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Abstract

The Stochastic Block Model is a popular model for network analysis in the presence of community
structure. However, in numerous examples, the assumptions underlying this classical model are put in
default by the behaviour of a small number of outlier nodes such as hubs, nodes with mixed membership
profiles, or corrupted nodes. In addition, real-life networks are likely to be incomplete, due to non-
response or machine failures. We introduce a new algorithm to estimate the connection probabilities
in a network, which is robust to both outlier nodes and missing observations. Under fairly general
assumptions, this method detects the outliers, and achieves the best known error for the estimation of
connection probabilities with polynomial computation cost. In addition, we prove sub-linear convergence
of our algorithm. We provide a simulation study which demonstrates the good behaviour of the method
in terms of outliers selection and prediction of the missing links.

Keywords : robust network estimation, outlier detection, missing observations, link prediction

1 Introduction

Networks are a powerful tool used to analyze complex systems: agents are represented as nodes, and pairwise
interactions between agents are recorded as edges between these nodes. Examples of fields of applications
include biology, where networks may be used to describe protein-protein interactions; ecology, where they may
represent food webs [13] or spatial distributions in crop diversity networks [46]; ethnology, where networks
summarize relationships or trades between individuals or communities [40, 36]; sociology, where the recent
development of online social networks offers unprecedented possibilities while fostering new challenges [47].
Real-life networks are often modeled as realizations of random graphs or, equivalently, as noisy versions of
more structured networks. In this setting, recovering the “noiseless” version of the graph, i.e. estimating the
underlying probabilities of interactions between agents, is a key problem that has recently gained considerable
attention (see, e.g., [30, 15, 14, 17, 50]).

Most methods for recovering structural properties of a network rely on assumptions on the distribution
of the underlying random graph. However, in numerous examples, these assumptions are put in default by
the behaviour of a small number of individuals, which strongly departs from the behaviour of the majority
of agents, introducing outlier profiles. For example, in graphs obtained from survey data, some individuals
may be reluctant to participate and for this reason provide false answers; other individuals may even be
paid to provide erroneous answers in order to distort the public opinion on a subject [3]. In other cases,
edges can be erroneously recorded due to defaults of measurement instruments, human errors, or fraudulent
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behaviours. Controlling the bias induced by these deviations from the model is an important task. Similarly,
it is known that widely used models such as the stochastic block model (SBM) or the latent position model
provide a bad fit to many real-life networks. Indeed, these networks often present a small fraction of nodes
with high connectivity (hubs), which are not predicted by these models. The presence of such hubs in a data
set can lead to erroneous conclusions regarding the structure of the graphs [10, 27].

In this work, we propose a new algorithm for estimating connection probabilities in networks that is robust
against arbitrary outlier nodes. Following Hawkins [23], we define an outlier as “an observation that deviates
so much from other observations as to arouse suspicion that it was generated by a different mechanism”. To
the best of our knowledge, the problem of robust estimation of network structure in the presence of outliers
has been first studied in [10]. In this paper, the authors aim to recover community structure when the
majority of the nodes follow an assortative stochastic block model in the presence of arbitrary outlier nodes.
Note that our problem is different, as we would like to estimate the connection probabilities between nodes,
and our assumptions on the random graph are more general. Moreover, the algorithm described in [10] does
not allow to detect outliers. We argue that detecting individuals with anomalous connectivity is of interest
in itself, providing us with meaningful hindsight on possible corruptions of the data-collecting mechanism or
on fraudulent behaviours of users. For example, hubs are often linking different clusters and can be thought
of as outliers. Their detection can help us gain a better understanding of the structure of the network, and
finds applications in marketing [12] and epidemiology [48], among others. When analyzing the World Wide
Web graph, recovering these hubs may help to identify spam pages [20]. Outlier detection has many other
applications in security, finance, and health-care. Bearing these applications in mind, we design an algorithm
able to identify outliers, when their connectivity pattern differs sufficiently from the remaining nodes.

Our work also focuses on the missing observations scenario and link prediction. In practice, many real-
life networks are polluted by missing data [19, 21]. Indeed, complete exploration of all pairwise interactions
between agents can be expensive, time consuming, and requires significant effort. In social sciences, graphs
constructed from survey data are likely to be incomplete, due to non-response or drop-out of participants.
Protein-protein interactions networks provide a blatant example of incompleteness, as the existence of each
interaction must be tested experimentally, and most of these interactions have yet to be tested [51]. Finally,
the size of some data sets coming, for example, from online social networks or genome sequencing makes the
use of the full dataset computationally inefficient. Some researchers have proposed to study the properties
of these networks based on a sample of their edges [6]. Unfortunately, the absence of information on the
existence of edges between agents may distort the results of network analysis and corrupt the estimators
[34]. When dealing with a partially observed network, being able to predict the existence of non-observed
edges is of practical interest [7]. In the context of online social networks, it can be used to suggest new
relations to users. In biology, testing for the existence of interactions between agents can be time-consuming
and difficult. Prior estimations on the probability of the existence of non-observed edges enable researchers
to test for the most likely interactions, thus recovering the structure of the network while avoiding a costly
and time-consuming complete exploration of the edges.

The problem of connection probabilities estimation under the missing observation scenario and its appli-
cation to link prediction has known a quite recent development. In [14], the authors study the least square
estimator for the stochastic block model assuming observations missing uniformly at random, and show that
it is minimax optimal. In [17], the authors show that the maximum likelihood estimator is minimax optimal
in the same setting, while being adaptive to more general sampling schemes. These two estimators are
too costly to compute to be used in practice (there exists computationally efficient approximations for the
maximum likelihood). In [53], the authors consider the setting where non-existing edges can be erroneously
recorded as observed (or existing edges recorded as not observed), both errors occuring at a fixed rate. More
recently, [43] proposed an algorithm to estimate the edge probabilities when overlapping sub-graphs are
observed. [49] considered the case where the edges are egocentrically sampled (that is all edges adjacent
to certain nodes are sampled). Both papers present convincing numerical experiments, but lack theoretical
guarantees.

In the present work, we introduce a new algorithm for outliers detection and for estimation of the con-
nection probabilities which is robust to corruptions and missing observations. For this algorithm, we provide
both statistical and computational guarantees. In particular, we prove that under fairly general assumptions
our algorithm achieves exact selection of the outliers (Theorem 3) and we prove an upper bound on the es-
timation error of connection probabilities between inliers (Theorem 4). Importantly, the estimation error of
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our method matches the best known error for tractable algorithms [50]. We also analyse the algorithm’s con-
vergence complexity and show its sublinear convergence and competitive iteration cost in large dimensions.
In Section 5, we provide an encouraging simulation study, indicating that the proposed method has good
empirical properties in terms of outliers detection and link prediction. Finally, we illustrate performances of
our method on real data using the network of American political blogs and the “Les Misérables” characters
network.

1.1 Example: “Les Misérables” characters network

Before introducing our general model, let us start with an illustration on an example.“Les Misérables”
characters network encodes interactions between characters of Victor Hugo’s novel. The network was created
by Donald Knuth, as part of the Stanford Graph Base [31]. It contains 77 nodes corresponding to characters
of the novel, and 254 edges connecting two characters whenever they appear in the same chapter. The book
itself spans around two decades of nineteenth century France and numerous characters. It is structured
in five volumes, each one focused on a specific period and featuring handful of characters. One expects
to observe communities in this network, corresponding roughly to the plots narrated in each volume: such
structures are well captured by the classical Stochastic Block Model.

In the Stochastic Block Model (see, e.g., [24]), nodes are classified into k communities (for example
corresponding to volumes of the book). Denote by G = (V, E) the graph, where V is the set of nodes, and
E the set of edges. For any i ∈ V, denote by c(i) its community assignment. Then, the probability that an
edge connects two nodes only depends on their community assignments:

P((i, j) ∈ E) = Qc(i)c(j). (1)

In (1), Q denotes a k × k symmetric matrix of connection probabilities between communities. Usually, in
the Stochastic Block Model, the community assignment is unknown and learned from data.

However, for “Les Misérables” character network, some of the characters behave differently, as their stories
follow the entire novel. For instance, the main character, Jean Valjean, acts as a hub with 36 connections, well
above the second most connected character Gavroche, with a degree of 22. Other characters, for instance,
Cosette, do not necessarily have a large degree but are connected to characters across all the volumes, and
thus also stand out from the communities structure. Nodes such as Cosette correspond to outliers with
mixed membership profile. In Figure 1a, we display the communities assignment resulting from the classical
SBM. Note that the node corresponding to Jean Valjean (large yellow node), is alone in its community.
In addition, one of the clusters (in red) mainly contains some of the main characters of the novel (The
Thénardier, Éponine, Javert).

To model simultaneously the community structure and the outlier profiles, we propose to decompose V
into two set of nodes: the inliers I following the classical Stochastic Block Model structure and the outliers
O for which we do not make any assumption on their connection pattern. As a result, the probability of
connection between inliers is given, for any (i, j) ∈ I2, by

P((i, j) ∈ E) = L∗ij ,

where L∗ is a symmetric matrix with entries in [0, 1] corresponding to classical SBM. On the other hand,
for any outlier i ∈ O and for any node j ∈ V we set

P((i, j) ∈ E) =
(
S∗ + S∗

>
)
ij
,

with S∗ an arbitrary matrix in [0, 1]n×n. Our only assumption regarding the outliers is that their number
is small compared to the size of the network, i.e., the matrix S∗ is column-wise sparse. Note that the inlier
and outlier sets are unknown a priori, and learned from the data. In Figure 1b, we display the communities
assignment resulting from our model. The outlier nodes – which are selected automatically by our procedure
– are indicated in red, and coincide with central characters of the novel. They correspond either to hubs
(Jean Valjean, Myriel) or to nodes with mixed memberships (Cosette, Javert, Marius).
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(a) SBM model with 6 communities (the num-
ber of communities is chosen to minimize the
Integrated Completed Likelihood criterion).

(b) Proposed Stochastic Block Model with out-
liers. The detected outliers are colored in red,
and classification is performed on the rest of
the nodes.

Figure 1: Les Misérables characters network. The nodes are represented with size proportional to their
degree, and colored according to their community assignment. On the left in Figure 1a, classification is
performed according to the classical SBM model. On the right in Figure 1b, the detected outliers are
indicated in red, and classification is performed on the rest of the nodes (inliers).

1.2 Organisation of the paper

The rest of the paper is organized as follows. First, in Section 1.3, we summarise notation used throughout
this paper and, in Section 2, we introduce our model. Then, in Section 3, we present a computationally
efficient algorithm for detecting outliers and estimating the connection probabilities between inliers. We also
provide theoretical guarantees on the speed of convergence of this algorithm. In Section 4, we provide bounds
on the error of the outliers detection and on the error of the estimation of the connection probabilities between
inliers. In Section 5, we present numerical experiments which demonstrate the good empirical behaviour of
our method, both in terms of outliers detection and in terms of prediction of the missing links. The proofs
are relegated to the Appendix A.

1.3 Notations

The notation used in the paper is gathered in the following paragraph :

• We use bold notations for matrices and vectors : for any matrix M , we denote by M ij its entry on
row i and column j. The vector corresponding to its i-th row is denoted by M i,·, and the vector
corresponding to its j-th column is denoted by M ·,j . The notation 0 denotes either a matrix or a
vector with entries all equal to 0.

• We write � to denote the entry-wise product for matrices or vectors. For any vector v ∈ Rn, we
denote by ‖v‖2 its Euclidean norm. For any two matrices M ,N ∈ Rn×n,

〈
M
∣∣N〉 ,

∑
ij

M ijN ij is

the Frobenius scalar product between M and N . For any matrix M ∈ Rn×n, ‖M‖F is its Frobenius
norm, ‖M‖∗ is its nuclear norm (the sum of its singular values), ‖M‖op is its operator norm (its

largest singular value), and ‖M‖∞ , max
ij
|M ij | is the largest absolute value of its entries. Its column-

wise 2,1-norm is denoted by ‖M‖2,1 ,
∑
j

√∑
i

M2
ij , and the column-wise 2,∞-norm is denoted by

‖M‖2,∞ , max
j

√∑
i

M2
ij . The weighed L2-norm with respect to the sampling probability Π is written
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‖M‖L2(Π). Finally, for any matrix M and any vector v, we denote respectively by (M)+ and (v)+
the matrix and vector obtained by considering the positive part of their entries.

• For a matrixM ∈ Rn×n, we denote by PM the projection defined as follows : for any matrixA ∈ Rn×n,
P⊥M (A) = A− P⊥M (A), where P⊥M (A) = P⊥U(M)AP

⊥
V (M), and P⊥U(M) and P⊥V (M) denote respectively

the projection on the spaces orthogonal to the spaces spanned by the right and left singular vectors of
M .

• We denote by [n] the set of integers from 1 to n, by I the set of inliers, and by O the set of outliers.
The set of pairs of inliers is denoted I , I × I, and its complement is denoted by O , [n] × [n] \ I.
For a set of indices S and a matrix M ∈ Rn×n, we write M |S , 1S �M where 1S is the indicator
matrix of the set S. For any set S, we denote by |S| its cardinality.

2 General model

We consider an undirected, unweighted graph with n nodes indexed from 1 to n. To encode the set of edges,
we use the adjacency matrix of the graph, which we denote by A. This matrix is defined as follows: set
Aij = 1 if there exists an edge linking node i and node j, and Aij = 0 otherwise. Note that since the graph
is undirected we have Aij = Aji. We assume there are no loops in the graph: no edge can connect a node
to itself, and thus Aii = 0.

Probability of connection between inliers. For any pair of inliers (i, j) ∈ I2, i < j we assume that

Aij
ind.∼ Bernoulli(L∗ij), where L∗ is a n×n symmetric matrix with entries in [0, 1]. For inliers, we consider a

more general model than the classical Stochastic Block Model assuming that L∗ is low-rank with rank(L∗) =
k. This assumption is enough to model some interesting properties of the SBM, such as positive and negative
homophily, and stochastic equivalence. Indeed, when rank(L∗) = k, there exist a matrix U ∈ Rn×k and a
diagonal matrix Λ ∈ Rk×k such that L∗ = UΛU>. The model can then be interpreted as follows: each
row U i,· corresponds to a vector of k latent attributes describing the node i. If Λaa > 0, two nodes sharing
attributes of the same sign along the a-th coordinate will have a tendency to be more connected (everything
else being equal), modelling positive homophily along this coordinate. If Λaa < 0, they will tend to be less
connected, modelling negative homophily. Note that two nodes with similar characteristics in the latent
space will have similar stochastic behaviour (i.e. their probabilities of connection to other nodes will be
given by similar vectors of probabilities). On the other hand, assuming that L∗ is low-rank closely relates to
the latent eigenmodel, described, for example, in [11]. In this model, the probability of connection of nodes
i and j is given by f(L∗ij), where L∗ is of rank k and f is a link function. Note that our algorithm can be
extended to the latent eigenmodel by replacing L by f(L) in the objective function (2).

Finally, most graphs encountered by practitioners are sparse, with a small average degree compared to
the number of nodes. To account for the sparsity, we assume that the entries of L∗ are bounded by ρn where
ρn is a sequence of sparsity inducing parameters such that ρn → 0. In particular, we have that the average
degree of the graph grows as ρnn. In the rest of the paper we assume that ρn ≤ 1

2 . This assumptions is only
intended to clarify the exposition of our results, and can be easily removed.

Probability of connection of outlier nodes In our model we have no assumptions on the connectivity
of outliers. In particular, we do not assume a block constant or a low rank structure. We set L∗ij = 0 for any
pair of nodes (i, j) such that either i ∈ O or j ∈ O, and we use matrix S∗ to describe the outliers. For any
inlier j ∈ I, the j-th column of S∗ is null. Therefore, the matrix S∗ has at most s = |O| non-zero columns.
For any outlier j ∈ O, the j-th column of S∗ describes the connectivity of j: for any j ∈ O and i ∈ I, Aij ∼
Bernoulli(S∗ij) and for any (i, j) ∈ O × O, Aij ∼Bernoulli(S∗ij + S∗ji). We set S∗ii = 0 for any i ∈ [n].
With these notations, we have that

E [A] = L∗ − diag(L∗) + S∗ + (S∗)
>
.

To ensure that the graph remains sparse, we assume that ‖S∗‖∞ ≤ γn, where γn is a decreasing, sparsity
inducing sequence. Note that we allow the outliers and inliers to have different sparsity levels: γn and ρn
may be of different orders of magnitude.
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In this model, the outliers may account for different types of behaviour of the nodes, such as hubs or
mixed membership profiles. In practice, while most nodes may be assigned to a community and share
a similar stochastic behaviour with members of their community, a fraction of the nodes may belong to
two or more communities. Our model allows for such a behaviour by considering the nodes with mixed
membership as outliers. Finally, while the SBM may describe accurately the behaviour of all the nodes,
some communities may be too small to be estimated consistently, and induce a biais in the estimation of
the connection probabilities of the remaining nodes. Here again, we can treat the nodes belonging to these
communities as outliers. In all these cases, being able to detect nodes with singular behaviour provides
valuable information on the network.

Note that this setting includes as particular case the Generalized Stochastic Block Model, introduced in
[10]. In this model, the n nodes consist of n − s inliers obeying the Stochastic Block Model (SBM), and s
outliers, which are connected with other nodes in an arbitrary way.

Missing data pattern We say that we sample the pair (i, j) if we observe the presence or absence of the
corresponding edge. We denote by Ω the sampling matrix such that Ωij = 1 if the pair (i, j) is sampled,
Ωij = 0 otherwise. The graph is unoriented and the sampling matrix is therefore symmetric; moreover we set
diag(Ω) = 0 since an observation of a entry on the diagonal of A does not carry any information. We assume
that the entries {Ωij}i<j are independent random variables and that Ω and A are independent. We denote

by Π ∈ Rn×n the expectation of the random matrix Ω. Then, for any pair (i, j), Ωij ∼ Bernoulli(Πij). For
any matrix M ∈ Rn×n, we define

‖M‖2L2(Π) , E
[
‖Ω�M‖2F

]
.

This fairly general sampling scheme covers some of the settings encountered by practitioners. In partic-
ular, it covers the case of random dyad sampling (described, e.g., in [44]), where the probability of sampling
any pair depends on the matrices L∗ and S∗ (and, if we consider the Stochastic Block Model, on the
communities of the adjacent nodes).

3 Estimation procedure

In order to estimate the matrices L∗ and S∗, we consider the following objective function:

F(S,L)
4
=

1

2
‖Ω� (A−L− S− (S)>)‖2F + λ1‖L‖∗ + λ2‖S‖2,1, (2)

defined by a least squares data-fitting term penalized by a hybrid regularization term. On the one hand, the
nuclear norm penalty ‖L‖∗ is a convex relaxation of the rank constraint, meant to induce low-rank solutions
for L. On the other hand, the term ‖S‖2,1 is a relaxation of the constraint on the number of non-zero
columns in S, meant to induce column-wise sparse solutions for S. Our estimators are defined as(

Ŝ, L̂
)
∈ arg min

S∈[0,1]n×n,L∈[0,ρn]n×nsym

F (S,L) . (3)

When information on the presence or absence of some edges is missing, the objective function may not have
a unique minimizer. We propose to approximate our target parameters (Ŝ, L̂) by minimizing the objective
(2) with an additional ridge penalization term, ε

2 (‖L‖2F + ‖S‖2F ), which ensures strong convexity of the
objective function. While this additional penalty is not necessary to obtain convergence in terms of the
objective value, it is required to obtain convergence of the parameters themselves. This additional penalty
allows also to ensure approximate matching of the estimation and approximation errors, as detailed in our
theoretical results. Note that, by choosing ε sufficiently small, Fε can be arbitrarily close to F , but the
choice of ε will impact the speed of convergence of our algorithm.

Furthermore, we assume for simplicity that the box constraints on S and L are always inactive. We
make a final simplification by dropping the symmetry constraint on L. Indeed, we will see later on that the
low-rank matrix L remains symmetric throughout the algorithm, provided that it is intialized by a symmetric
matrix. Thus, in the end, we (approximately) solve the following optimization problem:

minimize Fε(S,L) , F(S,L) + ε
2 (‖L‖2F + ‖S‖2F ). (4)
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Let us now describe the optimization procedure. First, we consider the augmented objective function:

Φε(S,L, R)
4
=

1

2
‖Ω� (A−L− S − (S)>)‖2F + λ1R+ λ2‖S‖2,1 +

ε

2
(‖L‖2F + ‖S‖2F ),

with R ∈ R+. Note that, if an optimal solution to (4) (Ŝε, L̂ε) satisfies ‖L̂ε‖∗ ≤ R̄ for some R̄ ≥ 0, then any
optimal solution to the augmented problem

minimize Φε(S,L, R)
such that ‖L‖∗ ≤ R ≤ R̄

(5)

will also be optimal to (4) (we will show in appendix A.2 how the upper bound R̄ can be chosen and tightened
adaptively inside the algorithm). Thus, solving (5) we directly obtain the solution to our initial problem (4).
Finally, our estimators are defined as the minimizers of the following augmented objective function:

(Ŝε, L̂ε, R̃) ∈ argmin Φε(S,L, R)
such that ‖L‖∗ ≤ R ≤ R̄.

A natural option to solve problem (5) is the coordinate descent algorithm, where the parameters (S,L, R)
are updated alternatively along descent directions. To update S, we apply the proximal gradient method.
We use the conjugate gradient method (or Frank-Wolfe method [25], which relies on linear approximations of
the objective function) to update (L, R). Similar Mixed Coordinate Gradient Descent (MCGD) algorithms
were considered in [37, 42, 16] to estimate sparse plus low-rank decompositions with hybrid penalty terms
combining an `1 and a nuclear norm penalties. Here, we extend the procedure to handle the `2,1 penalty
as well. The details of the algorithm are described in Appendix A.2. The entire procedure is sketched in

Algorithm 1, where we also define our final estimators
(
L(T ),S(T )

)
.

Algorithm 1 Mixed coordinate gradient descent (MCGD)

1: Initialization: (L(0),S(0), R(0), t)← (0,0, 0, 0)
2: for t = 1, . . . , T do
3: t← t+ 1
4: Compute the proximal update (6) to obtain S(t).

5: Compute the upper bound R̄(t) = λ−11 Φε(S
(t−1),L(t−1), R(t−1)).

6: Compute the direction (L̃
(t)
, R̃(t)) using (9).

7: Compute the Conjugate Gradient update (7), with step size βt defined in (8) to obtain (L(t), R(t)).
8: end for
9: return

(
L(T ),S(T )

)
Denote by G

(t−1)
L = −Ω� (A−L(t−1) − S(t) − (S(t))>) + εL(t−1) the gradient with respect to L of the

quadratic part of the objective function, evaluated at (S(t),L(t−1)) and by G
(t−1)
S = −2Ω� (A− L(t−1) −

S(t−1) − (S(t−1))>) + εS(t−1) the gradient with respect to S of the quadratic part of the objective function,

evaluated at (S(t−1),L(t−1)). In Algorithm 1, the column-wise sparse component S is updated with a
proximal gradient step:

S(t) ∈ argmin

(
ηλ2 ‖S‖2,1 + 1

2

∥∥∥S − S(t−1) + ηG
(t−1)
S

∥∥∥2
F

)
,

= Tcηλ2

(
S(t−1) − ηG(t−1)

S

)
,

(6)

where Tcηλ2
is the column-wise soft-thresholding operator such that for any M ∈ Rn×n and for any λ > 0,

the j-th column of Tcλ(M) is given by (1 − λ/‖M.,j‖2)+M.,j . The step size η is constant and fixed in
advance, and satisfies η ≤ 1/(2 + ε). The low-rank component given by (L, R) is updated using a conjugate
gradient step as follows:(

L(t), R(t)
)

=
(
L(t−1), R(t−1)

)
+ βt

(
L̃

(t) −L(t−1), R̃(t) −R(t−1)
)
, (7)
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where βt ∈ [0, 1] is a step size set to:

βt = min

{
1,
〈L(t−1) − L̃(t)

,G
(t−1)
L 〉+ λ1(R(t−1) − R̃(t))

(1 + ε)‖L̃(t) −L(t−1)‖2F

}
. (8)

The direction (L̃
(t)
, R̃(t)) is defined by:(

L̃
(t)
, R̃(t)

)
∈ argminZ,R 〈Z,G(t−1)

L 〉+ λ1R

such that ‖Z‖∗ ≤ R ≤ R̄(t).
(9)

Note that, if the matrix L(t) is symmetric, then the matrix L(t+1) remains symmetric at iteration t + 1.

Indeed, the gradient G
(t)
L is defined in terms of the matrices A, Ω, and S(t) + (S(t))>, all three symmetric

matrices. Therefore, to obtain a symmetric estimator of L, it suffices to initialize the algorithm with
symmetric L(0).

The Mixed Coordinate Gradient Descent algorithm described in Algorithm 1 converges sublinearly to
the optimal solution of (5), as shown by the following result:

Theorem 1. Let δ > 0. After Tδ = O(1/δ) iterations, the iterate satisfies:

Fε(S(Tδ),L(Tδ))−Fε(Ŝε, L̂ε) ≤ δ. (10)

In addition, by strong convexity of Fε,

‖S(Tδ) − Ŝε‖2F + ‖L(Tδ) − L̂ε‖2F ≤
2δ

ε
. (11)

In Appendix A.3 we provide a more detailed result, with an estimation of the constant in O(1/δ).

4 Theoretical analysis of the estimator

In this section we provide theoretical analysis of our algorithm. First, we provide guarantees on the support
recovery of the outliers. Next, we prove a non asymptotic bound on the risk of our estimator. We start by
introducing assumptions on the missing values mechanism.

4.1 Assumption on the sampling scheme

Assumption 1. There exist a strictly positive sequence µn such that for any (i, j) ∈ I, µn ≤ Πij.

Bounding the probabilities of observing any entry away from 0 is a usual assumption in the literature dealing
with missing observations (different patterns for missing observations are discussed, e.g., in [29, 33, 38]).
We denote by νn and ν̃n two sequences such that for any i ∈ I,

∑
j∈IΠij ≤ νnn and for any i ∈ [n],∑

j∈OΠij ≤ ν̃ns. We always have νn ≤ 1 and ν̃n ≤ 1. When νn and ν̃n are decreasing sequences, we obtain
better error rates by taking advantage of the fact that observations are distributed over different nodes in the
network. Note that our estimators do not require the knowledge of the sequences µn and ν̃n. On the other
hand, for the theoretical analysis we need an upper bound on νnρnn (the average observed connectivity of
inlier nodes), which can be estimated robustly.

Recall that we do not observe any entry on the diagonal of A. Combined with Assumption 1, this implies
that for any matrix M ∈ Rn×n ∥∥M |I

∥∥2
F
≤ 1

µn
‖M‖2L2(Π) + n ‖M‖2∞ . (12)

Moreover, since |O| = 2ns+ (s− 1)(s− 2)/2 ≤ 3ns, we find that∥∥M |O
∥∥2
F
≤ 3ns ‖M‖2∞ . (13)

Before stating the second assumption, recall that ρn and γn are two sparsity inducing sequences such that
‖L∗‖∞ ≤ ρn and ‖S∗‖∞ ≤ γn. We assume that
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Assumption 2. νnρn ≥ log(n)/n and ν̃nγn ≥ log(n)/n.

Assumption 2 implies that the observed average node degree is not too small. Note that considering very
sparse graphs, where the expectation of the probability of observing an edge is of order 1

n , is of lesser interest
since it has been shown in [14] that the trivial null estimator is minimax optimal in this setting. On the
other hand, the sparsity threshold log(n)/n is known to correspond to phase transition phenomenons for
recovering structural properties in the SBM [1]. We also need the following assumption on the “signal to
noise ratio”.

Assumption 3. νnρnn ≥ ν̃nγns

Here, edges connecting inliers to inliers can be seen as a ”signal term”, while edges connecting outliers to
any other nodes can be seen as a “noise term”. Now, recall that ρn bounds the probability of any inlier
to be connected to any inlier, while γn bounds the probability of any inlier to be connected to any outlier.
Then, Assumption 3 requires that we observe more connection between inliers than between inliers and
outliers, or equivalently that the “signal” induced by the connections of the inliers be stronger than the
“noise”. When the sampling is uniform, that is each entry is observed with the same probability p, we have
µn = νn = ν̃n = p and Assumption 3 becomes ρnn ≥ γns.

4.2 Outlier detection

The ‖ · ‖2,1-norm penalisation induces the column-wise sparsity of the estimator Ŝ (when appropriately

calibrated, it allows only a small number of columns of Ŝ to be non-zero). Using this sparsity, we define the
set of estimated outliers as

Ô ,
{
j ∈ [n] : Ŝ·,j 6= 0

}
. (14)

The following lemma, proven in Appendix A.8.1, provides a characterization of this set:

Lemma 1. For any j ∈ [n], Ŝ·,j 6= 0 ⇔
∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)

+

∥∥∥∥
2

> λ2

2 .

Lemma 1 provides a lower bound on λ2 that will prevent from erroneously reporting inliers as outliers by
choosing λ2 larger than the expected norm of columns corresponding to inliers. Note that for any inlier j,
E[‖(Ω � (A·,j − L∗·,j)|I)+‖2] is of the order

√
νnρn(n− s) + ν̃nγns. If λ2 falls below this threshold, some

inliers are likely to be erroneously reported as outliers. Therefore, we choose λ2 &
√
νnρn(n− s) + ν̃nγns.

Under Assumption 3, this condition becomes λ2 &
√
νnρnn. With this choice of λ2 we have the following

results proven in Appendix A.4:

Theorem 2. Let λ2 = 19
√
νnρnn. Then, under Assumptions 1-3, there exists an absolute constants c > 0

such that with probability at least 1− c/n
Ô ∩ I = ∅. (15)

One cannot hope further separate outliers from inliers without additional assumptions on how the first group
differs from the second one. Here, we provide an intuition about our condition on the connectivity of outliers
that is sufficient for outliers detection. According to Lemma 1, any outlier j will be reported as such if
‖(Ω·,j � (A·,j − L̂·,j − Ŝj,·))+‖2 > λ2/2. So, in order to detect an outlier j, the threshold λ2 must be at

least smaller than E[‖(Ω·,j � (A·,j − L̂·,j − Ŝj,·))+‖2]. Recalling that L̂ and Ŝ have nonnegative entries, we
see that

E
[∥∥∥∥(Ω·,j �

(
A·,j − L̂·,j − Ŝj,·

))
+

∥∥∥∥
2

]
≤ E

[∥∥∥(Ω·,j � (A·,j))+

∥∥∥
F

]
=

√∑
i∈I

ΠijS
∗
ij +

∑
i∈O

Πij(S
∗
ij + S∗ij).

Thus, the condition
√
νnρnn . λ2 . minj∈O

√∑
i∈IΠijS

∗
ij appears naturally when separating the inliers

from the outliers. This condition is formalized in the following assumption:

Assumption 4. minj∈O
√∑

i∈IΠijS
∗
ij > Cρnνnn where C is an absolute constant defined in Section A.5.
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When the outliers represent only a small fraction of the nodes, we have that |I| ' n. Then, Assumption
4 is met when outlier nodes have higher expected observed degree than inlier nodes. When the sampling
probabilities are nearly uniform, this assumption essentially reads γn & ρn; however it allows for more general
settings, as long as the observed connections of the outliers are not too scarce. Under Assumption 4, we
obtain the following results proven in Appendix A.5:

Theorem 3. Let λ2 = 19
√
νnρnn. Under Assumptions 1-4, there exists an absolute constant c > 0 such

that O = Ô with probability at least 1− cs/n.

For both, Theorem 3 and Theorem 2 we actually show that the results hold with probabilities at least
1 − 8se−cnn and 1 − 6e−cnn respectively, where cn is a sequence depending on νn and ρn such that cn ≥
log(n)/n.

4.3 Estimation of the connections probabilities

In this section, we establish the non-asymptotic upper bound on the risk of our estimator. We denote the
noise matrix Σ , A − E[A]. Let Γ be the random matrix defined as follows : for any (i, j), Γij , εijΩij ,
where {εij}1≤i<j≤n is a Rademacher sequence. To clarify the exposition of our results, we introduce the
following error terms

Φ , nρ2n

(
νnk

µn
+ νns

)
, Ψ , 16ν̃nγnρnsn and Ξ ,

√
νnnρn
λ1

+ 1.

The following theorem, proven in Appendix A.6, provides the error bound for the risk of the estimator L̂
that depends on the choice of the regularization parameter λ1:

Theorem 4. Assume that λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

, and that λ2 = 19
√
νnρnn. Then, under Assumptions 1-3,

there exists absolute constants C > 0 and c > 0 such that with probability at least 1− c/n,∥∥∥∥(L̂−L∗)|I
∥∥∥∥2
L2(Π)

≤ C

(
λ21k

µn
+ Φ + ΞΨ

)
. (16)

Next, we provide a choice for λ1 such that the condition λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

holds with high probability. To

do so, we must first obtain a high-probability bound on
∥∥Ω�Σ|I

∥∥
op

. This is done in the following Lemma:

Lemma 2. P
(∥∥Ω�Σ|I

∥∥
op
≥ 28

√
νnρnn

)
≤ e−νnρnn.

Using Lemma 2, we obtain the following corollary proven in Appendix A.7:

Corollary 1. Choose λ1 = 84
√
νnρnn and λ2 = 19

√
νnρnn. Then, under the conditions of Theorem 4, there

exists absolute constants C > 0 and c > 0 such that with probability at least 1− c/n,∥∥∥∥(L̂−L∗)|I
∥∥∥∥2
L2(Π)

≤ C

(
νn
µn
ρnkn+ (νnρn ∨ ν̃nγn)ρnsn

)
(17)

and ∥∥∥∥(L̂−L∗)|I
∥∥∥∥2
F

≤ C

µn

(
νn
µn
ρnkn+ (νnρn ∨ ν̃nγn)ρnsn

)
. (18)

We actually show that inequalities (16), (17) and (18) hold with probability at least 1 − 10e−cnn, where
cn is a sequence depending on νn, ν̃n, ρn and γn such that cn ≥ log(n)/n. Note that, by setting 2δ/ε =
C/µn (νnρnkn/µn + (νnρn ∨ ν̃nγn)ρnsn) in Theorem 1, we obtain approximate matching of the estimation

and approximation errors after O
(
µn/ε (νnρnkn/µn + (νnρn ∨ ν̃nγn)ρnsn)

−1
)

iterations.

When (ν̃nγn ∨ νnρn) s ≤ νnk/µn, Corollary 1 implies that, with high probability, ‖(L̂ − L∗)|I‖2L2(Π) ≤
C (νn/µn) ρnkn which corresponds to the minimax optimal rate for low-rank matrix estimation problem.
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Note that this condition allows for a growing number of outliers. For example, when the sampling is uniform,
that is µn = νn = ν̃n = p, the number of outliers can grow as k/(p(ρn ∨ γn)).

To the best of our knowledge, no results on robust estimation of the connection probabilities in the
presence of outliers and missing observations have been established before. Previous rates of convergence for
the problem of estimating the connection probabilities under the Stochastic Block Model with missing links
have been established, for the uniform sampling scheme, in [14], and, for more general sampling schemes, in
[17]. To compare our bound with these previous results, we consider the case of the uniform sampling and
assume that the condition (ν̃nµn ∨ νnρn) s ≤ νnk/µn is met. In [14] and [17], the authors show that the
risk of their estimators in ‖·‖L2(Π)-norm is of the order ρn

(
log(k)n+ k2

)
, and that it is minimiax optimal.

The rate provided by Corolary 1 is of the order ρnkn. So, for the relevant case k ≤
√
n, our method falls

short of the minimax optimal rate for this problem by a factor k/ log(k). Note that, estimators proposed
in [14] and [17] have non-polynomial computational cost while our estimator can be used in practice. On
the other hand, the authors of [50] propose a polynomial-time algorithm for estimating the probabilities of
connections in the Stochastic Block Model under complete observation of the network. They show that the
risk of their estimator for the connection probabilities is bounded by Cρnkn. Thus, our method matches
the best known rate established for a polynomial time algorithm for the Stochastic Block Model while being
robust to missing observations and outliers.

5 Numerical experiments

5.1 Outlier detection

In this section we start by illustrating the performance of our method in terms of outliers’ detection. We con-
sider two types of outliers: hubs and mixed membership profiles. We start by generating a graph containing
n = 200 inlier nodes according to the Stochastic Block Model with three communities of approximately the
same size. In each community, the probability of connection between nodes is equal to 0.5. The probability
of connection between communities is equal to 0.2. Then, we generate s outlier nodes using the following
two methods:

1. Hubs: outlier j connects to any other node i with probability πij , where we sample πij from a uniform
distribution between πhub and 1.

2. Mixed menberships: for any outlier j, we select at random two communities. For any other node i,
if it belongs to one of the two communities, outlier j connects to i with probability πmix. Otherwise, it
connects to i with probability 0.2.

In each of these two situations, we consider an increasing number of outliers, as well as different values of
the parameters πhub and πmix, which we use as proxies to quantify the signal (the larger are πhub and πmix,
the easier is the detection problem). The results are presented in Tables 1 through 4. Tables 1 and 2 present
the power and the false discovery rate (FDR) of hub detection for increasing πhub and increasing number of
outliers. In this setting, we are able to correctly select the outliers, even at the detection limit πhub = 0.2
where the outliers and inliers have approximately the same degree. Tables 3 and 4 present the power and
FDR for outliers with mixed membership profiles, for increasing πmix and increasing number of outliers. The
results show that mixed membership nodes are harder to detect than hubs. For πmix = 0.4, where inliers and
outliers have approximately the same degree, the power and FDR are of the order of 0.5. However, as πmix

increases, we recover the same behavior as for hubs.

5.2 Link prediction

We now evaluate the performance of our method in terms of prediction of the missing links. As before, we
start by generating a network of size 200 using the Stochastic Block Model with three balanced communities.
Then, we add two different types of outliers: hubs and nodes with mixed community membership. We set
πhub = 0.2 and πmix = 0.4, corresponding to the detection limit where outliers have approximately the
same degree as the inliers, and cannot be directly detected by inspecting the histogram of degrees. In
both cases, we ”remove” uniformly at random 20% of the entries in the adjacency matrix; we then use our
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πhub = 0.2 πhub = 0.5 πhub = 0.8
s = 2 0.97 0.98 0.97
s = 5 0.96 0.99 0.98
s = 10 0.91 0.91 0.91

Table 1: Power for hubs detection for increas-
ing number of outliers (s) and increasing signal
to noise ratio (πhub), averaged across 100 replica-
tions.

πhub = 0.2 πhub = 0.5 πhub = 0.8
s = 2 0.03 0.02 0.03
s = 5 0.03 0.01 0.1
s = 10 0.09 0.09 0.14

Table 2: FDR for hubs detection for increas-
ing number of outliers (s) and increasing signal
to noise ratio (πhub), averaged across 100 replica-
tions.

πmix = 0.4 πmix = 0.6 πmix = 0.8
s = 2 0.36 0.73 0.97
s = 5 0.45 0.84 0.94
s = 10 0.55 0.71 0.85

Table 3: Power for mixed membership de-
tection for increasing number of outliers (s) and
increasing signal to noise ratio (πmix), averaged
across 100 replications.

πmix = 0.4 πmix = 0.6 πmix = 0.8
s = 2 0.64 0.26 0.07
s = 5 0.54 0.16 0.06
s = 10 0.45 0.28 0.15

Table 4: FDR for mixed membership detec-
tion for increasing number of outliers (s) and
increasing signal to noise ratio (πmix), averaged
across 100 replications.

method to predict these missing links. We compare the prediction results with two competitors: the method
implemented in the R [41] package missSBM [44, 45] which fits a Stochastic Block Model in the presence of
missing links (but no outlier), and matrix completion as implemented in the R package softImpute [22].
We also include a comparison to link prediction using the average degree, as a baseline.

The results of link prediction are presented in Figure 2 for the hubs and in Figure 3 for the mixed
membership, for an increasing number of outliers. We first note that our method is competitive in terms of
link prediction, in all the situations simulated here. In particular, as the number of outliers increases (from
left to right), the prediction error of missSBM and softImpute (which do not model outliers), increases. On
the other hand, the prediction error of our algorithm is stable. We also note that, in the case of outliers
with mixed memberships, although our method performs less accurately in terms of outliers detection (see
Section 5.1), it still significantly improves over competitors in terms of link prediction, even in the ”hard”
regime πmix = 0.4.

5.3 Analysis of the political blogosphere data set

Finally, we show the performance of our algorithm on the network of political blogs, first analysed in [2]. This
data set, collected before the 2004 American presidential election, records hyperlinks connecting political
blogs to one another. These blogs have been labelled manually as either “liberal” or “conservative”. In
order to compare our algorithm with results obtained by benchmark methods for community detection on
this dataset, we consider these labels as the true communities, and we express our error in terms of number
of miss-classified nodes. Our method primarily aims at estimating probabilities of connection. We obtain
estimates for the communities of the nodes by applying a standard clustering method on the rows of our

estimator L̂
T

. More precisely, we estimate the communities of a node by taking the sign of the corresponding

coordinate of the second eigenvector of L̂
T

.
We restrain our analysis by considering only the largest connected component of the graph, and forgetting

the direction of the edges. Thus, we obtain a graph with 1, 228 nodes, 16, 714 edges and average degree 27.
Note that the distribution of degrees is skewed to the right by the presence of highly connected nodes, and
the median of the degrees is only 13. Following the results of Theorem 4, we choose penalization parameters
for our algorithm of the form λ1 = C1

√
nρn and λ2 = C2

√
nρn. The parameter

√
ρnn is estimated by the

square root of the average degree of the nodes. In order to tune the parameters C1 and C2, we ran our
algorithm for a grid of values from 1 to 20. We found that the accuracy of our estimator for the communities
detection does not decrease significantly for a rather large range of values of C1 ( C1 ranges from 1 to 12),
as long as C2 is not too small.
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Figure 2: Link prediction error for stochastic block models with hub outliers with 200 inliers, 2 to 10 outliers,
and 20% of missing links. Three prediction methods are compared: our generalized stochastic block model
with outliers (GSBM), an SBM for incomplete data (missSBM R package) and a matrix completion method
(R package softImpute). We include a comparison to a baseline (prediction with average degree). The
experiment is performed for an increasing number of outliers (left: 2, middle: 5, right: 10). Results are
averaged across 100 replications.
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Figure 3: Link prediction error for stochastic block models with mixed membership outliers with 200
inliers, 2 to 10 outliers, and 20% of missing links. Three prediction methods are compared: our generalized
stochastic block model with outliers (GSBM), an SBM for incomplete data (missSBM R package) and a
matrix completion method (R package softImpute). We include a comparison to a baseline (prediction with
average degree). The experiment is performed for an increasing number of outliers (left: 2, middle: 5, right:
10). Results are averaged across 100 replications.
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We analyse the results obtained for C1 = 10 and C2 = 5. With this choice of parameters, our algorithm
detects s = 10 outliers. Looking more carefully at the connecivity of these outliers, we see that they
correspond to hubs, and that their degree, which is larger than 199, strongly departs from the degrees of
the remaining nodes. In fact, most of them correspond to “news aggregation” websites, consisting mainly of
links connecting to other sites (e.g. www.drudgereport.com, https://pjmedia.com/instapundit/), which
explains their hub profile. Among the n−s = 1212 remaining nodes, which are considered as inliers, 84 nodes
are missclassified. The number of missclassified nodes is comparable with the best-known methods that have
been applied for this dataset. For example, the SCORE method developped in [26] obtains a missclassification
error of 58 nodes. Benchmark methods such as convex relaxation of the maximum likelihood [10], profile
likelihood methods for degree-corrected SBM [28], as well as modularity maximization [52, 39] obtain errors
ranging from 59 to 68; however the tabu algorithm implemented to maximize these last two criterions is
highly sensitive to its (random) initialization, and the average missclassifiaction error of these two methods
based on 100 repetitions is of about 105 nodes, as it is shown in [26]. Thus, on this dataset our method leads
to a classification error comparable with benchmark methods, while being primarily designed for estimating
the connection probabilities and outliers detection.
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A Proofs

The proofs are presented as follows. First, we recall in Section A.1 some results that will be used in our
proofs. In Section A.2 we provide the details of the Algorithm 1. Section A.3 is devoted to the study of
the convergence of our algorithm. Theorem 2 is proved in Section A.4, Theorem 3 is proved in Section A.5,
while in Section A.6 we prove Theorem 4. Corollary 1 is proved in Sections A.7. Auxiliary Lemmas used
throughout these sections are proved in Section A.8.

To ease notations, we denote henceforth by ∆S = S∗ − Ŝ and ∆L = L∗ − L̂ the estimation errors of S∗

and L∗.

A.1 Tools

In our proofs, we will use Bernstein’s inequality on different occasions. We state it here for the reader’s
convenience.

Theorem 5 (Bernstein’s inequality). Let X1, ..., Xn be independent centered random variables. Assume that
for any i ∈ [n], |Xi| ≤M almost surely, then

P

∣∣∣∣∣∣
∑

1≤i≤n

Xi

∣∣∣∣∣∣ ≥
√

2t
∑

1≤i≤n

E[X2
i ] +

2M

3
t

 ≤ 2e−t (19)

We will also use Bousquet’s theorem, as stated in [18], Theorem 3.3.16.

Theorem 6 (Bousquet). Let Xi, i ∈ N be independent S-valued random variables, and let F be a countable
class of functions f = (f1, ..., fn) : S → [−1, 1]n such that E[fi(Xi)] = 0 for any f ∈ F and i ∈ [n]. Set

Z = sup
f∈F

∣∣∣∣∣ ∑1≤i≤n
fi(Xi)

∣∣∣∣∣ and v = sup
f∈F

∑
1≤i≤n

E
[
fi(Xi)

2
]
. Then, for any x > 0,

P
(
Z > E[Z] +

x

3
+
√

2x(2E[Z] + v)
)
≤ exp(−x).

To bound the operator norm of random matrices with high probability, we use Corollary 3.6 in [4].

Proposition 1 (Bandeira, Van Handel, 2016). Let X be a n×n symmetric random matrix with Xij = ξijbij,
where {ξij}i≤j are independant symmetric random variables with unit variance, and {bij}i≤j are fixed scalars.

Let σ , max
i

√∑
j b

2
ij , then for any α ≥ 3

E
[
‖X‖op

]
≤ e 2

3

(
2σ + 14αmax

ij

(
E
[
(ξijbij)

2α
]) 1

2α √
log(n)

)
.

The following high-probability bound on the spectral norm of a random matrix is based on Remark 3.13 in
[4]. This remark provides a bound up to an unspecified absolute constant. In order to make this constant
explicit, we follow the lines of the proof of this remark, and we combine Theorem 6.10 in [8], Proposition 1,
and a symetrization argument (see, e.g., Corollary 3.3 in [4]) to obtain the following proposition.

Proposition 2. Let X be an n × n symmetric matrix with Xij = ξijbij, where {ξij}i≤j are independent
centered random variables with unit variance, and {bij}i≤j are fixed scalars. Then for every t ≥ 0 and every
α ≥ 3,

P
(
‖X‖op ≥ 2e

2
3

(
2σ + 14αmax

ij

(
E
[
(ξijbij)

2α
]) 1

2α √
log(n)

)
+ t

)
≤ e−t

2/2σ̃∗
2
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where we have defined σ̃∗ , max
ij
|Xij | and σ , max

i

√∑
j b

2
ij.

Proof. To prove the desired high-probability bound, we first bound the expectation of the spectral norm,

using the same symmetrization trick as in Corollary 3.3 in [4]. Let X
′

be an independent copy of the random

matrix X, and let Y be the symmetric matrix with random entries defined as Y ij , Xij −X
′

ij for any

(i, j) ∈ [n] × [n]. Note that, for any (i, j) ∈ [n] × [n], i < j, Y ij =
√

2bij ×
(
ξij − ξ

′

ij

)
/
√

2, where ξij are

independent copies of ξij , and
(
ξij − ξ

′

ij

)
/
√

2 are symmetric random variable with unit variance. Applying

Proposition 1, we find that

E
[
‖Y ‖op

]
≤ e 2

3

(
2σY + 14αmax

ij

(
E
[((

ξij − ξ
′

ij

)
bij

)2α]) 1
2α √

log(n)

)

with σY , max
i

√∑
j 2b2ij =

√
2σ. Moreover for any (i, j) ∈ [n] × [n],

(
E
[((

ξij − ξ
′

ij

)
bij

)2α]) 1
2α

≤

2
(
E
[
(ξijbij)

2α
]) 1

2α

. Recall thatX is centered. Then, by Jensen inequality, E
[
‖X‖op

]
= E

[
‖X − E [X]‖op

]
≤

E
[∥∥∥X −X ′∥∥∥

op

]
= E

[
‖Y ‖op

]
. Hence,

E
[
‖X‖op

]
≤ 2e

2
3

(
2σ + 14αmax

ij

(
E
[
(ξijbij)

2α
]) 1

2α √
log(n)

)
. (20)

Then, we use Talagrand’s concentration inequality (see [8], Theorem 6.10) and find that for any t > 0,

P
[
‖X‖op ≥ E ‖X‖op + t

]
≤ e

−t2
2σ̃∗ (21)

Combining equations (20) and (21) yields the desired result.

A.2 Mixed coordinate gradient descent algorithm

Below, we describe the details of our algorithm. At iteration t = 0, we initialize the parameters (S(0),L(0), R(0));

then, at iteration t ≥ 1, we start by updating S. Denote by G
(t−1)
S = −2Ω � (A − L(t−1) − S(t−1) −

(S(t−1))>)+ εS(t−1) the gradient with respect to S of the quadratic part of the objective function, evaluated

at (S(t−1),L(t−1)). The column-wise sparse component S is updated with a proximal gradient step:

S(t) ∈ argmin

(
ηλ2 ‖S‖2,1 + 1

2

∥∥∥S − S(t−1) + ηG
(t−1)
S

∥∥∥2
F

)
,

= Tcηλ2

(
S(t−1) − ηG(t−1)

S

)
,

(22)

where Tcηλ2
is the column-wise soft-thresholding operator such that for any M ∈ Rn×n and for any λ > 0,

the j-th column of Tcλ(M) is given by (1 − λ/‖M.,j‖2)+M.,j . The step size η is constant and fixed in
advance, and satisfies η ≤ 1/(2 + ε). Then, we compute the adaptive upper bound R̄(t) as follows:

R̄(t) = λ−11 Φε(S
(t),L(t−1), R(t−1)). (23)

Note that, by definition:

Φε(S
(t−1),L(t−1), R(t−1)) ≥ Φε(Ŝε, L̂ε, R̂)

=
1

2
‖Ω� (A− L̂ε − Ŝε − (Ŝε)

>)‖2F + λ1‖L̂ε‖∗ + λ2‖Ŝε‖2,1

+
ε

2
(‖L̂ε‖2F + ‖Ŝε‖2F )

≥ λ1‖L̂ε‖∗,
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since every term in the objective function is non-negative. As a result, we obtain that

‖L̂ε‖∗ ≤ λ−11 Φε(S
(t−1),L(t−1), R(t−1)),

and we get the upper bound (23). Finally, the low-rank component given by (L, R) is updated using a
conjugate gradient step as follows:(

L(t), R(t)
)

=
(
L(t−1), R(t−1)

)
+ βt

(
L̃

(t) −L(t−1), R̃(t) −R(t−1)
)
, (24)

where βt ∈ [0, 1] is a step size defined later on. Denote byG
(t−1)
L = −Ω�(A−L(t−1)−S(t)−(S(t))>)+εL(t−1)

the gradient with respect to L of the quadratic part of the objective function, evaluated at (S(t),L(t−1)).

The direction (L̃
(t)
, R̃(t)) is defined by:(

L̃
(t)
, R̃(t)

)
∈ argminZ,R 〈Z,G(t−1)

L 〉+ λ1R

such that ‖Z‖∗ ≤ R ≤ R̄(t).
(25)

Let σ1 be the largest singular value of the gradient matrix G
(t−1)
L , and let u1 and v1 be the corresponding

left and right singular vectors. Then, (25) admits the following closed-form solution:(
L̃

(t)
, R̃(t)

)
=

{
(0, 0) if λ1 ≥ σ1

(−R̄(t)u1v
>
1 , R̄

(t)) if λ1 < σ1.
(26)

The step size βt is set to:

βt = min

{
1,
〈L(t−1) − L̃(t)

,G
(t−1)
L 〉+ λ1(R(t−1) − R̃(t))

(1 + ε)‖L̃(t) −L(t−1)‖2F

}
. (27)

We show in appendix A.3 that this choice of step size ensures that the objective function decreases at
every iteration. The above steps are repeated iteratively until convergence, or for a predefined number
of iterations. In practice, we stop the algorithm when the relative decrease of the objective falls below a
predefined threshold (e.g., 10e-6).

A.3 Proof of Theorem 1

To prove Theorem 1, we proceed in three steps. First, we demonstrate that the objective function decreases
after every update of S or L. In a second step, we compute a lower bound on the amount by which the
objective function decreases at each iteration. In a third step, we use this lower bound to demonstrate that
the distance to the optimal solution at iteration t ≥ 1, ∆t = Φε(S

(t),L(t−1), R(t−1))−Φε(Ŝ, L̂, R̂), decreases
at a rate of the order of 1/t.

Decrease of the objective between successive iterations: We start by showing that the proximal up-
date for the S block yields a decrease of the objective. For t ≥ 1, denoteQ(t−1) = λ−12 Φε(S

(t−1),L(t−1), R(t−1)),
and

gS(S(t−1),L(t−1)) = 〈GS(S(t−1),L(t−1)),S(t−1) − S̃(t−1)〉+ λ2(‖S(t−1)‖2,1 − ‖S̃(t−1)‖2,1). (28)

In (28), GS(S(t−1),L(t−1)) = −2Ω� (A−L(t−1)−S(t−1)− (S(t−1))>) + εS(t−1) is the gradient matrix with

respect to S of the quadratic part of the objective function, evaluated at (S(t−1),L(t−1)), and

S̃(t−1) = arg min
S

〈GS(S(t−1),L(t−1)),S〉+ λ2‖S‖2,1 s.t. ‖S‖2,1 ≤ Q(t−1).

Lemma 3. For t ≥ 1, the proximal update for the S block defined in (22) satisfies:

Φε(S
(t),L(t−1), R(t−1)) ≤ Φε(S

(t−1),L(t−1), R(t−1))− η

2

g2S(S(t−1),L(t−1))2

(2Q(t−1))
.

19



Proof. See Section A.8.3.

We now prove a similar result, this time concerning the (L, R) block update. Recall that, for t ≥ 1,

R̄(t) = λ−11 Φε(S
(t),L(t−1), R(t−1)).

gL(S(t),L(t−1), R(t−1)) = 〈GL(S(t),L(t−1)),L(t−1) − L̃(t−1)〉+ λ1(R(t−1) − R̃(t−1)). (29)

In (29), GL(S(t),L(t−1)) = −Ω � (A − L(t−1) − S(t) − (S(t))>) + εL(t−1) is the gradient matrix with

respect to L of the quadratic part of the objective function, evaluated at (S(t),L(t−1)). Recall that M (t) =

‖GL(S(t),L(t−1))‖F . We prove the following result, which ensures a decrease of the objective function after
the conditional gradient update.

Lemma 4. For t ≥ 1, the conditional gradient update for the (L, R) block defined in (26) satisfies:

Φε(S
(t),L(t), R(t))− Φε(S

(t),L(t−1), R(t−1)) ≤ − g2L(S(t),L(t−1), R(t−1))

max{2R̄(t)(λ1 +M (t)), 8(1 + ε)(R̄(t))2}
.

Moreover,

Φε(S
(t),L(t), R(t))− Φε(S

(t),L(t−1), R(t−1)) ≤ − (1 + ε)

2
‖L(t) −L(t−1)‖2F . (30)

Proof. See Section A.8.4.

Lower bound on the decrement Φε(S
(t),L(t−1), R(t−1))−Φε(S

(t+1),L(t), R(t)): Consider the function

gt(Q(t), R̄(t))
4
= gS(S(t),L(t−1)) + gL(S(t),L(t−1), R̄(t−1)).

In what follows, we compute upper and lower bounds on gt(Q(t), R̄(t)). Note that gt(Q(t), R̄(t)) depends on
(Q(t), R̄(t)), because computing gS and gL involve solving constrained optimization problems, which depend
on Q(t) and R̄(t), respectively. By convexity of the quadratic term ‖Ω� (A−L−S−S>)‖2F /2+ ε/2(‖L‖2F +
‖S‖2F ), we obtain that:

gt(Q(t), R̄(t)) ≥ Φε(S
(t),L(t−1), R(t−1))− Φε(S̃

(t)
, L̃

(t−1)
, R̃(t−1)).

Then, by definition of the minimizer (Ŝε, L̂ε, R̂):

gt(Q(t), R̄(t)) ≥ Φε(S
(t),L(t−1), R(t−1))− Φε(Ŝε, L̂ε, R̂), (31)

which gives the lower bound on gt(Q(t), R̄(t)).

Let us now compute an upper bound for gt(Q(t), R̄(t)). To do so, we start by upper bounding gS(S(t),L(t−1))
defined in (28). By definition,

gS(S(t−1),L(t−1)) = max
‖S‖2,1≤Q(t)

{〈GS(S(t),L(t−1)),S(t) − S〉+ λ2(‖S(t)‖2,1 − ‖S‖2,1)}

= max
‖S‖2,1≤Q(t)

{〈GS(S(t),L(t)),S(t) − S〉

+〈GS(S(t),L(t−1))−GS(S(t),L(t)),S(t) − S〉+ λ2(‖S(t)‖2,1 − ‖S‖2,1)}

≤ max
‖S‖2,1≤Q(t)

{
〈GS(S(t),L(t)),S(t) − S〉+ λ2(‖S(t)‖2,1 − ‖S‖2,1)

+‖GS(S(t),L(t−1))−GS(S(t),L(t))‖F ‖S(t) − S‖F
}
.

≤ 〈GS(S(t),L(t)),S(t)〉+ λ2‖S(t)‖2,1 − min
‖S‖2,1≤Q(t)

{
〈GS(S(t),L(t)),S〉+ λ2‖S‖2,1

}
︸ ︷︷ ︸

I

+ max
‖S‖2,1≤Q(t)

{
‖GS(S(t),L(t−1))−GS(S(t),L(t))‖F ‖S(t) − S‖F

}
︸ ︷︷ ︸

II

20



On the one hand, by definition of S̃
(t)

and gS(S(t),L(t)) (see (28) and (A.3)), we have:

I ≤ gS(S(t),L(t)). (32)

On the other hand, by definition of Q(t), ‖S(t)‖2,1 ≤ Q(t), which implies ‖S(t)‖F ≤ Q(t); combined with

‖S‖F ≤ Q(t), we obtain that that ‖S(t)−S‖F ≤ 2Q(t). Note also that, as the gradient GS is (1+ε)-Lipschitz,

we have ‖GS(S(t),L(t−1))−GS(S(t),L(t))‖F ≤ (1 + ε)‖L(t−1) −L(t)‖F . Finally we obtain:

II ≤ 2Q(t)(1 + ε)‖L(t−1) −L(t)‖F . (33)

Combining (32) and (33), we finally obtain:

gS(S(t−1),L(t−1)) ≤ gS(S(t),L(t)) + 2Q(t)(1 + ε)‖L(t−1) −L(t)‖F . (34)

We now use (34) to derive our upper bound on gt(Q(t), R̄(t)) as follows. Using Lemma 3 and Lemma 4, we
obtain that:

(g(t)(Q(t), R̄(t)))2 ≤ 2
{
g2L(S(t),L(t−1), R(t−1)) + g2S(S(t),L(t)) + 4(Q(t))2(1 + ε)2‖L(t−1) −L(t)‖2F

}
≤ 2

{
(C

(t)
1 + C

(t)
3 )(Φε(S

(t),L(t−1), R(t−1))− Φε(S
(t),L(t), R(t)))

+C
(t)
2 (Φε(S

(t),L(t), R(t))− Φε(S
(t+1),L(t), R(t)))

}
,

where

C
(t)
1 = max{2R̄(t)(λ1 +M (t)), 8(1 + ε)(R̄(t))2}, C

(t)
2 =

8(Q(t))2

η
, C

(t)
3 = 8(1 + ε)(Q(t))2.

Define:
C(t) = 2 max{C(t)

1 + C
(t)
3 , C

(t)
2 }. (35)

We finally have the following lower bound:

(g(t)(Q(t), R̄(t)))2 ≤ C(t)(Φε(S
(t),L(t−1), R(t−1))− Φε(S

(t+1),L(t), R(t))).

Convergence rate of order 1/t: Recall that ∆t := Φε(S
(t),L(t−1), R(t−1)) − Φε(Ŝε, L̂ε, R̂). Using the

fact that
(g(t)(Q(t), R̄(t)))2 ≥ (∆t)2,

proven in (31), we obtain that

∆t+1 ≤ ∆t − 1

C(t)
(∆t)2.

We use the following Lemma (see, e.g. [5, Lemma 3.5], [42, Lemma 8]).

Lemma 5. Let {Ak}k≥1 be a non-negative sequence satisfying:

Ak+1 ≤ Ak − γkA2
k, k ≥ 1,

where γk > 0 for any k ≥ 1. Then,

Ak+1 ≤
1

1
A1

+
∑k
i=1 γi

.

Proof. See Section A.9

Lemma 5 yields that:

∆t+1 ≤ 1

(∆1)−1 +
∑t
i=1

1
C(i)

.

21



noting that ∆1 ≤ ∆̃0 := Φε(S
(0),L(0), R(0))− Φε(Ŝε, L̂, R̂), we have:

∆t+1 ≤ 1

(∆̃0)−1 +
∑t
i=1

1
C(i)

. (36)

Let us derive an upper bound on the time-varying constants C(t) defined in (35). We only need to bound

R̄(t), M (t) and Q(t). First note that, by Lemmas 3 and 4, R̄(t) ≤ λ−11 Φε(S
(0),L(0), R(0)), and Q(t) ≤

λ−12 Φε(S
(0),L(0), R(0)). To bound M (t) = ‖GL(S(t),L(t−1))‖F , we start by noticing that the gradient

GL(S(t),Lt−1) of the quadratic part of the objective with respect to L is bounded whenever S(t) and L(t−1)

are bounded themselves. Since λ1‖L(t−1)‖∗ + λ2‖S(t)‖2,1 ≤ Φε(S
(t),L(t−1), R(t−1)) ≤ Φε(S

(0),L(0), R(0)),
the parameters S and L are indeed bounded, and we obtain that there exists M̄ ≥ 0 such that M (t) ≤ M̄

for any t. Define F0
4
= Φε(S

(0),L(0), R(0)),

C̄1 = max{8λ−11 (1 + ε)F2
0 , 2λ

−1
1 F0(λ1 + M̄)}, C̄2 =

8F2
0

ηλ22
, C̄3 = 8λ−12 (1 + ε)F2

0 ,

and

C̄
4
= max

{
C̄1 + C̄3, C̄2

}
.

Then, we obtain the following rate of convergence:

∆t+1 ≤ 1

(∆̃0)−1 +
∑t
i=1

1
C(i)

≤ 1

(∆̃0)−1 + tC̄
. (37)

Recall that Φε(Ŝε, L̂ε, R̂) = F(Ŝε, L̂ε) by equivalence of the two optimization problems (4) and (5). In

addition, by definition, ‖L(t−1)‖∗ ≤ R(t−1), which gives Fε(S(t),L(t−1)) ≤ Φε(S
(t),L(t−1), R(t−1)). Thus,

we obtain that Fε(S(t),L(t−1))−Fε(Ŝε, L̂ε) ≤ Φε(S
(t),L(t−1), R(t−1))− Φε(Ŝε, L̂ε, R̂) ≤ ∆t+1.

For δ > 0, let Tδ be the integer number defined by:

Tδ
4
=

⌊
C̄

(
1

δ
− 1

F0 −Fε(Ŝε, L̂ε)

)⌋
+ 1.

Then, the Tδ-th iterate of the MCGD sequence satisfies:

Fε(S(Tδ),L(Tδ))−Fε(Ŝε, L̂ε) ≤ δ,

which proves sub-linear convergence of the MCGD iterates. Note that, by definition, F0 − Fε(Ŝε, L̂ε) ≥ 0,
which implies that Tδ ≤

⌊
C̄/δ

⌋
+ 1. In addition, in the particular case where the initial point is set

to (S(0),L(0), R(0)) = (0,0, 0), we can compute an upper bound on the constant C̄, dependent on the
dimensions of the problem. First, note that in this case, F0 = 1

2‖Ω�A‖
2
F is equal to the number of observed

edges in the graph, denoted by E. Furthermore, by definition,

M (t) = ‖GL(S(t),L(t−1))‖F ≤ ‖Ω� (A−L(t−1) − S(t) − (S(t))>)‖F + ‖εL(t−1)‖F .

Since, by Lemmas 3 and 4, the objective value decreases at every update of L and S. As all the terms of the
objective are positive, we have that ‖Ω � (A − L(t−1) − S(t) − (S(t))>)‖2F ≤ F0 = E, and ‖εL(t−1)‖2F ≤ E

as well. Thus, we obtain that, for any t, M (t) ≤ 2
√
E, which yields M̄ ≤ 2

√
E. We then obtain that the

constant C̄ satisfies

C̄ ≤ C̄0
4
= max

{
2E2

ηλ22
, 8(1 + ε)E2

(
1

λ1
+

1

λ2

)
+

2E3/2

λ1
+ 2E

}
, (38)

meaning that the number of iterations increases at most quadratically with the density of the graph. Note
that, in practice, the convergence is much faster, and we observe that the algorithm converges after a few
iterations.
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A.4 Proof of Theorem 2

Recall that, by Lemma 1,

j ∈ Ô ⇔
∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)

+

∥∥∥∥
2

>
λ2
4
.

In a first time, we show that with high probability, no inlier belongs to the set of estimated outliers. Consider
j ∈ I, then

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≤

√√√√∑
i∈I

(
Ωij

(
Aij − L̂ij − Ŝji

)
+

)2

+

√√√√∑
i∈O

(
Ωij

(
Aij − L̂ij − Ŝji

)
+

)2

≤

√√√√∑
i∈I

(
Ωij

(
Σij + ∆Lij − Ŝji

)
+

)2

+

√∑
i∈O

(ΩijAij)
2

where we have used that for (i, j) ∈ I × I, Aij = Σij + L∗ij and that L̂ij ≥ 0 and Ŝij ≥ 0. Therefore, we
find that∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)

+

∥∥∥∥
2

≤
√∑

i∈I
(ΩijΣij)

2
+ +

√∑
i∈I

(Ωij∆Lij)
2
+ +

√∑
i∈O

(ΩijAij)
2
.

Recalling that ‖∆L‖∞ ≤ ρn, we obtain

max
j∈I

{∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

}
≤

∥∥Ω�Σ|I
∥∥
2,∞ + ρn

∥∥Ω|I∥∥2,∞ +
∥∥Ω�A|O×I∥∥2,∞ . (39)

We bound
∥∥Ω�Σ|I

∥∥
2,∞, ρn

∥∥Ω|I∥∥2,∞ and
∥∥Ω�A|O×I∥∥2,∞ using the following Lemma.

Lemma 6. Under assumptions 1-3,

P
(∥∥Ω�Σ|I

∥∥
2,∞ ≥

√
6νnρnn

)
≤ 2e−νnρnn (40)

P
(∥∥Ω|I∥∥2,∞ ≥ 4

√
νnn

)
≤ 2e−νnn (41)

P
(∥∥Ω�A|O×I∥∥2,∞ ≥√6νnρnn

)
≤ 2e−νnρnn. (42)

Proof. See Section A.8.5

Recall that λ2 = 19
√
νnρnn. Combining Lemma 6, Lemma 2 and equation (39) yields that with proba-

bility larger than 1− 6e−νnρnn,

max
j∈I

{∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

}
≤ 9

√
νnρnn <

λ2
2
.

Using Lemma 1, we conclude that with probability at least 1− 6e−νnρnn, Ô ∩ I = ∅.

A.5 Proof of Theorem 3

Here, we prove that with high probability, all outliers are detected when min
j∈O

∑
i∈I

ΠijS
∗
ij > Cρnνnn for some

absolute constant C > 0. For any j ∈ [n], note that

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≥

√√√√∑
i∈I

(
Ωij

(
Aij − L̂ij − Ŝji

)
+

)2

.
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We have shown in Theorem 2 that with probability at least 1− 6e−νnρnn, Ŝji = 0 for any i ∈ I and any

j ∈ [n] . When this equation holds, using the bound
∥∥∥L̂∥∥∥

∞
≤ ρn, we find that

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≥
√∑

i∈I

(
Ωij (Aij − ρn)+

)2
. (43)

We use the following Lemma to obtain a lower bound on the right hand side of equation (43) when j ∈ O.

Lemma 7. Assume that min
j∈O

∑
i∈I

ΠijS
∗
ij ≥ νnρnn, then

P

min
j∈O

√∑
i∈I

(
Ωij (Aij − ρn)+

)2
≤ 1

4
min
j∈O

√∑
i∈I

ΠijS
∗
ij

 ≤ 2se−
−νnρnn

80 .

Proof. See Section A.8.6.

Combining this Lemma with equation (43), we see that with probability at least 1−2se−
−νnρnn

80 −6e−νnρnn,∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≥ 1

4
min
j∈O

√∑
i∈I

ΠijS
∗
ij . (44)

Recall that λ2 = 19
√
νnρnn. When min

j∈O

∑
i∈I

ΠijS
∗
ij > 8 × 19νnρnn, Lemma 7 and equation (44) imply

that with probability larger than 1− 2se−
−νnρnn

80 − 6e−νnρnn,∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

>
λ2
2
.

Combining this result with Lemma 1, we find that with probability at least 1 − 2se−
−νnρnn

80 − 6e−νnγnn ≥
1− 8se−

−νnρnn
80 , O ⊂ Ô. This concludes the proof of Theorem 3.

A.6 Proof of Theorem 4

To prove Theorem 4, we use the definition of L̂, the separability of the ‖ · ‖∗-norm on orthogonal subspaces,

and results on Ŝ proved in Theorem 3. Recall that Ψ , 16ν̃nγnρnsn.

Lemma 8. Assume that λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

, and that λ2 = 19
√
νnρnn. Then,

‖Ω�∆L‖2F ≤ λ1
3

(
5 ‖PL∗ (∆L)‖∗ −

∥∥P⊥L∗ (∆L)
∥∥
∗

)
+ Ψ (45)

and ‖∆L‖∗ ≤ 6
√
k
∥∥∆L|I

∥∥
F

+ 6
√

3ksnρn +
3Ψ

λ1
. (46)

hold simultaneously with equation (15) with probability at least 1− 6e−νnρnn − 2e−ν̃nγnsn.

Proof. See Section A.8.7.

Bounding the ‖ · ‖L2(Π)-norm of the error ∆L by ‖Ω�∆L‖2F is rather involved, and we use a peeling
argument, combined with the bound on ‖∆L‖∗ obtained in equation (46) in Lemma 8. We recall that Γ is
the random matrix defined as Γij = εijΩij for all (i, j) ∈ [n]× [n], where {ε}i≤j is a Rademacher sequence.
Moreover, we introduce the following notation :

β , E
[∥∥Γ|I∥∥op](482ρ2nk

µn
E
[∥∥Γ|I∥∥op]+ 60ρ2n

√
ksn+

32Ψρn
λ1

)
. (47)

24



Lemma 9. Assume that λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

, and that λ2 = 19
√
νnρnn. Then, there exists an absolute

constant C > 0 such that ∥∥∆L|I
∥∥2
L2(Π)

≤ C
(
λ21k

µn
+ νnρ

2
nsn+

νnρ
2
nkn

µn
+ Ψ + β

)
(48)

holds simultaneously with equations (15), (45) and (46) with probability at least 1− 7e−νnρnn − 2e−ν̃nγnsn.

Proof. See Section A.8.8.

Finally, we bound β using the following lemma.

Lemma 10. E
[∥∥Γ|I∥∥op] ≤ 84

√
νnn.

Lemma 10 implies that there exists some absolute constant C > 0 such that

β ≤ C
√
νnn

(
ρ2nk

µn

√
νnn+ ρ2n

√
skn+

Ψρn
λ1

)
.

Proof. See Section A.8.9.

Thus, there exists an absolute constant C > 0 such that when equation (48) holds,

β ≤ C

(
νnρ

2
nkn

µn
+ ρ2nn

√
νnsk +

Ψ
√
νnnρn
λ1

)
.

Combining Lemma 4 and Lemma 8-9, and noticing that
√
νnsk ≤ νns + k and that νn

µn
≥ 1, we find that

there exists an absolute constant C > 0 such that with probability at least 1− 7e−νnρnn − 2e−ν̃nγnsn,∥∥∆L|I
∥∥2
L2(Π)

≤ C

(
λ21k

µn
+ νnρ

2
nsn+

νnρ
2
nkn

µn
+ Ψ +

νnρ
2
nkn

µn
+ ρ2nn

√
νnsk +

Ψ
√
νnnρn
λ1

)
≤ C

(
λ21k

µn
+ nρ2n

(
νns+

νnk

µn

)
+ Ψ

(√
νnnρn
λ1

+ 1

))
.

Recall that Φ , nρ2n

(
νnk
µn

+ νns
)

, and that Ξ ,
√
νnnρn
λ1

+ 1. With these notations, we find that

∥∥∆L|I
∥∥2
L2(Π)

≤ C
(
λ21k

µn
+ Φ + ΨΞ

)
with probability at least 1 − 7e−νnρnn − 2e−ν̃nγnsn. We conclude the proof of Theorem 4 by recalling that
νnρnn ≥ log(n) and ν̃nγnn ≥ log(n).

A.7 Proof of Corollary 1

Lemma 2 allows us to choose λ1 by bounding the noise terms
∥∥Ω�Σ|I

∥∥
op

with high probability. For the

choice λ1 = 84
√
νnρnn, we find that

Ξ =

(
1 +

√
νnρ2nn

84
√
νnρnn

)
≤ 2.

Combining Lemma 2 with Theorem 4, we find that there exists an absolute constant C > 0 such that with
probability at least 1− 7e−νnρnn − 3e−ν̃nγnns,∥∥∆L|I

∥∥2
L2(Π)

≤ C

(
νnρnkn

µn
+ nρ2n

(
νnk

µn
+ νns

)
+ νnν̃nρnγnsn

)
≤ C

(
νnρnkn

µn
+ ρn(νnρn ∨ ν̃nγn)sn

)
.
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A.8 Proof of auxiliary Lemmas

A.8.1 Proof of Lemma 1

Recall that by definition of Ŝ,

Ŝ ∈ arg min
S∈Rn×n+

{
1

2

∥∥∥Ω� (A− L̂− S − S>)∥∥∥2
F

+ λ2 ‖S‖2,1

}
(49)

Now, any subgradient of the objective function (49) at Ŝ is of the form

∇SF
(
Ŝ, L̂

)
= 2Ω�

(
−A+ L̂+ Ŝ + Ŝ

>)
+ λ2W

where W is a subgradient of the ‖·‖2,1-norm at Ŝ. The matrix W obeys the following constraints :

• for any j ∈ [n] such that the column Ŝ·,j is null, ‖W ·,j‖2 ≤ 1;

• for any j ∈ [n] such that Ŝ·,j 6= 0, ‖W ·,j‖2 =
Ŝ·,j

‖Ŝ·,j‖
2

.

The Karush-Kuhn-Tucker conditions (see, e.g., [9], Section 5.5.3) imply that there exists H ∈ Rn×n and
W ∈ ∂ ‖·‖2,1 such that

2Ω�
(
−A+ L̂+ Ŝ + Ŝ

>)
+ λ2W −H = 0 (50)

Hij ≥ 0 for any (i, j) ∈ [n]× [n] (51)

H � Ŝ = 0 (52)

First, we prove the implication Ŝ·,j = 0⇒
∥∥∥∥Ω� (Aj,· − L̂j,· − Ŝj,·

)
+

∥∥∥∥
2

≤ λ2

2 . To do so, assume that j

is such that Ŝ·,j = 0. Then, equation (50) implies that

λ2W ·,j = 2Ω�
(
A·,j − L̂·,j − Ŝj,·

)
+H ·,j .

Recall that ‖W ·,j‖2 ≤ 1, and thus

2

λ2

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)+
1

2
H ·,j

∥∥∥∥
2

≤ 1.

Moreover, by (51), Hij ≥ 0. Therefore,

2

λ2

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)
+

∥∥∥∥
2

≤ 2

λ2

∥∥∥∥∥
(

Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

)
+

1

2
H ·,j

)
+

∥∥∥∥∥
2

≤ 2

λ2

∥∥∥∥Ω·,j � (A·,j − L̂·,j − Ŝj,·)+
1

2
H ·,j

∥∥∥∥
2

≤ 1.

This concludes the proof of the first implication.

To prove the other implication, assume that j is such that Ŝ·,j 6= 0. Then W ·,j =
Ŝ·,j

‖Ŝ·,j‖
2

, and equation

(50) becomes2 +
λ2∥∥∥Ŝ·,j∥∥∥

2

 Ŝ·,j = 2Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

)
+H ·,j + 2 (1−Ω·,j)� Ŝ·,j .
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First, assume that for some i ∈ [n], Hij 6= 0. Then, equation (52) implies that Ŝij = 0, and so

Ωij

(
Aij − L̂ij − Ŝji

)
= −Hij/2 < 0.

On the other hand, assume that for i ∈ [n], Hij = 0. Then, Ŝij ≥ 0 implies that

Ωij

(
Aij − L̂ij − Ŝji

)
+ (1−Ωij) Ŝij ≥ 0

which implies that Ωij

(
Aij − L̂ij − Ŝji

)
≥ 0. This shows that for j ∈ [n] such that Ŝ·,j 6= 0,2 +

λ2∥∥∥Ŝ·,j∥∥∥
2

 Ŝ·,j = 2Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

)
+

+ 2 (1−Ω·,j)� Ŝ·,j . (53)

Now, for all i such that Ωij = 0, equation (53) becomes

(
2 + λ2

‖Ŝ·,j‖
2

)
Ŝij = 2Ŝij , and thus Ŝij = 0. This

remarks, combined with equation (53), implies that2 +
λ2∥∥∥Ŝ·,j∥∥∥

2

 Ŝ·,j = 2Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

)
+
.

This implies in particular that

2

∥∥∥∥(Ω·,j �
(
A·,j − L̂·,j − Ŝj,·

))
+

∥∥∥∥
2

= 2
∥∥∥Ŝ·,j∥∥∥

2
+ λ2 > λ2.

This concludes the proof of Lemma 1.

A.8.2 Proof of Lemma 2

Note that Ω�Σ|I is a symmetric random matrix with independent centered entries. Moreover, for (i, j) ∈
I×I, (Ω�Σ)ij = bijξij , where we define bij , ΠijL

∗
ij

(
1−L∗ij

)
and ξij =

ΩijΣij

bij
. With these notations, we

see that max
ij

E
[
(ξijbij)

2α
] 1

2α ≤ 1 and that max
i

√∑
j b

2
ij ≤ νnρnn. Applying Proposition 2 for t =

√
2νnρnn

and α = 3, we find that

P
(∥∥∥(Ω�Σ)|I

∥∥∥
op
≥
√

2e
2
3

(
2
√
νnρnn+ 42

√
log(n)

)
+
√

2νnρnn

)
≤ e−νnρnn.

We conclude the proof of Lemma 2 by recalling that log(n) ≤ νnρnn.

A.8.3 Proof of Lemma 3

First, using the 2-smoothness of the least-squares data fitting term and the ε-smoothness of the ridge regu-
larization, we obtain that:

F(S(t),L(t−1), R(t−1)) ≤ F(S(t−1),L(t−1), R(t−1)) + 〈GS(S(t−1),L(t−1)),S(t) − S(t−1)〉

+
2 + ε

2
‖S(t) − S(t−1)‖2F + λ2(‖S(t)‖2,1 − ‖S(t−1)‖2,1). (54)

Then, by definition of the proximal operator, we have that:

S(t) ∈ arg min
(
ηλ2‖S‖2,1 + 1

2‖S− S(t−1) − ηGS(S(t−1),L(t−1))‖2F
)

∈ arg min
(
〈GS(S(t−1),L(t−1)),S− S(t−1)〉+ 1

2η‖S− S(t−1)‖2F
+λ2(‖S‖2,1 − ‖S(t−1)‖2,1)

)
.

(55)
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Combining (54), (55) and the fact that η ≤ 1/(2 + ε), we obtain that, for any S ∈ Rn×n:

F(S(t),L(t−1), R(t−1)) ≤ F(S(t−1),L(t−1), R(t−1)) + 〈GS(S(t−1),L(t−1)),S− S(t−1)〉

+
1

2η
‖S− S(t−1)‖2F + λ2(‖S‖2,1 − ‖S(t−1)‖2,1).

In particular, for matrices of the form bS̃
(t−1)

+ (1− b)S(t−1), b ∈ R, we obtain:

F(S(t),L(t−1), R(t−1)) ≤ F(S(t−1),L(t−1), R(t−1)) + b〈GS(S(t−1),L(t−1)), S̃(t−1) − S(t−1)〉

+
b2

2η
‖S̃(t−1) − S(t−1)‖2F + λ2(‖bS̃(t−1) + (1− b)S(t−1)‖2,1 − ‖S(t−1)‖2,1),

and, using the triangular inequality:

F(S(t),L(t−1), R(t−1)) ≤ F(S(t−1),L(t−1), R(t−1)) + b〈GS(S(t−1),L(t−1)), S̃(t−1) − S(t−1)〉

+
b2

2η
‖S̃(t−1) − S(t−1)‖2F + bλ2(‖S̃(t−1)‖2,1 − ‖S(t−1)‖2,1). (56)

Finally, minimizing the right hand side of (56) with respect to b, we obtain the final result:

F(S(t),L(t−1), R(t−1))−F(S(t−1),L(t−1), R(t−1)) ≤ −ηgS(S(t−1),L(t−1))2

(2Q(t−1))2
,

where we have used that ‖S̃(t−1) − S(t−1)‖2F ≤ (2Q(t−1))2.

A.8.4 Proof of Lemma 4

We first observe, using a Taylor expansion of the quadratic term of the objective function (the least-squares
data fitting term plus the ridge regularization term), and (24) that:

F(S(t),L(t), R(t)) = F(S(t),L(t−1), R(t−1))− βtgL(S(t),L(t−1), R(t−1)) +
β2
t (1 + ε)

2
‖L̃(t) −L(t−1)‖2F .

Now, recall that

βt = min

{
1,
〈L(t−1) − L̃(t)

,GL(S(t),L(t−1))〉+ λ1(R(t−1) − R̃(t))

(1 + ε)‖L̃(t) −L(t−1)‖2F

}
,

with (L̃
(t)
, R̃(t)) defined in (25), and gL in (29).

Case 1: 〈GL(S(t),L(t−1)),L(t−1)− L̃(t)〉+λ1(R(t−1)− R̃(t)) ≥ (1 + ε)‖L̃(t)−L(t−1)‖2F . Then, βt = 1, and

gL(S(t),L(t−1), R(t−1)) ≥ (1 + ε)‖L̃(t) −L(t−1)‖2F . As a result, we observe:

F(S(t),L(t), R(t))−F(S(t),L(t−1), R(t−1)) ≤ −1

2
gL(S(t),L(t−1), R(t−1))

≤ −1

2

(gL(S(t),L(t−1), R(t−1)))2

gL(S(t),L(t−1), R(t−1))
(57)

≤ −1

2

(gL(S(t),L(t−1), R(t−1)))2

R̄(t)(λ1 + 2M (t))
,

where, to obtain the last inequality, we have used that M (t) = ‖GL(S(t),L(t−1))‖F ≥ ‖GL(S(t),L(t−1))‖op,
and the inequalities R(t−1) − R̃(t) ≤ R̄(t) and

〈GL(S(t),L(t−1)),L(t−1) − L̃(t−1)〉 ≤ 2M (t)R̄(t).
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Case 2: 〈GL(S(t),L(t−1)),L(t−1) − L̃(t)〉 + λ1(R(t−1) − R̃(t)) < (1 + ε)‖L(t−1) − L̃(t)‖2F . Then, βt =

gL(S(t),L(t−1), R(t−1))/((1 + ε)‖L(t−1) − L̃(t)‖2F ), and we obtain:

F(S(t),L(t), R(t))−F(S(t),L(t−1), R(t−1)) ≤ −1

2

(gL(S(t),L(t−1), R(t−1)))2

(1 + ε)‖L(t−1) − L̃(t)‖2F

≤ −1

2

(gL(S(t),L(t−1), R(t−1)))2

(1 + ε)(2R̄(t))2
,

where, to obtain the last inequality, we used that ‖L(t−1) − L̃(t)‖2F ≤ ‖L
(t−1) − L̃(t)‖2∗ ≤ (2R̄(t))2.

We finally prove (30) as follows. We start by noticing that ‖L̃(t−1) −L(t−1)‖2F = β2
t ‖L

(t) −L(t−1)‖2F . If
βt = 1, then by definition of βt:

gL(S(t),L(t−1), R(t−1)) ≥ (1 + ε)‖L̃(t−1) −L(t−1)‖2F = (1 + ε)‖L(t) −L(t−1)‖2F .

Inequality (57) then implies that:

F(S(t),L(t), R(t))−F(S(t),L(t−1), R(t−1)) ≤ − (1 + ε)

2
‖L(t) −L(t−1)‖2F .

If βt = gL(S(t),L(t−1), R(t−1))/((1 + ε)‖L(t−1) − L̃(t)‖2F ), then:

‖L̃(t−1) −L(t−1)‖2F = β2
t ‖L

(t) −L(t−1)‖2F =
(gL(S(t),L(t−1), R(t−1)))2

(1 + ε)‖L̃(t−1) −L(t−1)‖2F

≤ 2

1 + ε

(
F(S(t),L(t−1), R(t−1))−F(S(t),L(t), R(t))

)
,

which proves the result.

A.8.5 Proof of Lemma 6

To prove equation (40) in Lemma 6, recall that for j ∈ I,
∑
i∈I

E
[
ΩijΣ

2
ij

]
≤ nνnρn, that

∑
i∈I

Var
[
ΩijΣ

2
ij

]
≤

nνnρn, and that ‖Ω�Σ�Σ‖∞ ≤ 1. Applying Bernstein’s inequality (19), we obtain that for any j ∈ I
and t > 0,

P

(∑
i∈I

ΩijΣ
2
ij ≥ νnρnn+

√
2tνnρnn+

3

2
t

)
≤ 2e−t

Choosing t = 2νnρnn, we find that

P

max
j∈I

√∑
i∈I

ΩijΣ
2
ij ≥

√
6νnρnn

 ≤ 2ne−2νnρnn

P
(∥∥Ω�Σ|I

∥∥
2,∞ ≥

√
6νnρnn

)
≤ 2e−νnρnn

where we have used the union bound and νnγnn ≥ log(n). This proves equation (40) in Lemma 2.
To prove equation (41) in Lemma 6, note that

∥∥Ω|I∥∥2,∞ ≤ ∥∥Π|I −Ω|I
∥∥
2,∞+

∥∥Π|I∥∥2,∞ and
∥∥Π|I∥∥2,∞ ≤

√
νnn. Moreover, for j ∈ I,

∑
i∈I

E
[
(Πij −Ωij)

2
]
≤ νnn,

∑
i∈I

Var
[
(Π−Ωij)

2
]
≤ νnn, and

∥∥Π|I −Ω|I
∥∥
∞ ≤ 1.

We apply Bernstein’s inequality and find that for any j ∈ I and t > 0,

P

(∑
i∈I

(Πij −Ωij)
2 ≥ νnn+

√
2tνnn+

3

2
t

)
≤ 2e−t
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Choosing t = 2νnn and using an union bound, we find that

P

sup
j∈I

√∑
i∈I

(Πij −Ωij)
2 ≥
√

6νnn

 ≤ 2ne−2nνn

P
(∥∥Π|I −Ω|I

∥∥
2,∞ ≥

√
6νnn

)
≤ 2e−νnn

where we have used that νnn ≥ log(n). This proves equation (41).

To prove equation (42), recall that for (i, j) ∈ O×I, ΩijAij ∼Bernoulli(ΠijS
∗
ij), and that

∥∥∥Π� S>∥∥∥
∞
≤

νnγn. Then, applying Bernstein’s inequality (19), we find that for any j ∈ I and any t > 0,

P

(∑
i∈O

ΩijAij ≥ sνnγn +
√

2tsνnγn +
3t

2

)
≤ 2e−t.

Choosing t = 2νnρnn, we find that

P

(∑
i∈O

ΩijAij ≥ sνnγn + 2
√
γnρnnsνn + 3νnρnn

)
≤ 2e−t.

Under Assumption 3, this implies

P

(∑
i∈O

ΩijAij ≥ 6νnρnn

)
≤ 2e−2νnρnn.

Using the union bound, and the bound νnρnn ≥ log(n), we conclude that

P

max
j∈I

√∑
i∈O

ΩijAij ≥
√

6νnρnnn

 ≤ 2ne−2νnρnn ≤ 2e−νnρnn.

This concludes the proof of Lemma 6.

A.8.6 Proof of Lemma 7

Recall that for j ∈ O,

{(
(ΩijAij − ρn)+

)2}
i∈I

are independent random variables. Moreover, easy cal-

culations yields that E
[(

Ωij (Aij − ρn)+

)2]
= ΠijS

∗
ij(1 − ρn)2, and that Var

[(
Ωij (Aij − ρn)+

)2]
≤

ΠijS
∗
ij(1− ρn)2. Applying Bernstein’s inequality (19), we see that for any t > 0,

P

∣∣∣∣∣∑
i∈I

E
[(

Ωij (Aij − ρn)+

)2]
−
∑
i∈I

(
Ωij (Aij − ρn)+

)2∣∣∣∣∣ ≥
√

2t
∑
i∈I

ΠijS
∗
ij(1− ρn)2 +

3t

2

 ≤ 2e−t.

Choosing t = 1
80

∑
i∈I

ΠijS
∗
ij(1− ρn)2, we find that

P

(∑
i∈I

(Ωij (Aij − ρn))
2
+ ≤

∑
i∈I

ΠijS
∗
ij(1− ρn)2 − 1

2

∑
i∈I

ΠijS
∗
ij(1− ρn)2

)
≤ 2e

− 1
80

∑
i∈I

ΠijS
∗
ij(1−ρn)

2

.

When min
j∈O

∑
i∈I

ΠijS
∗
ij(1− ρn)2 ≥ νnρnn and ρn ≤ 1

2 , this implies that

P

min
j∈O

√∑
i∈I

(
Ωij (Aij − ρn)+

)2
≤ 1

4
min
j∈O

√∑
i∈I

ΠijS
∗
ij

 ≤ 2se−
−νnρnn

80 .
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A.8.7 Proof of Lemma 8

Let ∂ ‖·‖∗ and ∂ ‖·‖2,1 denote respectively the sub-differentials of ‖·‖∗ and ‖·‖2,1 norms. Recall that
(
Ŝ, L̂

)
minimizes F . The standard optimality condition over a convex set states that for any admissible matrix

(S,L), there exists V̂ ∈ ∂
∥∥∥Ŝ∥∥∥

2,1
and Ŵ ∈ ∂

∥∥∥L̂∥∥∥
∗

such that

−
〈
Ω�

(
A− Ŝ − Ŝ

>
− L̂

) ∣∣∣S − Ŝ + S> − Ŝ
>

+L− L̂
〉

+λ1

〈
Ŵ
∣∣L− L̂〉+ λ2

〈
V̂
∣∣S − Ŝ〉 ≥ 0 (58)

Applying equation (58) for the admissible matrices
(
Ŝ,L∗

)
, we find that there exists Ŵ ∈ ∂

∥∥∥L̂∥∥∥
∗

such that

−
〈
Ω�

(
A− Ŝ − Ŝ

>
− L̂

) ∣∣∣∆L〉+ λ1

〈
Ŵ
∣∣∆L〉 ≥ 0. (59)

Recall that Σ|I , A|I + diag(L∗)−L∗, that ∆L , L∗ − L̂, and that Ω� diag(M) = 0 for any matrix M .
Thus, equation (59) becomes

−
〈
Ω�

(
ΣI + ∆L+A|O − Ŝ − Ŝ

>) ∣∣∣∆L〉+ λ1

〈
Ŵ
∣∣∆L〉 ≥ 0. (60)

Developing equation (60), we find that

−
〈
Ω�Σ|I

∣∣∣∆L〉− 〈Ω�∆L
∣∣∣∆L〉−〈Ω�

(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉
+

〈
Ω�

(
Ŝ + Ŝ

>)
|I

∣∣∣∆L〉+ λ1

〈
Ŵ
∣∣∆L〉 ≥ 0.

We have proved in Theorem 3 that Ŝ|I = Ŝ
>
|I = 0 with probability at least 1− 6e−νnρnn . Therefore, when

equation (15) holds,

‖Ω�∆L‖2F ≤
∣∣∣〈Ω�Σ|I

∣∣∣∆L〉∣∣∣+

∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣+ λ1

〈
Ŵ
∣∣∆L〉 .

Using the duality of the ‖ · ‖∗-norm and the ‖ · ‖op-norm, we find that

‖Ω�∆L‖2F ≤
∥∥Ω�Σ|I

∥∥
op
‖∆L‖∗ +

∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣+ λ1

〈
Ŵ
∣∣∆L〉 .

Next, we bound the term

∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣ using the following Lemma.

Lemma 11. With probability at least 1− 2e−ν̃nγnsn,∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣ ≤ 16ν̃nγnρnns.

Proof. See Section A.8.10.

Finally, we bound
〈
Ŵ
∣∣∆L〉. Note that by definition of the subgradient,

〈
Ŵ
∣∣L∗ − L̂〉 ≤ ‖L∗‖∗−∥∥∥L̂∥∥∥∗.

Using the separability of the spectral norm on orthogonal subspaces and the identity PL∗ (L∗) = L∗, we
find that ∥∥∥L̂∥∥∥

∗
=

∥∥P⊥L∗ (∆L) + PL∗ (∆L)−L∗
∥∥
∗

=
∥∥P⊥L∗ (∆L)

∥∥
∗ + ‖PL∗ (∆L)−L∗‖∗

≥
∥∥P⊥L∗ (∆L)

∥∥
∗ + ‖L∗‖∗ − ‖PL∗ (∆L)‖∗ .
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Combining this result with Lemma 11, we find that with probability at least 1− 6e−νnρnn − 2e−ν̃nγnsn,

‖Ω�∆L‖2F ≤
∥∥Ω�Σ|I

∥∥
op

(
‖PL∗ (∆L)‖∗ +

∥∥P⊥L∗ (∆L)
∥∥
∗

)
+ 16ν̃nγnρnsn+ λ1

(
‖PL∗ (∆L)‖∗ −

∥∥P⊥L∗ (∆L)
∥∥
∗

)
.

Recall that by definition, Ψ ≥ 16ν̃nγnρnns. Thus, when λ1 ≥ 3
∥∥Ω�Σ|I

∥∥
op

,

‖Ω�∆L‖2F ≤ λ1
3

(
5 ‖PL∗ (∆L)‖∗ −

∥∥P⊥L∗ (∆L)
∥∥
∗

)
+ Ψ.

This proves equation (45) in Lemma 8. This result also implies that∥∥P⊥L∗ (∆L)
∥∥
∗ ≤ 5 ‖PL∗ (∆L)‖∗ +

3Ψ

λ1
.

Recall that L∗ is of rank k and so PL∗ (∆L) is of rank at most k. Therefore,

‖∆L‖∗ ≤ 6 ‖PL∗ (∆L)‖∗ +
3Ψ

λ1
≤ 6
√
k ‖PL∗ (∆L)‖F +

3Ψ

λ1

≤ 6
√
k ‖∆L‖F +

3Ψ

λ1
≤ 6
√
k
∥∥∆L|I

∥∥
F

+ 6
√
k(sn+ s2)ρn +

3Ψ

λ1

≤ 6
√
k
∥∥∆L|I

∥∥
F

+ 6
√

3ksnρn +
3Ψ

λ1
.

where we have used that
∥∥∆L|O

∥∥
F
≤
√
|O|
∥∥∆L|O

∥∥
∞ ≤

√
s2 + 2snρn. This completes the proof of Lemma

8.

A.8.8 Proof of Lemma 9

For ease of notations, let α = 362
νnρ

2
nkn
µn

. To prove Lemma 8, we consider the following two cases.

Case 1:
∥∥∆L|I

∥∥2
L2(Π)

≤ α. Then the result is immediate.

Case 2:
∥∥∆L|I

∥∥2
L2(Π)

> α. Let r > 0 a constant to be specified later. We consider the following sets

Sr =

{
M ∈ Rn×nsym : ‖M‖∞ ≤ ρn,

∥∥M |I
∥∥2
L2(Π)

≥ α, ‖M‖∗ ≤
√
r
∥∥M |I

∥∥
F

+
√

3rsnρn +
3Ψ

λ1

}
.

Recall that the random noise matrix Γ is defined as follows: for any (i, j) ∈ [n]×[n], i < j, Γij = Γji = Ωijεij
where (εij)1≤i<j≤n is a Rademacher sequence. Now, we define βr as follows :

βr , E
[∥∥Γ|I∥∥op](64rρ2n

µn
E
[∥∥Γ|I∥∥op]+ 15

√
srnρ2n +

32Ψρn
λ1

)
.

Lemma 12. With probability larger than 1− e−νnρnn, simultaneously for any M ∈ Sr,
1

2
‖M‖2L2(Π) ≤

∥∥Ω�M |I
∥∥2
F

+ βr

Proof. See Section A.8.11.

Recall that β was defined in equation (47), and note that β = β36k. Then, equation (46) in Lemma 8
implies that ∆L ∈ S36k with probability at least 1 − 6e−νnρnn − 2e−ν̃nγnsn. Combining equation (45) in
Lemma 8 and Lemma 12, we find that with probability at least 1− 7e−nνnρn − 2e−ν̃nγnsn,

1

2

∥∥∆L|I
∥∥2
L2(Π)

≤ 5λ1
3
‖PL∗ (∆L)‖∗ + Ψ + β.

The matrix L∗ is of rank at most k. Therefore,∥∥∆L|I
∥∥2
L2(Π)

≤ 10λ1
√
k

3
‖∆L‖F + 2Ψ + 2β ≤ 50λ21k

9µn
+
µn
2
‖∆L‖2F + Ψ + β

≤ 50λ21k

9µn
+
µn
2

∥∥∆L|I
∥∥2
F

+
3

2
µnρ

2
nsn+ Ψ + β

32



where we have used that
∥∥∆L|O

∥∥2
F
≤ 3ρ2nns. Using equation (12), we find that

∥∥∆L|I
∥∥2
L2(Π)

≤ 1

2

∥∥∆L|I
∥∥2
L2(Π)

+
µn
2
ρ2nn+

3

2
µnρ

2
nsn+

50λ21k

9µn
+ Ψ + β.

Thus ∥∥∆L|I
∥∥2
L2(Π)

≤ 8µnρ
2
nsn+

100λ21k

9µn
+ 2Ψ + 2β.

We conclude the proof of Lemma 9 by recalling that µn ≤ νn.

A.8.9 Proof of Lemma 10

To prove Lemma 10, we use Proposition 1. For (i, j) ∈ I, set bij =
√

Πij , and ξij =
εijΩij

bij
, and for i ∈ I

set bii = 0. Note that for any (i, j) ∈ I, Γij = bijξij , and that {ξij}i≤j is a sequence of independent
symmetric random variables with unit variance. Moreover, for any (i, j) ∈ I, |bijξij | ≤ 1, so for any α ≥ 3,(
E
[
(ξijbij)

2α
]) 1

2α ≤ 1. Finally, note that for any i ∈ I,√∑
j∈I

b2ij =

√∑
j∈I

Πij ≤
√
νnn.

Applying Proposition 1, we find that

E
[∥∥Γ|I∥∥op] ≤ e 2

3

(√
νnn+ 42

√
log(n)

)
We conclude this proof by recalling that νnn ≥ log(n).

A.8.10 Proof of Lemma 11

To prove Lemma 11, note that ‖∆L‖∞ ≤ ρn, and therefore∣∣∣∣〈Ω�
(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣ ≤ 2ρn
∑

(i,j)∈O

∣∣∣Ωij

(
Aij − Ŝij − Ŝji

)∣∣∣ . (61)

Recall that L̂ and Ŝ have non-negative entries, and that L̂ and A are symmetric. Therefore, equation (53)

implies that
{
Ŝij = 0 or Ŝji = 0

}
⇒ Aij = 0, and that Ŝij + Ŝji ≤ Aij . Thus, equation (61) implies∣∣∣∣〈Ω�

(
A− Ŝ − Ŝ

>)
|O

∣∣∣∆L〉∣∣∣∣ ≤ 2ρn
∑

(i,j)∈O

ΩijAij . (62)

To conclude the proof of Lemma 11, we first prove the following result:

P

 ∑
(i,j)∈O

ΩijAij ≥ 8ν̃nγnsn

 ≤ exp(−ν̃nγnsn). (63)

We use Bernstein’s inequality to obtain equation (63). Note that {ΩijAij}(i,j)∈O,i<j is a sequence of indepen-

dent Bernoulli random variables such that for any i ∈ [n],
∑
j∈O

E [ΩijAij ] ≤ ν̃nγns,
∑
j∈O

Var [ΩijAij ] ≤ ν̃nγns,

and (ΩijAij − E [ΩijAij ]) ∈ [−1, 1]. Hence, applying Bernstein’s inequality (19), we find that for any t > 0,

P

 ∑
(i,j)∈O

ΩijAij ≥ 2ν̃nγnsn+
√

2t× ν̃nγnsn+
3t

2

 ≤ 2 exp(−t).

Choosing t = 2ν̃nγnsn, we obtain equation (63). We conclude the proof of Lemma 11 by combining equations
(62) and (63).
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A.8.11 Proof of Lemma 12

To prove Lemma 12, we show that the probability of the following ”bad” event is small :

B , {∃M ∈ Sr such that
∣∣∣∥∥Ω�M |I

∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ ≥ 1

2

∥∥M |I
∥∥2
L2(Π)

+ βr}.

We use a standard peeling argument to control the probability of the event B. For T > α, define

S(T ) ,
{
M ∈ Sr :

∥∥M |I
∥∥2
L2(Π)

≤ T
}
, Z(T ) = sup

M∈S(T )

∣∣∣∥∥Ω�M |I
∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ , and

B(T ) ,

{
∃M ∈ S(T ) :

∣∣∣∥∥Ω�M |I
∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ ≥ T

4
+ βr

}
=

{
Z(T ) ≥ T

4
+ β

}
.

For l ≥ 1, define also Sl ,
{
M ∈ Sr : 2l−1α <

∥∥M |I
∥∥2
L2(Π)

≤ 2lα
}
⊂ S

(
2lα
)

and

Bl ,

∃M ∈ Sl :
∣∣∣∥∥Ω�M |I

∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ ≥
∥∥M |I

∥∥2
L2(Π)

2
+ βr


⊂

{
∃M ∈ Sl :

∣∣∣∥∥Ω�M |I
∥∥2
F
−
∥∥M |I

∥∥2
L2(Π)

∣∣∣ ≥ 2l−1

2
α+ βr

}
⊂ B

(
2lα
)
.

Since Sr ⊂ ∪
l≥1
Sl, it is easy to see that B ⊂ ∪

l≥1
Bl. To control the probability of the events Bl, it is enough

to control the probability of the events B(T ), which is done in the following lemma.

Lemma 13. For any T ≥ α, we have P (B(T )) ≤ exp(− T
362ρn

).

Proof. See Section A.8.12.

We apply Lemma 13 to find

P (B) ≤
∑
l≥1

P (Bl) ≤
∑
l≥1

exp

(
− 2lα

362ρn

)

≤
∑
l≥1

exp

(
− 2lα

362ρn
α

)
=

exp
(
− 2α

362ρn

)
1− exp

(
− 2α

362ρn

) =
exp

(
−2νnρnknµn

)
1− exp

(
−2νnρnknµn

)
Note that νnρnkn

µn
≥ νnρnn ≥ log(n) ≥ 1, and so P [B] ≤ 1

2 exp (−2νnρnn) ≤ exp (−νnρnn) . This concludes
the proof of Lemma 12.

A.8.12 Proof of Lemma 13

Recall that Z(T ) = 2 sup
M∈S(T )

∣∣∣∣∣ ∑(i,j)∈I
M2

ij (Ωij −Πij)

∣∣∣∣∣, since all matrices in S are symmetric. In order to

bound Z(T ), we begin by controlling the deviation of Z(T ) from its expectation. To do this, we apply

Bousquet’s Theorem 6 to the random variable Z(T ) = 2ρn sup
M∈S(T )

∣∣∣∣∣ ∑(i,j)∈I
fMij (Ωij)

∣∣∣∣∣ where we set fMij (Ωij) ,

(Ωij−Πij)M
2
ij

ρn
. The set of functions

{
fMij ,M ∈ S(T )

}
is separable and we can apply Theorem 6 (see, e.g.,

[18], Section 2.1). Note that for any (i, j) ∈ I, E
[
fMij (Ωij)

]
= 0,

∣∣fMij (Ωij)
∣∣ ≤ 1, E

[
(Ωij −Πij)

2
]
≤ Πij

and ‖M‖∞ ≤ ρn so

v , 2 sup
M∈S(T )

∑
(i,j)∈I

E
[
fMij (Xij)

2
]
≤ 2

∑
(i,j)∈I

Πij

M4
ij

ρ2n
≤ 2 sup

M∈S(T )

∑
(i,j)∈I

ΠijM
2
ij ≤ T.
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Theorem 6 implies that

P

(
ZT
2ρn

>
E[ZT ]

2ρn
+
x

3
+

√
2x

(
2E[ZT ]

2ρn
+ T

))
≤ exp(−x)

P
(
ZT > E[ZT ] +

2ρnx

3
+ 2ρnx+ 2E[ZT ] + 2ρn

√
2xT

)
≤ exp(−x)

where we used 2
√
ab ≤ a+ b. Setting x = T

362ρn
and noticing that ρn ≤ 1 leads to

P
(
ZT > 2E[ZT ] +

T

8

)
≤ exp(− T

362ρn
). (64)

In a second time, in order to bound E [ZT ], we apply a standard symetrization argument (see, e.g., [32],
Theorem 2.1). We obtain that

E [Z(T )] ≤ 4E

 sup
M∈S(T )

∣∣∣∣∣∣
∑

(i,j)∈I

εijM
2
ijΩij

∣∣∣∣∣∣
 (65)

where (εij)1≤i<j≤n is a Rademacher sequence. For i < j, define φij : x → x2

2ρn
. Recall that for any (i, j),

Ωij ∈ {0, 1}, and so Ωij = Ω2
ij . With these notations, equation (65) becomes

E [Z(T )] ≤ 8ρnE

 sup
M∈S(T )

∣∣∣∣∣∣
∑
i<j

εijφij (ΩijM ij)

∣∣∣∣∣∣
 .

We note that forM ∈ S(T ), ‖M‖∞ ≤ ρn. Therefore, the functions φij are 1-Lipschitz functions on [−ρn, ρn]
vanishing at 0. We apply Talagrand’s contraction principle (see, e.g., Theorem 2.2 in [32]) and find that

E [Z(T )] ≤ 16ρnE

 sup
M∈S(T )

∣∣∣∣∣∣
∑

(i,j)∈I

εijM ijΩij

∣∣∣∣∣∣
 = 8ρnE

[
sup

M∈S(T )

∣∣〈M ∣∣Γ|I〉∣∣
]

where for any (i, j), Γij = εijΩij . By the duality of the ‖·‖∗-norm and ‖·‖op-norm, and by definition of Sr,
we find that

E [Z(T )] ≤ 8ρn sup
M∈S(T )

‖M‖∗ E
[∥∥Γ|I∥∥op]

≤ 8ρn

(
√
r sup
M∈S(T )

∥∥M |I
∥∥
F

+
√

3rsnρn +
3Ψ

λ1

)
E
[∥∥Γ|I∥∥op] .

Using equation (12), we find that

E [Z(T )] ≤ 8ρn

(
√
r

(
1
√
µn

sup
M∈S(T )

∥∥M |I
∥∥
L2(Π)

+
√
nρn

)
+
√

3rsnρn +
3Ψ

λ1

)
E
[∥∥Γ|I∥∥op]

≤

(
8ρn
√
r

√
µn

sup
M∈S(T )

∥∥M |I
∥∥
L2(Π)

+ 8
√
nrρ2n + 8

√
3srnρ2n +

32Ψρn
λ1

)
E
[∥∥Γ|I∥∥op] .

Using the definition of S(T ), we find that

E [Z(T )] ≤

(
8ρn
√
rT

√
µn

+ 8
√
rnρ2n + 8

√
3srnρ2n +

32Ψρn
λ1

)
E
[∥∥Γ|I∥∥op]

≤ T

16
+ E

[∥∥Γ|I∥∥op](64rρ2n
µn

E
[∥∥Γ|I∥∥op]+ 15

√
srnρ2n +

32Ψρn
λ1

)
=

T

16
+ βr. (66)

Combining equation (64) and equation (66) yields the desired result.
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A.9 Proof of Lemma 5

Consider the following chain of inequality:

1

Ak+1
− 1

Ak
=
Ak −Ak+1

AkAk+1
≥ γk

Ak
Ak+1

≥ γk,

since Ak+1 ≤ Ak. Thus, we obtain

1

Ak+1
− 1

A1
=

k∑
i=1

(
1

Ai+1
− 1

Ai

)
≥

k∑
i=1

γi,

which gives the result after reshuffling the terms.
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