (2003) we denote by (Xt)t≥1 the centered series of the
squared returns, that is, Xt = r2t − 0, 9347 (resp. Xt = r2t − 1, 6167) for the S&P 500 (resp.
the Nikkei) index. Figure 1 (resp. Figure 3) plots the returns and the sample autocorrelations of
(Xt)t≥1 of the S&P 500 (resp. of the Nikkei). The centered squared returns (X )t≥1 have significant
positive autocorrelations at least up to lag 80 (see Figure 1 and Figure 3) which confirm the claim
that stock market returns have long-term memory (see for instance Ding et al. (1993), for more
details).
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We first fit a FARIMA(1, d0, 1) model defined in (19) to the process (X )t≥1 of the S&P 500
and the Nikkei returns. Let θ̂SP500n and θ̂Nikkein be respectively the least squares estimators of the
parameter θ0 = (a, b, d0) for the model (19) in the case of the S&P 500 and the Nikkei. The least
squares estimators were obtained as

θ̂SP500n =

 −0.3371 [0.1105] (0.0023)
−0.1795 [0.0788] (0.0227)
0.2338 [0.0367] (0.0000)

 and σ̂2ε = 22.9076× 10−8

and

θ̂Nikkein =

 −0.0217 [0.1105] (0.9528)
0.1579 [0.0788] (0.6050)
0.3217 [0.0367] (0.0000)

 and σ̂2ε = 25.6844× 10−8, (22)

where the estimated asymptotic standard errors obtained from Σθ̂ := J−1I J−1 (respectively the
p-values), of the estimated parameters (first column), are given into brackets (respectively in
parentheses). Note that for these series, the estimated coefficients |̂an| and |b̂n| are smaller than
one. This is in accordance with the assumptions that the power series a−1θ and b−1θ are well defined
(remind that the moving average polynomial is denoted bθ and the autoregressive polynomials
aθ). We also observe that the estimated long-range dependence coefficients d̂n is significant for
any reasonable asymptotic level and is inside ]− 0.5, 0.5[. So we think that the assumption (A2)
is satisfied and thus our asymptotic normality theorem on the residual autocorrelations can be
applied.

Concerning the S&P 500, the estimators of the parameters a and b are significant whereas it is
not the case for the Nikkei (see (22)). In the Nikkei case, the coefficients could reasonably be set
to zero. So we adjust a FARIMA(0, d0, 0) for the squares of Nikkei returns and (22) is reduced as

θ̂Nikkein =
(
0.2132 [0.0259] (0.0000)

)
and σ̂2ε = 25.9793× 10−8.

We thus apply portmanteau tests to the residuals of FARIMA(1, d0, 1) (resp. FARIMA(0, d0, 0))
model for the process (X )t≥1 of S&P 500 (resp. of Nikkei). Table 6 (resp. Table 7) displays the
statistics and the p-values of the standard and modified versions of BP and LB tests of model
(19). From Tables 6 and 7, we draw the conclusion that the strong FARIMA(1, 0.2338, 1) and
FARIMA(0, 0.2132, 0)models are rejected but the weak FARIMA(1, 0.2338, 1) and FARIMA(0, 0.2132, 0)
models are not rejected.

Figure 2 (resp. Figure 4) displays the residual autocorrelations and their 5% significance limits
under the strong FARIMA and weak FARIMA assumptions. In view of Figures 2 and 4, the diagnostic
checking of residuals does not indicate any inadequacy for the proposed tests. All of the sample
autocorrelations should lie between the bands (at 95%) shown as dashed lines (green color) and
solid lines (red color) for the modified tests, while the horizontal dotted (blue color) for standard test
indicate that strong FARIMA is not adequate. Figure 2 (resp. Figure 4) confirms the conclusions
drawn from Table 6 (resp. Table 7).
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5. Figures and tables

Fig 1. Returns and the sample autocorrelations of squared returns of the S&P 500.
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Fig 2. Autocorrelation of the FARIMA(1, 0.2338, 1) residuals for the squares of the S&P 500 returns. The horizontal
dotted lines (blue color) correspond to the 5% significant limits obtained under the strong FARIMA assumption.
The solid lines (red color) and dashed lines (green color) correspond also to the 5% significant limits under the weak
FARIMA assumption. The full lines correspond to the asymptotic significance limits for the residual autocorrelations
obtained in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic significance
limits for the residual autocorrelations obtained in Theorem 7.
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Table 1
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a strong

FARIMA(0, d0, 0) defined by (19) with θ0 = (0, 0, d0). The nominal asymptotic level of the tests is
α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 4.6 4.5 n.a. n.a.
2 4.5 4.5 4.9 4.9 5.8 5.8

0.05 n = 1, 000 3 5.2 5.1 4.7 4.4 4.9 4.8
6 5.8 5.8 4.6 4.5 5.1 5.0
12 6.0 5.6 5.3 4.6 5.2 5.0
15 5.6 5.2 4.7 4.3 5.3 4.7
1 6.8 6.8 6.6 6.6 n.a. n.a.
2 6.8 6.8 6.4 6.4 7.9 7.9

0.05 n = 5, 000 3 6.6 6.6 5.7 5.7 5.8 5.8
6 6.5 6.4 5.6 5.6 5.7 5.6
12 6.4 6.4 5.3 5.3 6.0 5.9
15 6.1 6.0 4.7 4.6 5.3 5.2
1 4.9 4.9 5.3 5.3 n.a. n.a.
2 5.4 5.4 6.6 6.6 7.8 7.8

0.05 n = 10, 000 3 5.7 5.7 5.9 5.9 6.2 6.2
6 5.9 5.8 4.5 4.5 4.6 4.6
12 5.3 5.3 5.4 5.4 5.6 5.6
15 4.4 4.3 4.8 4.8 4.9 4.9
1 3.6 3.5 4.3 4.3 n.a. n.a.
2 4.7 4.7 4.7 4.7 5.8 5.7

0.20 n = 1, 000 3 5.2 5.0 4.3 4.3 4.9 4.7
6 6.0 5.9 4.7 4.5 5.0 4.9
12 5.7 5.4 5.3 4.7 5.2 4.9
15 5.9 5.6 4.8 4.2 5.2 4.8
1 6.6 6.6 6.5 6.5 n.a. n.a.
2 6.6 6.6 6.4 6.4 7.9 7.9

0.20 n = 5, 000 3 6.7 6.7 5.7 5.7 5.8 5.8
6 6.3 6.3 5.6 5.6 5.7 5.5
12 6.3 6.2 5.5 5.3 6.0 5.9
15 6.1 5.9 4.7 4.6 5.3 5.2
1 4.8 4.8 5.3 5.3 n.a. n.a.
2 5.4 5.4 6.6 6.6 7.8 7.8

0.20 n = 10, 000 3 5.5 5.5 5.9 5.9 6.3 6.3
6 5.8 5.8 4.5 4.5 4.6 4.6
12 5.4 5.3 5.5 5.5 5.6 5.6
15 4.4 4.3 4.7 4.7 4.9 4.9
1 3.9 3.8 4.9 4.9 n.a. n.a.
2 5.1 5.0 4.8 4.6 5.9 5.9

0.45 n = 1, 000 3 5.2 5.2 4.3 4.3 4.8 4.8
6 6.2 6.0 4.7 4.3 4.9 4.9
12 5.8 5.4 4.8 4.7 4.9 4.8
15 5.6 5.5 4.5 4.2 5.0 4.8
1 6.6 6.6 6.6 6.6 n.a. n.a.
2 6.7 6.7 6.5 6.5 8.0 8.0

0.45 n = 5, 000 3 6.6 6.6 5.7 5.7 5.8 5.8
6 6.3 6.3 5.4 5.4 5.6 5.5
12 6.2 6.2 5.5 5.5 6.0 5.9
15 6.2 5.9 4.6 4.6 5.5 5.3
1 5.0 5.0 5.3 5.3 n.a. n.a.
2 5.4 5.4 6.6 6.6 7.9 7.9

0.45 n = 10, 000 3 5.3 5.3 5.9 5.9 6.3 6.3
6 5.8 5.8 4.7 4.6 4.7 4.7
12 5.4 5.4 5.5 5.5 5.7 5.7
15 4.6 4.5 4.9 4.8 4.9 4.9
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Table 2
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(0, d0, 0) defined by (19) with θ0 = (0, 0, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3 in (21).

The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.4 4.4 5.4 5.4 n.a. n.a.
2 4.3 4.2 5.7 5.7 15.6 15.5

0.05 n = 1, 000 3 5.9 5.9 5.3 5.0 14.2 14.0
6 5.2 5.1 6.0 6.0 14.6 14.4
12 4.5 4.1 4.2 4.0 11.0 10.7
15 4.0 3.9 4.2 3.9 11.1 10.6
1 4.3 4.3 5.1 5.1 n.a. n.a.
2 4.4 4.4 5.8 5.8 16.9 16.8

0.05 n = 5, 000 3 5.0 5.0 5.5 5.5 16.5 16.5
6 5.6 5.6 4.5 4.5 14.8 14.6
12 5.1 5.1 5.0 4.9 12.6 12.5
15 5.2 5.1 4.9 4.7 11.8 11.6
1 5.7 5.7 5.3 5.1 n.a. n.a.
2 5.0 5.0 4.5 4.5 17.4 17.4

0.05 n = 10, 000 3 5.5 5.5 4.7 4.6 17.2 17.2
6 5.3 5.3 5.0 5.0 14.2 14.1
12 4.9 4.9 4.7 4.7 11.0 11.0
15 4.9 4.8 4.7 4.6 10.2 10.2
1 4.9 4.9 4.3 4.3 n.a. n.a.
2 4.0 4.0 5.7 5.6 15.5 15.4

0.20 n = 1, 000 3 6.0 6.0 5.0 4.8 14.0 13.8
6 5.2 5.1 5.7 5.6 14.3 14.2
12 4.4 4.0 4.3 4.0 10.8 10.5
15 3.9 3.8 4.2 3.9 10.8 10.1
1 4.3 4.3 5.0 5.0 n.a. n.a.
2 4.3 4.3 5.9 5.8 16.9 16.9

0.20 n = 5, 000 3 5.2 5.2 5.4 5.4 16.7 16.7
6 5.6 5.5 4.6 4.5 14.8 14.7
12 5.2 5.2 5.0 4.9 12.5 12.4
15 5.2 5.2 4.8 4.6 11.7 11.7
1 5.7 5.7 5.2 5.2 n.a. n.a.
2 5.1 5.1 4.5 4.5 17.3 17.3

0.20 n = 10, 000 3 5.7 5.6 4.7 4.7 17.2 17.2
6 5.1 5.1 4.9 4.9 14.2 14.2
12 4.8 4.8 4.7 4.7 11.0 11.0
15 4.9 4.7 4.6 4.6 10.2 10.2
1 4.5 4.5 5.4 5.4 n.a. n.a.
2 4.1 4.1 6.0 6.0 16.2 16.1

0.45 n = 1, 000 3 5.9 5.7 5.3 5.3 14.6 14.5
6 5.2 4.8 5.5 5.4 14.4 14.1
12 4.0 3.7 4.2 4.2 11.2 10.8
15 3.8 3.7 4.3 3.9 10.6 10.4
1 4.6 4.6 5.0 5.0 n.a. n.a.
2 4.3 4.3 5.9 5.9 16.7 16.7

0.45 n = 5, 000 3 4.9 4.9 5.4 5.4 16.8 16.7
6 5.7 5.6 4.6 4.6 15.1 14.9
12 5.3 5.3 5.1 5.1 12.7 12.4
15 5.1 5.0 4.8 4.8 11.7 11.7
1 5.7 5.7 5.2 5.2 n.a. n.a.
2 5.0 5.0 4.7 4.7 17.2 17.2

0.45 n = 10, 000 3 5.8 5.7 4.7 4.7 17.5 17.4
6 5.1 5.1 5.0 4.9 14.3 14.3
12 4.8 4.8 4.7 4.7 10.9 10.9
15 4.9 4.7 4.6 4.6 10.2 10.2
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Table 3
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of weak
FARIMA(0, d0, 0) defined by (19)–(21) with θ0 = (0, 0, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 8.7 8.6 n.a. n.a.
2 3.8 3.7 6.1 6.1 16.9 16.9

0.05 n = 1, 000 3 3.5 3.5 4.8 4.7 14.8 14.8
6 3.3 3.2 4.0 4.0 14.1 14.0
12 1.0 0.9 2.5 2.4 13.0 12.8
15 1.0 0.9 2.3 2.1 12.8 12.2
1 3.9 3.9 5.3 5.3 n.a. n.a.
2 4.8 4.8 5.2 5.2 18.7 18.7

0.05 n = 5, 000 3 5.6 5.6 5.3 5.3 15.1 15.0
6 4.8 4.8 4.3 4.3 12.4 12.4
12 3.9 3.9 3.3 3.3 11.2 11.1
15 3.5 3.5 2.7 2.7 10.2 10.1
1 5.4 5.4 5.2 5.2 n.a. n.a.
2 5.6 5.6 5.3 5.3 18.6 18.6

0.05 n = 10, 000 3 4.9 4.9 5.3 5.2 16.6 16.5
6 4.8 4.8 5.5 5.4 13.3 13.3
12 4.1 4.0 4.0 4.0 12.2 12.2
15 5.0 5.0 3.5 3.5 11.2 11.2
1 3.3 3.3 4.9 4.9 n.a. n.a.
2 4.2 4.1 4.4 4.3 14.7 14.7

0.20 n = 1, 000 3 3.7 3.7 3.4 3.2 12.8 12.8
6 3.6 3.4 2.7 2.7 12.9 12.8
12 1.1 1.0 1.9 1.7 11.8 11.3
15 0.9 0.6 1.8 1.7 12.0 11.5
1 3.8 3.8 5.5 5.5 n.a. n.a.
2 4.7 4.7 5.1 5.1 18.8 18.8

0.20 n = 5, 000 3 5.8 5.8 5.2 5.2 15.0 15.0
6 4.9 4.9 4.3 4.3 12.5 12.4
12 3.9 3.9 3.4 3.4 11.1 11.1
15 3.5 3.3 2.7 2.7 10.2 10.1
1 5.4 5.4 5.1 5.1 n.a. n.a.
2 5.6 5.6 5.3 5.3 18.8 18.8

0.20 n = 10, 000 3 5.0 5.0 5.2 5.2 16.6 16.6
6 4.8 4.8 5.4 5.4 13.3 13.3
12 4.0 4.0 4.0 4.0 12.1 12.1
15 5.3 5.3 3.4 3.4 11.2 11.2
1 3.5 3.5 9.0 9.0 n.a. n.a.
2 4.1 4.1 5.9 5.9 17.5 17.5

0.45 n = 1, 000 3 3.9 3.7 5.0 4.8 15.0 14.6
6 3.4 3.4 3.7 3.7 14.1 13.9
12 0.9 0.9 2.0 2.0 12.9 12.2
15 1.0 0.5 1.9 1.7 13.1 12.8
1 4.1 4.1 5.4 5.4 n.a. n.a.
2 4.6 4.6 5.2 5.2 18.8 18.7

0.45 n = 5, 000 3 5.6 5.6 5.2 5.2 15.2 15.2
6 5.1 5.0 4.4 4.4 12.5 12.4
12 4.0 3.8 3.5 3.5 11.1 11.1
15 3.5 3.5 2.6 2.6 10.0 9.9
1 5.5 5.5 5.1 5.1 n.a. n.a.
2 5.6 5.6 5.3 5.3 18.7 18.6

0.45 n = 10, 000 3 4.7 4.7 5.2 5.2 16.6 16.6
6 4.8 4.8 5.3 5.3 13.3 13.3
12 4.0 4.0 4.0 4.0 12.1 12.1
15 5.2 5.2 3.5 3.5 11.1 11.1
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Table 4
Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a

weak FARIMA(0, d0, 1) defined by (19) with θ0 = (0., 0.2, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3
in (20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 30.1 30.1 100.0 100.0 n.a. n.a.
2 55.7 55.7 100.0 100.0 100.0 100.0

0.05 n = 5, 000 3 75.7 75.7 100.0 100.0 100.0 100.0
6 87.1 87.1 100.0 100.0 100.0 100.0
12 87.0 86.8 100.0 100.0 100.0 100.0
15 87.3 87.2 100.0 100.0 100.0 100.0
1 50.0 50.0 100.0 100.0 n.a. n.a.
2 79.5 79.4 100.0 100.0 100.0 100.0

0.05 n = 10, 000 3 95.2 95.2 100.0 100.0 100.0 100.0
6 98.0 98.0 100.0 100.0 100.0 100.0
12 98.6 98.6 100.0 100.0 100.0 100.0
15 99.0 99.0 100.0 100.0 100.0 100.0
1 98.2 98.2 99.9 99.9 n.a. n.a.
2 94.6 94.6 99.5 99.5 100.0 100.0

0.20 n = 5, 000 3 92.3 92.3 99.6 99.6 100.0 100.0
6 91.0 91.0 99.6 99.6 100.0 100.0
12 88.8 88.7 99.8 99.8 100.0 100.0
15 88.6 88.6 99.8 99.8 100.0 100.0
1 99.7 99.7 100.0 100.0 n.a. n.a.
2 99.2 99.2 100.0 100.0 100.0 100.0

0.20 n = 10, 000 3 99.3 99.2 100.0 100.0 100.0 100.0
6 98.8 98.8 100.0 100.0 100.0 100.0
12 99.3 99.3 100.0 100.0 100.0 100.0
15 99.3 99.3 100.0 100.0 100.0 100.0
1 98.2 98.2 99.8 99.8 n.a. n.a.
2 94.4 94.3 99.5 99.5 100.0 100.0

0.45 n = 5, 000 3 92.4 92.4 99.6 99.6 100.0 100.0
6 90.9 90.8 99.6 99.6 100.0 100.0
12 88.9 88.9 99.8 99.8 100.0 100.0
15 88.8 88.5 99.8 99.8 100.0 100.0
1 99.7 99.7 100.0 100.0 n.a. n.a.
2 99.0 99.0 100.0 100.0 100.0 100.0

0.45 n = 10, 000 3 99.2 99.2 100.0 100.0 100.0 100.0
6 98.9 98.9 100.0 100.0 100.0 100.0
12 99.3 99.3 100.0 100.0 100.0 100.0
15 99.3 99.3 100.0 100.0 100.0 100.0



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Validation of weak FARIMA models 22

Table 5
Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a

weak FARIMA(0, d0, 1) defined by (19)–(21) with θ0 = (0., 0.2, d0). The nominal asymptotic level of the
tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 20.3 20.3 99.9 99.9 n.a. n.a.
2 56.7 56.6 99.9 99.9 99.9 99.9

0.05 n = 5, 000 3 69.1 69.1 99.9 99.9 99.9 99.9
6 75.9 75.9 99.9 99.9 99.9 99.9
12 71.9 71.4 99.9 99.9 99.9 99.9
15 68.5 68.0 99.9 99.9 99.9 99.9
1 60.0 60.0 100.0 100.0 n.a. n.a.
2 81.8 81.8 100.0 100.0 100.0 100.0

0.05 n = 10, 000 3 90.3 90.3 100.0 100.0 100.0 100.0
6 93.9 93.9 100.0 100.0 100.0 100.0
12 93.8 93.8 100.0 100.0 100.0 100.0
15 93.7 93.7 100.0 100.0 100.0 100.0
1 92.3 92.3 99.9 99.9 n.a. n.a.
2 86.1 86.0 98.6 98.6 99.8 99.8

0.20 n = 5, 000 3 82.3 82.3 99.2 99.1 99.8 99.8
6 80.0 80.0 98.9 98.9 99.9 99.9
12 73.1 72.8 98.7 98.7 99.6 99.6
15 68.3 68.0 98.4 98.4 99.5 99.5
1 99.2 99.2 100.0 100.0 n.a. n.a.
2 96.4 96.4 100.0 100.0 100.0 100.0

0.20 n = 10, 000 3 94.6 94.6 100.0 100.0 100.0 100.0
6 95.1 95.1 100.0 100.0 100.0 100.0
12 95.2 95.2 100.0 100.0 100.0 100.0
15 94.0 94.0 100.0 100.0 100.0 100.0
1 92.4 92.4 99.9 99.9 n.a. n.a.
2 85.6 85.6 98.6 98.6 99.8 99.8

0.45 n = 5, 000 3 82.1 82.0 99.3 99.3 99.8 99.8
6 80.3 80.3 98.9 98.9 99.9 99.9
12 73.0 72.7 98.7 98.7 99.6 99.6
15 68.2 68.1 98.4 98.4 99.5 99.5
1 99.2 99.2 100.0 100.0 n.a. n.a.
2 96.4 96.4 100.0 100.0 100.0 100.0

0.45 n = 10, 000 3 94.8 94.8 100.0 100.0 100.0 100.0
6 95.2 95.2 100.0 100.0 100.0 100.0
12 95.0 95.0 100.0 100.0 100.0 100.0
15 94.0 94.0 100.0 100.0 100.0 100.0
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Table 6
Modified and standard versions of portmanteau tests to check the null hypothesis that the S&P 500

squared returns follow a FARIMA(1, 0.2338, 1) model (19).

Lag m 1 2 3 4 5 6 7
ρ̂(m) 0.0002 -0.0033 -0.0350 -0.0393 0.0893 -0.0040 -0.0179
LBsn 0.0653 18.150 41.924 58.057 186.72 313.78 341.38
BPsn 0.0653 18.146 41.912 58.037 186.64 313.64 341.20
LBw 0.0008 0.1885 21.445 48.248 186.95 187.23 192.77
BPw 0.0008 0.1884 21.439 48.232 186.88 187.15 192.67
plb
w 0.8525 0.6985 0.0916 0.3137 0.0678 0.0717 0.0752

pbp
w 0.8525 0.6986 0.0917 0.3138 0.0679 0.0718 0.0753

plb
s n.a. n.a. n.a. 0.0000 0.0000 0.0000 0.0000

pbp
s n.a. n.a. n.a. 0.0000 0.0000 0.0000 0.0000

Lag m 8 9 10 11 12 13 14
ρ̂(m) 0.0047 0.0137 -0.0040 0.0295 0.0093 -0.0077 -0.0286
LBsn 397.27 397.38 415.22 465.52 468.76 567.87 573.02
BPsn 397.04 397.13 414.93 465.17 468.33 567.38 572.49
LBw 193.16 196.42 196.69 211.82 213.31 214.34 228.55
BPw 193.09 196.34 196.61 211.74 213.22 214.25 228.45
plb
w 0.0758 0.0786 0.0986 0.1053 0.1148 0.1226 0.1047

pbp
w 0.0758 0.0787 0.0987 0.1054 0.1150 0.1228 0.1048

plb
s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp
s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 15 16 17 18 19 20 21
ρ̂(m) 0.0021 0.0086 0.0097 0.0137 -0.0023 0.0016 0.0132
LBsn 588.61 701.16 738.23 738.58 749.24 778.88 788.01
BPsn 588.04 700.44 737.42 737.73 748.33 777.90 786.97
LBw 228.63 229.91 231.54 234.83 234.92 234.97 238.00
BPw 228.52 229.80 231.44 234.72 234.81 234.86 237.89
plb
w 0.1079 0.1113 0.2212 0.2138 0.2127 0.2169 0.2324

pbp
w 0.1080 0.1114 0.2214 0.2140 0.2130 0.2171 0.2327

plb
s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp
s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 7
Modified and standard versions of portmanteau tests to check the null hypothesis that the Nikkei squared

returns follow a FARIMA(0, 0.2132, 0) model as in (19) with a = b = 0.

Lag m 1 2 3 4 5 6 7
ρ̂(m) -0.0678 0.0400 0.0634 -0.0022 0.0165 0.0320 -0.0158
LBsn 5.7332 29.005 34.758 34.779 66.692 288.57 324.46
BPsn 5.7319 28.997 34.745 34.764 66.657 288.40 324.24
LBw 61.211 82.507 136.13 136.20 139.84 153.46 156.78
BPw 61.198 82.487 136.09 136.16 139.76 153.41 156.73
plb
w 0.1086 0.2186 0.1830 0.2551 0.3002 0.3519 0.3609

pbp
w 0.1086 0.2187 0.1831 0.2552 0.3003 0.3521 0.3611

plb
s n.a. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp
s n.a. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 8 9 10 11 12 13 14
ρ̂(m) 0.0295 0.0384 0.0121 0.0133 0.0503 0.0076 0.0068
LBsn 387.88 512.70 575.09 600.81 791.67 808.20 808.27
BPsn 387.59 512.28 574.57 600.22 790.83 807.29 807.30
LBw 168.41 188.08 190.01 192.36 226.12 226.89 227.50
BPw 168.35 187.10 189.93 192.29 225.10 226.76 227.39
plb
w 0.3627 0.3757 0.3802 0.3825 0.3320 0.3447 0.3526

pbp
w 0.3629 0.3759 0.3804 0.3827 0.3323 0.3450 0.3529

plb
s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp
s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 15 16 17 18 19 20 21
ρ̂(m) 0.0538 0.0073 0.0173 0.0067 -0.0027 -0.0057 0.0153
LBsn 839.87 842.24 842.31 845.36 885.74 935.70 946.03
BPsn 838.80 841.10 841.11 844.10 884.35 934.15 944.40
LBw 266.16 266.88 270.85 271.45 271.56 271.99 275.13
BPw 265.99 266.71 270.68 271.28 271.38 271.82 274.94
plb
w 0.3105 0.3163 0.3161 0.3264 0.3289 0.3329 0.3366

pbp
w 0.3108 0.3166 0.3165 0.3268 0.3293 0.3333 0.3369

plb
s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp
s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig 3. Returns and the sample autocorrelations of squared returns of the Nikkei.
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Fig 4. Autocorrelation of the FARIMA(0, 0.2132, 0) residuals for the squares of the Nikkei returns. The horizontal
dotted lines (blue color) correspond to the 5% significant limits obtained under the strong FARIMA assumption.
The solid lines (red color) and dashed lines (green color) correspond also to the 5% significant limits under the weak
FARIMA assumption. The full lines correspond to the asymptotic significance limits for the residual autocorrelations
obtained in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic significance
limits for the residual autocorrelations obtained in Theorem 7.
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Appendix A: Supplemental material: Proofs

The following proofs are quite technical and are adaptations of the arguments used in Francq and
Zakoïan (1998), Francq et al. (2005) and Boubacar Maïnassara and Saussereau (2018).

The results of Boubacar Maïnassara et al. (2019) which will be needed for all the proofs are
collected in the following Subsection A.1 in order to have a self-containing paper.

In all our proofs, K is a positive constant that may vary from line to line.

A.1. Preliminary results

In this subsection, we shall give some results on estimations of the coefficients of formal power
series that will arise in our study.

We begin by recalling the following properties on power series. If for |z | ≤ R , the power series
f (z) =

∑
i≥0 ai z

i and g(z) =
∑

i≥0 bi z
i are well defined, then one has (f g)(z) =

∑
i≥0 ci z

i is
also well defined for |z | ≤ R with the sequence (ci )i≥0 which is given by c = a ∗b where ∗ denotes
the convolution product between a and b defined by ci =

∑i
k=0 ak bi−k =

∑i
k=0 ai−k bk . We will

make use of the Young inequality that states that if the sequence a ∈ `r1 and b ∈ `r2 and such
that 1

r1
+ 1

r2
= 1 + 1

r with 1 ≤ r1, r2, r ≤ ∞, then

‖a ∗ b‖`r ≤ ‖a‖`r1 × ‖b‖`r2 .

Now we come back to the power series that arise in our context. Remind that for the true value
of the parameter,

aθ0(L)(1− L)d0Xt = bθ0(L)εt . (23)

Thanks to the assumptions on the moving average polynomials bθ and the autoregressive polyno-
mials aθ, the power series a−1θ and b−1θ are well defined.

Thus the functions εt(θ) defined in (2) can be written as

εt(θ) = b−1θ (L)aθ(L)(1− L)d Xt (24)

= b−1θ (L)aθ(L)(1− L)d−d0a−1θ0 (L)bθ0(L)εt (25)

and if we denote γ(θ) = (γi (θ))i≥0 the sequence of coefficients of the power series b−1θ (z)aθ(z)(1−
z)d , we may write for all t ∈ Z:

εt(θ) =
∑
i≥0

γi (θ)Xt−i . (26)

In the same way, by (24) one has

Xt = (1− L)−d a−1θ (L)bθ(L)εt(θ)

and if we denote η(θ) = (ηi (θ))i≥0 the coefficients of the power series (1− z)−d a−1θ (z)bθ(z) one
has

Xt =
∑
i≥0

ηi (θ)εt−i (θ) . (27)

We strength the fact that γ0(θ) = η0(θ) = 1 for all θ.
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For large j , Hallin et al. (1999) have shown that uniformly in θ the sequences γ(θ) and η(θ)
satisfy

∂kγj(θ)

∂θi1 · · · ∂θik

= O
(

j−1−d {log(j)}k
)
, for k = 0, 1, 2, 3, (28)

and
∂kηj(θ)

∂θi1 · · · ∂θik

= O
(

j−1+d {log(j)}k
)
, for k = 0, 1, 2, 3. (29)

One difficulty that has to be addressed is that (26) includes the infinite past (Xt−i )i≥0 whereas
only a finite number of observations (Xt)1≤t≤n are available to compute the estimators defined in
(4). The simplest solution is truncation which amounts to setting all unobserved values equal to
zero. Thus, for all θ ∈ Θ and 1 ≤ t ≤ n one defines

ε̃t(θ) =
t−1∑
i=0

γi (θ)Xt−i =
∑
i≥0

γt
i (θ)Xt−i (30)

where the truncated sequence γt(θ) = (γt
i (θ))i≥0 is defined by

γt
i (θ) =

{
γi (θ) if 0 ≤ i ≤ t − 1 ,

0 otherwise.

Since our assumptions are made on the noise in (1), it will be useful to express the random variables
εt(θ) and its partial derivatives with respect to θ, as a function of (εt−i )i≥0.

From (25), there exists a sequence λ(θ) = (λi (θ))i≥0 such that

εt(θ) =
∞∑

i=0

λi (θ) εt−i (31)

where the sequence λ(θ) is given by the sequence of the coefficients of the power series b−1θ (z)aθ(z)(1−
z)d−d0a−1θ0 (z)bθ0(z). Consequently λ(θ) = γ(θ) ∗ η(θ0) or, equivalently,

λi (θ) =
i∑

j=0

γj(θ)ηi−j(θ0). (32)

As in Hualde and Robinson (2011), it can be shown using Stirling’s approximation that there exists
a positive constant K such that

sup
θ∈Θδ

|λi (θ)| ≤ K sup
d∈[d1,d2]

i−1−(d−d0) ≤ K i−1−(d1−d0) . (33)

Equation (31) and Inequality (33) imply that for all θ ∈ Θ the random variable εt(θ) belongs to
L2, that the sequence (εt(θ))t is an ergodic sequence and that for all t ∈ Z the function εt(·) is
a continuous function. We proceed in the same way as regard to the derivatives of εt(θ). More
precisely, for any θ ∈ Θ, t ∈ Z and 1 ≤ k, l ≤ p+q+1 there exists sequences

.
λk(θ) = (

.
λi ,k(θ))i≥1

and
..
λk,l(θ) = (

..
λi ,k,l(θ))i≥1 such that

∂εt(θ)

∂θk
=
∞∑

i=1

.
λi ,k (θ) εt−i (34)

∂2εt(θ)

∂θk∂θl
=
∞∑

i=1

..
λi ,k,l (θ) εt−i . (35)
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Of course it holds that
.
λk(θ) =

∂γ(θ)
∂θk
∗ η(θ0) and

..
λk,l(θ) =

∂2γ(θ)
∂θk∂θl

∗ η(θ0).
Similarly we have

ε̃t(θ) =
∞∑

i=0

λt
i (θ) εt−i , (36)

∂ε̃t(θ)

∂θk
=
∞∑

i=1

.
λ

t

i ,k (θ) εt−i , (37)

∂2ε̃t(θ)

∂θk∂θl
=
∞∑

i=1

..
λ

t

i ,k,l (θ) εt−i , (38)

where λt(θ) = γt(θ) ∗ η(θ0),
.
λ

t

k(θ) =
∂γt(θ)
∂θk

∗ η(θ0) and
..
λ

t

k,l(θ) =
∂2γt(θ)
∂θk∂θl

∗ η(θ0).
In order to handle the truncation error εt(θ)− ε̃t(θ), one needs some information on the sequence

λ(θ)− λt(θ). In Boubacar Maïnassara et al. (2019) the following two lemmas are proved.

Lemma 1. For 2 ≤ r ≤ ∞ and 1 ≤ k , l ≤ p + q + 1, we have

‖ λ (θ)− λt (θ) ‖`r = O
(

t−1+
1
r
−(d−max(d0,0))

)
,

‖
.
λk (θ)−

.
λ

t

k (θ) ‖`r = O
(

t−1+
1
r
−(d−max(d0,0))

)
and

‖
..
λk,l (θ)−

..
λ

t

k,l (θ) ‖`r = O
(

t−1+
1
r
−(d−max(d0,0))

)
for any θ ∈ Θδ if d0 ≤ 0 and for θ with non-negative memory parameter d if d0 > 0.

Remark 4. The above lemma implies that the sequence
.
λk (θ0)−

.
λt

k (θ0) is bounded and more
precisely there exists K such that

sup
j≥1

∣∣∣ .λj ,k (θ0)−
.
λt

j ,k (θ0)
∣∣∣ ≤ K

t1+min(d0,0)
(39)

for any t ≥ 1 and any 1 ≤ k ≤ p + q + 1.

Remark 5. In order to prove our asymptotic results, it will be convenient to give an upper bound
for the norms of the sequences introduced in Lemma 1 valid for any θ ∈ Θδ. Since d1−d0 > −1/2,
Estimation (33) entails that for any r ≥ 2,

‖ λ (θ)− λt (θ) ‖`r = O
(

t−1+
1
r
−(d1−d0)

)
, ∀θ ∈ Θδ.

This can easily be seen since ‖ λ(θ) − λt(θ) ‖`r≤ K (
∑

i≥t i−r−r(d1−d0))1/r ≤ K t−1+1/r−(d1−d0).

As in Hallin et al. (1999), the coefficients
.
λj ,k(θ) and

..
λj ,k,l(θ) are O(j−1−(d−d0)+ζ) for any small

enough ζ > 0, so we have

‖
.
λk (θ)−

.
λ

t

k (θ) ‖`r = O
(

t−1+
1
r
−(d1−d0)+ζ

)
and

‖
..
λk,l (θ)−

..
λ

t

k,l (θ) ‖`r = O
(

t−1+
1
r
−(d1−d0)+ζ

)
for any r ≥ 2, any 1 ≤ k , l ≤ p + q + 1 and all θ ∈ Θδ.
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Lemma 2. For any 2 ≤ r ≤ ∞, 1 ≤ k ≤ p + q + 1 and θ ∈ Θ, there exists a constant K such
that we have

‖ λt
k (θ) ‖`r ≤ K

and ‖
.
λ

t

k (θ) ‖`r ≤ K .

A.2. Proof of Proposition 1

First we remark that the asymptotic normality of the joint distribution of
√

n(θ̂′n − θ
′
0, γ

′
m)
′
can be

established along the same lines as the proof of Theorem 2 in Boubacar Maïnassara et al. (2019).
The detailed proof is omitted. From (6) and (11) we have

√
n

(
θ̂n − θ0
γm

)
=

1√
n

n∑
t=1

(
−2J−1(θ0)εt

∂
∂θ εt(θ0)

(εt−1, . . . , εt−m)
′
εt

)
+

(
oP(1)
0m

)

=
1√
n

n∑
t=1

Ut + oP(1),

where 0m is the vector of Rm×1 with zero components. It is clear that Ut is a measurable function
of εt , εt−1, . . . Thus by using the same arguments as in Boubacar Maïnassara et al. (2019) (see
proof of Theorem 2), the central limit theorem (CLT) for strongly mixing processes (Ut)t∈Z of
Herrndorf (1984) implies that (1/

√
n)
∑n

t=1 Ut has a limiting normal distribution with mean 0 and
covariance matrix Ξ .

For i ≥ 1, we denote Λi (θ0) = (
.
λi ,1(θ0), . . . ,

.
λi ,p+q+1(θ0))

′. From (34) we deduce that

∂εt(θ0)

∂θ
=
∞∑

i=1

Λi (θ0)εt−i . (40)

In view of (11) and (40), by applying the CLT for mixing processes we directly obtain

Σθ̂ = lim
n→∞

Var

(
2J−1

1√
n

n∑
t=1

εt
∂

∂θ
εt(θ0)

)
:= J−1I J−1

= 4J−1
∞∑

`,`′=1

Λ` (θ0)Λ′`′ (θ0)
∞∑

h=−∞
E (εtεt−`εt−hεt−`′−h) J−1

= 4J−1
∞∑

`,`′=1

Λ` (θ0)Λ′`′ (θ0) Γ (`, `′)J−1,

which gives the first block of the asymptotic covariance matrix of Proposition 1.
By the stationarity of (εt)t∈Z and Lebesgue’s dominated convergence theorem, we obtain the

(`, `
′
)-th entry of the matrix Γm,m:

lim
n→∞

Cov(
√

nγ(`),
√

nγ(`
′
)) = lim

n→∞

1

n

n∑
t=`+1

n∑
s=`′+1

E
[
εtεt−`εsεs−`′

]
=

∞∑
h=−∞

E
[
εtεt−`εt−hεt−h−`′

]
:= Γ (`, `

′
).
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We thus have Γm,m = [Γ (`, `
′
)]1≤`,`′≤m.

Finally, by the stationarity of (εt)t∈Z and (εt∂εt(θ0)/∂θ)t∈Z we have

Cov

(
−2J−1

1√
n

n∑
t=1

εt
∂

∂θ
εt(θ0),

√
nγ(`

′
)

)
= −2J−1

1

n

n∑
t=1

n∑
t′=`′+1

Cov

(
εt
∂

∂θ
εt(θ0), εt′εt′−`′

)

= −2J−1
1

n

n−1∑
h=−n+1

(n − |h|)Cov
(
εt
∂εt(θ0)

∂θ
, εt−hεt−`′−h

)
.

By the dominated convergence theorem and from (40), it follows that

lim
n→∞

Cov

(
−2J−1

1√
n

n∑
t=1

εt
∂

∂θ
εt(θ0),

√
nγ(`

′
)

)
= −2J−1

∞∑
h=−∞

Cov

(
εt
∂

∂θ
εt(θ0), εt−hεt−`′−h

)

= −2J−1
∑
j≥1

Λj (θ0)
∞∑

h=−∞
E
(
εtεt−jεt−hεt−`′−h

)
= −2J−1

∑
j≥1

Λj (θ0) Γ (j , `′) := Σθ̂,γm
(·, `′).

It is clear that the existence of the above matrices is ensured by the existence of Γ (`, `
′
) and∑∞

`,`′=1 ‖Λ`(θ0)Λ′`′(θ0)Γ (`, `
′
)‖. The proof will thus follow from Lemma 3 below. �

We now justify the existence of the Γ (`, `
′
) and

∑∞
`,`′=1 ‖Λ`(θ0)Λ′`′(θ0)Γ (`, `

′
)‖ in the following

result.

Lemma 3. Under the assumptions (A0) and (A3’) with τ = 4, we have for (`, `′) 6= (0, 0)

Γ (`, `
′
) =

∞∑
h=−∞

E
(
εtεt−`εt−hεt−h−`′

)
<∞ (41)

and
∞∑

`,`′=1

∥∥∥Λ` (θ0)Λ′`′ (θ0) Γ (`, `
′
)
∥∥∥ <∞. (42)

Proof. Note that, for all h ∈ Z and all (`, `′) 6= (0, 0) we have∣∣E [εtεt−`εt−hεt−h−`′
]∣∣ ≤ ∣∣cum (εt , εt−`, εt−h, εt−h−`′

)∣∣+ |E [εtεt−`]|
∣∣E [εt−hεt−h−`′

]∣∣
+ |E [εtεt−h]|

∣∣E [εt−`εt−h−`′
]∣∣+ ∣∣E [εtεt−h−`′

]∣∣ |E [εt−`εt−h]| .

Then, using the stationarity of (εt)t∈Z, and under the assumptions (A0) and (A3’) with τ = 4 it
follows that

Γ (`, `
′
) ≤

[
E
(
ε2t
)]2

+
∞∑

h=−∞

∣∣cum (ε0, ε−`, ε−h, ε−h−`′
)∣∣ ≤ K

which proves (41). Similarly, we obtain
∞∑

`,`′=1

∥∥∥Λ` (θ0)Λ′`′ (θ0) Γ (`, `
′
)
∥∥∥ ≤ ∞∑

h=−∞

∞∑
`,`′=1

∣∣cum (ε0, ε−`, ε−h, ε−h−`′
)∣∣

+
[
E
(
ε2t
)]2 ∞∑

`=1

‖Λ` (θ0)‖2

≤ K
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where we have used Lemma 2. The conclusion follows.

A.3. Proof of Theorem 2

The proof is divided in two steps.

A.3.1. Step 1: Taylor’s expansion of
√

nγ̂m and
√

nρ̂m

The aim of this step is to prove (8) and (9). First we prove that for h = 1, . . . ,m

√
nγ̂(h) =

√
nγ(h) +

(
E
[
εt−h

∂

∂θ′
εt(θ0)

])√
n
(
θ̂n − θ0

)
+ oP(1). (43)

A Taylor expansion of (1/
√

n)
∑n

t=1+h ε̃t(·)ε̃t−h(·) around θ0 gives

√
nγ̂(h) =

1√
n

n∑
t=1+h

ε̃t(θ0)ε̃t−h(θ0) +

(
1

n

n∑
t=1+h

D̃t(θ
∗
n)

)
√

n
(
θ̂n − θ0

)
=
√

nγ(h) + (E [Dt(θ0)])
√

n
(
θ̂n − θ0

)
+ Rn,h,1 + Rn,h,2 + Rn,h,3,

where

D̃t(θ) =
∂ε̃t(θ)

∂θ′
ε̃t−h(θ) + ε̃t(θ)

∂ε̃t−h(θ)

∂θ′
,

Dt(θ0) =
∂εt(θ0)

∂θ′
εt−h + εt

∂εt−h(θ0)

∂θ′
,

Rn,h,1 =
1√
n

n∑
t=1+h

{ε̃t(θ0)ε̃t−h(θ0)− εt(θ0)εt−h(θ0)} ,

Rn,h,2 =

(
1

n

n∑
t=1+h

(
D̃t(θ

∗
n)− Dt(θ0)

))√
n
(
θ̂n − θ0

)
,

Rn,h,3 =

(
1

n

n∑
t=1+h

Dt(θ0)− E [Dt(θ0)]

)
√

n
(
θ̂n − θ0

)
,

and where θ∗n is between θ̂n and θ0. Using the orthogonality between εt and any linear combination
of the past values of εt (in particular ∂εt−h/∂θ), we have

√
nγ̂(h) =

√
nγ(h) +

(
E
[
εt−h

∂

∂θ′
εt(θ0)

])√
n
(
θ̂n − θ0

)
+ Rn,h,1 + Rn,h,2 + Rn,h,3. (44)

Thus, to obtain (43), we just need to prove that in (44) the sequences of random variables
(Rn,h,1)n≥1, (Rn,h,2)n≥1 and (Rn,h,3)n≥1 converge in probability to 0.

One of the three above term is easy to handle. Indeed, by the ergodic theorem, we have
n−1

∑n
t=1+h Dt(θ0) − E [Dt(θ0)] → 0 almost-surely as n → ∞. Thus using the tightness of

the sequence (
√

n(θ̂n − θ0))n, we deduce that Rn,h,3 = oP(1).
The proof of (43) will thus follow from Lemmas 4 and 5 in which the two others terms Rn,h,1

and Rn,h,2 are discussed. These lemmas are stated and proved hereafter (see subsections A.3.3 and
A.3.4).
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We now remark that in Equation (43), E[εt−h(∂εt(θ0)/∂θ
′
)] is the line h of the matrix Ψm ∈

Rm×(p+q+1) defined by (7). So as h = 1, . . . ,m, Equation (43) becomes

√
nγ̂m =

(√
nγ̂(1), . . . ,

√
nγ̂(m)

)′
=
√

nγm + Ψm

√
n
(
θ̂n − θ0

)
+ oP(1).

Therefore the Taylor expansion (8) of γ̂m is proved.
Now, it is clear that the asymptotic distribution of the residual autocovariances

√
nγ̂m is related

to the asymptotic behavior of
√

n(θ̂′n − θ
′
0, γ

′
m)
′
obtained in Subsection A.2. We come back to the

vector ρ̂m = (ρ̂(1), . . . , ρ̂(m))′. Note that from (43), we have
√

n(γ̂(0)− γ(0)) = oP(1). Applying
the CLT for mixing processes (see Herrndorf (1984)) to the process (ε2t )t∈Z, we obtain

√
n
(
σ̂2ε − σ2ε

)
=

1√
n

n∑
t=1

(
ε2t − E[ε2t ]

)
+ oP(1)

in law−−−→
n→∞

N

(
0,

∞∑
h=−∞

Cov
(
ε2t , ε

2
t−h

))
.

So we have
√

n(σ̂2ε − σ2ε ) = OP(1) and
√

n(γ(0)− σ2ε ) = OP(1). Now, using (14) and the ergodic
theorem, we have

n

(
γ̂(h)

γ̂(0)
− γ̂(h)

σ2ε

)
=
√

nγ̂(h)

√
n
(
σ2ε − γ̂(0)

)
σ2ε γ̂(0)

= OP(1),

which means
√

nρ̂(h) =
√

nγ̂(h)/σ2ε +OP(n
−1/2). Since h = 1, . . . ,m, it follows that

√
nρ̂m =

√
nγ̂m

σ2ε
+ oP(1),

and the Taylor expansion (9) of ρ̂m is proved. This ends our first step.
The next step deals with the asymptotic distributions of

√
nγ̂m and

√
nρ̂m.

A.3.2. Step 2: asymptotic distributions of
√

nγ̂m and
√

nρ̂m

The joint asymptotic distribution of
√

nγm and
√

n(θ̂n−θ0) shows that
√

nγ̂m has a limiting normal
distribution with mean zero and covariance matrix

lim
n→∞

Var
(√

nγ̂m

)
= lim

n→∞
Var

(√
nγm

)
+ Ψm lim

n→∞
Var

(√
n(θ̂n − θ0)

)
Ψ
′
m

+ Ψm lim
n→∞

Cov
(√

n(θ̂n − θ0),
√

nγm

)
+ lim

n→∞
Cov

(√
nγm,

√
n(θ̂n − θ0)

)
Ψ
′
m

= Γm,m + ΨmΣθ̂Ψ
′
m + ΨmΣθ̂,γm

+ Σ
′

θ̂,γm
Ψ
′
m.

Consequently, we have

lim
n→∞

Var
(√

nρ̂m

)
= lim

n→∞
Var

(√
n
γ̂m

σ2ε

)
=

1

σ4ε
Σγ̂m .

This ends our second step and the proof is completed. �
In the following, we justify the convergence of Rn,h,1 and Rn,h,2.
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A.3.3. Step 3: convergence of Rn,h,1

Lemma 4. Under the assumptions of Theorem 2, the sequence of random variables

Rn,h,1 =
1√
n

n∑
t=1+h

{ε̃t(θ0)ε̃t−h(θ0)− εt(θ0)εt−h(θ0)} (45)

converges in probability to zero as n→∞.

Proof. Throughout this proof, θ = (θ1, . . . , θp+q, d)′ ∈ Θδ is such that max(d0, 0) < d ≤ d2

where d2 is the upper bound of the support of the long-range parameter d0. Let

R1
n,h,1 =

1√
n

n∑
t=1+h

{ε̃t(θ0)− εt(θ0)} ε̃t−h(θ0) (46)

and R2
n,h,1 =

1√
n

n∑
t=1+h

εt(θ0) {ε̃t−h(θ0)− εt−h(θ0)} . (47)

The lemma will be proved as soon as we show that R1
n,h,1 and R2

n,h,1 tend to zero in probability
when n→∞.

Proof of the convergence in probability of R1
n,h,1

The arguments follow the one of Lemma 4 in Boubacar Maïnassara et al. (2019) in a simpler
context. The proof is quite long so we divide it in four steps.

� Step 1: preliminaries. We have

R1
n,h,1 =

1√
n

n∑
t=1+h

{ε̃t(θ0)− ε̃t(θ)} ε̃t−h(θ0)

+
1√
n

n∑
t=1+h

{ε̃t(θ)− εt(θ)} ε̃t−h(θ0)

+
1√
n

n∑
t=1+h

{εt(θ)− εt(θ0)} ε̃t−h(θ0)

= ωn,h,1(θ) + ωn,h,2(θ) + ωn,h,3(θ),

where

ωn,h,1(θ) =
1√
n

n∑
t=1+h

{ε̃t(θ0)− ε̃t(θ)} ε̃t−h(θ0),

ωn,h,2(θ) =
1√
n

n∑
t=1+h

{ε̃t(θ)− εt(θ)} ε̃t−h(θ0)

and ωn,h,3(θ) =
1√
n

n∑
t=1+h

{εt(θ)− εt(θ0)} ε̃t−h(θ0).

Therefore, if we prove that the two sequences of random variables (ωn,h,2(θ))n≥1 and (ωn,h,1(θ) +
ωn,h,3(θ))n≥1 converge in probability to 0, then the convergence in probability of R1

n,h,1 to zero will
be true.
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� Step 2: convergence in probability of (ωn,h,2(θ))n≥1 to 0
For all β > 0, we have

P (|ωn,h,2| ≥ β) ≤
1√
nβ

n∑
t=1+h

E [|ε̃t(θ)− εt(θ)| |ε̃t−h(θ0)|]

≤ 1√
nβ

n∑
t=1+h

‖ε̃t(θ)− εt(θ)‖L2 ‖ε̃t−h(θ0)‖L2 .

First, from (36) and using Lemma 2, we have

‖ε̃t−h(θ0)‖2L2 = E

( ∞∑
i=0

λt−h
i (θ0) εt−i−h

)2


=
∞∑

i=1

∞∑
j=1

λt−h
i (θ0)λ

t−h
j (θ0)E [εt−i−hεt−j−h] + σ2ε

{
λt−h
0 (θ0)

}2

= σ2ε

∞∑
i=1

{
λt−h

i (θ0)
}2

+ σ2ε

≤ K . (48)

In view of (31), (36) and (48), we may write

P (|ωn,h,2(θ)| ≥ β) ≤
K

β
√

n

n∑
t=1+h

(
E
[
(ε̃t(θ)− εt(θ))

2
])1/2

≤ K

β
√

n

n∑
t=1

∑
i≥0

∑
j≥0

(
λt

i (θ)− λi (θ)
) (
λt

j (θ)− λj(θ)
)
E [εt−iεt−j ]

1/2

≤ σεK

β
√

n

n∑
t=1

∑
i≥0

(
λt

i (θ)− λi (θ)
)21/2

≤ σεK

β
√

n

n∑
t=1

∥∥λ(θ)− λt(θ)
∥∥
`2
.

We use Lemma 1, the fact that d > max(d0, 0) and the fractional version of Cesàro’s Lemma2 to
obtain

P (|ωn,h,2(θ)| ≥ β) ≤
σεK

β

1√
n

n∑
t=1

1

t1/2+(d−max(d0,0))
−−−→
n→∞

0.

This proves the expected convergence in probability.
2Recall that the fractional version of Cesàro’s Lemma states that for (ht)t a sequence of positive real numbers,

κ > 0 and c ≥ 0 we have

lim
t→∞

htt
1−κ = |κ| c ⇒ lim

n→∞

1

nκ

n∑
t=0

ht = c.
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� Step 3: convergence in probability of (ωn,h,1(θ) + ωn,h,3(θ))n≥1
Note now that, for all n ≥ 1, we have

ωn,h,1(θ) + ωn,h,3(θ) =
1√
n

n∑
t=1+h

{
(εt(θ)− ε̃t(θ))− (εt(θ0)− ε̃t(θ0))

}
ε̃t−h(θ0).

A Taylor expansion of the function (εt − ε̃t)(·) around θ0 gives∣∣∣(εt(θ)− ε̃t(θ))− (εt(θ0)− ε̃t(θ0))
∣∣∣ ≤ ∥∥∥∥∂(εt − ε̃t)

∂θ
(θ?)

∥∥∥∥
Rp+q+1

‖θ − θ0‖Rp+q+1 (49)

where θ? is between θ0 and θ. Following the same method as in the previous step we obtain

E
∣∣∣ (εt(θ)− ε̃t(θ))− (εt(θ0)− ε̃t(θ0))

∣∣∣2 ≤ K‖θ − θ0‖2Rp+q+1

p+q+1∑
k=1

E

[∣∣∣∣∂(εt − ε̃t)

∂θk
(θ?)

∣∣∣∣2
]

≤ K‖θ − θ0‖2Rp+q+1

p+q+1∑
k=1

σ2ε

∥∥∥( .
λk −

.
λk

t
)(θ?)

∥∥∥2
`2
.

As in Hallin et al. (1999), it can be shown using Stirling’s approximation and the fact that d? > d0

that ∥∥∥( .
λk −

.
λk

t
)(θ?)

∥∥∥
`2
≤ K

1

t1/2+(d?−d0)−ζ

for any small enough ζ > 0. We then deduce that∥∥∥ (εt(θ)− ε̃t(θ))− (εt(θ0)− ε̃t(θ0))
∥∥∥
L2
≤ K‖θ − θ0‖Rp+q+1

1

t1/2+(d?−d0)−ζ
. (50)

The expected convergence in probability follows from (48), (50) and the fractional version of
Cesàro’s Lemma.

Proof of the convergence in probability of R2
n,h,1

Under Assumption (A3) with τ = 2 it follows that εt(θ0) belongs to L2. Thus the proof of the
convergence in probability of R2

n,h,1 to zero is shown in the same way as the proof of the convergence
in probability of R1

n,h,1 to 0.

Conclusion : convergence in probability of Rn,h,1

The conclusion is a consequence of the above convergences.

A.3.4. Step 4: convergence of Rn,h,2

Lemma 5. Under the assumptions of Theorem 2, the sequence of random variables

Rn,h,2 =

(
1

n

n∑
t=1+h

(
D̃t(θ

∗
n)− Dt(θ0)

))√
n
(
θ̂n − θ0

)
(51)

tends to zero in probability as n→∞ and where θ∗n is between θ̂n and θ0.
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Proof. Since (
√

n(θ̂n − θ0))n is a tight sequence, we have
√

n(θ̂n − θ0) = OP(1). Hence, to prove
the convergence in probability of (Rn,h,2)n to 0, it suffices to show that

1

n

n∑
t=1+h

(
D̃t(θ

∗
n)− Dt(θ0)

)
= oP(1). (52)

This will be proved using Remark 5 and Cesàro’s Lemma. Nevertheless, the proof is quite long so
we divide it in four steps.

� Step 1: preliminaries. We have

1

n

n∑
t=1+h

(
D̃t(θ

∗
n)− Dt(θ0)

)
= Tn,h,1(θ

∗
n) + Tn,h,2(θ

∗
n) + Tn,h,3(θ

∗
n) + Tn,h,4(θ

∗
n) + Tn,h,5(θ

∗
n),

where

Tn,h,1(θ) =
1

n

n∑
t=1+h

∂ε̃t(θ)

∂θ′
(ε̃t−h(θ)− εt−h(θ)) ,

Tn,h,2(θ) =
1

n

n∑
t=1+h

(ε̃t(θ)− εt(θ))
∂ε̃t−h(θ)

∂θ′
,

Tn,h,3(θ) =
1

n

n∑
t=1+h

(
∂ε̃t(θ)

∂θ′
− ∂εt(θ)

∂θ′

)
εt−h(θ),

Tn,h,4(θ) =
1

n

n∑
t=1+h

εt(θ)

(
∂ε̃t−h(θ)

∂θ′
− ∂εt−h(θ)

∂θ′

)

and Tn,h,5(θ) =
1

n

n∑
t=1+h

(Dt(θ)− Dt(θ0)) .

Therefore, if we prove that the five sequences of random variables (Tn,h,i (θ
∗
n))n (for i = 1, . . . , 5)

converge in probability to 0, then (52) will be true.

� Step 2: convergence in probability of (Tn,h,1(θ
∗
n))n to 0

For all β > 0, we have

P (‖Tn,h,1(θ
∗
n)‖ ≥ β) ≤

1

nβ

n∑
t=1+h

E
[∥∥∥∥∂ε̃t(θ

∗
n)

∂θ′

∥∥∥∥ |ε̃t−h(θ
∗
n)− εt−h(θ

∗
n)|
]

≤ 1

nβ

n∑
t=1+h

‖ε̃t−h(θ
∗
n)− εt−h(θ

∗
n)‖L2

∥∥∥∥∥∥∥∥∂ε̃t(θ
∗
n)

∂θ′

∥∥∥∥
Rp+q+1

∥∥∥∥
L2

.
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First, from (36) and using Lemma 2 we have

∥∥∥∥∥∥∥∥ ∂

∂θ′
ε̃t(θ

∗
n)

∥∥∥∥
Rp+q+1

∥∥∥∥2
L2

≤ K

p+q+1∑
k=1

E

( ∞∑
i=1

.
λ

t

i ,k(θ
∗
n)εt−i

)2


≤ K

p+q+1∑
k=1

sup
θ∈Θδ

E

( ∞∑
i=1

.
λ

t

i ,k(θ)εt−i

)2


≤ Kσ2ε

p+q+1∑
k=1

sup
θ∈Θδ

∞∑
i=1

( .
λ

t

i ,k(θ)
)2

(53)

≤ K , (54)

where we have used the fact that the function

θ 7→ E

[∣∣∣∣∂ε̃t)

∂θk
(θ)

∣∣∣∣2
]

is bounded and continuous. In view of (31), (36), (54) and following the same way as the step 2
of Lemma 4 we have

P (|Tn,h,1(θ
∗
n)| ≥ β) ≤

K

βn

n∑
t=1+h

(
E
[
(ε̃t−h(θ

∗
n)− εt−h(θ

∗
n))

2
])1/2

≤ K

βn

n∑
t=1+h

sup
θ∈Θδ

(
E
[
(ε̃t−h(θ)− εt−h(θ))

2
])1/2

≤ K

βn

n−h∑
t=1

sup
θ∈Θδ

∑
i≥0

∑
j≥0

(
λt

i (θ)− λi (θ)
) (
λt

j (θ)− λj(θ)
)
E [εt−iεt−j ]

1/2

≤ σεK

βn

n∑
t=1

sup
θ∈Θδ

∑
i≥0

(
λt

i (θ)− λi (θ)
)21/2

≤ σεK

βn

n∑
t=1

sup
θ∈Θδ

∥∥λ(θ)− λt(θ)
∥∥
`2
.

We use Remark 5, the fact that d1 − d0 > −1/2 and Cesàro’s Lemma to obtain

P (|Tn,h,1(θ
∗
n)| ≥ β) ≤

σεK

β

1

n

n∑
t=1

1

t1/2+(d1−d0)
−−−→
n→∞

0.

This proves the expected convergence in probability of Tn,h,1(θ
∗
n).

The same calculations holds for the sequences of random variables (Tn,h,2(θ
∗
n))n, (Tn,h,3(θ

∗
n))n

and (Tn,h,4(θ
∗
n))n.

� Step 3: convergence in probability of (Tn,h,5(θ
∗
n))n to 0
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For 1 ≤ i , j ≤ p + q + 1, t, s ∈ Z and θ∗∗n between θ∗n and θ0, one has in view of (34) and
Remark 5

E
[∣∣∣∣ ∂∂θi

εt(θ
∗∗
n )

∂

∂θj
εs(θ

∗∗
n )

∣∣∣∣]

≤ sup
θ∈Θδ

E

∣∣∣∣∣∣
∑
k≥1

.
λk,i (θ) εt−k

∣∣∣∣∣∣
21/2

sup
θ∈Θδ

E

∣∣∣∣∣∣
∑
k≥1

.
λk,i (θ) εs−k

∣∣∣∣∣∣
21/2

≤ K σ2ε

(
sup
θ∈Θδ

∥∥∥ .
λk (θ)

∥∥∥
`2

)2

≤ K . (55)

Similar calculation can be done to obtain

E
[∣∣∣∣εt(θ

∗∗
n )

∂2

∂θi∂θj
εs(θ

∗∗
n )

∣∣∣∣] <∞. (56)

A Taylor expansion of Dt(·) around θ0 implies that

‖Tn,h,5(θ
∗
n)‖ ≤

1

n

n∑
t=1

∥∥∥∥ ∂∂θDt(θ
∗∗
n )

∥∥∥∥ ‖θ∗n − θ0‖ ,
for some θ∗∗n between θ∗n and θ0. From (55) and (56), it follows that

E
[∥∥∥∥ ∂∂θDt(θ

∗∗
n )

∥∥∥∥] = E
[∥∥∥∥εt−h(θ

∗∗
n )

∂2

∂θ∂θ′
εt(θ

∗∗
n ) +

∂

∂θ
εt−h(θ

∗∗
n )

∂

∂θ′
εt(θ

∗∗
n )

+
∂

∂θ
εt(θ

∗∗
n )

∂

∂θ′
εt−h(θ

∗∗
n ) + εt(θ

∗∗
n )

∂2

∂θ∂θ′
εt−h(θ

∗∗
n )

∥∥∥∥]
≤ K . (57)

We use Equation (57), the ergodic theorem and the convergence in probability of (θ̂n − θ0)n to 0
to deduce that Tn,h,5(θ) converges in probability to 0.

� Step 4: end of the proof of the convergence in probability of Rn,h,2 to zero.
By Step 2 and 3 we deduce that

Rn,h,2 = oP(1)

and the convergence in probability is proved.
The proof of the lemma is completed.

A.4. Proof of Proposition 5

The following proofs are quite technical and are adaptations of the arguments used in Boubacar Maï-
nassara and Saussereau (2018).

To prove the invertibility of the normalized matrix Cm, we need to introduce the following
notation.
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Let St(i) be the i-th component of the vector St =
∑t

j=1 (ΛUj − γm) ∈ Rm. We remark that

St−1(i) = St(i)−
p+q+1∑

k=1

δi ,kεt
∂

∂θk
εt(θ0)− εtεt−i + γ(i), (58)

where δi ,k is the (i , k)−th entry of the m × (p + q + 1) matrix ∆ := −2ΨmJ−1.
If the matrix Cm is not invertible, there exists some real constants c1, . . . , cm not all equal to

zero, such that we have

m∑
i=1

m∑
j=1

cj Cm(j , i)ci =
1

n2

n∑
t=1

m∑
i=1

m∑
j=1

cj St(j)St(i)ci =
1

n2

n∑
t=1

(
m∑

i=1

ci St(i)

)2

= 0,

which implies that
∑m

i=1 ci St(i) = 0 for all t ≥ 1.
Then by (58), it would imply that

m∑
i=1

p+q+1∑
k=1

ciδi ,kεt
∂

∂θk
εt(θ0) +

m∑
i=1

ciεtεt−i =
m∑

i=1

ciγ(i). (59)

By the ergodic Theorem, we also have
∑m

i=1 ciγ(i)→ 0 almost-surely as n goes to infinity.
Consequently replacing this convergence in (59) implies that for all t ≥ 1

m∑
i=1

p+q+1∑
k=1

ciδi ,kεt
∂

∂θk
εt(θ0) +

m∑
i=1

ciεtεt−i = 0, a.s.

Using (31), it yields that

εt

∑
`≥1

(
m∑

i=1

p+q+1∑
k=1

ciδi ,k

.
λ`,k (θ0)

)
εt−` +

m∑
`=1

c`εt−`

 = 0, a.s.

Or equivalently,

εt


m∑
`=1

(
m∑

i=1

ci

p+q+1∑
k=1

δi ,k

.
λ`,k (θ0) + c`

)
εt−` +

∑
`≥m+1

(
m∑

i=1

ci

p+q+1∑
k=1

δi ,k

.
λ`,k (θ0)

)
εt−`

 = 0, a.s.

Thanks to Assumption (A4), εt has a positive density in some neighborhood of zero and then
εt 6= 0 almost-surely. Hence we obtain

m∑
`=1

(
m∑

i=1

ci

p+q+1∑
k=1

δi ,k

.
λ`,k (θ0) + c`

)
εt−` +

∑
`≥m+1

(
m∑

i=1

ci

p+q+1∑
k=1

δi ,k

.
λ`,k (θ0)

)
εt−` = 0, a.s.

Since the variance of the linear innovation process in not equal to zero, we deduce that
∑m

i=1 ci
∑p+q+1

k=1 δi ,k

.
λ`,k (θ0) + c` = 0 for all ` ∈ {1, . . . ,m}

∑m
i=1 ci

∑p+q+1
k=1 δi ,k

.
λ`,k (θ0) = 0 for all ` ∈ {m + 1, . . . } .

Then we would have c1 = · · · = cm = 0 which is impossible. Thus we have a contradiction and
the matrix Cm ∈ Rm×m is non singular. �
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A.5. Proof of Theorem 6

We recall that the Skorokhod space D`[0,1] is the set of R`−valued functions on [0,1] which are
right-continuous and have left limits everywhere. It is endowed with the Skorokhod topology and

the weak convergence on D`[0,1] is mentioned by D`−→. The integer part of x will be denoted by
bxc.

The proof is divided in two steps.

A.5.1. Functional central limit theorem for (ΛUt)t≥1

In view of (8) and (13), we deduce that

√
nγ̂m =

√
nγm +

√
nΨm

(
θ̂n − θ0

)
+ oP(1)

=
1√
n

n∑
t=1

U2t + Ψm

(
1√
n

n∑
t=1

U1t + oP(1)

)
+ oP(1)

=
1√
n

n∑
t=1

ΛUt + oP(1). (60)

Now, it is clear that the asymptotic behaviour of γ̂m is related to the limit distribution of Ut =
(U
′
1t ,U

′
2t)
′
. Our first goal is to show that there exists a lower triangular matrix Π with nonnegative

diagonal entries such that

1√
n

bnrc∑
t=1

ΛUt
Dm

−→
n→∞

(
ΠΠ

′
)1/2

Bm(r), (61)

where (Bm(r))r≥0 is a m−dimensional standard Brownian motion. Using (31), Ut can be rewritten
as

Ut =

(
−2

{ ∞∑
i=1

.
λi ,1 (θ0) εtεt−i , . . . ,

∞∑
i=1

.
λi ,p+q+1 (θ0) εtεt−i

}
J−1

′
, εtεt−1, . . . , εtεt−m

)′
.

The non-correlation between εt ’s implies that the process (Ut)t∈Z of Rp+q+1+m is centered. In
order to apply the functional central limit theorem for strongly mixing process (see Herrndorf
(1984)), we need to identify the asymptotic covariance matrix in the classical central limit theorem
for the sequence (Ut)t∈Z. It is proved in Proposition 1 that

1√
n

n∑
t=1

Ut
in law−−−→
n→∞

N (0,Ξ := 2πfU(0)) ,

where fU(0) is the spectral density of the stationary process (Ut)t∈Z evaluated at frequency 0. The
existence of the matrix Ξ has already been discussed in Lemma 3.

Since the matrix Ξ is positive definite, it can be factorized as Ξ = ΥΥ
′
, where the (p + q +

1 + m)× (p + q + 1 + m) lower triangular matrix Υ has nonnegative diagonal entries. Therefore,
we have

1√
n

n∑
t=1

ΛUt
in law−−−→
n→∞

N
(
0,ΛΞ Λ

′
)
,
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and the new variance matrix can also been factorized as ΛΞ Λ
′
= (ΛΥ)(ΛΥ)

′
:= ΠΠ

′
, where

Π ∈ Rm×(p+q+1). Thus

n−1/2
n∑

t=1

(ΠΠ
′
)−1/2ΛUt

in law−→
n→∞
N (0, Im),

where (ΠΠ
′
)−1/2 is the Moore-Penrose inverse (see Magnus and Neudecker (1999), p. 36) of

(ΠΠ
′
)1/2.

Using the same arguments as in the proof of Theorem 2 in Boubacar Maïnassara et al. (2019),
the asymptotic distribution of n−1/2

∑n
t=1 Ut when n tends to infinity is obtained by introducing

the random vector Uk
t defined for any positive integer k by

Uk
t =

(
−2

{
k∑

i=1

.
λi ,1 (θ0) εtεt−i , . . . ,

k∑
i=1

.
λi ,p+q+1 (θ0) εtεt−i

}
J−1

′
, εtεt−1, . . . , εtεt−m

)′
.

Since Uk
t depends on a finite number of values of the noise-process (εt)t∈Z, it also satisfies a

mixing property (see Theorem 14.1 in Davidson (1994), p. 210). Then applying the central limit
theorem for strongly mixing process of Herrndorf (1984) shows that its asymptotic distribution is
normal with zero mean and variance matrix Ξk that converges when k tends to infinity to Ξ . More
precisely we have

1√
n

n∑
t=1

Uk
t

in law−−−→
n→∞

N (0,Ξk) .

The above arguments also apply to matrix Ξk with some matrix Πk which is defined analogously
as Π. Consequently we obtain

1√
n

n∑
t=1

ΛUk
t

in law−−−→
n→∞

N
(
0,ΛΞk Λ

′
)

and we also have n−1/2
∑n

t=1(Πk Π
′
k)
−1/2ΛUk

t
in law−−−→
n→∞

N (0, Im).

Now we are able to apply the functional central limit theorem (see Herrndorf (1984)) and we
obtain that

1√
n

bnrc∑
t=1

(Πk Π
′
k)
−1/2ΛUk

t
Dm

−→
n→∞

Bm(r).

Since for all t ∈ {1, . . . , bnrc} we write

(ΠΠ
′
)−1/2ΛUk

t =
(
(ΠΠ

′
)−1/2 − (Πk Π

′
k)
−1/2

)
ΛUk

t + (Πk Π
′
k)
−1/2ΛUk

t ,

we obtain the following weak convergence on Dm [0, 1]:

1√
n

bnrc∑
t=1

(ΠΠ
′
)−1/2ΛUk

t
Dm

−→
n→∞

Bm(r).

In order to conclude that (61) is true, it remains to observe that uniformly with respect to n

Y k
n (r) :=

1√
n

bnrc∑
t=1

(ΠΠ
′
)−1/2ΛZ k

t
Dm

−→
k→∞

0, (62)
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where

Z k
t =

(
−2

{ ∞∑
i=k+1

.
λi ,1 (θ0) εtεt−i , . . . ,

∞∑
i=k+1

.
λi ,p+q+1 (θ0) εtεt−i

}
J−1

′
, εtεt−1, . . . , εtεt−m

)′
.

Using the same arguments as those used in the proof of Theorem 2 in Boubacar Maïnassara et al.
(2019), we have

sup
n

Var

(
1√
n

n∑
t=1

Z k
t

)
−→

k→∞
0

and since bnrc ≤ n,
sup

0≤r≤1
sup

n

{∥∥∥Y k
n (r)

∥∥∥} −→
k→∞

0.

Thus (62) is true and the proof of (61) is achieved.

A.5.2. Limit theorem

To conclude the prove of Theorem 6, we follow the arguments developed in Boubacar Maïnassara
and Saussereau (2018). Note that the previous step ensures us that Assumption 1 in Lobato (2001)
is satisfied for the sequence (ΛUt)t≥1. Firstly from (61) we deduce that

1√
n

Sbnrc =
1√
n

bnrc∑
t=1

ΛUt −
bnrc

n

(
1√
n

n∑
t=1

ΛUt

)
Dm

−→
n→∞

(ΠΠ
′
)1/2Bm(r)− r(ΠΠ

′
)1/2Bm(1). (63)

Observe now that the continuous mapping theorem implies

Cm =
1

n

n∑
t=1

(
1√
n

St

)(
1√
n

St

)′
Dm

−→
n→∞

(ΠΠ
′
)1/2

[∫ 1

0
{Bm(r)− rBm(1)} {Bm(r)− rBm(1)}

′
dr

]
(ΠΠ

′
)1/2 = (ΠΠ

′
)1/2Vm(ΠΠ

′
)1/2.

Using (60), (63) and again the continuous mapping theorem on the Skorokhod space, one finally
obtains

nγ̂
′
mC−1m γ̂m

Dm

−→
n→∞

{
(ΠΠ

′
)1/2Bm(1)

}′ {
(ΠΠ

′
)1/2Vm(ΠΠ

′
)1/2

}−1 {
(ΠΠ

′
)1/2Bm(1)

}
= B

′
m(1)V−1m Bm(1) := Um.

Consequently, from (9) it follows that

nσ4ε ρ̂
′
mC−1m ρ̂m

Dm

−→
n→∞
Um,

which completes the proof of Theorem 6. �
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A.6. Proof of Theorem 7

The proof follows the same line than in the proof of Theorem 2 in Boubacar Maïnassara and
Saussereau (2018) (see also the proof of in Boubacar Maïnassara et al. (2019)).

Appendix B: Example of explicit calculation of Σρ̂m and Cm

The results of the previous subsections 3.2 and 3.3 are particularized in the FARIMA(1, d0, 0) and
FARIMA(0, d0, 1) cases. First we consider the case of a FARIMA(1, d0, 0) model of the form

(1− L)d0 (Xt − aXt−1) = εt , (64)

where the unknown parameter is θ0 = (a, d0). We assume that in (64) the innovation process
(εt)t∈Z is a GARCH(1, 1) process given by (20). We also assume that in (20): α2

1κ+β
2
1 +2α1β1 <

1,3 where κ := Eη41 and we assume that κ > 1.
For the sake of simplicity we assume that the variables (ηt)t∈Z involved in (20) have a symmetric

distribution. More precisely, we have the following symmetry assumption

E[εt1εt2εt3εt4 ] = 0 when t1 6= t2, t1 6= t3 and t1 6= t4, (65)

made in Francq and Zakoïan (2009); Boubacar Mainassara et al. (2012). For this particular
GARCH(1, 1) model with fourth-order moments and symmetric innovations satisfying (65), it can
be shown that

E [εtεt−`εt−hεt−h−`′ ] =


E
[
ε2t ε

2
t−`
]

if h = 0 and ` = `′

0 otherwise.
(66)

Now we need to compute the autocovariance structure of (ε2t )t∈Z. We will use the fact that
the GARCH process (εt)t∈Z is fourth-order stationary, then (ε2t )t∈Z is a solution of the following
ARMA(1, 1) model

ε2t = ω + (α1 + β1)ε
2
t−1 + νt − β1νt−1, t ∈ Z (67)

where νt = ε2t − σ2t is the innovation of (ε2t )t∈Z. From (67) the autocovariances of (ε2t )t∈Z take
the form

γε2(`) := Cov(ε2t , ε
2
t−`) = γε2(1)(α1 + β1)

`−1, ` ≥ 1, (68)

where

γε2(1) =
(κ− 1)(α1 − α1β

2
1 − α2

1β1)

1− β21 − 2α1β1 − α2
1κ

σ4ε ,

γε2(0) := Var(ε2t ) =
(κ− 1)(1− β21 − 2α1β1)

1− β21 − 2α1β1 − α2
1κ

σ4ε ,

and σ2ε :=
ω

1− α1 − β1
.

From (66) and (68) we deduce that for any ` ≥ 1

Γ (`, `) = E
[
ε2t ε

2
t−`
]
= Cov(ε2t , ε

2
t−`) + E

[
ε2t
]
E
[
ε2t−`

]
=

{
1 +

1

σ4ε
γε2(1)(α1 + β1)

`−1
}
σ4ε . (69)

3This is a necessary and sufficient condition for the existence of a nonanticipative stationary solution process
(εt)t∈Z with fourth-order moments (see (Francq and Zakoïan, 2010, Example 2.3)).



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Validation of weak FARIMA models 48

B.1. Examples of analytic and numerical computations of Σρ̂m

As mentioned before, the subject of this subsection is to give an explicit expression of the asymptotic
variance of residual autocorrelations Σρ̂m defined in (15) in the particular case of model (64). For
that sake, we need the following additional expressions. It is classical that the noise derivatives
(∂εt(θ0)/∂a, ∂εt(θ0)/∂d)

′
in (64) can be represented as∂εt(θ0)

∂a

∂εt(θ0)
∂d

 = −
∑
j≥1

(
aj−1

1
j

)
εt−j . (70)

We compute the information matrices J(θ0) and I (θ0) by using (70). Then we have

J(θ0) = 2σ2ε

 1
1−a2

− ln(1−a)
a

− ln(1−a)
a

π2

6

 . (71)

A simple calculation implies that

J−1(θ0) =
1

2σ2ε c(a)

 π2

6
ln(1−a)

a

ln(1−a)
a

1
1−a2

 , (72)

where

c(a) =
π2

6(1− a2)
−
(
ln(1− a)

a

)2

. (73)

We now investigate a similar tractable expression for I (θ0). Using (70) and (65) we have

I (θ0) = 2σ2ε J(θ0) + 4σ4ε
(κ− 1)(α1 − α1β

2
1 − α2

1β1)

1− β21 − 2α1β1 − α2
1κ

 1
1−a2(α1+β1)

− ln[1−a(α1+β1)]
a(α1+β1)

− ln[1−a(α1+β1)]
a(α1+β1)

Li2(α1+β1)
α1+β1

 , (74)

where Li2 is the Spence function defined by Li2(z) =
∑∞

k=1 zk k−2. Note that we retrieve the well
know result: I (θ0) = 2σ2ε J(θ0) in the strong FARIMA case (i.e. when α1 = β1 = 0 in (74)).

The matrix defined in (7) can be rewritten as

Ψm = −σ2ε
(
1 a . . . am−1

1 1
2 . . . 1

m

)′
. (75)

Using (69) and under the symmetry assumption (65), the matrix Γm,m takes the simple following
diagonal form

Γm,m = σ4ε Im + σ4ε
(κ− 1)(α1 − α1β

2
1 − α2

1β1)

1− β21 − 2α1β1 − α2
1κ

diag(1, (α1 + β1), . . . , (α1 + β1)
m−1). (76)

Using (65), (70) and (72), the matrix Σ ′
θ̂,γm

is given by

Σ ′
θ̂,γm

=
1

σ2
εc(a)



{
π2

6 + ln(1−a)
a

}
Γm,m(1, 1)

{
1

1−a2 +
ln(1−a)

a

}
Γm,m(1, 1){

aπ2

6 + ln(1−a)
2a

}
Γm,m(2, 2)

{
1

2(1−a2) + ln(1− a)
}

Γm,m(2, 2)

...
...{

am−1 π2

6 + ln(1−a)
ma

}
Γm,m(m,m)

{
1

m(1−a2) + am−2 ln(1− a)
}

Γm,m(m,m)

 , (77)
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where for any 1 ≤ i , j ≤ m, Γm,m(i , j) is given by (76).
From Remark 2, in the strong FARIMA case the asymptotic variance of residual autocorrelations

takes a simpler form

Σ s
ρ̂m

= Im −
1

c(a)

[
π2

6

(
ai+j−2)+ 1

1− a2

(
1

i j

)
+

ln(1− a)

a

(
aj−1

i
+

ai−1

j

)]
1≤i ,j≤m

where c(a) is the constant given in (73).
From the above explicit expressions we deduce that the asymptotic variance of residual autocor-

relations for this model is in the form

Σρ̂m = Σ s
ρ̂m

+
(κ− 1)(α1 − α1β

2
1 − α2

1β1)

1− β21 − 2α1β1 − α2
1κ

[
(α1 + β1)

i−111{i=j} +
1

c(a)
M(i , j)

−
{
(α1 + β1)

i−1 + (α1 + β1)
j−1} 1

c(a)

{
π2

6

(
ai+j−2)+ 1

1− a2

(
1

i j

)
+

ln(1− a)

a

(
aj−1

i
+

ai−1

j

)}]
1≤i ,j≤m

,

where

M(i , j) =

[
ln(1− a)

a

1

1− a2(α1 + β1)
− 1

1− a2
ln(1− a(α1 + β1))

a(α1 + β1)

] [
π2

6

aj−1

i
+

1

i j

ln(1− a)

a

]
+

[
Li2(α1 + β1)

α1 + β1

1

1− a2
− ln(1− a)

a

ln(1− a(α1 + β1))

a(α1 + β1)

] [
ln(1− a)

a

aj−1

i
+

1

i j

1

1− a2

]
+

[
π2

6

1

1− a2(α1 + β1)
− ln(1− a)

a

ln(1− a(α1 + β1))

a(α1 + β1)

] [
π2

6
ai+j−2 +

ai−1

j

ln(1− a)

a

]
+

[
Li2(α1 + β1)

α1 + β1

ln(1− a)

a
− π2

6

ln(1− a(α1 + β1))

a(α1 + β1)

] [
ln(1− a)

a
ai+j−2 +

ai−1

j

1

1− a2

]
.

For simplicity, we take in the sequel β1 = 0 to consider the case of an ARCH(1) model. For instance
when m = 3, κ = 3, ω = 1 and a = −0.55 we have

Σρ̂3 Eigenvalues ξ3 = (ξ1,3, ξ2,3, ξ3,3) Z3(ξ3)

α1 = 0

 0.1383 0.0859 −0.2720
0.0859 0.2490 0.0053
−0.2720 0.0053 0.9135

 (1.0000, 0.2791, 0.0217) χ2
1+ 0.2791χ2

1+ 0.0217χ2
1

α1 = 0.55

 0.6989 0.3825 −1.6041
0.3825 0.9351 −0.2342
−1.6041 −0.2342 4.7979

 (5.3780, 1.0025, 0.0513) 5.3780χ2
1+ 1.0025χ2

1+ 0.0513χ2
1

It is clear that for α1 = 0.55, the Li and McLeod (1986) approximation by a χ2
1 distribution will

be disastrous. The eigenvalues ξm can be very different from those of strong FARIMA models which
are close to 1 or 0 when the lag m is large enough (see Remark 3). More precisely, for instance for
α1 = 0 and m = 12 we obtain

ξ12 = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.0665, 0.0000)′,

In this weak FARIMA(1, d , 0) with α1 = 0.55 and m = 12 we also obtain

ξ12 = (5.4628, 3.7524, 2.3222, 1.7930, 1.4152, 1.2405, 1.1295, 1.0723, 1.0387, 1.0207, 0.0827, 0.0000)′.

The same result holds for FARIMA(0, d , 1) model with a replaced by b in θ0.
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B.2. Explicit form of the matrix Cm

The following example gives an explicit form of the normalization matrix Cm for the model given
in (64). For reading convenience, we restrict ourselves to the case m = 3. Using the expression of
J−1(θ0) given in (72) and Equation (70), we obtain that for all 1 ≤ j ≤ n

−2J−1(θ0)εj

∂εj (θ0)
∂a

∂εj (θ0)
∂d

 =

v
(1)
j (a)

v
(2)
j (a)

 ,

where

v
(1)
j (a) =

1

σ2ε c(a)

∑
k≥1

{
π2

6
ak−1 +

ln(1− a)

a

1

k

}
εjεj−k

and

v
(2)
j (a) =

1

σ2ε c(a)

∑
k≥1

{
ln(1− a)

a
ak−1 +

1

1− a2
1

k

}
εjεj−k .

Thus, the vector ΛUj is given by

ΛUj =


−σ2ε v

(1)
j (a)− σ2ε v

(2)
j (a) + εjεj−1

−σ2ε av
(1)
j (a)− σ2ε v

(2)
j (a)/2 + εjεj−2

−σ2ε a2v
(1)
j (a)− σ2ε v

(2)
j (a)/3 + εjεj−3

 .

A simple calculation shows that, for any 1 ≤ j1, j2 ≤ n,

(ΛUj1) (ΛUj2)
′
=


K

(1)
j1

(a)K
(1)
j2

(a) K
(1)
j1

(a)K
(2)
j2

(a) K
(1)
j1

(a)K
(3)
j2

(a)

K
(2)
j1

(a)K
(1)
j2

(a) K
(2)
j1

(a)K
(2)
j2

(a) K
(2)
j1

(a)K
(3)
j2

(a)

K
(3)
j1

(a)K
(1)
j2

(a) K
(3)
j1

(a)K
(2)
j2

(a) K
(3)
j1

(a)K
(3)
j2

(a)

 ,

where

K
(1)
j (a) = −σ2ε v

(1)
j (a)− σ2ε v

(2)
j (a) + εjεj−1,

K
(2)
j (a) = −σ2ε av

(1)
j (a)− σ2ε v

(2)
j (a)/2 + εjεj−2

and K
(3)
j (a) = −σ2ε a2v

(1)
j (a)− σ2ε v

(2)
j (a)/3 + εjεj−3.

Therefore we deduce that for all positive integer t

St =
t∑

j=1

(ΛUj − γ3) =
t∑

j=1


−σ2ε v

(1)
j (a)− σ2ε v

(2)
j (a) + εjεj−1

−σ2ε av
(1)
j (a)− σ2ε v

(2)
j (a)/2 + εjεj−2

−σ2ε a2v
(1)
j (a)− σ2ε v

(2)
j (a)/3 + εjεj−3

− t

n


∑n

j=2 εjεj−1∑n
j=3 εjεj−2∑n
j=4 εjεj−3

 .

The same result holds for FARIMA(0, d0, 1) model with a replaced by b in θ0.
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Diagnostic checking in FARIMA models with uncorrelated but
non-independent error terms: Complementary results that are not

submitted for publication

Appendix C: Supplemental material: Additional Monte Carlo experiments

For the nominal level α = 5%, the empirical size over the N independent replications should vary
between the significant limits 3.6% and 6.4% with probability 95%. When the relative rejection
frequencies are outside the 95% significant limits, they are displayed in bold type in Tables.

C.1. FARIMA models with a 6= 0 and b 6= 0

Table 8 displays the relative rejection frequencies of the null hypothesis (H0) that the DGP follows
a strong FARIMA model (19), over the N independent replications. When p = q = 1 for all tests,
the percentages of rejection belong to the confident interval with probabilities 95%, except for LBs
and BPs (see Table 8). Consequently all these tests well control the error of first kind.

We draw the conclusion that in these strong FARIMA cases the proposed modified version may
be clearly preferable to the standard ones.

Now, we repeat the same experiments on two weak FARIMA models. As expected Tables 9 and
10 show that the standard LBs or BPs test poorly performs in assessing the adequacy of these
particular weak FARIMA models. Indeed, we observe that

• the observed relative rejection frequencies of LBs and BPs are definitely outside the significant
limits,
• the errors of the first kind are only globally well controlled by the proposed tests when n is

large.

We also investigate the case where the GARCH model (20) have infinite fourth moments. As
showing in Figures 5,. . . ,10 the results are qualitatively similar to what we observe here in Tables
9 and 10.

In this section, we repeat the same experiments as in Section 4.1 to examine the power of the
tests for the null hypothesis of Model (19) against the following FARIMA alternative defined by

(1− L)d (Xt − aXt−1) = εt − b1εt−1 − b2εt−2, (78)

with θ0 = (a, b1, b2, d0) and where the innovation process (εt)t∈Z follows a strong or weak white
noise introduced in Section 4.1.

For each of these N replications we fit a FARIMA(1, d , 1) model (19) and perform standard and
modified tests based on m = 1, 2, 3, 6, 12 and 15 residual autocorrelations.

Tables 11, 12 and 13 compare the empirical powers of Model (78) with θ0 = (0.9, 1,−0.2, d0)
over the N independent replications. For these particular strong and weak FARIMA models, we
notice that the standard BPs and LBs and our proposed tests have very similar powers except for
BPsn and LBsn when n = 5, 000.
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Table 8
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a strong
FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 5.8 5.7 7.4 7.3 n.a. n.a.
2 5.0 5.0 7.4 7.3 n.a. n.a.

0.05 n = 1, 000 3 4.3 4.3 5.8 5.8 n.a. n.a.
6 4.1 4.1 5.6 5.5 10.9 10.9
12 5.1 4.6 4.7 4.5 6.9 6.6
15 5.0 4.7 5.0 4.8 6.9 5.9
1 6.0 6.0 7.4 7.4 n.a. n.a.
2 6.5 6.5 7.9 7.9 n.a. n.a.

0.05 n = 5, 000 3 4.7 4.7 6.7 6.7 n.a. n.a.
6 3.5 3.5 5.2 5.1 11.0 10.9
12 5.3 5.3 5.8 5.8 7.9 7.6
15 4.5 4.5 5.8 5.5 7.0 6.9
1 4.2 4.2 6.1 6.1 n.a. n.a.
2 4.2 4.2 6.3 6.4 n.a. n.a.

0.05 n = 10, 000 3 3.8 3.8 5.9 5.9 n.a. n.a.
6 3.5 3.5 4.7 4.7 10.4 10.4
12 4.2 4.2 6.1 6.1 7.6 7.6
15 4.0 3.8 5.7 5.7 7.4 7.4
1 5.8 5.8 9.2 9.1 n.a. n.a.
2 4.9 4.9 7.5 7.5 n.a. n.a.

0.20 n = 1, 000 3 4.6 4.5 5.9 5.9 n.a. n.a.
6 4.2 4.1 5.6 5.4 10.3 10.2
12 5.4 4.9 4.7 4.4 6.4 5.9
15 5.5 4.9 5.1 4.4 6.8 6.2
1 6.4 6.4 6.1 6.2 n.a. n.a.
2 6.8 6.8 6.9 6.9 n.a. n.a.

0.20 n = 5, 000 3 4.3 4.3 5.9 5.8 n.a. n.a.
6 3.8 3.8 4.6 4.6 10.0 10.0
12 5.2 5.2 5.7 5.6 7.6 7.5
15 4.5 4.5 5.6 5.3 6.8 6.7
1 4.5 4.5 5.5 5.5 n.a. n.a.
2 4.1 4.1 5.8 5.8 n.a. n.a.

0.20 n = 10, 000 3 3.1 3.1 5.3 5.3 n.a. n.a.
6 3.7 3.6 4.3 4.3 10.1 10.1
12 3.8 3.8 6.1 6.1 7.5 7.5
15 3.7 3.7 5.8 5.7 7.0 6.9
1 4.3 4.3 8.7 8.7 n.a. n.a.
2 3.0 3.0 5.9 5.9 n.a. n.a.

0.45 n = 1, 000 3 3.7 3.7 4.4 4.4 n.a. n.a.
6 3.8 3.8 4.7 4.5 8.1 7.8
12 5.1 4.6 4.3 4.2 5.1 4.9
15 4.6 4.5 4.7 4.3 5.0 4.7
1 5.6 5.5 6.0 6.0 n.a. n.a.
2 5.2 5.2 6.4 6.4 n.a. n.a.

0.45 n = 5, 000 3 4.0 4.0 5.9 5.9 n.a. n.a.
6 3.8 3.8 4.6 4.6 10.1 9.9
12 5.2 5.2 5.4 5.4 7.2 7.1
15 4.6 4.6 5.0 4.9 6.7 6.6
1 4.3 4.3 5.3 5.3 n.a. n.a.
2 3.2 3.2 5.7 5.7 n.a. n.a.

0.45 n = 10, 000 3 3.1 3.0 5.4 5.4 n.a. n.a.
6 3.7 3.7 4.3 4.3 9.8 9.8
12 4.3 4.3 5.8 5.8 7.2 7.0
15 3.6 3.3 5.7 5.7 6.8 6.8
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Table 9
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3 in
(20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.9 4.9 6.7 6.7 n.a. n.a.
2 3.8 3.8 6.3 6.3 n.a. n.a.

0.05 n = 1, 000 3 3.2 3.2 5.2 5.2 n.a. n.a.
6 3.9 3.8 4.9 4.8 18.5 18.3
12 2.3 2.3 4.1 4.0 10.2 9.7
15 2.7 2.3 4.4 4.2 9.7 9.3
1 5.1 5.1 5.6 5.6 n.a. n.a.
2 4.9 4.9 5.4 5.4 n.a. n.a.

0.05 n = 5, 000 3 2.6 2.6 5.0 5.0 n.a. n.a.
6 3.5 3.5 4.4 4.4 19.6 19.6
12 2.7 2.7 3.3 3.2 11.4 11.4
15 3.4 3.4 4.2 4.1 10.8 10.7
1 4.8 4.8 6.9 6.9 n.a. n.a.
2 4.8 4.8 6.7 6.7 n.a. n.a.

0.05 n = 10, 000 3 4.7 4.7 5.5 5.5 n.a. n.a.
6 3.3 3.3 6.4 6.4 20.2 20.2
12 4.2 4.2 6.3 6.3 12.4 12.3
15 3.6 3.6 5.5 5.5 11.6 11.6
1 5.3 5.3 7.8 7.7 n.a. n.a.
2 3.6 3.4 5.7 5.7 n.a. n.a.

0.20 n = 1, 000 3 3.1 3.1 4.9 4.8 n.a. n.a.
6 3.3 3.2 4.5 4.5 17.6 17.4
12 2.3 2.0 4.1 4.1 9.4 8.9
15 2.4 2.1 4.4 4.2 9.0 8.1
1 4.6 4.6 4.3 4.3 n.a. n.a.
2 4.3 4.3 4.4 4.4 n.a. n.a.

0.20 n = 5, 000 3 3.1 3.1 4.4 4.3 n.a. n.a.
6 4.1 4.1 3.9 3.9 19.0 19.0
12 2.6 2.6 2.9 2.9 10.9 10.6
15 3.4 3.3 4.0 4.0 10.0 9.9
1 4.8 4.8 5.1 5.1 n.a. n.a.
2 4.7 4.7 5.0 5.0 n.a. n.a.

0.20 n = 10, 000 3 4.5 4.5 4.8 4.8 n.a. n.a.
6 3.5 3.5 5.6 5.6 19.1 19.1
12 4.1 4.1 5.9 5.9 12.1 12.1
15 3.7 3.7 5.3 5.3 11.3 11.3
1 4.4 4.4 11.1 11.0 n.a. n.a.
2 3.4 3.4 5.4 5.3 n.a. n.a.

0.45 n = 1, 000 3 3.1 3.1 4.9 4.9 n.a. n.a.
6 3.1 2.9 4.5 4.4 15.3 15.1
12 2.2 2.1 4.0 4.0 7.9 7.5
15 2.1 2.0 4.4 4.3 7.0 6.5
1 3.9 3.9 4.2 4.2 n.a. n.a.
2 3.4 3.4 4.2 4.2 n.a. n.a.

0.45 n = 5, 000 3 2.9 2.9 4.4 4.4 n.a. n.a.
6 3.5 3.5 3.9 3.9 18.4 18.4
12 2.4 2.4 2.8 2.7 9.9 9.8
15 3.2 3.2 3.9 3.8 9.2 9.2
1 4.6 4.6 5.3 5.3 n.a. n.a.
2 4.3 4.3 5.1 5.0 n.a. n.a.

0.45 n = 10, 000 3 3.5 3.5 5.0 5.0 n.a. n.a.
6 2.8 2.8 5.3 5.3 19.3 19.3
12 4.2 4.2 5.5 5.5 12.2 12.2
15 3.6 3.5 5.5 5.5 11.4 11.4
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Table 10
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (19)–(21) with θ0 = (0.9, 0.2, d0). The nominal asymptotic level of the tests

is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 5.1 5.1 7.3 7.3 n.a. n.a.
2 3.6 3.6 6.9 6.9 n.a. n.a.

0.05 n = 1, 000 3 2.9 2.9 4.3 4.1 n.a. n.a.
6 2.6 2.5 3.1 3.0 10.3 10.3
12 0.9 0.9 1.2 1.1 8.7 8.3
15 0.4 0.4 1.0 0.8 8.0 7.3
1 3.9 3.9 5.4 5.4 n.a. n.a.
2 3.9 3.9 5.9 5.9 n.a. n.a.

0.05 n = 5, 000 3 3.9 3.9 5.5 5.5 n.a. n.a.
6 3.2 3.1 3.8 3.8 10.6 10.6
12 2.4 2.4 3.5 3.4 8.3 8.2
15 2.7 2.7 3.3 3.3 8.4 8.3
1 5.0 5.0 5.2 5.2 n.a. n.a.
2 4.9 4.9 4.5 4.5 n.a. n.a.

0.05 n = 10, 000 3 3.8 3.8 5.6 5.6 n.a. n.a.
6 3.6 3.6 4.5 4.5 10.4 10.4
12 3.3 3.3 4.3 4.3 8.5 8.4
15 4.7 4.7 3.8 3.8 7.7 7.4
1 5.7 5.6 10.1 10.0 n.a. n.a.
2 3.4 3.4 5.5 5.5 n.a. n.a.

0.20 n = 1, 000 3 3.7 3.7 4.0 4.0 n.a. n.a.
6 2.9 2.8 2.5 2.4 10.2 9.7
12 0.9 0.9 1.1 1.1 7.9 7.2
15 0.5 0.5 0.8 0.8 7.5 6.9
1 3.5 3.5 4.0 3.9 n.a. n.a.
2 3.7 3.7 4.3 4.3 n.a. n.a.

0.20 n = 5, 000 3 4.1 4.1 5.0 5.0 n.a. n.a.
6 3.1 3.1 3.5 3.5 10.0 10.0
12 2.8 2.8 3.3 3.3 8.2 8.2
15 2.4 2.4 3.1 3.1 7.9 7.8
1 5.1 5.1 4.8 4.8 n.a. n.a.
2 4.7 4.7 4.2 4.2 n.a. n.a.

0.20 n = 10, 000 3 3.8 3.8 4.7 4.7 n.a. n.a.
6 3.8 3.8 4.1 4.1 10.1 10.1
12 3.4 3.4 4.0 4.0 8.0 8.0
15 4.8 4.8 3.6 3.6 7.5 7.4
1 3.8 3.8 12.1 12.0 n.a. n.a.
2 2.4 2.4 4.4 4.4 n.a. n.a.

0.45 n = 1, 000 3 2.7 2.6 3.8 3.7 n.a. n.a.
6 3.2 3.0 2.3 2.3 8.3 7.9
12 1.1 0.9 1.0 0.9 6.4 6.3
15 0.3 0.3 1.4 1.1 6.8 6.4
1 3.1 3.1 4.4 4.4 n.a. n.a.
2 2.7 2.7 4.5 4.5 n.a. n.a.

0.45 n = 5, 000 3 3.2 3.2 4.9 4.9 n.a. n.a.
6 3.2 3.1 3.4 3.4 9.7 9.7
12 3.3 3.3 3.3 3.3 7.3 7.3
15 2.4 2.4 3.2 3.1 7.2 7.0
1 5.1 5.1 4.8 4.8 n.a. n.a.
2 4.9 4.9 4.3 4.3 n.a. n.a.

0.45 n = 10, 000 3 3.6 3.6 4.9 4.9 n.a. n.a.
6 3.5 3.5 4.3 4.2 10.2 10.2
12 3.7 3.7 3.7 3.7 7.7 7.6
15 4.8 4.8 3.9 3.9 7.2 7.1
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Table 11
Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a

strong FARIMA(1, d0, 2) defined by (78) with θ0 = (0.9, 1,−0.2, d0). The nominal asymptotic level of the
tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 24.5 24.5 37.9 37.9 n.a. n.a.
2 28.8 28.8 46.1 46.1 n.a. n.a.

0.05 n = 5, 000 3 36.7 36.7 22.2 22.1 n.a. n.a.
6 55.7 55.7 40.6 40.3 47.6 47.6
12 54.9 54.7 27.2 27.2 28.3 28.0
15 54.0 53.6 18.0 17.8 27.9 27.7
1 44.9 44.9 62.8 62.7 n.a. n.a.
2 51.4 51.3 76.1 76.0 n.a. n.a.

0.05 n = 10, 000 3 62.8 62.8 39.9 39.9 n.a. n.a.
6 86.5 86.5 80.9 80.8 84.7 84.7
12 85.8 85.8 64.9 64.8 66.4 66.2
15 82.0 82.0 43.2 43.2 60.8 60.8
1 14.0 14.0 58.0 57.9 n.a. n.a.
2 22.2 22.2 71.1 71.1 n.a. n.a.

0.20 n = 5, 000 3 24.1 23.8 40.7 40.7 n.a. n.a.
6 32.1 32.0 74.4 74.4 78.5 78.5
12 52.3 52.2 62.4 62.2 67.7 67.6
15 51.6 51.3 14.1 14.0 62.1 61.7
1 21.4 21.4 84.9 85.0 n.a. n.a.
2 30.6 30.6 93.1 93.1 n.a. n.a.

0.20 n = 10, 000 3 35.6 35.6 65.9 65.7 n.a. n.a.
6 44.1 44.1 96.9 96.9 97.8 97.8
12 76.3 76.2 93.2 93.2 94.3 94.3
15 73.7 73.7 43.9 43.9 91.6 91.6
1 0.0 0. 100.0 100.0 n.a. n.a.
2 49.1 49.1 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 69.0 69.0 100.0 100.0 n.a. n.a.
6 76.7 76.6 100.0 100.0 100.0 100.0
12 86.8 86.7 100.0 100.0 100.0 100.0
15 90.9 90.7 100.0 100.0 100.0 100.0
1 0.0 0.0 100.0 100.0 n.a. n.a.
2 77.9 77.9 100.0 100.0 n.a. n.a.

0.45 n = 10, 000 3 90.3 90.2 100.0 100.0 n.a. n.a.
6 94.2 94.2 100.0 100.0 100.0 100.0
12 98.9 98.9 100.0 100.0 100.0 100.0
15 99.5 99.4 100.0 100.0 100.0 100.0
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Table 12
Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 2) defined by (78) with θ0 = (0.9, 1,−0.2, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3
in (20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 22.5 22.5 32.8 32.7 n.a. n.a.
2 27.3 27.3 41.7 41.8 n.a. n.a.

0.05 n = 5, 000 3 32.4 32.3 20.1 20.0 n.a. n.a.
6 52.1 52.0 34.0 34.0 55.8 55.7
12 54.1 54.1 23.5 23.5 34.2 34.1
15 53.9 53.4 17.1 16.9 31.9 31.8
1 36.1 36.1 53.2 53.2 n.a. n.a.
2 44.9 44.9 64.5 64.5 n.a. n.a.

0.05 n = 10, 000 3 56.5 56.5 33.1 33.1 n.a. n.a.
6 83.1 83.1 71.2 71.2 86.4 86.2
12 84.0 83.9 59.0 59.0 70.4 70.2
15 80.6 80.5 40.1 40.1 67.4 67.2
1 14.6 14.5 51.0 50.9 n.a. n.a.
2 21.8 21.8 67.1 67.1 n.a. n.a.

0.20 n = 5, 000 3 22.4 22.3 37.7 37.7 n.a. n.a.
6 32.3 32.3 68.3 68.3 81.9 81.9
12 51.6 51.5 55.9 55.8 68.7 68.5
15 51.7 51.6 64.2 64.1 64.8 64.6
1 22.8 22.8 74.1 74.0 n.a. n.a.
2 29.6 29.6 86.2 86.2 n.a. n.a.

0.20 n = 10, 000 3 32.9 32.9 56.6 56.5 n.a. n.a.
6 43.1 43.1 92.3 92.3 97.1 97.1
12 72.9 72.8 88.3 88.3 93.8 93.8
15 71.2 71.1 89.1 88.9 92.0 92.0
1 30.1 30.1 99.8 99.8 n.a. n.a.
2 40.1 40.1 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 57.9 57.9 100.0 100.0 n.a. n.a.
6 65.7 65.7 100.0 100.0 100.0 100.0
12 78.8 78.5 100.0 100.0 100.0 100.0
15 84.7 84.6 100.0 100.0 100.0 100.0
1 62.2 62.2 99.9 99.9 n.a. n.a.
2 72.2 72.2 100.0 99.9 n.a. n.a.

0.45 n = 10, 000 3 84.8 84.8 100.0 100.0 n.a. n.a.
6 89.8 89.7 100.0 100.0 100.0 100.0
12 97.7 97.7 100.0 100.0 100.0 100.0
15 99.0 99.0 100.0 100.0 100.0 100.0
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Table 13
Empirical power (in %) of the modified and standard versions of the LB and BP tests in the case of a

weak FARIMA(1, d0, 2) defined by (78)–(21) with θ0 = (0.9, 1,−0.2, d0). The nominal asymptotic level of
the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 27.6 27.6 42.6 42.7 n.a. n.a.
2 32.7 32.6 51.4 51.3 n.a. n.a.

0.05 n = 5, 000 3 36.9 36.9 23.7 23.7 n.a. n.a.
6 53.3 53.0 39.7 39.7 46.0 45.9
12 49.6 49.3 23.7 23.7 29.3 29.2
15 44.4 44.2 17.5 17.4 28.5 28.1
1 48.5 48.5 68.3 68.3 n.a. n.a.
2 58.7 58.6 76.6 76.5 n.a. n.a.

0.05 n = 10, 000 3 66.8 66.8 42.5 42.5 n.a. n.a.
6 84.2 84.0 77.0 76.9 83.2 83.2
12 79.9 79.9 62.7 62.6 66.0 66.0
15 75.8 75.8 40.5 40.5 61.4 61.3
1 15.3 15.3 62.4 62.5 n.a. n.a.
2 23.5 23.4 74.6 74.6 n.a. n.a.

0.20 n = 5, 000 3 25.9 25.9 45.3 45.2 n.a. n.a.
6 34.0 34.0 73.1 72.9 78.5 78.4
12 51.3 50.8 56.8 56.6 64.5 64.4
15 46.3 45.8 15.0 14.9 60.1 60.1
1 23.0 23.0 85.2 85.2 n.a. n.a.
2 33.8 33.8 93.6 93.6 n.a. n.a.

0.20 n = 10, 000 3 36.5 36.5 68.3 68.3 n.a. n.a.
6 46.8 46.7 95.4 95.4 97.1 97.1
12 81.7 81.7 90.8 90.8 93.7 93.6
15 79.0 78.7 44.2 44.0 91.7 91.7
1 41.9 41.9 99.9 99.9 n.a. n.a.
2 51.9 51.9 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 66.7 66.7 100.0 100.0 n.a. n.a.
6 73.6 73.6 100.0 100.0 100.0 100.0
12 83.1 83.0 100.0 100.0 100.0 100.0
15 85.5 85.4 100.0 100.0 100.0 100.0
1 69.2 69.2 100.0 99.9 n.a. n.a.
2 79.2 79.2 100.0 100.0 n.a. n.a.

0.45 n = 10, 000 3 90.8 90.8 100.0 100.0 n.a. n.a.
6 93.6 93.6 100.0 100.0 100.0 100.0
12 97.8 97.8 100.0 100.0 100.0 100.0
15 99.1 99.1 100.0 100.0 100.0 100.0



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Validation of weak FARIMA models 8

C.2. Small sample size

The following tables deal with the same numerical experiments that in Section 4 when the sample
sizes are less than 500.
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Table 14
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a strong

FARIMA(0, d0, 0) defined by (19) with θ0 = (0, 0, d0). The nominal asymptotic level of the tests is
α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.9 3.6 10.1 9.6 n.a. n.a.
2 3.3 3.2 8.1 7.4 7.6 7.1

0.05 n = 100 3 3.8 3.1 5.9 5.2 8.1 6.8
6 3.1 2.7 5.0 3.9 6.9 5.9
12 2.4 1.3 3.9 2.1 5.8 3.8
15 2.8 1.0 4.5 2.3 6.9 4.3
1 5.3 5.2 7.6 7.3 n.a. n.a.
2 5.0 4.7 5.4 5.3 6.1 6.0

0.05 n = 250 3 4.7 4.5 5.6 5.5 5.8 5.6
6 5.2 4.8 6.4 6.1 6.7 6.3
12 5.0 3.8 4.4 3.7 6.2 5.3
15 4.6 3.2 4.4 3.5 6.0 4.9
1 5.0 5.0 5.6 5.6 n.a. n.a.
2 5.5 5.5 5.7 5.6 6.0 5.8

0.05 n = 500 3 5.9 5.7 5.9 5.7 6.6 6.5
6 5.3 5.1 5.6 5.2 6.0 5.9
12 5.1 4.3 5.0 4.7 5.9 5.0
15 5.4 4.5 4.6 4.2 6.0 5.2
1 4.5 4.0 5.9 5.3 n.a. n.a.
2 4.1 3.7 6.5 6.0 6.5 5.8

0.20 n = 100 3 4.1 3.5 5.3 4.9 6.4 6.1
6 3.3 2.9 4.6 3.7 6.1 4.9
12 3.6 1.5 4.1 2.0 5.5 3.4
15 2.9 0.9 4.4 2.0 6.5 3.5
1 5.8 5.7 5.8 5.7 n.a. n.a.
2 5.2 5.1 5.2 4.8 5.8 5.6

0.20 n = 250 3 5.1 5.0 5.5 5.4 5.4 5.1
6 5.7 5.4 5.9 5.3 6.3 5.7
12 5.6 4.0 4.2 3.8 5.8 5.1
15 4.8 3.6 4.5 3.6 6.2 4.7
1 5.7 5.5 5.0 5.0 n.a. n.a.
2 5.4 5.4 5.4 5.3 5.5 5.3

0.20 n = 500 3 6.2 6.1 5.7 5.6 6.3 6.2
6 5.4 5.0 5.5 5.0 5.6 5.6
12 5.1 4.4 5.0 4.7 6.0 5.0
15 5.2 4.3 4.4 4.2 5.9 5.1
1 4.3 4.1 9.4 8.9 n.a. n.a.
2 3.9 3.4 8.3 7.5 7.7 7.3

0.45 n = 100 3 4.0 3.3 6.5 5.7 7.0 6.5
6 3.3 2.4 4.7 3.5 6.5 5.3
12 3.5 1.7 3.9 2.3 5.5 3.2
15 3.9 1.4 4.2 2.2 6.1 3.7
1 5.4 5.4 8.2 7.9 n.a. n.a.
2 5.0 4.9 5.3 5.1 5.5 5.3

0.45 n = 250 3 5.1 5.0 5.8 5.3 5.3 5.0
6 5.6 5.2 6.0 5.2 6.2 5.4
12 5.4 3.9 4.6 3.9 5.8 5.2
15 5.1 4.0 4.7 3.7 6.2 5.0
1 5.4 5.2 5.6 5.6 n.a. n.a.
2 5.2 5.2 5.4 5.3 5.9 5.8

0.45 n = 500 3 5.9 5.8 6.3 6.1 6.4 6.4
6 6.0 5.6 5.6 5.0 5.6 5.5
12 4.9 3.9 5.6 4.8 5.7 5.1
15 5.2 4.3 4.6 4.2 6.1 4.9
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Table 15
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(0, d0, 0) defined by (19) with θ0 = (0, 0, d0) with ω = 0.4, α1 = 0.3 and β1 = 0.3 in (21). The

nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 2.3 2.3 10.1 9.6 n.a. n.a.
2 2.6 2.6 5.9 5.3 13.1 12.4

0.05 n = 100 3 1.9 1.6 4.0 3.1 11.1 9.9
6 1.4 1.1 3.0 2.5 12.8 11.2
12 1.0 0.3 3.5 2.0 14.5 10.8
15 0.8 0.1 2.6 0.8 16.1 11.0
1 3.0 3.0 8.1 8.1 n.a. n.a.
2 2.6 2.4 5.3 5.2 16.4 16.4

0.05 n = 250 3 1.9 1.8 4.3 3.9 16.2 15.6
6 0.7 0.4 4.3 4.1 20.1 18.8
12 0.6 0.5 3.6 2.6 24.6 22.4
15 0.2 0.2 4.0 2.9 25.7 22.4
1 3.4 3.4 7.2 7.0 n.a. n.a.
2 2.0 2.0 6.3 6.3 20.4 20.3

0.05 n = 500 3 1.5 1.5 5.1 5.0 21.1 20.7
6 0.9 0.9 4.6 4.6 28.0 27.6
12 0.4 0.4 4.0 3.2 34.2 32.8
15 0.1 0.0 3.3 3.0 36.2 34.7
1 2.8 2.7 5.3 5.0 n.a. n.a.
2 3.1 3.1 4.9 4.2 10.9 10.1

0.20 n = 100 3 1.8 1.6 3.8 2.9 9.9 8.3
6 1.9 1.1 2.9 2.0 10.8 9.0
12 0.8 0.3 3.1 1.8 13.1 9.7
15 0.7 0.1 2.3 0.7 14.7 9.6
1 3.2 3.2 5.5 5.4 n.a. n.a.
2 3.0 3.0 4.3 4.2 14.4 14.3

0.20 n = 250 3 2.4 2.3 3.6 3.4 14.9 14.2
6 0.7 0.7 4.3 3.8 18.3 17.3
12 0.6 0.4 3.5 2.6 23.6 21.2
15 0.4 0.1 3.8 2.5 23.9 21.0
1 3.8 3.8 5.3 5.3 n.a. n.a.
2 2.4 2.3 6.1 6.1 18.9 18.9

0.20 n = 500 3 1.8 1.7 4.9 4.6 19.9 19.6
6 0.9 0.9 4.4 4.3 26.5 26.2
12 0.4 0.4 3.7 3.2 33.5 31.5
15 0.1 0.1 3.3 3.0 35.4 33.8
1 2.8 2.6 8.9 8.3 n.a. n.a.
2 2.5 2.2 6.9 6.5 12.1 11.4

0.45 n = 100 3 1.6 1.5 5.0 4.1 11.4 10.0
6 1.6 1.2 3.4 2.2 10.9 8.4
12 0.9 0.5 3.2 1.9 13.5 10.0
15 0.9 0.3 2.2 0.8 14.3 9.0
1 3.3 3.1 8.7 8.6 n.a. n.a.
2 3.3 3.1 6.1 6.1 16.8 16.2

0.45 n = 250 3 2.6 2.5 4.3 4.2 15.5 15.1
6 1.0 0.9 4.5 4.3 19.0 18.0
12 0.6 0.4 3.9 2.8 23.7 21.8
15 0.4 0.3 3.6 2.5 24.5 21.6
1 3.6 3.5 6.7 6.6 n.a. n.a.
2 2.4 2.3 6.9 6.8 20.0 20.0

0.45 n = 500 3 1.7 1.7 5.4 5.2 21.3 21.2
6 1.0 0.9 4.8 4.5 26.9 26.4
12 0.5 0.4 3.7 3.5 33.2 32.0
15 0.1 0.1 3.5 3.1 36.3 34.8
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Table 16
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(0, d0, 0) defined by (19)–(21) with θ0 = (0, 0, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 2.2 2.1 20.0 19.5 n.a. n.a.
2 1.5 1.5 15.2 14.7 18.3 17.3

0.05 n = 100 3 1.1 0.9 10.7 10.1 15.3 14.4
6 0.4 0.2 6.0 5.2 10.4 9.7
12 0.0 0.0 3.2 2.5 8.2 5.9
15 0.2 0.0 2.4 1.7 7.7 5.0
1 3.2 2.9 14.4 14.2 n.a. n.a.
2 3.1 2.9 10.7 10.6 18.7 18.3

0.05 n = 250 3 1.9 1.8 7.8 7.6 16.3 16.0
6 0.9 0.6 4.5 4.2 12.6 12.0
12 0.4 0.3 2.0 1.5 10.6 8.8
15 0.2 0.2 1.3 1.3 10.0 8.2
1 4.3 4.3 11.7 11.6 n.a. n.a.
2 3.7 3.7 8.7 8.6 18.7 18.6

0.05 n = 500 3 2.9 2.7 6.5 6.4 16.7 16.6
6 1.8 1.6 3.4 3.2 14.4 14.1
12 0.3 0.2 2.2 1.7 10.9 10.4
15 0.2 0.2 1.1 1.0 10.2 9.7
1 3.9 3.7 11.9 11.3 n.a. n.a.
2 1.5 1.5 7.4 6.8 12.3 11.4

0.20 n = 100 3 1.4 1.4 5.2 4.5 10.7 9.6
6 0.3 0.2 2.3 1.8 8.4 7.6
12 0.1 0.0 1.1 0.8 6.5 4.2
15 0.2 0.0 0.9 0.4 5.8 3.4
1 3.9 3.8 7.1 6.9 n.a. n.a.
2 3.6 3.4 6.1 5.7 13.2 13.1

0.20 n = 250 3 1.9 1.8 3.8 3.4 11.7 11.3
6 0.9 0.6 2.6 2.3 9.8 9.3
12 0.3 0.3 1.0 0.6 8.8 7.6
15 0.2 0.2 0.5 0.5 8.9 7.2
1 5.3 5.3 6.3 6.1 n.a. n.a.
2 4.0 3.9 5.4 5.3 15.8 15.6

0.20 n = 500 3 3.3 3.3 3.7 3.6 12.9 12.9
6 1.9 1.5 1.4 1.4 11.9 11.5
12 0.2 0.1 1.2 0.9 9.8 9.2
15 0.3 0.2 0.5 0.5 9.2 8.9
1 3.9 3.8 21.5 20.2 n.a. n.a.
2 1.6 1.5 13.1 11.9 16.5 16.4

0.45 n = 100 3 1.2 0.9 7.5 7.2 13.7 12.7
6 0.7 0.7 3.1 2.4 10.6 9.2
12 0.1 0.0 1.3 0.8 6.9 5.2
15 0.2 0.0 1.3 0.3 6.2 3.8
1 5.0 5.0 15.7 15.5 n.a. n.a.
2 3.0 3.0 10.4 10.0 18.6 18.2

0.45 n = 250 3 2.3 2.3 7.5 7.3 16.1 15.9
6 0.6 0.4 3.6 3.6 12.1 11.4
12 0.4 0.3 1.5 1.1 9.7 8.6
15 0.2 0.2 1.1 0.8 10.1 8.8
1 4.8 4.8 12.5 12.5 n.a. n.a.
2 4.2 4.0 8.9 8.7 19.6 19.5

0.45 n = 500 3 3.2 3.2 5.7 5.6 16.6 16.6
6 2.0 1.8 2.6 2.5 13.7 13.4
12 0.1 0.1 1.5 1.1 10.8 10.3
15 0.3 0.2 0.6 0.6 10.4 10.1



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Validation of weak FARIMA models 12

Table 17
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a strong
FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.7 4.4 23.2 22.9 n.a. n.a.
2 3.9 3.6 8.1 7.5 n.a. n.a.

0.05 n = 100 3 4.3 4.0 6.9 6.1 n.a. n.a.
6 4.7 3.6 5.4 3.7 8.4 5.9
12 5.1 2.9 4.2 2.3 5.0 2.6
15 6.2 3.5 4.9 2.5 5.8 2.5
1 5.3 5.3 10.8 10.7 n.a. n.a.
2 3.6 3.3 6.8 6.8 n.a. n.a.

0.05 n = 250 3 4.0 3.7 5.7 5.4 n.a. n.a.
6 4.2 3.7 5.4 5.1 10.6 9.6
12 3.1 2.2 5.3 4.2 6.5 5.7
15 3.3 2.5 5.6 4.3 6.4 5.2
1 4.6 4.6 6.9 6.8 n.a. n.a.
2 4.3 4.2 5.8 5.6 n.a. n.a.

0.05 n = 500 3 4.3 4.2 5.7 5.5 n.a. n.a.
6 5.0 4.8 6.7 6.5 11.0 10.7
12 4.9 4.2 5.5 4.6 7.1 6.2
15 5.6 4.3 5.7 4.5 7.1 6.2
1 5.1 4.8 27.1 25.9 n.a. n.a.
2 4.0 3.8 8.7 8.2 n.a. n.a.

0.20 n = 100 3 4.1 4.0 7.5 6.9 n.a. n.a.
6 5.5 3.9 5.3 3.9 7.6 6.2
12 4.9 3.0 4.3 2.6 4.3 2.9
15 6.9 2.4 5.1 2.9 5.2 2.7
1 5.1 5.0 14.0 13.9 n.a. n.a.
2 3.4 3.1 7.3 7.2 n.a. n.a.

0.20 n = 250 3 4.3 4.1 6.2 5.9 n.a. n.a.
6 4.7 4.3 6.0 5.5 10.3 9.8
12 3.8 2.6 5.1 4.3 5.7 5.1
15 3.9 2.8 5.9 4.4 5.7 5.0
1 5.6 5.6 12.1 12.1 n.a. n.a.
2 4.9 4.9 7.0 6.9 n.a. n.a.

0.20 n = 500 3 5.0 4.9 6.7 6.4 n.a. n.a.
6 5.5 5.2 6.2 5.7 10.1 9.6
12 5.6 4.8 5.3 4.6 6.3 5.3
15 5.7 4.4 5.4 4.5 5.9 5.1
1 3.2 3.1 32.0 31.6 n.a. n.a.
2 3.5 3.4 8.3 7.3 n.a. n.a.

0.45 n = 100 3 2.9 2.5 6.9 6.4 n.a. n.a.
6 3.8 2.9 3.6 2.8 4.6 3.5
12 3.6 1.3 2.7 1.8 2.1 1.2
15 4.1 1.9 3.7 1.5 2.2 0.9
1 3.4 3.3 18.3 18.0 n.a. n.a.
2 3.2 3.2 6.4 6.1 n.a. n.a.

0.45 n = 250 3 3.6 3.4 5.2 5.1 n.a. n.a.
6 3.8 3.3 4.8 4.4 7.9 7.3
12 3.1 2.3 4.0 3.2 4.4 3.7
15 3.2 2.3 4.7 3.3 4.0 3.1
1 3.6 3.6 14.5 14.4 n.a. n.a.
2 3.4 3.4 5.3 5.3 n.a. n.a.

0.45 n = 500 3 3.4 3.4 5.5 5.5 n.a. n.a.
6 5.0 4.7 4.9 4.6 7.2 7.0
12 5.2 4.7 4.4 3.9 4.2 4.0
15 5.0 4.3 4.4 3.6 4.2 3.7
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Table 18
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0) and where ω = 0.4, α1 = 0.3 and β1 = 0.3 in
(20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.1 3.1 19.7 18.7 n.a. n.a.
2 2.0 1.7 7.8 7.3 n.a. n.a.

0.05 n = 100 3 1.7 1.6 6.8 6.2 n.a. n.a.
6 1.4 0.9 6.1 4.7 15.6 12.5
12 1.5 0.9 5.1 3.7 13.5 8.9
15 2.0 1.2 5.1 2.6 13.1 8.9
1 2.5 2.4 10.6 10.0 n.a. n.a.
2 2.1 1.7 6.6 6.4 n.a. n.a.

0.05 n = 250 3 1.2 1.1 5.7 5.2 n.a. n.a.
6 0.8 0.8 5.3 4.7 25.0 24.2
12 0.8 0.7 3.7 3.3 23.5 21.5
15 1.1 1.1 3.8 3.0 24.7 21.8
1 2.4 2.4 8.1 8.1 n.a. n.a.
2 1.7 1.7 7.1 7.0 n.a. n.a.

0.05 n = 500 3 0.8 0.7 6.1 6.0 n.a. n.a.
6 0.7 0.6 4.6 4.2 31.5 31.0
12 1.1 1.1 3.9 3.8 33.5 32.3
15 1.0 0.9 4.6 4.0 35.0 33.4
1 2.6 2.6 24.0 23.4 n.a. n.a.
2 1.7 1.6 9.0 8.4 n.a. n.a.

0.20 n = 100 3 2.3 1.7 6.7 6.2 n.a. n.a.
6 1.5 0.8 5.5 4.2 15.2 12.3
12 1.4 0.6 4.5 3.1 12.0 7.7
15 2.0 0.8 4.7 2.8 11.2 7.5
1 3.5 3.5 17.1 16.8 n.a. n.a.
2 1.9 1.9 8.5 8.0 n.a. n.a.

0.20 n = 250 3 1.1 1.0 5.5 5.0 n.a. n.a.
6 0.7 0.7 4.3 4.1 24.2 23.4
12 0.6 0.6 3.3 2.9 22.1 19.7
15 0.6 0.5 3.8 3.1 22.9 20.1
1 2.5 2.4 12.0 11.8 n.a. n.a.
2 2.0 2.0 7.7 7.7 n.a. n.a.

0.20 n = 500 3 1.4 1.4 6.1 5.6 n.a. n.a.
6 0.8 0.8 4.3 4.0 30.2 29.6
12 0.8 0.7 3.4 3.2 33.2 31.7
15 0.7 0.6 4.3 3.8 34.3 32.7
1 2.4 2.3 33.2 32.9 n.a. n.a.
2 1.4 1.3 8.5 7.8 n.a. n.a.

0.45 n = 100 3 1.5 1.2 6.3 5.4 n.a. n.a.
6 1.4 0.8 4.5 3.5 10.5 8.3
12 0.8 0.3 4.3 2.7 7.0 5.0
15 1.5 0.4 4.1 2.4 7.5 4.3
1 2.1 2.1 20.1 20.1 n.a. n.a.
2 1.7 1.7 5.9 5.8 n.a. n.a.

0.45 n = 250 3 1.1 0.8 5.2 4.9 n.a. n.a.
6 0.9 0.9 4.1 3.7 18.8 18.0
12 0.4 0.4 2.6 2.1 17.4 15.4
15 0.2 0.2 4.2 3.0 18.4 15.7
1 2.1 2.1 13.3 13.2 n.a. n.a.
2 1.2 1.2 5.8 5.7 n.a. n.a.

0.45 n = 500 3 1.1 1.0 4.9 4.9 n.a. n.a.
6 0.6 0.6 4.0 3.8 27.3 26.4
12 0.2 0.2 3.1 2.8 28.3 27.0
15 0.2 0.1 4.3 3.8 28.4 26.8
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Table 19
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0) and where ω = 0.04, α1 = 0.12 and β1 = 0.85
in (20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.1 3.1 19.7 18.7 n.a. n.a.
2 2.0 1.7 7.8 7.3 n.a. n.a.

0.05 n = 100 3 1.7 1.6 6.8 6.2 n.a. n.a.
6 1.4 0.9 6.1 4.7 15.6 12.5
12 1.5 0.9 5.1 3.7 13.5 8.9
15 2.0 1.2 5.1 2.6 13.1 8.9
1 2.5 2.4 10.6 10.0 n.a. n.a.
2 2.1 1.7 6.6 6.4 n.a. n.a.

0.05 n = 250 3 1.2 1.1 5.7 5.2 n.a. n.a.
6 0.8 0.8 5.3 4.7 25.0 24.2
12 0.8 0.7 3.7 3.3 23.5 21.5
15 1.1 1.1 3.8 3.0 24.7 21.8
1 2.4 2.4 8.1 8.1 n.a. n.a.
2 1.7 1.7 7.1 7.0 n.a. n.a.

0.05 n = 500 3 0.8 0.7 6.1 6.0 n.a. n.a.
6 0.7 0.6 4.6 4.2 31.5 31.0
12 1.1 1.1 3.9 3.8 33.5 32.3
15 1.0 0.9 4.6 4.0 35.0 33.4
1 2.6 2.6 24.0 23.4 n.a. n.a.
2 1.7 1.6 9.0 8.4 n.a. n.a.

0.20 n = 100 3 2.3 1.7 6.7 6.2 n.a. n.a.
6 1.5 0.8 5.5 4.2 15.2 12.3
12 1.4 0.6 4.5 3.1 12.0 7.7
15 2.0 0.8 4.7 2.8 11.2 7.5
1 3.5 3.5 17.1 16.8 n.a. n.a.
2 1.9 1.9 8.5 8.0 n.a. n.a.

0.20 n = 250 3 1.1 1.0 5.5 5.0 n.a. n.a.
6 0.7 0.7 4.3 4.1 24.2 23.4
12 0.6 0.6 3.3 2.9 22.1 19.7
15 0.6 0.5 3.8 3.1 22.9 20.1
1 2.5 2.4 12.0 11.8 n.a. n.a.
2 2.0 2.0 7.7 7.7 n.a. n.a.

0.20 n = 500 3 1.4 1.4 6.1 5.6 n.a. n.a.
6 0.8 0.8 4.3 4.0 30.2 29.6
12 0.8 0.7 3.4 3.2 33.2 31.7
15 0.7 0.6 4.3 3.8 34.3 32.7
1 2.4 2.3 33.2 32.9 n.a. n.a.
2 1.4 1.3 8.5 7.8 n.a. n.a.

0.45 n = 100 3 1.5 1.2 6.3 5.4 n.a. n.a.
6 1.4 0.8 4.5 3.5 10.5 8.3
12 0.8 0.3 4.3 2.7 7.0 5.0
15 1.5 0.4 4.1 2.4 7.5 4.3
1 2.1 2.1 20.1 20.1 n.a. n.a.
2 1.7 1.7 5.9 5.8 n.a. n.a.

0.45 n = 250 3 1.1 0.8 5.2 4.9 n.a. n.a.
6 0.9 0.9 4.1 3.7 18.8 18.0
12 0.4 0.4 2.6 2.1 17.4 15.4
15 0.2 0.2 4.2 3.0 18.4 15.7
1 2.1 2.1 13.3 13.2 n.a. n.a.
2 1.2 1.2 5.8 5.7 n.a. n.a.

0.45 n = 500 3 1.1 1.0 4.9 4.9 n.a. n.a.
6 0.6 0.6 4.0 3.8 27.3 26.4
12 0.2 0.2 3.1 2.8 28.3 27.0
15 0.2 0.1 4.3 3.8 28.4 26.8
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C.3. GARCH process with infinite moment

In order the see if the test procedures remain reliable for GARCH process with infinite moment (for
α1 + β1 ≥ 1), we replicate the numerical experiments made on Model (19)–(20) with ω = 0.04,
α1 = 0.13 and β1 = 0.88.

As showing in Figures 5,. . . ,10 the results are qualitatively similar to what we observe here in
Tables 2,3 9 and 10.

Figures 5,. . . ,9 display the residual autocorrelations of a realization of size n = 2, 000 for weak
FARIMA models (19)–(20) with ω = 0.04, α1 = 0.13, β1 = 0.88 and three values of d0, and their
5% significance limits under the strong FARIMA and weak FARIMA assumptions. These figures
confirm clearly the conclusions drawn in Subsection 4.1. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA assumption. The solid
lines (red color) and dashed lines (green color) correspond also to the 5% significant limits under
the weak FARIMA assumption. The full lines correspond to the asymptotic significance limits for
the residual autocorrelations obtained in Theorem 2. The dashed lines (green color) correspond
to the self-normalized asymptotic significance limits for the residual autocorrelations obtained in
Theorem 7.
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Table 20
Empirical size (in %) of the modified and standard versions of the LB and BP tests in the case of a weak
FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0) and where ω = 0.04, α1 = 0.12 and β1 = 0.85
in (20). The nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 8.9 8.9 n.a. n.a.
2 2.5 2.5 7.5 7.5 n.a. n.a.

0.05 n = 1, 000 3 2.1 2.1 5.4 5.3 n.a. n.a.
6 1.1 1.0 4.3 4.1 38.4 38.1
12 0.6 0.6 3.7 3.2 43.3 42.7
15 0.2 0.2 3.5 3.5 45.7 44.6
1 4.4 4.4 5.4 5.4 n.a. n.a.
2 3.5 3.5 5.0 5.0 n.a. n.a.

0.05 n = 10, 000 3 3.3 3.3 6.3 6.3 n.a. n.a.
6 2.3 2.2 4.5 4.4 57.7 57.6
12 1.6 1.6 4.0 3.9 68.9 68.8
15 1.3 1.3 4.6 4.6 73.8 73.8
1 4.6 4.6 5.2 5.2 n.a. n.a.
2 4.3 4.3 5.0 5.0 n.a. n.a.

0.05 n = 20, 000 3 3.9 3.9 4.8 4.8 n.a. n.a.
6 2.5 2.5 5.0 4.8 41.7 41.7
12 3.8 3.8 4.2 4.2 51.1 51.1
15 3.3 3.2 3.7 3.7 52.8 52.7
1 3.5 3.4 9.9 9.7 n.a. n.a.
2 2.4 2.4 6.4 6.4 n.a. n.a.

0.20 n = 1, 000 3 2.2 2.1 4.9 4.9 n.a. n.a.
6 1.1 0.8 3.5 3.4 37.4 37.2
12 0.3 0.3 3.5 3.3 42.9 42.4
15 0.0 0.0 3.6 3.5 44.4 43.2
1 4.2 4.2 4.0 4.0 n.a. n.a.
2 3.4 3.4 4.1 4.1 n.a. n.a.

0.20 n = 10, 000 3 3.3 3.3 5.3 5.3 n.a. n.a.
6 2.2 2.2 4.3 4.3 55.8 55.8
12 1.6 1.6 3.9 3.9 67.7 67.7
15 1.3 1.3 4.1 4.1 72.9 72.9
1 5.0 5.0 4.3 4.3 n.a. n.a.
2 4.6 4.6 4.4 4.4 n.a. n.a.

0.20 n = 20, 000 3 3.9 3.9 4.7 4.7 n.a. n.a.
6 2.7 2.7 4.7 4.7 41.0 41.0
12 3.7 3.7 4.0 4.0 50.3 50.3
15 3.4 3.4 3.6 3.5 51.9 51.8
1 3.0 3.0 12.1 12.2 n.a. n.a.
2 1.8 1.8 5.5 5.4 n.a. n.a.

0.45 n = 1, 000 3 1.7 1.6 4.4 4.4 n.a. n.a.
6 0.6 0.6 3.4 3.3 34.7 34.4
12 0.4 0.4 3.3 3.0 38.6 38.0
15 0.2 0.2 3.6 3.5 40.0 38.9
1 3.7 3.6 3.7 3.7 n.a. n.a.
2 3.0 3.0 3.7 3.8 n.a. n.a.

0.45 n = 10, 000 3 3.0 3.0 5.1 5.1 n.a. n.a.
6 2.0 2.0 4.7 4.7 55.3 55.3
12 1.7 1.7 3.8 3.8 67.6 67.4
15 1.3 1.3 4.1 4.1 72.0 71.8
1 5.0 5.0 4.1 4.1 n.a. n.a.
2 4.5 4.5 4.1 4.1 n.a. n.a.

0.45 n = 20, 000 3 3.7 3.7 4.8 4.8 n.a. n.a.
6 2.9 2.9 4.5 4.4 40.5 40.5
12 3.7 3.7 3.8 3.8 49.8 49.7
15 3.5 3.5 3.6 3.6 51.3 51.3
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Fig 5. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.01, 1) model (19)–(20) with
θ0 = (0.9, 0.2, 0.01) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color)
and dashed lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The
full lines correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2.
The dashed lines (green color) correspond to the self-normalized asymptotic significance limits for the residual
autocorrelations obtained in Theorem 7.
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Fig 6. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.25, 1) model (19)–(20) with
θ0 = (0.9, 0.2, 0.25) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color)
and dashed lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The
full lines correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2.
The dashed lines (green color) correspond to the self-normalized asymptotic significance limits for the residual
autocorrelations obtained in Theorem 7.
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Fig 7. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.49, 1) model (19)–(20) with
θ0 = (0.9, 0.2, 0.49) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color)
and dashed lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The
full lines correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2.
The dashed lines (green color) correspond to the self-normalized asymptotic significance limits for the residual
autocorrelations obtained in Theorem 7.
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Fig 8. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.01, 0) model (19)–(20) with
θ0 = (0, 0, 0.01) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color) correspond
to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color) and dashed
lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The full lines
correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2. The dashed
lines (green color) correspond to the self-normalized asymptotic significance limits for the residual autocorrelations
obtained in Theorem 7.
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Fig 9. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.25, 0) model (19)–(20) with
θ0 = (0, 0, 0.25) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color) correspond
to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color) and dashed
lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The full lines
correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2. The dashed
lines (green color) correspond to the self-normalized asymptotic significance limits for the residual autocorrelations
obtained in Theorem 7.
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Fig 10. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.49, 0) model (19)–(20) with
θ0 = (0, 0, 0.49) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The horizontal dotted lines (blue color) correspond
to the 5% significant limits obtained under the strong FARIMA assumption. The solid lines (red color) and dashed
lines (green color) correspond also to the 5% significant limits under the weak FARIMA assumption. The full lines
correspond to the asymptotic significance limits for the residual autocorrelations obtained in Theorem 2. The dashed
lines (green color) correspond to the self-normalized asymptotic significance limits for the residual autocorrelations
obtained in Theorem 7.
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