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In this paper, we study the asymptotic behavior as ε → 0 + of solutions u ε to the nonlocal stationary Fisher-KPP type equation 1

where ε > 0 and 0 m < 2. Under rather mild assumptions and using very little technology, we prove that there exists one and only one positive solution u ε and that u ε → a + as ε → 0 + where a + = max{0, a}. This generalizes the previously known results and answers an open question raised by Berestycki, Coville and Vo. Our method of proof is also of independent interest as it shows how to reduce this nonlocal problem to a local one. The sharpness of our assumptions is also briefly discussed.

1. Introduction 1.1. Biological context. This paper is motivated by the study of persistence criteria for populations with long range dispersal strategies. Long range dispersal is a frequently observed feature in ecology. It arises in many situations ranging from plant fecundity [START_REF] Cain | Long-distance seed dispersal in plant populations[END_REF][START_REF] Clark | Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord[END_REF][START_REF] Clark | Reid's paradox of rapid plant migration[END_REF][START_REF] Schurr | Plant fecundity and seed dispersal in spatially heterogeneous environments: models, mechanisms and estimation[END_REF] to movement patterns of marine predators [START_REF] Bartumeus | Lévy processes in animal movement: an evolutionary hypothesis[END_REF][START_REF] Bartumeus | Behavioral intermittence, Lévy patterns, and randomness in animal movement[END_REF][START_REF] Hallatschek | Acceleration of evolutionary spread by long-range dispersal[END_REF][START_REF] Humphries | Environmental context explains Lévy and Brownian movement patterns of marine predators[END_REF]. In this context, the evolution of the density of population, u(x, t), is commonly described by a nonlocal reaction-diffusion equation of the form ∂u ∂t (x, t) = D ˆRN J(x -y)(u(y, t) -u(x, t)) dy + f (x, u(x, t)), (1.1) for (x, t) ∈ R N × [0, ∞); where D is a dispersal rate (or diffusion coefficient), J is a dispersal kernel modelling the probability to "jump" from one location to another, and f is a nonlinear reaction term that accounts for the demographic variations of the population.

In this paper, we will consider populations that have a bounded ecological niche, i.e. populations which cannot survive outside a bounded set. Precisely, we shall consider KPP-type nonlinearities of the form f (x, s) = s (a(x) -s) with (x, s) ∈ R N × R, where a ∈ C(R N ) ∩ L ∞ (R N ) is a function (that can be thought of as modelling the available resource) which is such that a + = max{0, a} ≡ 0 and lim sup |x|→∞ a(x) < 0.

(1.2)

From the mathematical point of view, studying the persistence or the extinction of a given species amounts to establishing the existence or nonexistence of positive solutions to an equation of the type of (1.1) (whose precise form may vary depending on the type of behavior one wishes to describe). This type of nonlocal problem is currently receiving a lot of attention and has been studied under various perspectives, see [START_REF] Bates | Travelling waves in a convolution model for phase transitions[END_REF][START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a non-local reaction diffusion equation arising in population dynamics[END_REF][START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases[END_REF][START_REF] Kao | Random dispersal vs. non-local dispersal[END_REF][START_REF] Yagisita | Existence and nonexistence of traveling waves for a nonlocal monostable equation[END_REF]. Here, we follow the approach initiated by Hutson et al. in [START_REF] Hutson | The evolution of dispersal[END_REF]. Namely, we consider the equation

∂u ε ∂t (x, t) = 1 ε m ˆRN J ε (x -y)(u ε (y, t) -u ε (x, t)) dy + u ε (x, t)(a(x) -u ε (x, t)), (1.3) 
for (x, t) ∈ R N × [0, ∞); where 0 m 2 is a "cost parameter",

J ε (z) = 1 ε N J z ε
for some J ∈ L 1 (R N ), (1.4) and ε > 0 is a measure of the range of dispersal.

Before going any further, let us say a brief word about the meaning of (1.3). The key idea behind this model relies on the notion of dispersal budget (introduced in [START_REF] Hutson | The evolution of dispersal[END_REF]). In a nutshell, it consists in assuming that the amount of energy per individual that the species can use to disperse is fixed (because of the environmental and developmental constraints) and that the displacement of the individuals has a cost (reflecting the amount of energy required to disperse) which, for simplicity, is assumed to be proportional to c(x) = |x| m with 0 m 2. If the dispersal kernel depends on the range of dispersal as in (1.4), it can then be shown (see e.g. [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF]) that the rate of dispersal is of the form D ε ∼ 1/ε m , which thereby yields equation (1.3). In other words, there is a trade-off between the number of offspring and the average dispersal distance among offspring. To illustrate this, consider, for instance, a population of trees that produces and disperses seeds. The population may then "choose" between two opposite strategies: either it disperses few seeds (1/ε m ≪ 1) over large distances (ε ≫ 1), or it disperses many of them (1/ε m ≫ 1) over short distances (ε ≪ 1).

Our main concern in this paper is to understand the influence of the cost parameter on the asymptotic properties of the solutions. That is, we wish to address the following question:

How does the cost of displacement impact the persistence strategies of a given population?

To the best of our knowledge, the first extensive study of this problem goes back to [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF] (see also [START_REF] Li | Asymptotic behaviors for nonlocal diffusion equations about the dispersal spread[END_REF][START_REF] Shen | Nonlocal dispersal equations in time-periodic media: principal spectral theory, limiting properties and long-time dynamics[END_REF][START_REF] Vo | Principal spectral theory of time-periodic nonlocal dispersal operators of Neumann type[END_REF]), where the assumption (1.2) was also considered. There, it was shown that positive stationary solutions can be seen as the outcome of an invasion process (see [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF]Theorem 1.1]), i.e. that their existence/nonexistence gives the right persistence criteria. For this reason, we will focus on the corresponding stationary equation, namely

1 ε m (J ε * u ε -u ε ) + u ε (a -u ε ) = 0 in R N . (1.5)
Equation (1.5) was first studied in detail by Berestycki, Coville and Vo in [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF]. They proved that, for large values of ε, persistence always occurs when 0 < m 2 and they obtain the precise asymptotics of the solution when ε → ∞. When m = 0, they show that if the resource is "too small" (i.e. if sup R N a < 1) then the population either dies out above some threshold ε 0 > 0 or vanishes asymptotically as ε → ∞.

However, if we have a rather clear picture when ε ≫ 1 it is not quite the case when ε ≪ 1, except in the particular case m = 2. In this case, Berestycki et al. [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF]Theorem 1.4] show that, for small values of ε, a nontrivial solution to (1.5) exists if, and only if, the first eigenvalue of some linear elliptic operator is negative and, in this case, they determine the precise asymptotics as ε → 0 + .

The case 0 m < 2, however, turns out to be more involved. Berestycki et al. proved (see [6, Theorems 1.2-1.3]) that if 0 < ε < ε 1 for some ε 1 > 0, then there always exists a unique bounded, continuous, positive solution u ε to (1.5). However, its precise behavior as ε → 0 + is still an open problem. The best known result in this direction states that u ε converges weakly towards some nonnegative function

v ∈ L ∞ (R N ) solving v(x)(a(x) -v(x)) = 0 for all x ∈ R N .
Unfortunately, the above equation admits infinitely many solutions, so it may happen that v ≡ 0 (extinction) or that v = a + 1 ω for some ω ⊂ supp(a + ) (persistence in a given area of the ecological niche). The goal of this paper is to complete this picture by showing that v = a + is the only possible solution, thus enforcing that short range dispersal strategies subject to sub-quadratic costs always yield persistence.

1.2. Assumptions and main results. Throughout the paper, we shall assume that J ∈ L 1 (R N ) is nonnegative, radially symmetric, with unit mass and finite m-th order moment. (1.6) For the convenience of the reader, we recall that the space Bs p,∞ (R N ) with s ∈ (0, 2) and [START_REF] Brasseur | A Bourgain-Brezis-Mironescu characterization of higher order Besov-Nikol'skii spaces[END_REF]Proposition 5.6]. By convention, we set B0 p,∞ (R N ) = L p (R N ). Our first main result states that short range dispersal strategies always yield persistence when 0 m < 2, thus answering an open question raised in [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF].

1 p < ∞, is the closure of C ∞ c (R N ) in the Besov space B s p,∞ (R N ) or, equivalently, Bs p,∞ (R N ) = f ∈ L p (R N ) ; lim |h|→0 f (• + h) -2f + f (• -h) L p (R N ) |h| s = 0 , see e.g.
Theorem 1.1. Let 0 m < 2. Assume (1.2) and (1.6). Then, there exists ε 0 > 0 such that, for all 0 < ε < ε 0 , (1.5) admits a unique positive minimal solution u ε ∈ C 0 (R N ). Moreover,

lim inf ε→0 + u ε (x) a + (x) for all x ∈ R N .
Remark 1.2. While we believe that our assumptions are close to being sharp, the existence of a counterexample is still an open question. Nevertheless, we can prove that, if 0 < m < 2 and if J has an infinite β-th order moment for some 0 < β < m, then (1.5) does not admit uniform (with respect to ε) sub-solutions controlled by a + (see Proposition A.1). This suggests that, if J is too heavily tailed (i.e. if its m-th order moment is infinite), then the conclusion of Theorem 1.1 fails (i.e. either (1.5) admits no positive solution for ε small or the positive minimal solution vanishes asymptotically as ε → 0 + ). This would be consistent since J is nothing but a probability density, so the heavier the tail, the more likely the individuals are to favor long range jumps, which seems incompatible with the rate of dispersal 1/ε m becoming arbitrarily large as the range of dispersal ε becomes arbitrarily small. It is worth mentioning that, in similar contexts, fat-tailed kernels are known to induce a dramatically different behavior of the solutions, see e.g. [START_REF] Bouin | Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels[END_REF][START_REF] Garnier | Accelerating solutions in integro-differential equations[END_REF]. It would be of interest to investigate this question further, as fat-tailed kernels are known to better account for the dispersal of individuals in various contexts (it is observed, for example, in river fishes [START_REF] Radinger | Patterns and predictors of fish dispersal in rivers[END_REF], in the tansy beetle Chrysolina graminis [START_REF] Chapman | Modelling population redistribution in a leaf beetle: an evaluation of alternative dispersal functions[END_REF] or in rapid plant migration [START_REF] Clark | Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord[END_REF][START_REF] Clark | Reid's paradox of rapid plant migration[END_REF], see also [START_REF] Allen | Population fluctuations, power laws and mixtures of lognormal distributions[END_REF][START_REF] Petrovskii | On a possible origin of the fat-tailed dispersal in population dynamics[END_REF]).

It would be desirable to have the existence of a unique positive solution (rather than of a unique positive minimal solution) as well as more precise asymptotics. However, establishing this is quite delicate if the minimal solution u ε is not known to be integrable. On the other hand, it can be shown that the decay of u ε is intimately related to the tail of the kernel: roughly speaking, if J has a finite β-th order moment, then the unique positive minimal solution decays as |x| -β . Using this dichotomy, we show that it is possible to sharpen the conclusion of Theorem 1.1 up to a slight additional assumption on J. Precisely, Theorem 1.3. Let 0 m < 2. Assume (1.2) and (1.6). Suppose, in addition, that J has a finite β-th order moment for some β > N. Then, there exists ε 0 > 0 such that, for all 0 < ε < ε 0 , (1.5) admits a unique bounded positive solution

u ε ∈ L 1 ∩ C 0 (R N ). Moreover, if a + ∈ Bm 1,∞ (R N )
, then the solution u ε to (1.5) converges almost everywhere to a + as ε → 0 + . Remark 1.4. We do not know whether it is possible to get rid of the assumption that J has a finite β-th order moment for some β > N. Note that if N = 1 and 1 < m < 2, then this last assumption is not needed, which might indicate that it is not necessary. However, the regularity assumption on a + emerges very naturally in proof, suggesting that it is sharp.

Combining Theorem 1.3 with [6, Theorem 1.3], we obtain that if 0 < m < 2, then u ε → a + (at least pointwise) when both ε → 0 + and ε → ∞. This means that for both strategies ε ≪ 1 and ε ≫ 1 the population will tend to match the resource, thus yielding persistence in any case. This highly contrasts with the cases m = 0 and m = 2. In the latter case, although we still have that u ε → a + when ε → ∞, equation (1.5) may not even have positive solutions at all when ε is small, depending on the sign of the first eigenvalue of (2N) -1 M 2 (J) ∆ + a (which is merely a function of the resource a), where

M 2 (J) = ˆRN J(x)|x| 2 dx.
Otherwise said, depending on the precise form of a, the population may go extinct when the spread of dispersal ε is too small. When m = 0, the situation is somehow "opposite" to the case m = 2, as persistence may not occur for long range dispersal strategies. This indicates that the persistence strategy of the population strongly depends on what it costs for the individuals to disperse.

Strategy of proof.

The main difficulty in establishing Theorems 1.1-1.3 lies in the lack of compactness of (1.5). It is known that solutions to (1.5) satisfy [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF]Lemma 5.1(ii)]. This inequality is in fact the key tool which allowed Berestycki et al. to handle the case m = 2. Indeed, (1.7) together with the recent characterisation of Sobolev spaces derived by Bourgain, Brezis, Mironescu [START_REF] Bourgain | Another look at Sobolev spaces, Optimal Control and Partial Differential Equations[END_REF] and Ponce [START_REF] Ponce | An estimate in the spirit of Poincaré's inequality[END_REF] implies that (u ε ) ε>0 is relatively compact in L 2 loc (R N ) and that it converges along a subsequence to some function v ∈ L 2 (R N ) satisfying

ˆRN ˆRN ρ ε (x -y) |u ε (x) -u ε (y)| 2 |x -y| m dxdy C as ε → 0 + , (1.7) where ρ ε (z) = ε -m |z| m J ε (z), see
lim ε→0 + ˆRN ˆRN ρ ε (x -y) |v(x) -v(y)| 2 |x -y| 2 dxdy C,
which, by a result of Bourgain et al. [START_REF] Bourgain | Another look at Sobolev spaces, Optimal Control and Partial Differential Equations[END_REF]Theorem 2], is equivalent to saying that v belongs to the Sobolev space H 1 (R N ). Then, relying on standard elliptic theory it can be shown that v is the unique nontrivial solution to

M 2 (J) 2N ∆v + v(a -v) = 0 in R N .
However, we have shown in [START_REF] Brasseur | A Bourgain-Brezis-Mironescu characterization of higher order Besov-Nikol'skii spaces[END_REF] that, although the functional arising in (1.7) provides a characterisation of a fractional version of [START_REF] Brasseur | A Bourgain-Brezis-Mironescu characterization of higher order Besov-Nikol'skii spaces[END_REF]Theorem 2.15]). To overcome this lack of compactness, we need to rely on an entirely different approach. The heart of our strategy is based on the construction of an appropriate sequence of subsolutions. The main idea behind our construction stems from the observation that if Ω ⊂ R N is a domain and J is radial and compactly supported, then any function ϕ ∈ C 2 (Ω) that is subharmonic in Ω (i.e. ∆ϕ 0 in Ω) satisfies the "generalized mean value inequality":

H 1 (R N ) when 0 < m < 2 (see [9, Theorem 2.3]), it does not yield precompactness in L 2 loc (R N ) (see
ϕ(x) ˆRN J ε (x -y) ϕ(y) dy,
for all x ∈ Ω and ε > 0 small enough. (The usual mean value inequality corresponds to the case where

J(z) = |B 1 | -1 1 B 1 (z).
) Based on this observation, we prove that it is possible to construct continuous global sub-solutions to (1.5) by considering functions which are subharmonic outside some ball around the origin and "well-behaved" inside it. In this way, we are able to reduce this nonlocal problem to a local one. Then, relying on Markov's inequality we show that this procedure works as well for general kernels having finite m-th order moment (which, as discussed in the Appendix at the end of the paper, is close to being a sharp requirement for a "good" sub-solution to exist). This approach presents a considerable advantage since it yields simultaneously existence, uniqueness and asymptotic results without relying on the spectral theory for convolution operators. In particular, not only do we obtain an alternative proof of the existence and uniqueness results of [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF] using very little technology, but we even extend it to kernels which may be fat-tailed, i.e. to the class of kernels J satisfying (1.6).

1.4. Notations. Let us list a few notations that will be used throughout the paper.

As usual, S N -1 denotes the unit sphere of R N and B R (x) the open Euclidean ball of radius R > 0 centred at x ∈ R N (when x = 0, we simply write B R ). The N-dimensional Hausdorff measure will be denoted by H N . Given a function f : R N → R, we denote by f + (resp. f -) its positive part (resp. negative part) given by f + = max{0, f } (resp. f -= max{0, -f }). The set-theoretic support of f will be denoted by supp(f ) := x ∈ R N ; f (x) = 0 , and its essential support (that is, the complement of the union of all open sets on which f vanishes almost everywhere) will be denoted by ess supp(f ). Observe that, within these definitions, if f is continuous then its essential support coincides with the closure of its settheoretic support. Furthermore, for a measurable set Ω ⊂ R N , we denote by |Ω| its Lebesgue measure and by 1 Ω its characteristic function. For f ∈ L 1 (R N ) and β 0, we denote by

M β (f ) := ˆRN f (x)|x| β dx,
the β-th order moment of f . Lastly, we will denote by C 0 (R N ) (resp. C c (R N )) the space of continuous functions that vanish at infinity (resp. with compact support).

Preliminaries

In this section, we list some general qualitative/a priori results for the solutions to (1.5) (if any) which will be useful for later purposes.

Lemma 2.1 (Strong maximum principle). Let 0 m 2. Assume that a ∈ C(R N ) and that J ∈ L 1 (R N ) is a nonnegative radial kernel with unit mass. Suppose that (1.5) admits a nonnegative solution u ε ∈ L ∞ (R N ). Then, either u ε > 0 a.e. in R N or u ε ≡ 0 a.e. in R N .
Remark 2.2. For related results in the nonlocal framework, the reader may consult [START_REF] Coville | Remarks on the strong maximum principle for nonlocal operators[END_REF].

Proof. Let u ε ∈ L ∞ (R N ) be a nonnegative solution to (1.5) and suppose that u ε admits a Lebesgue point x 0 ∈ R N such that u ε (x 0 ) = 0. Using the equation satisfied by u ε it follows that u ε (y) = 0 for a.e. y ∈ x 0 + ess supp(J ε ). By iteration, we find that u ε (y) = 0 for a.e. y ∈ x 0 + ess supp(J ε ) + ess supp(J ε ).

(2.1) Let R > 0 be such that Λ ε := ess supp(J ε ) ∩ B R has positive Lebesgue measure. Since the function G ε given by G ε (x) := 1 Λε * 1 Λε (x) is continuous and since, on the other hand, G ε (0) = |Λ ε | > 0, we deduce that there is some δ > 0 such that

B δ ⊂ ess supp(G ε ) ⊂ Λ ε + Λ ε ⊂ ess supp(J ε ) + ess supp(J ε ).
Plugging this in (2.1), we obtain that u ε (y) = 0 for a.e. y ∈ B δ (x 0 ). By induction, we find that u ε (y) = 0 for a.e. y ∈ B δk (x 0 ) and all k ∈ N \ {0}. Hence, u ε (y) = 0 for a.e. y ∈ R N . This enforces that either u ε > 0 a.e. in R N or u ε ≡ 0 a.e. in R N .

We will also need the following lower bound when m = 0. Lemma 2.3. Let m = 0. Assume that a ∈ C(R N ) and that J ∈ L 1 (R N ) is a nonnegative radial kernel with unit mass. Suppose that (1.5) admits a nontrivial nonnegative solution u ε ∈ L ∞ (R N ). Then, the following estimate holds

u ε (x) > (a(x) -1) + for a.e. x ∈ R N .
Proof. Suppose, by contradiction, that u ε admits a Lebesgue point x 0 ∈ R N such that a(x 0 ) 1 + u ε (x 0 ). Then, it follows from the equation satisfied by

u ε that 0 = J ε * u ε (x 0 ) -u ε (x 0 ) + u ε (x 0 )(a(x 0 ) -u ε (x 0 )) J ε * u ε (x 0 ) 0.
Thus, u ε (y) = 0 for a.e. y ∈ x 0 + ess supp(J ε ). By Lemma 2.1, we find that u ε (y) = 0 for a.e. y ∈ R N , which contradicts the fact that u ε is nontrivial. Hence u ε (x) > (a(x) -1) for a.e. x ∈ R N . The conclusion now follows from the fact that u ε > 0 a.e. in R N .

Lastly, we state a regularity result for solutions to (1.5) which will play an important role in the sequel.

Proposition 2.4. Let 0 m 2. Assume (1.
2) and that J ∈ L 1 (R N ) is a nonnegative radial kernel with unit mass. Suppose that (1.5) admits a nonnegative solution u ε ∈ L ∞ (R N ) for all 0 < ε < ε 0 and some ε 0 > 0. Then, there exists ε m,a + > 0 such that, for all 0 < ε < min{ε 0 , ε m,a + }, we have

u ε ∈ C 0 (R N ). Moreover, either u ε > 0 or u ε ≡ 0 in R N .
Remark 2.5. We mention that related results in similar contexts may be found in [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Cantrell | Resident-invader dynamics in infinite dimensional systems[END_REF], although our arguments here are more direct as they do not require any incursion through Krein-Rutman theory nor do they require any reductio ad absurdum argument.

Proof. We already know (from Lemma 2.1) that either u ε ≡ 0 or u ε > 0 a.e. in R N . Hence, it suffices to prove that if u ε is nontrivial, then it admits a representative in its class of equivalence that belongs to C 0 (R N ). So let u ε ∈ L ∞ (R N ) be a nonnegative nontrivial solution to (1.5). Let us first prove that u ε can be redefined up to a negligible set as a continuous function in R N . For it, let us set

H ε (x, s) := s(1 -ε m [a(x) -s]). Since u ε solves (1.5) a.e. in R N , there is then a null set N ⊂ R N such that, for all x, y ∈ R N \ N , H ε (x, u ε (x)) -H ε (y, u ε (y)) = ˆRN [J ε (x -z) -J ε (y -z)] u ε (z) dz =: J ε (x, y). (2.2) Since J ε ∈ L 1 (R N ), u ε ∈ L ∞ (R N
), the function J ε defined by the right-hand side of (2.2) can actually be defined in R N × R N and it is uniformly continuous in R N × R N (due to the continuity of translations in L 1 ).

Let us first consider the case m = 0. As will be explained later on, the case 0 < m < 2 is actually simpler and will follow from the same type of arguments. Now, since

∂ s H ε (x, s) = 1 -ε m [a(x) -2s] = 1 + 2s -a(x) > 0 for all s ∈ 1 2 (a(x) -1) + , ∞ , since H ε (x, 1 2 (a(x) -1) + ) = -1 4 [(a(x) -1) + ] 2 and H ε (x, ∞) = ∞ for all x ∈ R N , and since we have H ε x, ( 1 2 (a(x) -1) + , ∞) = -1 4 [(a(x) -1) + ] 2 , ∞ for all x ∈ R N , it follows that the map H ε (x, •) defines a homeomorphism from 1 2 (a(x) -1) + , ∞ to -1 4 [(a(x) -1) + ] 2 , ∞ for all x ∈ R N and ε > 0. Let us denote by Θ x,ε : -1 4 [(a(x) -1) + ] 2 , ∞ → 1 2 (a(x) -1) + , ∞ its reciprocal, that is, Θ x,ε (H ε (x, t)) = t for all ε > 0, x ∈ R N and t ∈ 1 2 (a(x) -1) + , ∞ . Fix y 0 ∈ R N \ N . For every x ∈ R N \ N , we have, by Lemma 2.3, that u ε (x) ∈ (a(x) -1) + , ∞ ⊂ 1 2 (a(x) -1) + , ∞ , hence (2.2) yields H ε (y 0 , u(y 0 )) + J ε (x, y 0 ) = H ε (x, u ε (x)) ∈ - 1 4 [(a(x) -1) + ] 2 , ∞ .
Since the function x → H ε (y 0 , u ε (y 0 ))+J ε (x, y 0 ) is continuous (in the whole space R N ), since

H ε is itself continuous in R N × R and since N is negligible, it follows that H ε (y 0 , u ε (y 0 )) + J ε (x, y 0 ) ∈ -1 4 [(a(x) -1) + ] 2
, ∞ for all x ∈ R N . Thus, we are allowed to define

u ε (x) = Θ x,ε H ε (y 0 , u ε (y 0 )) + J ε (x, y 0 ) for x ∈ R N .

By (2.2), one has u

ε = u ε in R N \ N . Furthermore, u ε is continuous in R N owing to its definition, since J ε is continuous in R N × R N and (x, s) → Θ x,ε (s) is continuous in the set (x, s) ∈ R N × R; s ∈ [-1 4 [(a(x) -1) + ] 2 , ∞)
. Even if it means redefining u ε by u ε in R N , it follows that u ε is continuous in R N and that (2.2) (resp. (1.5)) holds, by continuity, for all x, y ∈ R N (resp. for all x ∈ R N ).

The case 0 < m 2 is similar but technically simpler since ∂ s H ε (x, s) = 1-ε m [a(x)-2s] > 0 for all 0 < ε < a + -1/m ∞ and all s ∈ [0, ∞). This means that, for all x ∈ R N and all 0 < ε < a + -1/m ∞ , the map H ε (x, •) defines a diffeomorphism from [0, ∞) to [0, ∞). From here, with the same arguments as above, we deduce that u ε may be redefined up to a negligible set as a continuous function in R N .

Lastly, let us show that lim sup |x|→∞ u ε (x) = 0. To this end, we notice that since lim sup |x|→∞ a(x) < 0 (by assumption), there exists then R > 0 such that a(x) 0 for any x ∈ R N \ B R . Whence, it follows from the equation satisfied by u ε that

J ε * u ε (x) ε m u ε (x) 2 + u ε (x) u ε (x) for all x ∈ R N \ B R . (2.3) But since u ε ∈ L ∞ (R N )
, we may apply the reverse Fatou inequality so to obtain

0 M := lim sup |x|→∞ u ε (x) lim sup |x|→∞ ˆRN J ε (y) u ε (x -y) dy M.
Passing to the limit superior in (2.3), we find that M ε m M 2 + M. Therefore M = 0, which thereby completes the proof of Proposition 2.4.

Construction of sub-and super-solution

This section is devoted to the construction of global sub-and super-solution to (1.5). Lemma 3.1. Let 0 m < 2. Assume (1.2) and (1.6). Then, for all θ ∈ (0, 1) and all z ∈ supp(a + ), there is a neighborhood V z,θ ⊂ supp(a + ) of z, a number ε z,θ > 0 and a nonnegative function u z,θ ∈ C c (R N ) satisfying supp(u z,θ ) = V z,θ , u z,θ (z) (1 -θ) a + (z) and u z,θ (x) < a + (x) for all x ∈ V z,θ , and such that u z,θ is a sub-solution to (1.5) for all 0 < ε < ε z,θ .

Proof. Let us fix θ ∈ (0, 1) and an arbitrary point z in supp(a + ). Up to immaterial translations, we may assume (without loss of generality) that z = 0.

Since a ∈ C(R N ), we may find some R > 0 such that (1 -θ/4) a + (0) 3 , 0 , for r 0, and let Ψ ∈ C 2 (R N \ {0}) be the function given by Ψ(x) := ψ(|x|). Since ψ ′ (r) = -3(1r) 2 1 [0,1] (r) and ψ ′′ (r) = 6(1 -r)1 [0,1] (r), by computing the Laplacian of Ψ we obtain that

1 B 2R a + . Now, let η ∈ C 2 c (R N ) be such that (1-θ) a + (0) 1 B R/2 η (1-θ/2) a + (0) 1 B R and that supp(η) = B R . Furthermore, let ψ ∈ C 2 ([0, ∞)) be given by ψ(r) := max (1 -r)
∆Ψ(x) = ψ ′′ (|x|) + N -1 |x| ψ ′ (|x|) = 3(1 -|x|) 2 - N -1 |x| (1 -|x|) 1 (0,1] (|x|) 0, for all x = 0 with |x| N -1 N +1 . In particular, Ψ is subharmonic in R N \ B (N -1)/(N +1) . Let ϕ(x) := C κ min {Ψ(x), ψ(κ)} and κ := max 1 2 , N -1 N + 1 ∈ (0, 1),
where C κ > 0 is a constant such that ϕ has unit mass. Clearly, ϕ is a radial nonnegative continuous piecewise C 2 function with unit mass, supported in B 1 and subharmonic in R N \ B κ . Finally, for all x ∈ R N , we set

u(x) := η * ϕ R/2 (x), where ϕ R/2 (x) = (R/2) -N ϕ (2x/R) for all x ∈ R N . Observe immediately that u ∈ C 2 c (R N ) is supported in B 3R/2 . Moreover, since x -y ∈ R N \ B Rκ/2 for any (x, y) ∈ R N \ B R(1+κ/2) × B R , since ϕ R/2 is C 2 and subharmonic in R N \ B Rκ/2 and since η 0, we have ∆u(x) = ˆBR η(y) ∆ϕ R/2 (x -y) dy 0 for all x ∈ R N \ B R(1+κ/2) .
Hence, u is subharmonic in R N \ B R(1+κ/2) . Moreover, by construction of η, we have

u(0) = ˆRN ϕ R/2 (y)η(-y) dy (1 -θ) a + (0) ˆBR/2 ϕ R/2 (y) dy = (1 -θ) a + (0).
Similarly, we have

u(x) 1 - θ 2 a + (0) 1 B 3R/2 (x) < a + (x) for all x ∈ B 3R/2 .
To complete the proof we only need to show that the function u is a sub-solution to (1.5) provided ε > 0 is small enough. For it, we first observe that, since

η (1 -θ/2) a + (0) 1 B R in R N (by construction of η), we have u(x) (a(x) -u(x)) u(x) a(x) -1 - θ 2 a + (0) ˆRN ϕ(y) 1 B R (x -Ry/2) dy .
Since ϕ has unit mass, since u is supported in B 3R/2 and since (1 -θ/4) a + (0) 1 B 2R a + (by construction of R), we get

u(x) (a(x) -u(x)) u(x) a + (x) -1 - θ 2 a + (0) u(x) 1 - θ 4 a + (0) -1 - θ 2 a + (0) = θ 4 a + (0) u(x). (3.1) Furthermore, letting R ε := (1 -κ)R/(8ε), we have 0 < R ε ε < (1 -κ)R/4 for any ε > 0 (by construction of R ε ). It follows that B Rεε (x) ⊂ R N \B R(1+κ/2) for any x ∈ R N \B R(1+(κ+1)/4) (⊂ R N \B R(1+κ/2) ). But, since ∆u 0 in R N \B R(1+κ/2)
, we may apply the mean value inequality for subharmonic functions in the ball B Rεε (x) (see e.g. [22, Theorem 2.1, p.14]) and we get

- ˆSN-1 u(x + re) dH N -1 (e) = - ˆ∂Br(x) u(e) dH N -1 (e) u(x), for all x ∈ R N \ B R(1+(κ+1)/4
) and all 0 < r R ε ε. As a consequence, there holds

ˆBRεε (x) J ε (x -y) u(y) dy = ˆRε 0 J 0 (t) t N -1 ˆSN-1 u(x + εte) dH N -1 (e) dt σ N u(x) ˆRε 0 J 0 (t) t N -1 dt = u(x) ˆBRεε (x) J ε (x -y) dy, (3.2)
for all x ∈ R N \ B R(1+(κ+1)/4) and all ε > 0, where J 0 ∈ L 1 loc (0, ∞) is a function such that J(x) = J 0 (|x|) for a.e. x ∈ R N . On the other hand, for any x ∈ R N , we have

ˆRN \B Rεε (x) J ε (x -y) dy = ˆRN \B Rε J(y) dy 8 m ε m (1 -κ) m R m ˆRN \B Rε J(y)|y| m dy,
as follows from a direct application of Markov's inequality. Since the m-th order moment of J is finite and since R ε → ∞ as ε → 0 + , there is then some

ε 1 > 0 such that 8 m (1 -κ) m R m ˆRN \B Rε J(y)|y| m dy θ 8 a + (0),
for all 0 < ε < ε 1 . Consequently, for any x ∈ R N and any 0 < ε < ε 1 , we get

ˆRN \B Rεε (x) J ε (x -y) u(y) dy -u(x) ˆRN \B Rεε (x) J ε (x -y) dy -ε m θ 8 a + (0) u(x). (3.3)
Hence, collecting (3.1), (3.2) and (3.3), we obtain

1 ε m (J ε * u(x) -u(x)) + u(x)(a(x) -u(x)) θ 8 a + (0) u(x) 0, (3.4) for any x ∈ R N \ B R(1+(κ+1)/4) and any 0 < ε < ε 1 .
Let us now estimate ε -m (J ε * u -u) in B R(1+(κ+1)/4) . To this end, we observe that 

1 ε m (J ε * u(x) -u(x)) = M m (J) 2 ˆRN ρ ε (y) ∆ 2 y u(x) |y| m dy, (3.
lim sup ε→0 + ˆRN ρ ε (y) ∆ 2 y u L ∞ (R N ) |y| m dy lim sup |h|→0 ∆ 2 h u L ∞ (R N ) |h| m lim |h|→0 D 2 u L ∞ (R N ) |h| 2-m = 0. But since inf B R(1+(κ+1)/4) u > 0, there is then some ε 2 > 0 (independent of x) such that M m (J) 2 ˆRN ρ ε (y) |∆ 2 y u(x)| |y| m dy θ 8 a + (0) inf B R(1+(κ+1)/4) u,
for all x ∈ B R(1+(κ+1)/4) and all 0 < ε < ε 2 . Therefore, recalling (3.1) and (3.5), we get

1 ε m (J ε * u -u) + u(a -u) θ 8 a + (0) inf B R(1+(κ+1)/4) u 0, (3.7)
in B R(1+(κ+1)/4) for all 0 < ε < ε 2 . By (3.4) and (3.7), we obtain that u is a continuous, nonnegative sub-solution to (1.5) for all 0 < ε < ε 0 = min{ε 1 , ε 2 }.

Let us now construct a global super-solution to (1.5). Lemma 3.2. Let 0 m 2 and let β > 0. Assume (1.2) and that J ∈ L 1 (R N ) is a nonnegative radial kernel with unit mass. Suppose that J has a finite β-th order moment. Then, there exist a constant C ε,β > 0 and a positive function

u ε,β ∈ C 0 (R N ) such that a + (x) u ε,β (x) C ε,β 1 + |x| β for all x ∈ R N , (3.8)
and u ε,β is a super-solution to (1.5) for all ε > 0.

Proof. The proof of Lemma 3.2 follows the same line of ideas as in [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF]. We begin by introducing some notations. First, we denote by M ε,m the operator given by

M ε,m [ϕ](x) := 1 ε m ˆRN J ε (x -y)(ϕ(y) -ϕ(x)) dy.
Second, we let R(a + ) 1 be such that supp(a + ) ⊂ B R(a + ) . Next, we let R R(a + ) and ℓ > 0 be such that a(x)

-ℓ for all |x| R (these numbers are guaranteed to exist by assumption (1.2)). Now, given 0

< τ < 1, we let C τ,R := (1/τ + R β ) a + ∞ and u(x) :=        C τ,R τ 1 + τ R β if x ∈ B R , C τ,R τ 1 + τ |x| β if x ∈ R N \ B R .
Our goal will be to prove that there exist R ε,β > 0 and τ ε,β > 0 such that u is a supersolution to (1.5) for all R max{R ε,β , R(a + )}, all 0 < τ < τ ε,β and all ε > 0. Readily, we observe that, by construction of C τ,R and since R R(a + ), we have

M ε,m [u] + u(a -u) 0 in B R . (3.9)
To complete the proof it suffices to prove that this still holds on R N \ B R . To this end, we introduce the auxiliary function U(x) := C τ,R τ (1 + τ |x| β ) -1 , x ∈ R N , and we remark that

M ε,m [u](x) + u(x)(a(x) -u(x)) M ε,m [U](x) -ℓ U(x),
for all |x| R (by construction of ℓ and R). Developing this results in

M ε,m [u](x) + u(x)(a(x) -u(x)) u(x) 1 ε m ˆRN J ε (y) U(x + y) U(x) -1 dy -ℓ = u(x) τ ε m ˆRN J ε (y)(|x| β -|x + y| β ) 1 + τ |x + y| β dy -ℓ . (3.10)
Let us split the integral on the right-hand side as

ˆRN J ε (y)(|x| β -|x + y| β ) 1 + τ |x + y| β dy = ˆ|y| |x|/2 • • • + ˆ|y|<|x|/2 • • • =: I 1 + I 2 .
Clearly,

I 1 2 β ˆRN J ε (y)|y| β dy = (2ε) β M β (J). (3.11)
Let us now estimate I 2 . We will estimate the integrand by a quantity that does not depend on x. So let x, y ∈ R N be such that |x| R and |y| < |x|/2. Let p := ⌊β⌋ + 1 and q := p/β, where ⌊•⌋ denotes the floor function. Using the binomial formula, we have

τ q |x| p -|x + y| p 1 + τ q |x + y| p τ q |x| p -(|x| -|y|) p 1 + τ q |x + y| p = τ q p k=1 p k (-1) k+1 |x| p-k |y| k 1 + τ q |x + y| p .
Since |x| R 1 and (1 + τ q |x + y| p ) -1 2 p (2 p + τ q |x| p ) -1 , we further get

τ q |x| p -|x + y| p 1 + τ q |x + y| p 2 p R p k=1 p k |y| k τ q |x| p 2 p + τ q |x| p 2 p R p k=0 p k |y| k .
Using the binomial formula once again, we arrive at 2 p R (1 + |y|) p τ q |x| p -|x + y| p 1 + τ q |x + y| p for all |x| R and all |y| < |x| 2 .

Moreover, since the function t ∈ [0, ∞) → t 1/q is concave it is in particular subadditive. Consequently, we have that (1 + τ q |x + y| p ) 1/q 1 + τ |x + y| p/q and that (|x| p -|x + y| p ) 1/q |x| p/q -|x + y| p/q whenever y ∈ B |x| (-x). Using this we deduce that

2 β R -1 q (1 + |y|) β = 2 p q R -1 q (1 + |y|) p q τ |x| p q -|x + y| p q 1 + τ |x + y| p q = τ |x| β -|x + y| β 1 + τ |x + y| β , (3.12)
for all |x| R and all y ∈ B |x| (-x) with |y| < |x|/2. Notice that this remains true if y ∈ R N \ B |x| (-x) since the right-hand side in (3.12) is negative. Hence, (3.12) holds for all |x| R and all y ∈ R N with |y| < |x|/2. As a consequence, we get 

I 2 2 β R -1 q τ ˆRN J ε ( 
M ε,m [u](x) + u(x)(a(x) -u(x)) u(x) C 1 τ + C 2 R -1 q -ℓ ,
for all |x| R and some C 1 , C 2 > 0 depending on ε, m, J and β. Hence, there exist 0 < τ ε,β < 1 and R ε,β > 0 such that, for all R R ε,β and all 0 < τ < τ ε,β , we have

M ε,m [u](x) + u(x)(a(x) -u(x)) - 1 2 u(x) ℓ < 0 for all |x| R.
Recalling (3.9), we obtain that u is indeed a super-solution to (1.5). Moreover, estimate (3.8) is trivially satisfied. This completes the proof.

Existence, uniqueness and asymptotic analysis

In this section, we prove our main results Theorems 1.1-1.3. Our strategy follows some ideas already used in [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF][START_REF] Brasseur | Liouville type results for a nonlocal obstacle problem[END_REF][START_REF] Brasseur | A counterexample to the Liouville property of some nonlocal problems[END_REF][START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases[END_REF] and relies on the well-known monotone iterative method together with Lemmata 3.1-3.2. As in [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF], we will construct the unique positive minimal solution to (1.5) as the pointwise limit as R → ∞ of the unique positive solution to

M R,ε,m [u](x) + u(x)(a(x) -u(x)) = 0 for x ∈ B R , (4.1)
where M R,ε,m is the operator given by

M R,ε,m [ϕ](x) := 1 ε m ˆBR J ε (x -y) ϕ(y) dy -ϕ(x) .
To this end, we need to construct such a solution and to establish its uniqueness. In view of this, we first prove a few comparison principles for the problem (4.1). This will be done in the next subsection. Once this is done, we will be in position to prove Theorems 1.1-1.3 using the sub-and the super-solution constructed at Section 3. Then, w 0 in B R .

Proof. Suppose, by contradiction, that sup B R w > 0. Since w is continuous, there exists a point x ∈ B R such that w(x) = sup B R w > 0. Let (x j ) j 0 ⊂ B R be such that x j → x as j → ∞. Since k > 0, specializing (4.2) at x j and passing to the limit as j → ∞ (using the dominated convergence theorem), we obtain

0 1 ε m ˆBR J ε (x -y) w(y) -sup B R w dy k + 1 ε m ˆRN \B R J ε (x -y) dy sup B R w > 0,
which is a contradiction. The proof is thereby complete. Suppose, by contradiction, that γ * > 1. Then, we have

M R,ε,m [γ * v] + γ * v(a -γ * v) γ * v(a -γ * v) -γ * v(a -v) = γ * (1 -γ * )v 2 < 0. (4.3)
Since B R is compact, by minimality of γ * there must be some x 0 ∈ B R such that γ * v(x 0 ) = u(x 0 ). Hence, there holds

M R,ε,m [γ * v](x 0 ) + γ * v(x 0 )(a(x 0 ) -γ * v(x 0 )) 1 ε m ˆBR J ε (x 0 -y) (γ * v(y) -u(y)) dy.
By assumption, the integrand on the right-hand side is nonnegative. This contradicts the strict inequality in (4.3). Therefore, γ * 1 which ensures that u v in B R .

4.2. Proof of Theorem 1.1. We now proceed to the proof of Theorem 1.1. For the convenience of the reader, the proof is split into four parts. After a preparatory step, we establish the existence of a unique positive solution to the truncated problem (4.1) using the subsolution constructed at Section 3 and the comparison principles of Subsection 4.1. Then, we use this solution to prove that (1.5) admits a unique positive minimal solution. Finally, exploiting the properties of the sub-solution constructed at Section 3 we derive its asymptotic behavior, which will thereby complete the proof of Theorem 1.1.

Step 1. Preliminaries Since (u j R,ε ) j 0 is non-decreasing and bounded from above by u, the function u R,ε (x) := lim j→∞ u j R,ε (x) ∈ u z,θ (x), u(x) , (4.7) is well-defined for any x ∈ B R . In particular, it follows from (4.7) that u R,ε is nonnegative, not identically zero and bounded. It remains only to check that the function u R,ε is a solution to (4.1). For it, it suffices to let j → ∞ in (4.4) (using the dominated convergence theorem), which then gives

M R,ε,m [u R,ε ](x) + f (x, u R,ε (x)) = 0 for any x ∈ B R .
Finally, by a straightforward adaptation of Proposition 2.4 we deduce that u R,ε ∈ C(B R ) and that u R,ε > 0 in B R . Moreover, u R,ε is the only positive solution to (4.1) (this follows from Lemma 4.2).

Step 3. Construction of the unique positive minimal solution to (1.5) Now, we observe that, if R ′ R, then the unique positive solution to (4.1) with R ′ instead of R will be a super-solution to (4.1) in the ball B R . Hence, using Lemma 4.2, we find that u z,θ u R,ε u R ′ ,ε a + ∞ for all R ′ R R 0 and all 0 < ε < min{ε z,θ , ε m,a + }. Hence, the function u ε given by

u ε (x) := lim R→∞ u R,ε (x) ∈ u z,θ (x), a + ∞ ,
is well-defined and it is nonnegative and bounded. By the dominated convergence theorem, we find that u ε is a nontrivial solution to (1.5) and, by Proposition 2.4, we further obtain that u ε ∈ C 0 (R N ) and that u ε > 0 in R N (remember that ε < ε m,a + ).

Let us now check that u ε is the unique positive minimal solution to (1.5). Let v ε ∈ L ∞ (R N ) be any nontrivial nonnegative solution to (1.5). Then, v ε ∈ C 0 (R N ) and v ε > 0 in R N (by Proposition 2.4). But since v ε is a super-solution to (4.1) for all R R 0 , we have u R,ε v ε in B R for all R R 0 (by Lemma 4.2), which enforces that u ε v ε . Therefore, u ε is indeed the unique positive minimal solution to (1.5).

Step 4. Asymptotics of the minimal solution Lastly, by construction of u z,θ , we have lim inf ε→0 + u ε (z) u z,θ (z) (1 -θ) a + (z). (4.8) But since z has been chosen arbitrarily, choosing another point z ′ ∈ supp(a + ) would result in the existence of some ε z ′ ,θ > 0 and of a solution ũε ∈ C 0 (R N ) to (1.5) for 0 < ε < min{ε z ′ ,θ , ε m,a + } which satisfies (4.8) with z ′ instead of z and which is the unique positive minimal solution to (1.5) in the range 0 < ε < min{ε z ′ ,θ , ε m,a + }. Hence, it coincides with u ε for 0 < ε < min{ε z,θ , ε z ′ ,θ , ε m,a + }. Thus, we have lim inf ε→0 + u ε (z ′ ) = lim inf ε→0 + ũε (z ′ ) u θ,z ′ (z ′ ) (1 -θ) a + (z ′ ). Therefore, we find that lim inf ε→0 + u ε (x)

(1 -θ) a + (x), for all θ ∈ (0, 1) and all x ∈ supp(a + ) (hence for all x ∈ R N ). Letting θ → 0 + , we obtain lim inf ε→0 + u ε (x) a + (x) for all x ∈ R N . This thereby completes the proof of Theorem 1.1.

4.3.

Proof of Theorem 1.3. We now complete this section by proving Theorem 1.3. By assumption, there exists some β > N such that J has a finite β-th order moment. Then, by Lemma 3.2, there exists a super-solution u ε,β ∈ C 0 (R N ) to (1.5) satisfying u ε,β (x) C ε,β 1 + |x| β for all x ∈ R N , and some C ε,β > 0. In particular, u ε,β ∈ L 1 (R N ). Using the same arguments as above (relying on the comparison principle Lemma 4.2), we obtain that the unique positive minimal solution u ε to (1.5) satisfies u ε u ε,β in R N , which enforces that u ε ∈ L 1 (R N ).

Let us now prove that the minimal solution u ε is the only nontrivial nonnegative solution to (1.5). Suppose that there is another nontrivial nonnegative solution v ε ∈ L ∞ (R N ). By Proposition 2.4, we have v ε ∈ C 0 (R N ) and v ε > 0 in R N . Since u ε and v ε are two solutions to (1.5) and since u ε ∈ L 1 (R N ), we have

ˆRN u ε (x) M ε,m [v ε ](x) + f (x, v ε (x)) -v ε (x) M ε,m [u ε ](x) + f (x, u ε (x)) dx = 0.
In turn, this equality implies that ˆRN u ε (x)v ε (x)(v ε (x) -u ε (x)) dx = 0. (4.9) By minimality of u ε , we must have u ε v ε in R N . This, together with (4.9), enforces that u ε ≡ v ε . Therefore, (1.5) indeed admits a unique positive solution.

It remains to derive the asymptotic behavior of u ε . Suppose that a + ∈ Bm 1,∞ (R N ). Define v ε := a + -u ε and w ε := a -u ε . Then, 1 ε m (v ε -J ε * v ε ) + u ε w ε = 1 ε m (a + -J ε * a + ). Multiplying this equation by v + ε and integrating over R N , we get

ˆRN u ε (w + ε ) 2 = ˆRN u ε v + ε w ε 1 ε m ˆRN v + ε (a + -J ε * a + ) 1 ε m ˆRN a + |a + -J ε * a + |,
where we have used [6, Formula (5.7)] and the fact that 

0 w + ε = v + ε a + ∈ L 1 (

9 ,

 9 [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF] where ∆ 2 y u(x) := u(x + y) -2 u(x) + u(x -y) and ρ ε is given by ρ ε (y) Proposition 6.1] and recalling that u ∈ C 2 c (R N ) and 0 m < 2, we have

  y)(1 + |y|) β dy. (3.13) Plugging (3.11) and (3.13) in (3.10), we find that

4. 1 .

 1 Comparison principles. Let us list in this subsection, some comparison principles which will allow us to establish Theorem 1.1.

Lemma 4 . 1 (

 41 Maximum principle). Let J ∈ L 1 (R N ) be a nonnegative function. Let k > 0 and w ∈ C(B R ) be such that M R,ε,m [w] -k w 0 in B R . (4.2)

Lemma 4 . 2 (

 42 Comparison principle). Let J ∈ L 1 (R N ) be a nonnegative function. Let v ∈ C(B R ) be a positive function and let u ∈ C(B R ) be a nonnegative function. Suppose that u and v are a sub-and a super-solution to (4.1), respectively. Then, u v in B R . Proof. The proof follows from some ideas due to Coville (see [20, Section 6.3]). Let u ∈ C(B R ) be a nonnegative sub-solution and let v ∈ C(B R ) be a positive super-solution. Define γ * := inf γ > 0 s.t. γ v u in B R .

  + (x)| |y| m dxdy,where ρ ε is as in (3.6) and ∆ 2 y a + (x) = a + (x + y) -2a + (x) + a + (x -y). Since a + ∈ Bm

	(4.10)								R N ).
	It follows that							
	ˆRN	u ε (w + ε ) 2	a +	∞	M m (J) 2	ˆRN ˆRN	ρ ε (y)	|∆ 2 y a 1,∞ (R N ),
	using [9, Proposition 6.1], we get				
	lim sup ε→0 + ˆRN	u ε (w + ε ) 2		a +	∞	M m (J) 2	lim |h|→0	∆ 2 h a + |h| m L 1 (R N )	= 0.
	And so we have							
	(4.11)				lim ε→0 + ˆRN	u ε (w + ε ) 2 = 0.
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Let R 0 > 0 be such that supp(a + ) ⊂ B R 0 and let R R 0 be fixed. Observe immediately that if ψ ∈ C c (R N ) is a nonnegative sub-solution to (1.5) satisfying supp(ψ) ⊂ supp(a + ), then ψ is also a nonnegative sub-solution to the truncated problem (4.1) for all R R 0 . Now, let z ∈ supp(a + ) and θ ∈ (0, 1) be arbitrary. By Lemma 3.1, there exist ε z,θ > 0, a neighborhood V z,θ ⊂ supp(a + ) of z and a sub-solution u z,θ ∈ C c (R N ) to (1.5) satisfying supp(u z,θ ) = V z,θ , u z,θ (z) (1 -θ) a + (z) and u z,θ (x) < a + (x) for all x ∈ V z,θ .

Let u := a + ∞ . Then, u z,θ and u are continuous global sub-and super-solution to (1.5) for all 0 < ε < ε z,θ . Since R R 0 , these functions are also a sub-and a super-solution to the truncated problem (4.1) for all 0 < ε < ε z,θ .

Step 2. Construction of a unique solution to the truncated problem Let 0 < ε < min{ε z,θ , ε m,a + }, where ε m,a + > 0 has the same meaning as in Proposition 2.4. Let us first observe that, for all R > 0, the operator M R,ε,m is linear and continuous on

We will construct a solution u R,ε to (4.1) satisfying u z,θ u R,ε u using a monotone iterative scheme starting from u z,θ and using u as a barrier function.

Namely, we set u 0 R,ε ≡ u z,θ and, for j 0, we let

Observe that the u j R,ε 's are well-defined elements of C(B R ). We will show that a solution to (4.1) can be obtained as the pointwise limit of (u j R,ε ) j 0 . First, when j = 0, we have

This, together with Lemma 4.1, then gives that

R,ε . Thus, from the monotonicity of s → -ks -f (x, s), we deduce that (4.6) still holds with u 2 R,ε instead of u 1 R,ε and u 1 R,ε instead of u 0 R,ε . We may then apply the maximum principle Lemma 4.1 and we deduce that

By induction, we infer that the u j R,ε 's satisfy the monotonicity relation

On the other hand, since u ε ∈ L 1 (R N ), we can integrate (1.5) and we get

Thus, recalling (4.10), we have

, where A := supp(a + ). Since u ε a + ∞ , it follows from (4.11) that u ε (a -u ε ) L 1 (R N ) vanishes as ε → 0 + . Therefore, up to extraction of a subsequence, we have

where V z (supp(a + )) is the set of all neighborhoods of z contained in supp(a + ). Hence,

This being true for any z ∈ supp(a + ), it follows that u ε → a + a.e. in R N , as desired.

Appendix A.

In this Appendix, we state a last result which suggests that the moment condition in Theorem 1.1 (and in Lemma 3.1) is optimal. In substance, we prove that, if the β-th order moment of J is infinite for some β < m, then there cannot exist uniform (with respect to ε) sub-solutions u to (1.5) with u a + , i.e. that Lemma 3.1 cannot be significantly improved.

Proposition A.1. Let 0 < m < 2. Assume (1.2) and that J ∈ L 1 (R N ) is a radially symmetric kernel with unit mass. Suppose that there exists ε 0 > 0 and u ∈ C c (R N ) such that u is a nonnegative, nontrivial sub-solution to (1.5) for all 0 < ε < ε 0 . Then,

In particular, J has a finite β-th order moment for all 0 < β < m.

Proof. Let ε 0 > 0 and u ∈ C c (R N ) be such that u is a nonnegative sub-solution to (1.5) for all 0 < ε < ε 0 . Assume, without loss of generality, that ε 0 = 1 and that supp(u) = B 1 . Then, by assumption, we have ε -m (J ε * u -u) + u(a -u) 0 in R N . Multiplying this by u and integrating over R N , we obtain 1 2ε m ˆRN ˆRN J ε (y)(u(x -y) -u(x)) 2 dxdy ˆRN u 2 a + =: I.

But since u is supported in B 1 , we have

Dividing both sides of this inequality by ε ℓ for some ℓ ∈ (0, 1) and integrating with respect to ε ∈ (0, 1), we obtain

] and z ∈ B 1 , then we have 0 < δ |y| and |z + δ y/|y|| 1. We thus obtain the lower bound

which thereby completes the proof.

Remark A.2. Interestingly, the proof of Proposition A.1 is similar to that of [START_REF] Lamy | Characterization of function spaces via low regularity mollifiers[END_REF]Proposition 3]. In [START_REF] Lamy | Characterization of function spaces via low regularity mollifiers[END_REF], Lamy and Mironescu show that some Besov spaces can be characterized by quantities which strikingly resemble the nonlocal diffusion part of (1.5), namely sup 0<ε<1

provided J has a finite s-th order moment. We believe that a fine understanding of (A.1) in the case where f also depends on ε could be helpful to study the influence of tail of the kernel on the asymptotic properties of solutions to (1.5).