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A CENTRAL LIMIT THEOREM FOR FIELDS OF MARTINGALE DIFFERENCES

We prove a central limit theorem for stationary random fields of martingale differences f • T i , i ∈ Z d , where T i is a Z d action and the martingale is given by a commuting filtration. The result has been known for Bernoulli random fields; here only ergodicity of one of commuting transformations generating the Z d action is supposed.

Introduction

In study of the central limit theorem for dependent random variables, the case of martingale difference sequences has played an important role, cf. Hall and Heyde, [HaHe]. Limit theorems for random fields of martingale differences were studied for example by Basu and Dorea [BD], Morkvenas [M], Nahapetian [N], Poghosyan and Roelly [PR], Wang and Woodroofe [WaW]. Limit theorems for martingale differences enable a research of much more complicated processes and random fields. The method of martingale approximations, often called Gordin's method, originated by Gordin's 1969 paper [G1]. The approximation is possible for random fields as well, for most recent results cf. e.g. [WaW] and [VWa]. Remark that another approach was introduced by Dedecker in [D] (and is being used since); it applies both to sequences and to random fields.

For random fields, the martingale structure can be introduced in several different ways. Here we will deal with a stationary random field f • T i , i ∈ Z d , where f is a measurable function on a probability space (Ω, µ, A) and T i , i ∈ Z d , is a group of commuting probability preserving transformations of (Ω, µ, A) (a Z d action). By e i ∈ Z d we denote the vector (0, ..., 1, ..., 0) having 1 on the i-th place and 0 at all other places, 1 ≤ i ≤ d.

F i , i = (i 1 . . . , i d ) ∈ Z d , is an invariant commuting filtration (cf. D. Khosnevisan, [K]) if (i) F i = T -i F 0 for all i ∈ Z d , (ii) F i ⊂ F j for i ≤ j in the lexicographic order, and (iii) F i ∩ F j = F i∧j , i, j ∈ Z d , and i ∧ j = (min{i 1 , j 1 }, . . . , min{i d , j d }). If, moreover, E E(f |F i ) F j = E(f |F i∧j )
, for every integrable function f , we say that the filtration is completely commuting (cf. [G2], [VWa]). By F (q) l , 1 ≤ q ≤ d, l ∈ Z, we denote the σ-algebra generated by the union of all F i with i q ≤ l. For d = 2 we by F ∞,j = F

(2) j denote the σ-algebra generated by the union of all F i,j , i ∈ Z, and in the same way we define F i,∞ .

We sometimes denote f • T i by U i f ; f will always be from L 2 . We say that U i f , i ∈ Z d , is a field of martingale differences if f is F 0 -measurable and whenever i = (i 1 . . . , i d ) ∈ Z d is such that i q ≤ 0 for all 1 ≤ q ≤ d and at least one inequality is strict then

E(f | F i ) = 0. Notice that U i f is then F i -measurable, i = (i 1 . . . , i d ) ∈ Z d , and if j = (j 1 . . . , j d ) ∈ Z d is such that j k ≤ i k for all 1 ≤ k ≤ n and at least one inequality is strict, E(U i f | F j ) = 0.
Notice that by commutativity, if U i f are martingale differences then

E(f | F (q) -1 ) = 0 for all 1 ≤ q ≤ d. (f • T j e q ) j
is thus a sequence of martingale differences for the filtration of F (q) j . In particular, for d = 2, (f • T j e 2 ) is a sequence of martingale differences for the filtration of F ∞,j = F

(2) j . Recall that a measure preserving transformation T of (Ω, µ, A) is said to be ergodic if for any

A ∈ A such that T -1 A = A, µ(A) = 0 or µ(A) = 1. Similarly, a Z d action (T i ) i is ergodic if for any A ∈ A such that T -i A = A, µ(A) = 0 or µ(A) = 1.
A classical result by Billinsley and Ibragimov says that if (f • T i ) i is an ergodic sequence of martingale differences, the central limit theorem holds. The result does not hold for random fields, however.

Example. As noticed in paper by Wang, Woodroofe [WaW], for a 2-dimensional random field Z i,j = X i Y j where X i and Y j , i, j ∈ Z, are mutually independent N (0, 1) random variables, we get a convergence towards a non normal law. The random field of Z i,j can be represented by a non ergodic action of Z 2 : Let (Ω, µ, A) be a product of probability spaces (Ω ′ , µ ′ , A ′ ) and (Ω ′′ , µ ′′ , A ′′ ) equipped with ergodic measure preserving transformations T ′ and T ′′ . On Ω we then define a measure preserving Z 2 action T i,j (x, y) = (T ′ i x, T ′′ j y). The σalgebras A ′ , A ′′ are generated by N (0, 1) iid sequences of random variables (e ′ • T ′ i ) i and (e ′′ • T ′′ i ) i respectively. The dynamical systems (Ω ′ , µ ′ , A ′ , T ′ ) and (Ω ′′ , µ ′′ , A ′′ , T ′′ ) are then Bernoulli hence ergodic (cf. [CSF]). On the other hand, for any

A ′ ∈ A ′ , A ′ × Ω ′′ is T 0,1 -invariant hence T 0,1 is not an ergodic transformation.
Similarly we get that T 1,0 is not an ergodic transformation either. By ergodicity of T ′ , T ′′ , A ′ × Ω ′′ , A ′ ∈ A ′ , are the only T 0,1 -invariant measurable subsets of Ω and A ′′ × Ω ′ , A ′′ ∈ A ′′ , are the only T 1,0 -invariant measurable subsets of Ω (modulo measure µ). Therefore, the only measurable subsets of Ω which are invariant both for T 0,1 and for T 1,0 are of measure 0 or of measure 1, i.e. the Z 2 action T i,j is ergodic.

On Ω we define random variables X, Y by X(x, y) = e ′ (x) and Y (x, y) = e ′′ (y). The random field of (XY ) • T i,j then has the same distribution as the random field of Z i,j = X i Y j described above. The natural filtration of F i,j = σ{(XY ) • T i ′ ,j ′ : i ′ ≤ i, j ′ ≤ j} is commuting and ((XY ) • T i,j ) i,j is a field of martingale differences.

A very important particular case of a Z d action is the case when the σ-algebra A is generated by iid random variables

U i e, i ∈ Z d . The σ-algebras F j = σ{U i : i k ≤ j k , k = 1, . . . , d} are then a completely commuting filtration and if U i f , i ∈ Z d is a 2
martingale difference random field, the central limit theorem takes place (cf. [WW]). This fact enabled to prove a variety of limit theorems by martingale approximations (cf. e.g. [WaW], [VWa]).

For Bernoulli random fields, other methods of proving limit theorems have been used, cf. e.g. [ElM-V-Wu], [Wa], [BiDu].

The aim of this paper is to show that for a martingale difference random field, the CLT can hold under assumptions weaker than Bernoullicity.

Main result

Let T i , i ∈ Z d , be a Z d action of measure preserving transformations on (Ω, A, µ), (F i ) i , i ∈ Z d , be a commuting filtration. By e i ∈ Z d we denote the vector (0, ..., 1, ..., 0) having 1 on the i-th place and 0 at all other places, 1 ≤ i ≤ d.

Theorem. Let f ∈ L 2 , be such that (f • T i ) i is a field of martingale differences for a completely commuting filtration F i . If at least one of the transformations T e i , 1 ≤ i ≤ d, is ergodic then the central limit theorem holds, i.e. for n 1 , . . . ,

n d → ∞ the distributions of 1 √ n 1 . . . n d n 1 i 1 =1 • • • n d i d =1 f • T (i 1 ,...,i d )
weakly converge to N (0, σ 2 ) where σ 2 = f 2 2 . Remark 1. The results from [VoWa] remain valid for Z d actions satisfying the assumptions of the Theorem, Bernoullicity thus can be replaced by ergodicity of one of the transformations T e i . Under the assumptions of the Theorem we thus also get a weak invariance principle. [VoWa] implies many earlier results, cf. references therin and in [WaW].

Proof.

We prove the theorem for d = 2. Proof of the general case is similar. We suppose that the transformation T 0,1 is ergodic and f 2 = 1. To prove the central limit theorem for the random field it is sufficient to prove that for m

k , n k → ∞ as k → ∞, (1) 1 √ m k n k m k i=1 n k j=1 f • T i,j converge in distribution to N (0, 1).
Recall the central limit theorem by D.L. McLeish (cf. [M]) saying that if X n,i , i = 1, . . . , k n , is an array of martingale differences such that (i) max 1≤i≤k n |X n,i | → 0 in probability, (ii) there is an L < ∞ such that max 1≤i≤k n X 2 n,i ≤ L for all n, and (iii)

k n i=1 X 2 n,i → 1 in probability, then k n i=1 X n,i converge to N (0, 1) in law.
Next, we will suppose k n = n; we will denote U i,j f = f • T i,j . For a given positive integer v and positive integers u, n define

F i,v = 1 √ v v j=1 U i,j f, X n,i = 1 √ n F i,v , i = 1, . . . , n.
Clearly, X n,i are martingale differences for the filtration (F i,∞ ) i . We will verify the assumptions of McLeish's theorem. The conditions (i) and (ii) are well known to follow from stationarity. For reader's convenience we recall their proofs.

(i) For ǫ > 0 and any integer v ≥ 1,

µ( max 1≤i≤n |X n,i | > ǫ) ≤ n i=1 µ(|X n,i | > ǫ) = nµ 1 √ nv v j=1 U 0,j f > ǫ ≤ ≤ 1 ǫ 2 E 1 √ v M j=1 U 0,j f 2 1 | v j=1 U 0,j f |≥ǫ √ nv → 0
as n → ∞; this proves (i). Notice that that the convergence is uniform for all v.

To see (ii) we note

max 1≤i≤n |X n,i | 2 ≤ n i=1 X 2 n,i = 1 n n i=1 1 √ v v j=1 U i,j f 2 which implies E max 1≤i≤n |X n,i | 2 ≤ 1.
[WaW] It remains to prove (iii). Let us fix a positive integer m and for constants a 1 , . . . , a m consider the sums

m i=1 a i v j=1 U i,j f, v → ∞.
Then ( m i=1 a i U i,j f ) j , j = 1, 2, . . . , are martingale differences for the filtration (F ∞,j ) j and by the central limit theorem of Billingsley and Ibragimov [Bil], [I] (we can also prove using the McLeish's theorem)

1 √ v v j=1 m i=1 a i U i,j f converge in law to N (0, m i=1 a 2 i ).
Notice that that here we use the assumption of ergodicity of T 0,1 . From this it follows that the random vectors (F 1,v , . . . , F m,v ) where

F u,v = 1 √ v v j=1 U u,j f, u = 1, . . . , m,
converge in law to a vector (W 1 , . . . , W m ) of m mutually independent and N (0, 1) distributed random variables. For a given ǫ > 0, if m = m(ǫ) is sufficiently big then we have 1

-(1/m) m u=1 F 2 u,v 1 < ǫ/2.
Using a truncation anrgument we can from the convergence in law of (F u,v , . . . , F m,v ) towards (W 1 , . . . , W m ) deduce that for m = m(ǫ) sufficiently big and v bigger than some v(m, ǫ),

1 - 1 m m u=1 F 2 u,v 1 < ǫ.
Any positive integer N can be expressed as N = pm + q where 0 ≤ q ≤ m -1. Therefore

(2) 1 - 1 N N i=1 F 2 i,v = m N p-1 k=0 1 m (k+1)m i=km+1 F 2 i,v -1 + 1 N N i=mp+1 F 2 i,v - q N .
There exists an N ǫ such that for N ≥ N ǫ we have 1

N N i=mp+1 F 2 i,v -q N 1 < ǫ hence if v ≥ v(m, ǫ) and N ≥ N ǫ then (3) 1 - 1 N N i=1 F 2 i,v 1 = 1 - 1 N v N i=1 v j=1 U i,j f 2 1 < 2ǫ.
This proves that for ǫ > 0 there are positive integers v(m, ǫ/2) and N ǫ such that for M ≥ v(m, ǫ/2) and n ≥ N ǫ , for

X n,i = (1/ √ n)F i,M n i=1 X 2 n,i -1 1 = n i=1 1 √ nM M j=1 U i,j f 2 -1 1 < ǫ.
In the general case we can suppose that T e d is ergodic (we can permute the coordinates). Instead of T i,j we will consider transformations T i,j where i ∈ Z d-1 and in (3), instead of segments {km + 1, . . . , km + m} we take boxes of (k 1 m + i 1 , . . . , k d-1 m + i d-1 ), i 1 , . . . , i d-1 ∈ {1, . . . , m}.

This finishes the proof of the Theorem.

Remark 2. For any positive integer d there exists a random field of martingale differences (f • T i ) for a commuting filtration of F i where T i , i ∈ Z d , is a non Bernoulli Z d action and all T e i , 1 ≤ i ≤ d, are ergodic.

To show this we take a Bernoulli Z d action T i , i ∈ Z d on (Ω, A, µ) generated by iid random variables (e • T i ) as defined e.g. in [WaW] or [VWa]. Then we take another Z d action of irrational rotations on the unit circle (identified with the interval [0, 1)) generated by τ e i = τ θ i , τ θ i x = x + θ i mod 1; θ i , 1 ≤ i ≤ d, are linearly independent irrational numbers. The unit circle is equipped with the Borel σ-algebra B and the (probability) Lebesgue measure λ. On the product Ω × [0, 1) with the product σ-algebra and the product measure we define the product Z d action (T i × τ i )(x, y) = (T i x, τ i y). Because the product of ergodic transformations is ergodic, for every e i , 1 ≤ i ≤ d, T e i × τ e i is ergodic. The product Z d action is not Bernoulli (it has irrational rotations for factors).

On Ω × [0, 1) we define a filtration F (i 1 ,...,i d ) = σ{U (i ′ ,...,i ′ d ) e • π 1 , i ′ -1 ≤ i 1 , . . . , i ′ d ≤ i d , π -1 2 B} where π 1 , π 2 are the coordinate projection of Ω × [0, 1). The filtration defined above is commuting and we can find a random field of martingale differences satisfying the assumptions of the Theorem.

Remark 3. In the one dimensional central limit theorem, non ergodicity implies a convergence towards a mixture of normal laws. This comes from the fact that using a decomposition of the measure µ into ergodic components, we get the "ergodic case" for each of the components (cf. [V]); the variance is given by the limit of (1/n) n i=1 U i f 2 which by the Birkhoff Ergodic Theorem exists a.s. and in L 1 and is T -invariant. In the case of a Z 2 action (taking d = 2 for simplicity), the limit for T 0,1 need not be T 1,0 -invariant. This is exactly the case described in the Example and eventually we got there a convergence towards a law which is not normal.
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