
HAL Id: hal-02386805
https://hal.science/hal-02386805

Submitted on 29 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Automated Computer Vision: Analysis of the
AutoCV Challenges 2019

Zhengying Liu, Zhen Xu, Sergio Escalera, Isabelle Guyon, Julio C S Jacques
Junior, Meysam Madadi, Adrien Pavao, Sebastien Treguer, Wei-Wei Tu

To cite this version:
Zhengying Liu, Zhen Xu, Sergio Escalera, Isabelle Guyon, Julio C S Jacques Junior, et al.. Towards
Automated Computer Vision: Analysis of the AutoCV Challenges 2019. Pattern Recognition Letters,
2020, 135, pp.196-203. �hal-02386805�

https://hal.science/hal-02386805
https://hal.archives-ouvertes.fr

1

Towards Automated Computer Vision:
Analysis of the AutoCV Challenges 2019

Zhengying Liua,1, Zhen Xub,c,1,⇤, Sergio Escalerad,e,f, Isabelle
Guyona,f, Julio C. S. Jacques Juniorg,d, Meysam Madadid,
Adrien Pavaoa, Sebastien Treguerh,f, Wei-Wei Tuc,f

aUPSud/INRIA, Université Paris-Saclay, 91400 Orsay, France
bEcole Polytechnique, 91120 Palaiseau, France
c4Paradigm, Beijing, China
dComputer Vision Center, Spain
eUniversitat de Barcelona, Spain
fChaLearn, USA
gUniversitat Oberta de Catalunya, Spain
hLa Paillasse, France

ABSTRACT

We present the results of recent challenges in Automated Computer Vision (AutoCV, renamed here
for clarity AutoCV1 and AutoCV2, 2019), which are part of a series of challenge on Automated
Deep Learning (AutoDL). These two competitions aim at searching for fully automated solutions for
classification tasks in computer vision, with an emphasis on any-time performance. The first competition
was limited to image classification while the second one included both images and videos. Our design
imposed to the participants to submit their code on a challenge platform for blind testing on five
datasets, both for training and testing, without any human intervention whatsoever. Winning solutions
adopted deep learning techniques based on already published architectures, such as AutoAugment,
MobileNet and ResNet, to reach state-of-the-art performance in the time budget of the challenge (only
20 minutes of GPU time). The novel contributions include strategies to deliver good preliminary results
at any time during the learning process, such that a method can be stopped early and still deliver
good performance. This feature is key for the adoption of such techniques by data analysts desiring
to obtain rapidly preliminary results on large datasets and to speed up the development process. The
soundness of our design was verified is several respect: (1) Little overfitting of the on-line leaderboard
providing feedback on 5 development datasets was observed, compared to the final blind testing on the
5 (separate) final test datasets, suggesting that winning solutions might generalize to other computer
vision classification tasks; (2) Error bars on the winners’ performance allow us to say with confident
that they performed significantly better than the baseline solutions we provided; (3) The ranking of
participants according to the any-time metric we designed, namely the Area under the Learning Curve,
was di↵erent from that of the fixed-time metric, i.e. AUC at the end of the fixed time budget. We
released all winning solutions under open-source licenses. At the end of the AutoDL challenge series,
all data of the challenge will be made publicly available, thus providing a collection of uniformly
formatted datasets, which can serve to conduct further research, particularly on meta-learning.
Keywords: Computer Vision, AutoML, Deep Learning c� 2019 Elsevier Ltd. All rights reserved.

(this paper is under review at Pattern Recognition Letters)

⇤Corresponding author
e-mail: zhen.xu@polytechnique.edu (Zhen Xu)

1Equal contribution. The other authors are ordered alphabetically.

2

While Machine Learning (ML) keeps delivering impressive
novel applications in our daily lives, it is still facing enormous
challenges, preventing its more universal deployment by users
having direct needs but no time or resources to hire ML experts.
In fact, even for ML experts, e↵ectively tuning hyper-parameters
is still a daunting task, particularly for Deep Learning models,
let alone addressing higher level aspects of model design, in-
cluding problem definition, experimental design, data collection,
preprocessing, design of metrics, computation of error bars, de-
tection of bias in data, etc. Certainly, automating the entire
modeling pipeline is still a far reaching goal, but the challenges
we present in this paper allowed us to make great strides. We
present here the results of the two first editions of the Automated
Deep Learning (AutoDL) challenge series, addressing Auto-
mated Computer Vision (AutoCV). With the solutions provided
(and open-sourced) by the winners, users must only prepro-
cess data to horseshoe-fit them in a generic tensor format to
have automated algorithms train and test Deep Learning neu-
ral networks for them. The problems addressed are image or
video classification, in an amazingly broad range of applica-
tion domains (medical imaging, object or gesture classification,
satellite imaging, to name a few). Besides saving human e↵ort,
the benefit of such automated solutions include reproducibility
and accountability, freeing us potentially from the variability of
human solutions and possibly increasing reliability.

The AutoDL challenge series in part of a larger e↵ort on
Automated Machine learning (AutoML) with code submission
in which the solutions of participants are blind tested (on the
Codalab challenge platform). In Liu et al. (2019), Liu and Xu
introduce a mathematical formulation of AutoML, defining a hi-
erarchy (↵���� levels) of supervised learning problems lending
themselves to di↵erent types of challenge settings. The levels
di↵er in the amount of information made available to challenge
participants and to their “autonomous agent” (code submitted).
Classical “result submission” challenges à la Kaggle are not
covered in this hierarchy, but as in those challenges, the final test
set labels are never revealed to the participants: they are used by
scoring programs residing on the challenge platform to evaluate
entries. Briefly, the levels consist of: ↵-level imposing that sub-
mitted code include trained models with solely a test method,
hence training data and unlabeled test data are provided to the
participants; �-level imposing that submitted code include train-
ing and test methods, hence both training and unlabeled test
data are solely available to the autonomous agent, NOT to the
participants; �-level imposing that submitted code include also
a meta-learn method to be used for training the autonomous
agent to deliver a �-level algorithm. Thus while in ↵ and �-level
settings the agent is trained and tested independently on all tasks,
in the �-level setting, the autonomous agent can learn from past
tasks to perform better on next tasks (meta-learning). One of
the insights drawn from the Liu-Xu framework is that hyperpa-
rameter optimization (HPO) methods (e.g. Neural Architecture
Search Zoph and Le (2016); Pham et al. (2018)) do not really ad-
dress fully the AutoML problem more than “classical” machine
learning algorithms, in the sense that they remain at the �-level
(no meta-learning). In the AutoCV challenge setting, we encour-
age meta-learning by providing sample datasets and having a

challenge in two phases, thus testing participants’ solutions of a
variety of tasks. However, we do not impose to participants to
deliver a “meta-learn” method and final testing is performed on
the five tasks of the challenge independently (of one another).
In that sense, our challenge is still a �-level challenge. In the
past, our AutoML3 challenge (Life-Long-Machine-Learning
with drift) was at the �-level.

In all of our AutoML challenges we seek to enforce learning
within a fixed time budget (in this case, 20 minutes per dataset
on a single GPU) and fixed computer resources (in this case,
the compressed code had to be under 300 MB, which allowed
participants to submit pre-trained models, and we ran submission
on Google Cloud NVIDIA Tesla P100 GPUs, running CUDA
10 with drivers cuDNN 7.5 coupled with 4 vCPUs, with 26
GB of memory, 100 GB disk). One particularity of AutoDL
challenges compared to previous AutoML challenges is that we
seek to enforce any-time learning. By this we mean that our
metric encouraged participants to deliver predictions that are
regularly saved and are reasonably good early on in the learning
process. Specifically, the metric of evaluation is the Area under
the Learning Curve (ALC), see Section 2.

We summarize basic facts in Table 1. While most of our chal-
lenges are run in two phases (a feedback phase with immediate
feedback on a leaderboard on N practice datasets and a final
test phase with a single evaluation on N final test datasets), in
AutoCV1, we evaluated the participants on the results of the
feedback phase, to make it slightly easier. However, we ran
privately a final test phase of which we report here the results.
Since the 5 AutoCV1 final phase datasets were not disclosed, we
re-used some in subsequent phases. AutoCV2 was run regularly
in 2 phases. Even practice datasets during the feedback phase
were not revealed to the participants (they were solely visible to
their “autonomous agent”). To allow them to develop their code,
we provided them with sample “public” datasets. Additionally a
starting kit in Python with TensorFlow and PyTorch interfaces
was provided, including sample code submissions.

1. Data

In the AutoCV challenges, raw data are provided to partici-
pants (images or videos) formatted in a uniform tensor manner
(namely TFRecords, a standard generic data format used by
TensorFlow2). For images with native compression formats (e.g.
JPEG, BMP, GIF), we directly use the bytes. Our data reader
decodes them on-the-fly to obtain a 3D tensor. Video files in
mp4/avi format (without the audio track) are used in a similar
manner. For practical reasons, datasets were kept under 2GB,
which required sometimes reducing image resolution, cropping,
and/or downsampling videos. We made sure to include applica-
tion domains in which the scales varied a lot (from microscopic
level to satellite images, going through human-scale level).

We formatted 25 datasets (15 image and 10 video datasets,
see Table 2). Note that 3 datasets (Loukoum, Apollon, Ideal)
are used twice in di↵erent occasions. All tasks are supervised

2To avoid privileging a particular type of Deep Learning platform, we also
provided a data reader to convert to PyTorch format.

http://autodl.chalearn.org
https://autodl.lri.fr/competitions/3
http://automl.chalearn.org
http://competitions.codalab.org
http://kaggle.com
https://competitions.codalab.org/competitions/19048
https://github.com/zhengying-liu/autodl_starting_kit_stable

3

Table 1: Basic facts on AutoCV 1 & 2 challenges.

Challenge Collocated Begin date End date #Teams #Submis- #Phases #Datasets
with (2019) 2019 2019 sions public feedback final

AutoCV1 IJCNN May 1 Jun 29 102 938 1 5 5 5
AutoCV2 ECML PKDD July 2 Aug 20 34 336 2 3 5 5

classification problems, i.e. data samples are provided in pairs
{X,Y}, X being an input 4D tensor of shape (time, row, col, chnl)
and Y a target binary vector (withheld from in test data). Since
we intend to re-use those datasets in an upcoming challenge on
life-long meta-learning, we do not provide further details.

2. Evaluation Metrics

AutoCV challenges encourage any-time learning by scor-
ing participants with the Area under the Learning Curve (ALC)
(Figure 1). The participants can train in increments of a cho-
sen duration (not necessarily fixed) to progressively improve
performance, until the time limit is attained. Performance is
measured by the NAUC or Normalized Area Under ROC Curve
(AUC) NAUC = 2 ⇥ AUC � 1 averaged over all classes. Multi-
class classification metrics are not being considered, i.e. each
class is scored independently. Since several predictions can be
made during the learning process, this allows us to plot learning
curves, i.e. “performance” as a function of time. Then for each
dataset, we compute the Area under Learning Curve (ALC). The
time axis is log scaled to put more emphasis on the beginning
of the curve since we wanted to force participants to develop
techniques that can climb performance fast because when they
will be exposed to “big data” this will matter a lot more. Finally,
an overall rank for the participants is obtained by averaging their
ALC ranks obtained on each individual dataset, in a given phase.

3. Baselines

We introduced baseline methods with varied complexity and
computer resource requirements. For debug purposes, we pro-
vided a trivial baseline (Baseline 0) returning all-zero predictions.
Baseline 0 always gets 0 NAUC score (hence 0 ALC as well),
hence we do not include it in the analyses. Baseline 1 is a linear
model and Baseline 2 a (self-scaling) convolutional neural net-
work (CNN). We also (privately) used a pre-trained Inception
network as baseline. Only Baseline 0, 1, and 2 were provided to
participants.

3.1. Baseline 1: Linear Classifier with Basic Scheduling
This method uses a single layer neural network. In the feed-

forward phase, the input tensor is flattened then fully connected
to the output layer, with a sigmoid activation. During training,
it uses a cross entropy loss (as in logistic regression) and the
Adam optimizer Kingma and Ba (2014), with default learning
rate. The batch size is fixed to 30 for both training and test. If
the input shape is variable, some preprocessing procedure is
required: we simply resize all images to a fixed shape 112⇥ 112
(the number of channels is always fixed). When the number of

Fig. 1: Example of learning curve: performance as a function of time.
The x-axis corresponds to timestamp but normalized to [0,1]. The Area
under the Learning Curve (ALC) is the challenge metric. We integrate
with the rectangle method (i.e. with step function) because the trapeze
method would give an advantage to “lazy” participants who do not save
results regularly. This figure shows an example of possible over-fitting
in which the participant could have stopped further training earlier.

frames (time axis) is variable, we simply sample 10 consecutive
frames at random, both for training and testing.

As we are in an any-time learning setting in AutoCV chal-
lenges, we need a scheduling strategy to make good predictions
quickly. For this baseline, we use following scheduling strategy:
At the beginning, the algorithm trains the neural network for
s = 10 steps. An estimation of time used per step is computed.
Then the number of training steps doubles (s 2s) at each
train/test call and the algorithm computes the duration required
for this number of training steps using the estimation. This esti-
mated duration is then compared to remaining time budget (sent
by ingestion program). If there is still enough time, the program
calls training again; otherwise, it pro-actively stops.

3.2. Baseline 2: Self-scaling 3D CNN

Baseline 2 is the strongest public baseline that we provided
to participants (and participants needed to beat this baseline in
order to enter final phase of AutoCV2). Compared to baseline 1,
the only di↵erence is the neural network architecture, which is
determined according to the tensor shape of the input examples.
More concretely, we repeatedly apply a 3D convolutional layer
followed by a 3D max-pooling layer, until the number of neurons
of the hidden layer is less than a pre-defined number (e.g. 1000),
then we apply a fully connected layer for classification (after
flattening the hidden layer). The filter shape of 3D CNN layers

4

Table 2: Datasets used in AutoCV 1 & 2 challenges. ’hwr’ means handwriting recognition, ’img’ image, ’vid’ video, and ’var’ variable size.

Auto Class Sample number Tensor dimension
Dataset CV# Phase Domain Type num. train test time row col chnl
1 Munster 1 public hwr img 10 60000 10000 1 28 28 1
2 Chucky 1 public objects img 100 48061 11939 1 32 32 3
3 Pedro 1 public people img 26 80095 19905 1 var var 3
4 Decal 1 public aerial img 11 634 166 1 var var 3
5 Hammer 1 public medical img 7 8050 1965 1 600 450 3
6 Ukulele 1 feedback hwr img 3 6979 1719 1 var var 3
7 Caucase 1 feedback objects img 257 24518 6089 1 var var 3
8 Beatriz 1 feedback people img 15 4406 1094 1 350 350 3
9 Saturn 1 feedback aerial img 3 324000 81000 1 28 28 4

10 Hippocrate 1 feedback medical img 2 175917 44108 1 96 96 3
11 Loukoum 1 final hwr img 3 27938 6939 1 var var 3
12 Tim 1 final objects img 200 80000 20000 1 32 32 3
13 Apollon 1 final people img 100 6077 1514 1 var var 3
14 Ideal 1 final aerial img 45 25231 6269 1 256 256 3
15 Ray 1 final medical img 7 4492 1114 1 976 976 3
16 Kraut 2 public action vid 4 1528 863 var 120 160 1
17 Katze 2 public action vid 6 1528 863 var 120 160 1
18 Kreatur 2 public action vid 4 1528 863 var 60 80 1
19 Ideal 2 feedback aerial img 45 25231 6269 1 256 256 3
20 Freddy 2 feedback hwr img 2 546055 136371 var var var 3
21 Homer 2 feedback action vid 12 1354 353 var var var 3
22 Isaac2 2 feedback action vid 249 38372 9561 var 102 78 1
23 Formula 2 feedback misc. vid 4 32994 8203 var 80 80 3
24 Apollon 2 final people img 100 6077 1514 1 var var 3
25 Loukoum 2 final hwr img 3 27938 6939 1 var var 3
26 Fiona 2 final action vid 6 8038 1962 var var var 3
27 Monica1 2 final action vid 20 10380 2565 var 168 168 3
28 Kitsune 2 final action vid 25 18602 4963 var 46 82 3

is fixed to 3 ⇥ 3 ⇥ 3 and the pooling size and strides are both
2 ⇥ 2 ⇥ 2 for max-pooling layer.

3.3. Inception-V3 with Pre-trained Weights
The Inception family uses many useful strategies to im-

prove image classification performance. In this private baseline
method, we use a pre-trained Inception V3 Szegedy et al. (2016).
We resized images to 299 ⇥ 299. For grey images, we converted
them to 3 channels and for images more than 3 channels, we ex-
tracted the RGB channels. We use pre-trained weights provided
by Tensorflow and fine-tuned the model with cross entropy loss
and default Adam optimizer. No data augmentation was used.
Data was shu✏ed every epoch. The scheduling strategy is the
same as before.

4. Challenge results

Both challenges (Table 1) ran for about two months each. Par-
ticipation was higher (over 100 participants) in AutoCV1 than
in AutoCV2 (' 30 participants), probably due to the higher di�-
culty of the second challenge and perhaps the timing. The three
winners in AutoCV1 are: kakaobrain, DKKimHCLee, base_1
and in AutoCV2: kakaobrain, tanglang, kvr (the full ranking

can be found at https://autodl.lri.fr/competitions/
3). More details are given on the open-sourced solutions of
the winners in the next section. Progress over baseline meth-
ods is impressive (Figure 2a and Figure 2b) and beyond our
expectations. Overlaid learning curves are shown in Figures 3
for a particular dataset (Caucase), illustrating that much of the
contribution of the participants went into optimizing any-time
learning by finding strategies to climb the learning curve fast.
This is particularly dramatic on the chosen example, but is veri-
fied on other datasets. Figure 4 shows the average result over all
participants for the various datasets.

5. Winning solutions

We provide here a brief overview of the methods the winners
used in AutoCV1 challenge. kakaobrain’s solution is based
on AutoAugment Cubuk et al. (2018) and they propose their
own version of AutoAugment called Fast AutoAugment
Lim et al. (2019) which learns the data augmentation policy
in a data-driven approach. DKKimHCLee exploits flexible
MobileNet with pretrained ImageNet weights. They aggregate
di↵erent modules to deal with images of di↵erent resolutions.
base_1 team modifies the 3D CNN baseline and tries many

https://autodl.lri.fr/competitions/3
https://autodl.lri.fr/competitions/3
https://autodl.chalearn.org
https://autodl.chalearn.org

5

di↵erent choices of normalization, activation function, optimizer,
regularization, etc and get finally a strong result on all datasets.
In AutoCV2, the solutions of all top-3 winners (kakaobrain,
tanglang, kvr) are based on kakaobrain’s code in AutoCV1.
Minor modifications are made on the optimizers or the backbone
networks. In the following paragraphs, we describe the methods
mainly considered by top winning entries and participants’
adaptations.

Fast AutoAugment Cubuk et al. (2018); Lim et al. (2019)
Data augmentation has been shown to be an e�cient regulariza-
tion technique in computer vision tasks, improving generaliza-
tion ability of neural networks, especially in image classification.
Instead of relying on human expertise, AutoAugment formulates
the search for the best augmentation policy as a discrete search
problem and uses Reinforcement Learning to find the best policy.
The search algorithm is implemented as a RNN controller, which
samples an augmentation policy S , combining image processing
operations, with their probabilities and magnitudes. S is then
used to trained a child network to get a validation accuracy R,
which is used to update the RNN controller by policy gradient
methods. Despite a significant improvement in performance,
AutoAugment requires thousands of GPU hours even with a
reduced target dataset and small network.

Fast AutoAugment finds e↵ective augmentation policies via
a more e�cient search strategy based on density matching
between a pair of train datasets, and a policy exploration based
on Bayesian optimization over stratified k-folds splits of the
training dataset. The winning team kakaobrain implemented
a light version of Fast AutoAugment, replacing the 5-folds
by a single fold search and using a random search instead of
Bayesian optimization (TPE) of the original paper.

ResNet He et al. (2016)
Residual connection in CNN has been introduced in He et al.

(2016) and shown to be an e↵ective strategy to train very deep
networks. ResNet consists of convolutional blocks where the
input to the block is added to its output. While deep residual net-
works show a good performance in object recognition, shallow
residual networks are still valid choices. In this regard, a num-
ber of participants have used ResNet as the backbone of their
architectures in AutoCV2 challenge, specifically kakaobrain,
tanglang, DXY0808, ether, Hana.Inst.Tech and automl_freiburg
teams ranked as 1st, 2nd, 4th, 5th, 6th and 10th in the final phase
of AutoCV2, respectively.

Most teams have used pretrained ResNet18 on Imagenet
dataset. kakaobrain adapted input image size to the median
dataset size and tuned hyperparameters o✏ine on the public
datasets. tanglang adapted AutoCV1 winner method to handle
both 2D and 3D data while training faster. DXY0808 adapted
ResNet to handle both 2D and 3D (i.e. video) data. ether
used AutoCV1 winner method and applied linear manifold
transformation on the data. Hana.Inst.Tech just resized images
to the network input size. automl_freiburg used E�cientNet
Tan and Le (2019) with InceptionV2 and ResNet50 and models
were tuned o✏ine on the public datasets. All teams used L2
norm regularization except Hana.Inst.Tech which used Dropout.

(a) AutoCV1

(b) AutoCV2

Fig. 2: ALC scores in final phase: Winning solutions vs. baselines.
AutoCV1 final phase results were not publicly revealed nor used for
determining prizes, hence Apollon and Loukoum could be re-used, and
no error bars were computed. Error bars in AutoCV2 are standard
deviations based on 3 repeats for baselines and 9 otherwise.

MobileNet Howard et al. (2017)
As architectures of CNN evolve, models become more and

more heavy. A typical ResNet-152 will take more than 300
MB to store, thus consume much time to forward and infer-
ence. MobileNet decomposes traditional convolution opera-
tion to depthwise convolution and pointwise convolution, which
largely reduce the operations required for convolution. Mo-
bileNets are based on a streamlined architecture that uses depth-
wise separable convolutions to build light weight deep neural
networks. Howard et al. (2017) proposed two simple global
hyper-parameters that e�ciently trade o↵ between latency and
accuracy, allowing the model builder to choose the right sized
model for their application based on the constraints of the prob-
lem. What’s more, kernel numbers have been reduced by a factor.
In this way, MobileNet reaches a satisfactory performance on
image classfication with a much lighter model.

In the AutoCV2 challenge, teams that adapted the MobileNet
as part of to their solutions are: kvr, Letrain, team_zhaw and
OsbornArchibald, being ranked in 3rd, 8th, 8th and 16th posi-
tion, respectivelly. Considering the kvr solution, they took into
account picture size and dataset size while selecting network,
as they observed that MobileNet works better for simple cases
(such as Dataset 3 in final phase) but not on more complex ones.

5.1. Statistics on participants’ approaches
After the challenges, we collected fact sheets from top partici-

pants for more details on their approach. We got 12 replies and

6

Fig. 3: Learning curves on dataset Caucase (AutoCV1 feedback phase).

present a few interesting results below. First, 100% of the partic-
ipants used Deep Neural Networks to process images and videos.
Although backbone networks are diverse (ResNet, MobileNet,
etc), a few components are common, e.g. Batch Normalization,
Dropout. Rich preprocessing methods are used (e.g. flipping,
cropping, resizing, rotations) while dimensionality reductions
are barely applied. 87% of the participants used ImageNet pre-
trained weights in order to enable transfer learning. None of
them uses Meta-Learning or XGBoost. Interestingly, although
our baseline code is provided in TensorFlow, many top partic-
ipants used PyTorch, which is probably due to the influence
AutoCV1 winner kakaobrain.

The graph of Figure 6 informs on participant’s e↵ectiveness
to address the any-time learning problem. We first factored out
dataset di�culty by re-scaling ALC and NAUC scores (resulting
scores on each dataset having mean 0 and variance 1). Then
we plotted, for each participant, their fraction of submissions in
which ALC is larger than NAUC vs. correlation(ALC,NAUC).
The size of the marker varies monotonically with average ALC.
The average rank shown in the legend is computed on all datasets
that their submission has been run on. The participants in the
bottom half of the figure did not address well the any-time learn-
ing problem because their fraction of submissions in which ALC
is larger than NAUC is lower than 50%. Those participants did
not perform well in the challenge either (small symbols). The
participants that did well in the challenge (large symbols) are
all in the upper right quadrant, with both %(ALC > NAUC)
larger than 50% and correlation(ALC,NAUC) larger than 0.7.
There is a small cluster at the top right corner, which includes
two of the winners (kakaobraina and kvr), having both partic-
ularly high %(ALC > NAUC) and correlation(ALC,NAUC).
These participants climbed the learning curve fast and attained a
good performance at the end of the time budget. Right below,
there is a cluster with %(ALC > NAUC) between 0.6 and 0.8
correlation(ALC,NAUC) between 0.7 and 0.9, corresponding
to participants who were not as strong in performance at the end
of the time budget, but climbed the learning curve fast.

5.2. Challenge design soundness

One concern was that N = 5 datasets to evaluate auto-
mated computer vision was too small to demonstrate meta-
generalization In the AutoCV1 challenge, we had only one

Fig. 4: Average learning curve for each task. The legend is ordered
according to final NAUC. In the legend, the label 1PuHwImFi (for
example) stands for: AutoCV1, Public data, Hand-writing, Image, and
Fixed shape. For more possible values, see Table 2.

Fig. 5: Measurement of task di�culty.

phase, thus a higher risk that the winners would overfit at the
meta-generalization level: Ideally, they should deliver solutions
suitable to address datasets from a wide variety of sources, not
just those provided in the feed-back phase. To verify this, we pre-
pared five additional datasets (Apollon, Tim, Ray, Ideal, Louk-
oum) to privately conduct a final test phase (whose results were
not used towards determining the prizes). We ran the partic-
ipants’ submissions on these new datasets and computed the
average ranking of each participant in both the feedback and the
final phase. Although the ranking of participants who won the
challenge was identical in both phases, the Pearson correlation
coe�cient between ranking vectors in both phases across all
participants was only ⇢X,Y = cov(X,Y)/(�X�Y) = 0.3968 with
p-value 0.0608. Some participants overfitted a lot, i.e. they
ranked well in the feedback phase but poorly in the final phase
(such as team Letrain, ChunTing and Andrew). These teams
were mostly late entrants, meaning that they probably did not
have enough time, so they might have hand-engineered many
aspects of their submission. This, from another perspective,
shows the goodness of the winners’ submissions. We performed
the same experiment for AutoCV2 in which we indeed had two
phases. We obtained ⇢X,Y = 0.8137 with p-value 1.3 ⇥ 10�5.
This time we are impressed to see that for AutoCV2, there is a
good correlation between feedback phase and final phase. Par-
ticipants’ solutions have been improved to generalize better to
new data, which suggests that these solutions could be applied

7

Fig. 6: %(ALC > NAUC) vs correlation(ALC, NAUC). ALC and
NAUC were “scaled” (see text). The numbers in the legend are av-
erage scaled ALC and average rank of each participant. The marker
size increases monotonically with average scaled ALC.

universally in all classification tasks in computer vision.

5.3. Dataset Di�culty
After the challenges terminated, another important issue for

organizers is to look back to the choices of datasets. Intuitively,
we want to choose datasets with low intrinsic di�culty and high
modeling di�culty. There could be multiple ways of defining
these two di�culties. We choose the following empirical def-
inition: intrinsic di�culty is defined to be the maximal score
(in our case, 1.0) minus the best solution’s score (in our case,
1st winner’s score); and the modeling di�culty is defined as the
di↵erence between the best solution’s score and a baseline score
(in our case, baseline 2). These scores are visualized in Figure
5. The phases in which datasets were introduced are found in
Table 2. The dataset which is “ideal” for a challenge is actually
called Ideal (by coincidence): it has low intrinsic di�culty and
high modeling di�culty. The worst one is Kitsune (which was
unfortunately in the final phase of AutoCV2). Fortunately, other
final phase datasets have a modeling di�culty larger than 0.2,
leaving room for the participants to improve on the baseline.
Several final datasets have a large intrinsic di�culty, which may
indicate that either the datasets are truly harder, or that the test
conditions of the final phase are harder (a single submission with
no feed-back).

6. Conclusion

The challenges AutoCV 1 and 2 have allowed us to demon-
strate that fully automated computer vision is not as far away as
many thought it was. Indeed, when we started laying the basis
of the challenge design nearly three years ago, our collaborators
at Google believed that this challenge setting was way too hard
to deliver results. Three years later, we are pleased to see that

the research community was able to deliver on this problem, in
spite of its great di�culty. Remarkably, we have now publicly
available software capable of handling any image or video clas-
sification task without any human intervention whatsoever. In
order to provide with a large but treatable amount of data, we
invested a significant e↵ort in data preparation and formatting.
Spatial and temporal sampling as well as image compression
were applied in order to define a fixed maximum size for chal-
lenge datasets. Although future work includes the analysis of
larger datasets, with the current size participants did a great job
providing good autonomous solutions with limited hardware
resources and assigned time budget. How “generalisable” the
solutions are to significantly larger datasets remains to be de-
termined. However, the overall methodology developed should
be applicable in a broader range of data size and di�culty: (1)
Re-use a pre-trained deep neural network whose architecture
has a proven track record in computer vision; (2) Use of data
“augmentation” (or distillation in the first part of the learning
curve); (3) Use of modularity in training strategies to sparingly
allocate training time where and when needed to climb the learn-
ing curve fast and smoothly. As organizers, we learned some
lessons that will facilitate the organization of future challenges
in the series, including preventing duplicate accounts to avoid
some participants to abuse computing resources, and designing
better fact sheets to collect more informative data on winning
entries. Our AutoDL challenge series includes several other
on-going or planned challenges; AutoNLP, AutoSpeech, and
AutoWSL (weakly supervised learning), culminating in the final
AutoDL challenge planned for the end of 2019 (o�cially part of
the NeurIPS 2019 challenge series).

References

Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V., 2018. Autoaugment:
Learning augmentation policies from data. ⌧arXiv : 1805.09501.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: CVPR, IEEE. pp. 770–778.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H., 2017. Mobilenets: E�cient convolutional neural
networks for mobile vision applications. ⌧arXiv : 1704.04861.

Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization
⌧arXiv : 1412.6980.

Lim, S., Kim, I., Kim, T., Kim, C., Kim, S., 2019. Fast autoaugment. ⌧arXiv :
1905.00397.

Liu, Z., Guyon, I., Jacques Jr., J., Madadi, M., Escalera, S., Pavao, A., Escalante,
H.J., Tu, W.W., Xu, Z., Treguer, S., 2019. AutoCV Challenge Design and
Baseline Results, in: CAp 2019, Toulouse, France. URL: https://hal.
archives-ouvertes.fr/hal-02265053.

Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J., 2018. E�cient Neural
Architecture Search via Parameter Sharing ⌧arXiv : 1802.03268.

Szegedy, C., Vanhoucke, V., Io↵e, S., Shlens, J., Wojna, Z., 2016. Rethinking
the Inception Architecture for Computer Vision, in: CVPR, IEEE, Las Vegas,
NV, USA. pp. 2818–2826. doi:10.1109/CVPR.2016.308.

Tan, M., Le, Q., 2019. E�cientnet: Rethinking model scaling for convolutional
neural networks, in: ICML, pp. 6105–6114.

Zoph, B., Le, Q.V., 2016. Neural architecture search with reinforcement learning
⌧arXiv : 1611.01578.

http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1905.00397
http://arxiv.org/abs/1905.00397
https://hal.archives-ouvertes.fr/hal-02265053
https://hal.archives-ouvertes.fr/hal-02265053
http://arxiv.org/abs/1802.03268
http://dx.doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1611.01578

	Data
	Evaluation Metrics
	Baselines
	Baseline 1: Linear Classifier with Basic Scheduling
	Baseline 2: Self-scaling 3D CNN
	Inception-V3 with Pre-trained Weights

	Challenge results
	Winning solutions
	Statistics on participants' approaches
	Challenge design soundness
	Dataset Difficulty

	Conclusion

