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A CENTRAL LIMIT THEOREM FOR

FIELDS OF MARTINGALE DIFFERENCES

Dalibor Volný

Laboratoire de Mathématiques Raphaël Salem,
UMR 6085, Université de Rouen, France

Abstract. We prove a central limit theorem for stationary random fields of mar-
tingale differences f ◦ Ti, i ∈ Z

d, where Ti is a Z
d action and the martingale is given

by a commuting filtration. The result has been known for Bernoulli random fields;
here only ergodicity of one of commuting transformations generating the Z

d action

is supposed.

Introduction

In study of the central limit theorem for dependent random variables, the case of
martingale difference sequences has played an important role, cf. Hall and Heyde,
[HaHe]. Limit theorems for random fields of martingale differences were studied
for example by Basu and Dorea [BD], Morkvenas [M], Nahapetian [N], Poghosyan
and Roelly [PR], Wang and Woodroofe [WaW]. Limit theorems for martingale
differences enable a research of much more complicated processes and random fields.
The method of martingale approximations, often called Gordin’s method, originated
by Gordin’s 1969 paper [G1]. The approximation is possible for random fields as
well, for most recent results cf. e.g. [WaW] and [VWa]. Remark that another
approach was introduced by Dedecker in [D] (and is being used since); it applies
both to sequences and to random fields.

For random fields, the martingale structure can be introduced in several different
ways. Here we will deal with a stationary random field f ◦ Ti, i ∈ Z

d, where f is a

measurable function on a probability space (Ω, µ,A) and Ti, i ∈ Z
d, is a group of

commuting probability preserving transformations of (Ω, µ,A) (a Z
d action). By

ei ∈ Z
d we denote the vector (0, ..., 1, ..., 0) having 1 on the i-th place and 0 at all

other places, 1 ≤ i ≤ d.
Fi, i = (i1 . . . , id) ∈ Z

d, is an invariant commuting filtration (cf. D. Khosnevisan,
[K]) if

(i) Fi = T−iF0 for all i ∈ Z
d,

(ii) Fi ⊂ Fj for i ≤ j in the lexicographic order, and

(iii) Fi ∩ Fj = Fi∧j , i, j ∈ Z
d, and i ∧ j = (min{i1, j1}, . . . ,min{id, jd}).

If, moreover, E
(

E(f |Fi)
∣

∣Fj

)

= E(f |Fi∧j), for every integrable function f , we say

that the filtration is completely commuting (cf. [G2], [VWa]).

By F (q)
l , 1 ≤ q ≤ d, l ∈ Z, we denote the σ-algebra generated by the union of all
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Fi with iq ≤ l. For d = 2 we by F∞,j = F (2)
j denote the σ-algebra generated by

the union of all Fi,j , i ∈ Z, and in the same way we define Fi,∞.
We sometimes denote f ◦ Ti by Uif ; f will always be from L2.

We say that Uif , i ∈ Z
d, is a field of martingale differences if f is F0-measurable

and whenever i = (i1 . . . , id) ∈ Z
d is such that iq ≤ 0 for all 1 ≤ q ≤ d and at least

one inequality is strict then E(f | Fi) = 0.

Notice that Uif is then Fi-measurable, i = (i1 . . . , id) ∈ Z
d, and if j = (j1 . . . , jd) ∈

Z
d is such that jk ≤ ik for all 1 ≤ k ≤ n and at least one inequality is strict,

E(Uif | Fj) = 0.

Notice that by commutativity, if Uif are martingale differences then

E(f | F (q)
−1 ) = 0

for all 1 ≤ q ≤ d. (f ◦ T j
eq
)j is thus a sequence of martingale differences for the

filtration of F (q)
j . In particular, for d = 2, (f ◦ T j

e2
) is a sequence of martingale

differences for the filtration of F∞,j = F (2)
j .

Recall that a measure preserving transformation T of (Ω, µ,A) is said to be
ergodic if for any A ∈ A such that T−1A = A, µ(A) = 0 or µ(A) = 1. Similarly,
a Z

d action (Ti)i is ergodic if for any A ∈ A such that T−iA = A, µ(A) = 0 or
µ(A) = 1.

A classical result by Billinsley and Ibragimov says that if (f ◦ T i)i is an ergodic
sequence of martingale differences, the central limit theorem holds. The result does
not hold for random fields, however.

Example. As noticed in paper by Wang, Woodroofe [WaW], for a 2-dimensional
random field Zi,j = XiYj where Xi and Yj , i, j ∈ Z, are mutually independent
N (0, 1) random variables, we get a convergence towards a non normal law. The
random field of Zi,j can be represented by a non ergodic action of Z2:

Let (Ω, µ,A) be a product of probability spaces (Ω′, µ′,A′) and (Ω′′, µ′′,A′′)
equipped with ergodic measure preserving transformations T ′ and T ′′. On Ω we

then define a measure preserving Z
2 action Ti,j(x, y) = (T ′ix, T ′′jy). The σ-

algebras A′,A′′ are generated by N (0, 1) iid sequences of random variables (e′ ◦
T ′i)i and (e′′ ◦ T ′′i)i respectively. The dynamical systems (Ω′, µ′,A′, T ′) and
(Ω′′, µ′′,A′′, T ′′) are then Bernoulli hence ergodic (cf. [CSF]). On the other hand, for
any A′ ∈ A′, A′ × Ω′′ is T0,1-invariant hence T0,1 is not an ergodic transformation.
Similarly we get that T1,0 is not an ergodic transformation either. By ergodicity of
T ′, T ′′, A′ × Ω′′, A′ ∈ A′, are the only T0,1-invariant measurable subsets of Ω and
A′′ × Ω′, A′′ ∈ A′′, are the only T1,0-invariant measurable subsets of Ω (modulo
measure µ). Therefore, the only measurable subsets of Ω which are invariant both
for T0,1 and for T1,0 are of measure 0 or of measure 1, i.e. the Z

2 action Ti,j is
ergodic.
On Ω we define random variables X, Y by X(x, y) = e′(x) and Y (x, y) = e′′(y).
The random field of (XY ) ◦Ti,j then has the same distribution as the random field
of Zi,j = XiYj described above. The natural filtration of Fi,j = σ{(XY ) ◦ Ti′,j′ :
i′ ≤ i, j′ ≤ j} is commuting and ((XY ) ◦ Ti,j)i,j is a field of martingale differences.

A very important particular case of a Z
d action is the case when the σ-algebra A

is generated by iid random variables Uie, i ∈ Z
d. The σ-algebras Fj = σ{Ui : ik ≤

jk, k = 1, . . . , d} are then a completely commuting filtration and if Uif , i ∈ Z
d is a
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martingale difference random field, the central limit theorem takes place (cf. [WW]).
This fact enabled to prove a variety of limit theorems by martingale approximations
(cf. e.g. [WaW], [VWa]).
For Bernoulli random fields, other methods of proving limit theorems have been
used, cf. e.g. [ElM-V-Wu], [Wa], [BiDu].

The aim of this paper is to show that for a martingale difference random field,
the CLT can hold under assumptions weaker than Bernoullicity.

Main result

Let Ti, i ∈ Z
d, be a Z

d action of measure preserving transformations on (Ω,A, µ),

(Fi)i, i ∈ Z
d, be a commuting filtration. By ei ∈ Z

d we denote the vector
(0, ..., 1, ..., 0) having 1 on the i-th place and 0 at all other places, 1 ≤ i ≤ d.

Theorem. Let f ∈ L2, be such that (f ◦ Ti)i is a field of martingale differences

for a completely commuting filtration Fi. If at least one of the transformations Tei ,

1 ≤ i ≤ d, is ergodic then the central limit theorem holds, i.e. for n1, . . . , nd → ∞
the distributions of

1√
n1 . . . nd

n1
∑

i1=1

· · ·
nd
∑

id=1

f ◦ T(i1,...,id)

weakly converge to N (0, σ2) where σ2 = ‖f‖22.
Remark 1. The results from [VoWa] remain valid for Z

d actions satisfying the as-
sumptions of the Theorem, Bernoullicity thus can be replaced by ergodicity of one
of the transformations Tei . Under the assumptions of the Theorem we thus also
get a weak invariance principle. [VoWa] implies many earlier results, cf. references
therin and in [WaW].

Proof.

We prove the theorem for d = 2. Proof of the general case is similar.
We suppose that the transformation T0,1 is ergodic and ‖f‖2 = 1. To prove the
central limit theorem for the random field it is sufficient to prove that for mk, nk →
∞ as k → ∞,

(1)
1√

mknk

mk
∑

i=1

nk
∑

j=1

f ◦ Ti,j converge in distribution to N (0, 1).

Recall the central limit theorem by D.L. McLeish (cf. [M]) saying that if Xn,i,
i = 1, . . . , kn, is an array of martingale differences such that

(i) max1≤i≤kn
|Xn,i| → 0 in probability,

(ii) there is an L < ∞ such that max1≤i≤kn
X2

n,i ≤ L for all n, and

(iii)
∑kn

i=1 X
2
n,i → 1 in probability,

then
∑kn

i=1 Xn,i converge to N (0, 1) in law.

Next, we will suppose kn = n; we will denote Ui,jf = f ◦ Ti,j . For a given
positive integer v and positive integers u, n define

Fi,v =
1√
v

v
∑

j=1

Ui,jf, Xn,i =
1√
n
Fi,v, i = 1, . . . , n.
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Clearly, Xn,i are martingale differences for the filtration (Fi,∞)i. We will verify the
assumptions of McLeish’s theorem.

The conditions (i) and (ii) are well known to follow from stationarity. For reader’s
convenience we recall their proofs.

(i) For ǫ > 0 and any integer v ≥ 1,

µ( max
1≤i≤n

|Xn,i| > ǫ) ≤
n
∑

i=1

µ(|Xn,i| > ǫ) = nµ
(
∣

∣

∣

1√
nv

v
∑

j=1

U0,jf
∣

∣

∣
> ǫ

)

≤

≤ 1

ǫ2
E
(( 1√

v

M
∑

j=1

U0,jf
)2

1|∑v
j=1

U0,jf |≥ǫ
√
nv

)

→ 0

as n → ∞; this proves (i). Notice that that the convergence is uniform for all v.
To see (ii) we note

(

max
1≤i≤n

|Xn,i|
)2

≤
n
∑

i=1

X2
n,i =

1

n

n
∑

i=1

( 1√
v

v
∑

j=1

Ui,jf
)2

which implies E
(

max1≤i≤n |Xn,i|
)2

≤ 1.

[WaW]
It remains to prove (iii).

Let us fix a positive integer m and for constants a1, . . . , am consider the sums

m
∑

i=1

ai

v
∑

j=1

Ui,jf, v → ∞.

Then (
∑m

i=1 aiUi,jf)j, j = 1, 2, . . . , are martingale differences for the filtration
(F∞,j)j and by the central limit theorem of Billingsley and Ibragimov [Bil], [I] (we
can also prove using the McLeish’s theorem)

1√
v

v
∑

j=1

(

m
∑

i=1

aiUi,jf
)

converge in law to N (0,
∑m

i=1 a
2
i ). Notice that that here we use the assumption of

ergodicity of T0,1.
From this it follows that the random vectors (F1,v, . . . , Fm,v) where

Fu,v =
1√
v

v
∑

j=1

Uu,jf, u = 1, . . . , m,

converge in law to a vector (W1, . . . ,Wm) of m mutually independent and N (0, 1)
distributed random variables. For a given ǫ > 0, if m = m(ǫ) is sufficiently big
then we have

∥

∥1 − (1/m)
∑m

u=1 F
2
u,v

∥

∥

1
< ǫ/2. Using a truncation anrgument we

can from the convergence in law of (Fu,v, . . . , Fm,v) towards (W1, . . . ,Wm) deduce
that for m = m(ǫ) sufficiently big and v bigger than some v(m, ǫ),

∥

∥

∥
1− 1

m

m
∑

u=1

F 2
u,v

∥

∥

∥

1
< ǫ.
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Any positive integer N can be expressed as N = pm + q where 0 ≤ q ≤ m − 1.
Therefore

(2) 1− 1

N

N
∑

i=1

F 2
i,v =

m

N

p−1
∑

k=0

( 1

m

(k+1)m
∑

i=km+1

F 2
i,v − 1

)

+
1

N

N
∑

i=mp+1

F 2
i,v −

q

N
.

There exists an Nǫ such that for N ≥ Nǫ we have ‖ 1
N

∑N

i=mp+1 F
2
i,v − q

N
‖1 < ǫ

hence if v ≥ v(m, ǫ) and N ≥ Nǫ then

(3)
∥

∥

∥
1− 1

N

N
∑

i=1

F 2
i,v

∥

∥

∥

1
=

∥

∥

∥
1− 1

Nv

N
∑

i=1

(

v
∑

j=1

Ui,jf
)2
∥

∥

∥

1
< 2ǫ.

This proves that for ǫ > 0 there are positive integers v(m, ǫ/2) and Nǫ such that
for M ≥ v(m, ǫ/2) and n ≥ Nǫ, for Xn,i = (1/

√
n)Fi,M

∥

∥

n
∑

i=1

X2
n,i − 1

∥

∥

1
=

∥

∥

∥

n
∑

i=1

( 1√
nM

M
∑

j=1

Ui,jf
)2 − 1

∥

∥

∥

1
< ǫ.

In the general case we can suppose that Ted is ergodic (we can permute the
coordinates). Instead of Ti,j we will consider transformations Ti,j where i ∈ Z

d−1

and in (3), instead of segments {km + 1, . . . , km + m} we take boxes of (k1m +
i1, . . . , kd−1m+ id−1), i1, . . . , id−1 ∈ {1, . . . , m}.

This finishes the proof of the Theorem.

�

Remark 2. For any positive integer d there exists a random field of martingale
differences (f ◦ Ti) for a commuting filtration of Fi where Ti, i ∈ Z

d, is a non

Bernoulli Zd action and all Tei , 1 ≤ i ≤ d, are ergodic.
To show this we take a Bernoulli Zd action Ti, i ∈ Z

d on (Ω,A, µ) generated by
iid random variables (e ◦ Ti) as defined e.g. in [WaW] or [VWa].

Then we take another Zd action of irrational rotations on the unit circle (identified
with the interval [0, 1)) generated by τei = τθi , τθix = x+ θi mod 1; θi, 1 ≤ i ≤ d,
are linearly independent irrational numbers. The unit circle is equipped with the
Borel σ-algebra B and the (probability) Lebesgue measure λ.
On the product Ω× [0, 1) with the product σ-algebra and the product measure we
define the product Z

d action (Ti × τi)(x, y) = (Tix, τiy). Because the product of
ergodic transformations is ergodic, for every ei, 1 ≤ i ≤ d, Tei × τei is ergodic. The
product Zd action is not Bernoulli (it has irrational rotations for factors).

On Ω × [0, 1) we define a filtration F(i1,...,id) = σ{U(i′,...,i′
d
)e ◦ π1, i

′ − 1 ≤
i1, . . . , i

′
d ≤ id, π

−1
2 B} where π1, π2 are the coordinate projection of Ω× [0, 1).

The filtration defined above is commuting and we can find a random field of mar-
tingale differences satisfying the assumptions of the Theorem.

Remark 3. In the one dimensional central limit theorem, non ergodicity implies a
convergence towards a mixture of normal laws. This comes from the fact that using
a decomposition of the measure µ into ergodic components, we get the “ergodic
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case” for each of the components (cf. [V]); the variance is given by the limit of
(1/n)

∑n

i=1 U
if2 which by the Birkhoff Ergodic Theorem exists a.s. and in L1 and

is T -invariant. In the case of a Z
2 action (taking d = 2 for simplicity), the limit for

T0,1 need not be T1,0-invariant. This is exactly the case described in the Example
and eventually we got there a convergence towards a law which is not normal.

Acknowledgement. I am very thankful to Jérôme Dedecker for his remarks, com-
ments, and encouragement. I am also thankful to Zemer Kosloff; the idea/conjecture
that it is the ergodicity of coordinate factors of the Z

d action which can imply the
central limit theorem came out first in our discussion after my lecture in April 2014.
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