
HAL Id: hal-02386782
https://hal.science/hal-02386782v1

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Multivariate Event Detection Methods for Non-Intrusive
Load Monitoring in Smart Homes and Residential

Buildings
Sarra Houidi, François Auger, Houda Ben Attia Sethom, Dominique Fourer,

Laurence Miègeville

To cite this version:
Sarra Houidi, François Auger, Houda Ben Attia Sethom, Dominique Fourer, Laurence Miègeville.
Multivariate Event Detection Methods for Non-Intrusive Load Monitoring in Smart Homes and Res-
idential Buildings. Energy and Buildings, 2020, 208, pp.109624. �10.1016/j.enbuild.2019.109624�.
�hal-02386782�

https://hal.science/hal-02386782v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Multivariate Event Detection Methods
for Non-Intrusive Load Monitoring

in Residential Buildings

Sarra Houidia,b, François Augera, Houda Ben Attia Sethomb,c, Dominique
Fourerd, Laurence Miègevillea
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Abstract

Non-Intrusive Load Monitoring (NILM) approaches refer to the analysis of the

aggregated electrical signals of Home Electrical Appliances (HEAs) in order to

identify their operating schedules. It has emerged as a promising solution to

help residential consumers to reduce their electricity bills through a breakdown

of energy consumption. NILM methods are either event-based or non event-

based. This categorization depends on whether or not they rely on the de-

tection of HEAs’ significant state transitions (e.g., On/Off or state change) in

power consumption signals. This paper focuses on event-based approaches and

especially in multivariate change detection algorithms. It aims at highlighting

the benefits brought by a multivariate approach for change detection using the

appropriate electrical features. We first suggest to extend four existing change

detection algorithms in the multidimensional case. The studied detection al-

gorithms are first detailed and compared to each other and to their existing

scalar versions through numerical simulations. Then, a new feature selection
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algorithm for change detection is presented and assessed when combined with

the most efficient detector among the four investigated ones. Finally, the fea-

ture selection method for detection purposes is applied to two different NILM

case studies. The first one uses power features derived from the Building-Level

fully-labeled Dataset for Electricity Disaggregation (BLUED) current and volt-

age measurements and the second one is based on current and voltage measure-

ments acquired using our own acquisition system. Compared to the classical

scalar approach, the results show that the multivariate approach brings a sig-

nificant performance improvement when the features selected by the proposed

algorithm are used.

Keywords: Non Intrusive Load Monitoring (NILM), Home Electrical

Appliances (HEAs), Residential buildings, Multivariate statistical methods,

Feature selection.

1. Introduction

In the current context of energy transition, it is essential to better monitor

the domestic consumption. Feedback on electricity consumption appears to be

a major tool to save energy through more conscious user behaviour [1]. NILM

has emerged as a promising solution to provide a breakdown of the residential5

energy consumption without instrumenting HEAs [2, 3, 4]. The appliances iden-

tification is made through the analysis of the current and voltage signals using

a single measuring device connected to the house electrical panel at the Point of

Common Coupling (PCC) [5]. This information is relayed back to the consumers,

who can therefore make an informed decision about energy savings. Throughout10

literature, a large number of NILM approaches are reported [2, 6]. Most of the

methods can be classified into supervised or unsupervised methods. The former

rely on classification algorithms that require a sufficient amount of labeled data

for a training process [6, 7]. On the opposite, the latter methods are based on

clustering procedures which do not need a labeled training dataset [6]. Finally,15

NILM approaches can be categorized into non event-based and event-based ap-
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proaches [8]. Non event-based methods disaggregate the power consumption

using techniques such as the Hidden Markov models (HMM) [9, 10] which iden-

tify repetitive HEAs’ patterns in the load curve based on HEAs previous states.

The event-based approaches assume that each event in the total household power20

consumption is a response to a Home Electrical Appliance (HEA) state change

[8]. Fig. 1 shows an overview of event-based NILM approaches. In this research

work, a specific interest is given to HEAs’ event detection which is an elementary

step in the NILM pipeline [11].

Figure 1: Block diagram of the event-based NILM approaches.

According to the existing literature on detection algorithms for event-based25

NILM methods, two main approaches are considered: the heuristic and the prob-

abilistic methods [12]. Algorithms under the first category analyze a time series

of data, looking for changes above a given threshold. In [13], the events are

detected in the total active power signal by computing the absolute value of

the difference between two consecutive samples, which is then compared to a30

pre-defined threshold. M.N. Meziane et al. in [14], propose an event detector
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called High Accuracy NILM Detector (HAND) that tracks the standard devia-

tion variation of the current signal envelope using a sliding window. A threshold

separates the events characterized by high standard deviations from the steady

states defined by much smaller standard deviations. They obtained a probability35

of detection of 96.7 % on simulated data.

Algorithms in the second category of probabilistic methods comprise three

entities: a stochastic process under observation, a change point at which the sta-

tistical properties of the process undergo a change, and a decision maker that

observes and detects the change of the process statistical properties [15, 16].40

In the NILM context, three algorithms are mainly used to detect changes in

active power signals: the Generalized Likelihood Ratio (GLR) test, the Chi-

squared Goodness Of-Fit (χ2 GOF) and the CUmulative Sum (CUSUM) detec-

tors. Authors in [17, 18] use the GLR approach to test if two consecutive time

frames share a common distribution by deriving a decision function from the45

log-probability distribution ratio before and after a potential change of the mean

value. In [18, 19], a χ2 test statistic is used to assess if two neighboring windows

share a common distribution. If this is not the case, an event is then detected.

Researchers in [20, 21] apply a CUSUM algorithm for the detection of both the

beginning and the end of a HEA transient-state active power signal. Z. Zhu et50

al. [21] reached a probability of detection of 90 % by applying their approach

on real data comprising 200 events of eight different HEAs switched on and off.

The common thread in all these research works is that the detection is done

in a univariate context by only considering the active power signal, whereas

prior literature on NILM focuses on identifying an effective features’ set that55

defines a unique HEA signature [22, 23, 24]. Fig. 2 illustrates three power time

series related to the same scenario of several HEAs switched on and off using our

own acquisition system [25], and three power time series derived from BLUED

dataset [26]. It can be observed that changes are present in the active power

time series, the reactive power time series and their 4th and 5th order harmonic.60

The information provided by these time series could be used together to improve

the detection robustness. To the best of our knowledge, there is no existing liter-
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ature on multivariate change detectors designed for NILM event-based methods.

Consequently, the goal of this paper is to demonstrate the benefit brought by

using a multivariate approach for change detection with the most relevant fea-65

tures. Reference [27] presents our preliminary results related to the application

of univariate change detectors on active power signals. In this paper, the pool

of studied change detectors is enlarged and extended to the multivariate case by

considering several power features such as the active power, the reactive power

and their respective harmonics. Four algorithms suited for mean change detec-70

tion are considered in both the univariate and the multivariate cases. These

change detectors are the Bayesian Information Criterion (BIC), the CUSUM, the

Hotelling T2 test (equivalent to the GLR statistic test for normal distributions)

and an updated version of the Effective Residual algorithm described in [27].

This paper is organized as follows. In Section 2, the four change detectors are75

presented. Their performances are assessed through Monte Carlo experiments

using detection performance evaluation metrics, considering both univariate and

multivariate cases. In Section 3, the proposed algorithm called Feature Selection

Algorithm for Detection Purposes (FSADP) is introduced. Section 4 focuses on

the experimental results when applying the FSADP on real-world power signals80

corresponding to a scenario of HEAs switched on and off. Firstly, power signals

are obtained from the BLUED dataset current and voltage measurements [26],

and secondly, power signals are computed from current and voltage measure-

ments using our own acquisition system. The subsequent discussion addresses

the selection of the power features that are best suited for the detection task.85

Finally, the main conclusions and contributions of the current work are provided

in Section 5.
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Figure 2: Active power signal, its 4th harmonic, reactive power signal and its 5th harmonic

related to the same scenario of HEAs switched on and off (using our own acquisition system

at the left and an extract from the phase B of BLUED dataset at the right).
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2. Change detectors and statistical assessment

2.1. Hypothesis testing framework

In this subsection, the mathematical formulation of the detection problem90

is introduced. Let xm ∈ lRp be a multidimensional time series such as xm =

(xm,1, . . . , xm,j , . . . , xm,p)
T

, where xm,j is the value of feature j ∈ {1, . . . , p} at

time instant m. Let Xn,p = (xna , xna+1, . . . , xm, . . . , xn) with m ∈ {na, . . . , n},

be the p× (w+u) matrix (w being an even integer) of the lastn−na+1 = w+u

samples of xm until the current time instant n. Since a HEA transient state is95

not necessarily an abrupt change, we use the “Window with Margins” approach

[28], where: separate computations are applied to the first w/2 samples (located

at the left) and to the last w/2 samples (located at the right), and u samples

(located at the middle) are unused, as shown in Fig. 3. This approach [28] is

adjusted to the dealt with multivariate case. It has two parameters subject to100

user choice: the number of useful samples w and the number of unused samples

u.

w/2 w/2 u 

w+u 

samples 

p
 f

e
at

u
re

s 

na nc nb n 

Figure 3: Sliding “Window with Margins” method adjusted to the multivariate case (p=3

features).
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Each vector xm is assumed to follow a multivariate Gaussian distribution

Np(µ,Σ) where µ ∈ lRp is the mean vector and Σ ∈ lRp×p is the semidefinite

covariance matrix. A possible change is modeled by a modification of the statis-105

tical parameters (i.e., mean vector and/or covariance matrix) occurring between

nb and nc. Two hypotheses are then considered:

H0 : xna
, . . . , xnb

, xnc
, . . . , xn ∼ Np(µ0,Σ0) (1)

H1 : xna
, . . . , xnb

∼ Np(µ1a,Σ1a)

xnc
, . . . , xn ∼ Np(µ1b,Σ1b) (2)

Under the “without change” hypothesis H0, the signal samples xm follow a mul-

tivariate Gaussian distribution with a mean vector µ0 and a covariance matrix

Σ0. Under the “with change” hypothesis H1, between na and nb, the signal110

samples xm follow a multivariate Gaussian distribution with a mean vector µ1a

and a covariance matrix Σ1a. Between nc and n, a change has occured, the

signal samples follow a multivariate Gaussian distribution with a mean vector

µ1b 6= µ1a and/or a covariance matrix Σ1b 6= Σ1a. Therefore, a decision between

H0 and H1 has to be made at each time instant n. This is done by comparing115

a decision function gn to an adimensional threshold h (i.e., reject H0 in favor of

H1 if gn > h) [15, 29].

2.2. Detectors’ decision functions

In this subsection, the decision function of each detector is presented. The

details of their mathematical derivation are given in a publicly available report120

[30]. Each decision function is proposed in the multivariate case. For the uni-

variate case, the expressions can simply be inferred by considering p = 1. For

each detector, we assume that the samples xm are taken from independent and

identically distributed (i.i.d) Gaussian random vectors. We also assume that

the estimated covariance matrices are invertible and that w > 2(p+ 1).125

2.2.1. Bayesian Information Criterion (BIC)

The BIC algorithm is commonly used for acoustic change detection [31].

Under hypothesis Hi, i ∈ {0, 1}, the BIC of Xn,p is defined as a maximum
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likelihood criterion penalized by the model complexity [31], that is related to

the number Mi of free parameters in the probabilistic model to be estimated,130

BICn(Hi) = max
µ,Σ

ln(Ln,i)−
λ

2
Mi ln(w) (3)

where λ is a penalty factor, ideally equal to 1 [31] and Ln,i is the likelihood

function under hypothesis Hi, which corresponds to the joint Probability Density

Function (PDF) of the observed data [32]:

Ln,0 =

nb∏
m=na

pµ0,Σ0(xm)

n∏
m=nc

pµ0,Σ0(xm) (4)

Ln,1 =

nb∏
m=na

pµ1a,Σ1a
(xm)

n∏
m=nc

pµ1b,Σ1b
(xm) (5)

pµ,Σ(xm) =
exp

(
− 1

2 (xm − µ)TΣ−1(xm − µ)
)

(2π)
p
2 det(Σ)

1
2

(6)

The BIC decision function is:

gn = BICn(H1)− BICn(H0) (7)

This expression is maximized using the Maximum Likelihood Estimators (MLEs)135

of the covariance matrices and the mean vectors [32], which are:

Σ̂1a =
1

nb − na + 1

nb∑
m=na

(xm− µ̂1a)(xm− µ̂1a)T (8)

Σ̂1b =
1

n− nc + 1

n∑
m=nc

(xm − µ̂1b)(xm − µ̂1b)
T (9)

Σ̂0 =
1

w

(
nb∑

m=na

(xm− µ̂0)(xm− µ̂0)T +

n∑
m=nc

(xm− µ̂0)(xm− µ̂0)T

)

=
1

2

(
Σ̂1a + Σ̂1b

)
+

1

4
(µ̂1b − µ̂1a) (µ̂1b − µ̂1a)

T
(10)

with µ̂1a =
1

nb − na + 1

nb∑
m=na

xm, µ̂1b=
1

n− nc + 1

n∑
m=nc

xm (11)

and µ̂0 =
nb − na + 1

w
µ̂1a +

n− nc + 1

w
µ̂1b =

1

2
(µ̂1a + µ̂1b) (12)

9



Using Eqs. (3) and (7), the BIC decision rule is [30]:

gn

H1

>≤

H0

h with gn =
det(Σ̂0)2

det(Σ̂1a)det(Σ̂1b)
and h ≥ 1 (13)

2.2.2. Hotelling T2 test

The Hotelling T2 test is also widely used for NILM purposes [20]. It is derived

from the ratio Λn of the likelihood functions when considering H0 and H1 [33]:140

Λn =
Ln,1
Ln,0

(14)

This likelihood ratio is maximized using the MLEs expressed in Eqs. (8)-(12),

and a development of its expression which is outlined in detail in our online

report [30], leads to:(
det(Σ̂1)

det(Σ̂0)

)−w
2

= (1 + gn)
w
2 , with Σ̂1 =

1

2

(
Σ̂1a + Σ̂1b

)
(15)

where Σ̂1 is called the pooled covariance matrix. The derivation of the decision

function expression gn can be found using a mathematical development such as:145

gn=
1

4
(µ̂1b−µ̂1a)T Σ̂−1

1 (µ̂1b − µ̂1a) (16)

If the likelihood ratio is small, H1 is rejected. According to the Neyman-

Pearson Lemma [33], this is possible when Λn is lower than γ ∈ [0, 1], which

leads to gn > γ
2
w − 1. The decision function is finally compared to a threshold

h ∈ lR+ such as:

g′n

H1

>≤

H0

h with g′n = 4 gn (17)

2.2.3. Cumulative Sum (CUSUM)150

The CUSUM is a probabilistic detection method used in a large extent for

event-based NILM approaches [20, 27]. It is assumed that under H0, µ0 = µ1a
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and Σ0 = Σ1a, and that under H1, Σ1b = Σ1a. The CUSUM decision rule is

derived from the log-likelihood ratio ln(Λn):

ln (Λn) = ln

(
Ln,1
Ln,0

)
=

n∑
m=nc

ln

(
pµ1b,Σ1a

(xm)

pµ1a,Σ1a
(xm)

)
(18)

that is maximized using the MLEs µ̂1a, µ̂1b and Σ̂1a and compared to a threshold155

h ∈ lR+,

gn

H1

>≤

H0

h with gn = (µ̂1b − µ̂1a)T Σ̂−1
1a (µ̂1b − µ̂1a) (19)

Both CUSUM and Hotelling T2 methods have very similar decision functions

with quadratic forms.

2.2.4. Effective Residual

The Effective Residual [34, 35] uses the gradient of the signal and makes a160

stationarity assumption in the margins of the window. We propose herein an

updated version of this detector and a multivariate version. The goal is to build

a function that reaches its maximum at time n when a change arises between

nb and nc. The absolute variation between two consecutive signal samples of

the same feature j ∈ {1, . . . , p} is first computed as follows:165

δm,j = |xm,j − xm−1,j | ∀m ∈ [na + 1, nb] ∪ [nc + 1, n] (20)

δnc,j = |xnc,j − xnb,j | (21)

Then the residual rm,j representing the difference between two consecutive vari-

ations of the same feature j is computed as:

rm,j = |δm,j − δm−1,j | ∀m ∈ [na + 2, nb] ∪ [nc + 1, n] (22)

rnc,j = |δnc,j − δnb,j | (23)

11



Finally, the decision function gn is compared to a threshold h, and leads to:

gn

H1

>≤

H0

h, with gn =

p∑
j=1

gn,j
dj

(24)

gn,j =
(w

2
− 2
) w

2−1∑
i= w

2 −2

rn−i,j −
w
2 −3∑
i=0

rn−i,j −
u+w−3∑
i=u+ w

2

rn−i,j (25)

where dj are normalization factors set by the user in order to sum features with

possibly different physical dimensions.170

2.3. Detectors’ statistical assessment

We propose a comparative statistical assessment of the four detectors in

strictly the same conditions. We aim at comparing the detectors to each other

and to their univariate version to demonstrate the performance improvement

brought by the multivariate case.175

2.3.1. Monte Carlo experiment description

A one-dimensional signal slice Xn,1 and a two-dimensional signal slice Xn,2

(with w = 6 and u = 0) are filled 100 000 times with random samples drawn

from a Gaussian process with a zero mean and a standard deviation σ = 0.1.

This corresponds to 100 000 realizations of the H0 case where no mean change180

occurs and the signal is only made of noise. For the H1 case, one mean change of

height ∆µ occurring at the (w/2 + 1)th sample is added to the signal slices Xn,1

and to the first line of the signal slice Xn,2. The Step height-to-Noise Ratio is

defined as SNR = ∆µ/σ. A mean change ∆µ′ = q ×∆µ (with q ∈ [0, 1]) is also

added at the (w/2 + 1)th sample of the second line of Xn,2. Fig. 4 shows an185

example of a realization with a two-dimensional signal where the mean change

of the second feature corresponds to 60% of the first one (q = 0.6).

The decision functions expressed in Eqs. (13), (17), (19) and (24) are com-

puted for each realization of the both cases H0 and H1, and then compared to

logarithmically spaced values of the threshold.190
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Figure 4: Example of a realization obtained in the Monte Carlo experiment with SNR=20,

σ = 0.1 and ∆µ′ = 0.6×∆µ.

The assessment is made for SNR = 2, which corresponds to the smallest

increase of the active power obtained when switching on a Compact Fluores-

cent Lamp (CFL). The goal of this Monte Carlo experiment is first to observe

the effect on the four studied detectors performances when adding a spurious

dimension that only contains noise (i.e., q = 0, corresponding to the case where195

a resistive load is switched on or off, leading to a mean change observed in the

active power but not in the reactive power). Second, it allows to observe the

effect on detection performance when adding under H1 a feature whose step

height is larger than zero. It should be noted that for the Effective Residual,

all the normalization factors dj mentioned in (25) are chosen to be equal to 1.200

2.3.2. Performance evaluation tools

In order to compare the four detection algorithms, several performance mea-

sures are commonly used [2, 3, 27].

i) Classification metrics:

• True Positive (TP) which counts the times a test detects a change in205

13



Xn,p when there is really one,

• True Negative (TN) which counts the times a test does not detect a

change in Xn,p when there is really not,

• False Positive (FP) which counts the times a test detects a change in

Xn,p when there is really not,210

• False Negative (FN) which counts the times a test does not detect a

change in Xn,p when there is really one.

Then, different rates or probabilities can be computed:

• The Probability of Detection PD (or True Positive Rate) also called

Recall, which measures the ability of a test to detect a truly present215

change. It can be estimated by the ratio of the correctly detected

events over all the cases under H1:

PD = TP/(TP + FN) (26)

• The Probability of False Alarm PFA (or False Positive Rate), that

can be estimated by the ratio of wrongly detected events over all the

cases under H0:220

PFA = FP/(FP + TN) (27)

Other metrics can also be mentioned:

• the True Negative Rate TNR = TN/(FP + TN)

• the False Negative Rate FNR = FN/(TP + FN)

But since TNR + PFA = FNR + PD = 1, only two of the four metrics are

necessary. PD and PFA are the most commonly used performance metrics225

for assessing detectors in the detection theory literature [16]. They are two

intuitive and antagonist metrics meaningful for making a balance between

the benefits, i.e., PD, and costs, i.e., PFA. The Probability of Detection is

desired close to one and the Probability of False Alarm is desired close to

zero.230
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ii) Receiver Operating Characteristic (ROC) curves:

In order to plot a ROC curve, a given detector decision function output

is compared to a threshold h. For each value of the threshold, the per-

formance metrics FP and TP are computed. This value of the threshold

leads to one point in a plane at coordinates (PD(h),PFA(h)). A set of235

values of the threshold leads to a set of points called the ROC curve [36].

This curve indicates therefore the Probability of Detection for a given false

alarm rate and gives the behavior of the detector with respect to a change

of the threshold. The optimal point on the ROC curve is the nearest point

to the upper left corner of the plot located at (0, 1). An ideal detector240

produces a curve close to this point. On the opposite, a bad detector pro-

duces a curve close to or below the diagonal line from the origin (0, 0) to

the top right corner (1, 1). Good detectors should lie somewhere between

these extremes. The ROC curve of the best detector is the one which is

always over the other curves in the ROC plane.245

Fig. 5 depicts the ROC curves of the four studied detectors. It can be ob-

served that the addition of a second spurious feature whose mean change

is between 0 and 60% of the first feature one, slightly decreases all the

detectors’ performances when comparing to one dimensional signal per-

formances. However, the detector performances are increased when the250

step height of the second added feature is above 0.6×∆µ.
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Figure 5: ROC curves of the four studied detectors considering one- and multi-dimensional

cases with different step heights in the second dimension.

It can also be observed that the Hotelling T 2 is the detector whose ROC

curves are the closest ones to the upper left corner, denoting the best per-

formances when comparing to the other detectors. The Effective Residual

performances are the worst according to the obtained ROC curves. How-255

ever, unlike the three other detectors, its performances remain the same

when applied to the one-dimensional signal using sliding windows of dif-

ferent sizes w = 12 or w = 6.

iii) Probability of Detection (PD) for a fixed Probability of False Alarm (PFA):

Usually, the Area Under the ROC Curve (AUC) is used to summarize260

a detector’s performance into a single quantity ranging between 0 and

1 [27, 36]. The larger the AUC, the better the detector. Detection

rules with an AUC lower than 0.5 are worthless, while values close to
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1 imply nearly perfect detection. However, the AUC may be somehow

a misleading measure of the detector’s performance. Indeed, sometimes265

ROC curves with equivalent AUCs can have very different shapes. To

amend this deficiency, a trade-off consists in computing the PD for different

SNR values while considering a specific PFA value [37]. This describes the

minimal SNR required to achieve a specific operating point on the ROC

curve. Usually, a constant and very small value of PFA is set (often smaller270

than 5%) [16]. Fig. 6 plots PD for each SNR for a specific PFA. For all the

detectors, the same observation as the one made for the ROC curves in Fig.

5 can be pointed out: for a given value of the SNR, the addition of a second

feature, whose mean change is between 0 and 60% of the first feature

one, decreases the Probability of Detection compared to a one-dimensional275

signal. The probabilities of detection are increased when ∆µ′ ≥ 0.6∆µ.

It can be noticed that the Hotelling T2 detector performances are better

in comparison to those of the three other detectors. Indeed, for the same

SNR value, the reached PD is the highest one for both the multivariate

and univariate cases. In addition, for very small values of the SNR, which280

means that the step height is lost in the signal noise, the reached PD is the

greatest one. As mentioned previously, the Effective Residual method has

the worst performances, i.e., for SNR=2, the reached PD is between 20 %

and 50 % for both univariate and multivariate signals, whereas for the

other detectors such as the Hotelling T2 test, the reached PD is between285

30 % and 70 %.
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Figure 6: Probability of Detection PD (Eq. 26) of the four studied detectors for a varying SNR

value with a Probability of False Alarm PFA = 5% (Eq. 27) for the one- and two-dimensional

cases.

2.3.3. Optimal threshold value

The ROC analysis can provide the optimal threshold value by considering

several metrics.

i) The first metric is the F-measure FM(h) = 2 PR(h)PD(h)
PR(h)+PD(h) ,290

where PR = TP/(TP + FP) is called the precision and denotes the frac-

tion of the correctly detected changes over the total number of times the

decision rule favors H1 [27]. The optimal threshold can be chosen as:

h1opt = arg max
h

FM(h) (28)

ii) The second metric represents the largest vertical distance from the ROC

curve to the main diagonal. The optimal threshold is then defined as the295
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value that maximizes the difference between PD and PFA [38]:

h2opt = arg max
h

J2(h), with J2(h) = PD(h)− PFA(h) (29)

iii) The last metric is known as “the closest point to the (0,1) corner in the

ROC curve”. The optimal threshold value is defined as the point that

minimizes the Euclidean distance between the ROC curve and the (0,1)

point [38], such as:300

h3opt = arg min
h
J3(h), (30)

with J3(h) =
√

(1− PD(h))2 + PFA(h)2 (31)

Fig. 7 shows the considered metrics as a function of the threshold values. It can

be seen that for the four detectors, the three metrics reach their extremes for

very close optimal thresholds. It can also be noticed that these extremes are

the highest for the Hotelling T2. In addition, for the CUSUM and the Hotelling

T2 test detectors, the range of optimal h values for which J2 is maximized and305

J3 is minimized is larger in comparison to the BIC and the Effective Residual

detectors. In particular, a score of J3 ≤ 0.5 is reached for several values of the

threshold ranging from 10−1 to 101 for the Hotelling T2 whereas for the Effective

Residual detector, such a score is reached for h ∈ [−0.05, 0.2]. This shows that

the Hotelling T2 detector provides better results within a wider range of h values310

compared to the Effective Residual detector. The same observation can be made

when comparing the Hotelling T2 detector to the CUSUM for which h ∈ [0.5, 50]

and to the BIC for which h ∈ [2, 5] when J3 ≤ 0.5. It can also be observed that

for h ∈ [0, 1], the BIC has no detection ability, since PD = PFA = 1.

Through these numerical simulations, we have evidenced the improvement315

brought by the multi-dimensional case for detection purposes. We also high-

lighted the Hotelling T2 detector performances. Knowing that several electrical

features can be extracted within a NILM framework and because there is no

knowledge about a set of “ad hoc” electrical features set apart for HEAs detec-

tion, a Feature Selection (FS) process must be considered. Since the reached320
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extremes are almost the same for each metric regardless the used detector, we

decide to consider the metric J3 in what follows.

Figure 7: Three metrics values, FM (Eq. 28), J2 (Eq. 29) and J3 (Eq. 31) against threshold

values h of each detector for a fixed SNR value.

3. Feature Selection Algorithm for Detection Purposes (FSADP)

3.1. Motivations

In NILM approaches, the features are extracted attributes from current and325

voltage measurements. In Fig. 2, it can be well observed that an event induces

a common change for different electrical features at different scales. In other

words, some features might be informative and useful whereas others are not.

FS is a process commonly used for classification tasks to reduce overfitting and

to avoid the curse of dimensionality problem [39, 40]. The selected subset con-330

tains the minimal number of features that contribute most to the classification
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accuracy [24, 40]. In this section, we aim at only using FS for event detection

purposes and not for classification. The goal is to improve the detector’s per-

formance by removing irrelevant features and significantly reducing the initial

p-dimensional feature space to a d-dimensional relevant features subspace, with335

d ≤ p.

3.2. The proposed Feature Selection Algorithm for Detection Purposes (FSADP)

The proposed feature selection method is a forward method that starts with

an empty set of features and iteratively increases its cardinality. On the op-

posite, a backward algorithm would start with the whole set of features and340

iteratively remove the least significant ones [40]. FSADP uses p iterations and

requires a knowledge on the ground truth events [41]. This means that the set

lNc of the timestamps indicating when events really occur has to be known,

with Card(lNc) = Nc. The proposed method is described by Algorithm 1. The

first iteration starts with an empty set of selected features. Each feature f ∈ F ,345

where F is the set of p features, is tested individually and the detector is applied

to the signal by using a sliding window of w+u successive values over the whole

signal of length N . In each window, the detector decision function is computed

and compared to logarithmically spaced values of the threshold h ∈ H. If the

decision function is larger than h, TP is incremented when an event truly oc-350

curs, whereas FP increases when no event occurs. The optimal threshold hmin

corresponding to the minimum value of the J3 score is determined. The feature

with the lowest minimum is then selected. At the subsequent iterations, each

remaining feature is added to the set of previously selected features, and the

same process is applied to find the lowest score J3. The most relevant features355

are the ones that contribute to decrease the score J3. FSADP can be applied to

any dataset containing labeled events. It selects the most relevant features for

which PFA is the lowest and PD is the highest. This couple (PFA,PD) is associ-

ated to a threshold hmin that is also the optimal one for the whole considered

dataset. The time complexity of this algorithm is quadratic according to the360

number of features p, and proportionally increases with the cardinal of H and
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the number of change events Nc.

Algorithm 1 FSADP

Input: Xn,p, whole features set F , signal length N , threshold values set H, window length

w + u, true events time instants set lNc, Nc =Card(lNc)

Output: Set of sorted features Fp

1: Initialization: F0 ← ∅

2: for k ← 0 to p− 1 do

3: for f ∈ F\Fk do

4: F+ ← Fk ∪ {f}, TP(h) ← 0, FP(h)← 0

5: for h ∈ H do

6: for n← (w + u) to N do

7: compute g(n) from Xn(F+) (cf. Section 2.2)

8: n0 ← n− w/2− u+ 1

9: if g(n) > h then

10: if n0 ∈ lNc then

11: TP(h)←TP(h)+1

12: else

13: FP(h)←FP(h)+1

14: end if

15: else

16: if n0 ∈ lNc then

17: FN(h)←FN(h)+1

18: else

19: TN(h)←TN(h)+1

20: end if

21: end if

22: end for

23: PFA(F+, h)← FP(h)/(FP(h) + TN(h))

24: PD(F+, h) ← TP(h)/(TP(h) + FN(h))

25: J3(F+, h) ←
√

(1− PD(F+, h))2 + PFA(F+, h)2

26: end for

27: Select the optimal threshold:

hmin(F+)← arg min
h∈H

J3(F+, h)

28: end for

29: Select the best remaining feature:

fmin ← arg min
f∈F\Fk

J3(Fk ∪ {f}, hmin(Fk ∪ {f}))

30: Update Fk+1 ← Fk ∪ {fmin}

31: end for
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4. Application to NILM

In this section, the Hotelling T2 detector, which showed the best perfor-

mances, is combined to the proposed FSADP and applied to real data streams in365

order to find the most relevant features for the detection task. We first introduce

the power features computed using current and voltage measurements. Then we

present the publicly available BLUED dataset dedicated to NILM event-based

approaches and a new proposed dataset built using our acquisition system. Both

datasets contain several events of small or large amplitudes that are represen-370

tative of a house.

4.1. Extracted features

As shown in Fig. 1, in a NILM context, current and voltage measurements

are first acquired and then features are extracted. We are interested in the

features related to the power characteristics including the active power, the re-375

active power and their respective harmonics. Indeed, these features meet an

additive property [22, 42]. Thus, when a HEA is connected (resp. disconnected)

from the power system, an “additive” feature is added (resp. substracted) by an

amount equal to that produced by this HEA working individually. This prop-

erty is required for extracting HEAs’ features from an aggregated signal and380

for comparing them with the dataset of HEAs’ signatures used by supervised

NILM classification methods. These features are computed using the mathemat-

ical formulations set out in [24] based on the latest IEEE 1459-2010 standard

for the definition of the single phase physical components under non-sinusoidal

conditions [43]:385

• The kth harmonic components (k ∈ [1, 15]) of the active and reactive

powers Pk, Qk and their respective sums PH , QH :

Pk[n] = vak[n]iak[n] + vbk[n]ibk[n] (32)

Qk[n] = vak[n]ibk[n]− vbk[n]iak[n] (33)

PH [n] =

15∑
k=2

Pk[n], QH [n]=

15∑
k=2

Qk[n] (34)
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• The active and reactive powers P and Q:

P = P1 + PH , Q = Q1 +QH , (35)

where vak, vbk, iak and ibk are the Fourier coefficients:

vak[n] =

√
2

M

n∑
m=n−M+1

v[m] cos

(
2π
mk

M

)
(36)

vbk[n] =

√
2

M

n∑
m=n−M+1

v[m] sin

(
2π
mk

M

)
(37)

iak[n] =

√
2

M

n∑
m=n−M+1

i[m] cos

(
2π
mk

M

)
(38)

ibk[n] =

√
2

M

n∑
m=n−M+1

i[m] sin

(
2π
mk

M

)
(39)

with M = Fs/F0 is the number of samples per period and F0 is the utility390

frequency.

4.2. BLUED data streams

The BLUED [26] is one of the most commonly used research dataset for

event detection benchmarking [12, 19, 44, 45] due to its fine granularity of event

labeling. It contains time stamped current and voltage signals of two phases A395

and B with ground truth events [2] obtained from a house in the United States

(with a utility frequency of F0 = 60 Hz) during a whole week. The sensors

used for measuring the electrical current in the mains have a cutoff frequency of

approximately 300 Hz. This means that from the sampled current and voltage

signals, although sampled at Fs = 12 kHz, only the active and reactive powers400

up to the 5th harmonic of the current and the voltage can be computed. Due

to some data download issues, only the first segments of both phases A and

B of the BLUED dataset are used, which corresponds to almost 13 hours of

recording. In the data segment of phase A, 461 events are involved. In phase B,

there are 1132 events. Several types of HEAs in the dataset are monitored [26]:405

lights, laptops, air conditionner, hair dryer, etc. leading to a large diversity of

HEAs’ transients. A total of p = 14 electrical power features are extracted from
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the current and the voltage measurements. They correspond to the active and

reactive powers P and Q in addition to their harmonics Pk and Qk up to the

5th order and the sum of their harmonics PH and QH .410

4.3. Proposed experimental data streams

A typical home electrical network was reproduced by randomly switching

on and off several HEAs of different kinds: resistive loads, motors and nonlin-

ear loads such as electronic devices. The aim is to cover an extensive range

of HEAs’ changes. For this purpose, a test bench made of an Arduino Nano415

microcontroller (8-bit processor ATMega328 microcontroller at 16 MHz) and

twelve 5V relay modules is used [25]. Each relay is connected to a HEA and

to the microcontroller that randomly turns them on or off. The HEAs in this

experiment are a microwave, a DVD player, a fan, a screen, a vacuum, a waffle

iron, a hair dryer, an iron, a flat iron, a mixer, a CFL and a LED lamp. For420

greater clarity, Fig. 8 shows the electrical assembly and instrumentation for only

four HEAs. During more than 1 hour, each of these HEAs is randomly activated

and shut down every 3 seconds. The current i(t) and voltage v(t) signals are

measured using our own acquisition system that was specially designed for this

research work, based on an Arduino MKR Zero microcontroller (32 bit proces-425

sor SAMD21 Cortex-M0 microcontroller, 48 MHz) with a sampling frequency

Fs = 6.25 kHz [25]. A list of events was then generated by visually inspect-

ing and hand-labeling transitions in the power signals as done for the BLUED

dataset generation [26]. Timestamps of the labeled events were adjusted to

match the transitions. Almost 1200 events were labeled in the dataset allowing430

an accurate evaluation of an arbitrary event detection method.
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Figure 8: Electrical assembly and instrumentation of four HEAs using our acquisition system

[25]

.

A total of p = 34 electrical power features are then extracted from the current

and the voltage measurements. They correspond to the active and reactive

powers in addition to their harmonics up to the 15th order and the sum of their

respective harmonics. Fig. 2 depicts a part of the signals obtained for the435

different HEAs that are randomly switched on and off in this experiment. This

data set will be freely available once this paper published.

4.4. Application of the Feature Selection Algorithm for Detection Purposes (FSADP):

results and discussion

The proposed FSADP with the Hotelling T2 detector is applied on both440

BLUED data streams and on our own extracted power time series. For both

phases of BLUED dataset, a sliding window of w = 8 successive values of the

power data stream is used and computed every M samples with u = 4. In our

experimental data streams, a sliding window of w = 8 successive values of the
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power data stream is also used and computed every M samples with u = 0. This445

setting is the result of a necessary tuning due to the event labelling differences

between the BLUED dataset and the experimental one. Hotelling T2 decision

functions are computed for each window and compared to 500 logarithmically

spaced values of the threshold h ∈ [10−10, 1010]. The performances obtained

with the selected features subset using the FSADP are compared to the detection450

performances using the active power signal only, as commonly considered for

detection in NILM event-based methods [18, 21]. They are also compared to

the multivariate detection performances with the P,Q feature subset and the

whole features subset. Tables 1, 2 and 3 show the obtained results. Several

observations can be addressed:455

Table 1: Detection performances of the Hotelling T2 detector computed on different power

features subsets for a 13 hours long excerpt of the BLUED dataset (phase A). These detection

performances are J3 (Eq. 31), the Probability of False Alarm PFA (Eq. 27) and the Probability

of Detection PD (Eq. 26).

Features Subset Detection PFA PD

subset size score J3 (%) (%) (%)

Active power P [26, 44] 1 5.78 1.15.10−6 94.3

Active and reactive powers P,Q 2 13.70 1.09 10−6 86.3

Features selected by FSADP 4 28.30 8.70 10−6 71.7

for phase B (P1, P,QH , Q3)

FSADP (P1) 1 3.21 1.04 10−6 96.8

Complete set 14 50.40 8.20 10−7 49.6
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Table 2: Detection performances of the Hotelling T2 detector computed on different power

features subsets for a 13 hours long excerpt of the BLUED dataset (phase B). These detection

performances are J3 (Eq. 31), the Probability of False Alarm PFA (Eq. 27) and the Probability

of Detection PD (Eq. 26).

Features Subset Detection PFA PD

subset size score J3 (%) (%) (%)

Active power P [26] 1 16.7 0.04 83.4

Active and reactive power P,Q 2 16.2 0.03 83.8

Feature selected by FSADP for phase A (P1) 1 16.5 0.04 83.5

FSADP (P1,P,QH,Q3) 4 15.0 0.03 85.0

Complete set 14 52.5 0.005 47.5

Table 3: Detection performances of the Hotelling T2 detector computed on different power

features subsets for the proposed experimental dataset containing 1203 events. These detection

performances are J3 (Eq. 31), the Probability of False Alarm PFA (Eq. 27) and the Probability

of Detection PD (Eq. 26).

Features Subset Detection PFA PD

subset size score J3 (%) (%) (%)

Active power P 1 12.04 5.12 89.10

Active and reactive power P,Q 2 11.96 5.08 89.17

FSADP (P,PH,Q3,Q9) 4 11.25 4.67 89.78

Complete set 34 12.86 5.86 88.55

1. When using only the active power, the proposed tuning of the Hotelling

T 2 detector (minimizing the J3 criterion) allowed to outperform the per-

formance results obtained in [26], where authors used the same detector

and found PD = 69.2 % for phase B and PD = 94.5 % for phase A. In

addition, the results that we obtained for phase A of BLUED dataset in460

an univariate context are better than those in [44], for which a Probability

of Detection of 90 % is reached when using an excerpt of the active power

signal containing 115 events.

2. The multivariate version of the Hotelling T 2 detector with appropriate
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features improves the detection performances compared to the univariate465

version considering only the commonly used active power signal for phase

B of BLUED dataset and our own dataset.

3. For BLUED data streams (phase B), the FSADP allows the selection of

d = 4 power features {P1, P,QH , Q3} that lead to a minimization of the

criterion J3. For phase A, the first order harmonic of active power P1 is470

the only feature that is selected by the FSADP. For both phases, the whole

set of p = 14 features makes the detection performances worse. This is an

argument in favor of performing feature selection for detection tasks.

4. Since the segments of signals from phase A and phase B of the BLUED

dataset are extracted from the same house, only one of the subset of475

features selected by the FSADP should be used. It appears that the feature

P1, which is the most relevant one for detection in phase A, is the suited

one. Indeed the detection performances brought by feature P1 applied

to phase B are very close to the performances obtained by the subset of

features {P1, P,QH , Q3}. On the opposite the subset of features selected480

by the FSADP for phase B sharply decreases the detection performances

when applied to phase A.

5. For our own experimental data streams, the FSADP allows to identify

a small subset composed of d = 4 power features {P, PH , Q3, Q9} that

minimizes the criterion J3 and allows a better detection performance than485

the whole set of p = 34 features.

6. In our own experimental data streams as well as BLUED data streams,

the subset of features selected by the FSADP allows to reach a PFA smaller

than 5% [16] and a larger PD when compared to the other subsets.

7. There are harmonics of odd order only in the set of selected features. This490

is due to the fact that even order Fourier coefficients are negligible. Indeed,

HEAs current and voltage waveforms have half-wave symmetry, thus even

harmonics have very small magnitude compared to odd harmonics, and
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their step heights when a change occurs are hence scarcely noticeable (see

active power 4th harmonic order signals in Fig. 2).495

8. The selected features clearly depend on the HEAs types that are turned

on/off (resistive, electronics, with motors, etc.). In phase A of BLUED

dataset, air compressor, fridge, lights and kitchen aid chopper were moni-

tored. In phase B of BLUED dataset, a much larger number of HEAs are

monitored: printer, laptop, dryer, hair dryer, iron, microwave, washing500

machine, lights, TV, etc. [26]. In phase B of BLUED dataset, as well as in

our own experimental dataset, some of the monitored HEAs’ step heights,

when turned on or off, might be lost in signal noise. This explains the

need of several features for the detection task improvement.

Moreover, according to Fig. 9-11:505

1. The use of some power features does not improve the detection perfor-

mances since for some of them, the criterion J3 remains constant (see

Fig. 11 from feature QH to feature P2 and in Fig. 10 from feature P1 to

Q). This means that these features do not bring relevant information de-

tection purposes. The same observation was made for the features selected510

for classification purposes in [24].

2. The use of some features increases the criterion J3. This means that these

features are not discriminant. Therefore, their use has a detrimental effect

on the detector performances.
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Figure 9: Power features sorted by the FSADP applied on BLUED dataset (phase A) based

on the score J3 (Eq. 31).
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Figure 10: Power features sorted by the FSADP applied on BLUED dataset (phase B) based

on the score J3 (Eq. 31).
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Figure 11: Power features sorted by the FSADP applied on our own dataset based on the score

J3 (Eq. 31).

5. Conclusion515

This paper explores and extends to the multivariate case four methods for

detecting HEAs state changes in a NILM context. Furthermore, a new labeled

dataset is introduced and made available for the sake of reproducible research.

We also propose a new method for properly selecting power features that im-

prove detection performances over the existing univariate methods based on520

active power signal only. Our study further supports prior NILM studies that

also emphasized the need of an effective set of electrical features for classifica-

tion purposes. For this, the performances of four detectors in the univariate

and multivariate cases are first assessed through numerical simulations and spe-

cific detection performance indicators on both synthetic and real-world data.525

According to our results, the Hotelling T2 detector in its multivariate version

provides the best performances. Then, the proposed FSADP method that aims

at selecting the best features for detection purposes is combined with the mul-

tivariate Hotelling T2 detector and applied to a 13 hours long excerpt of the

BLUED dataset that comprises current and voltage measurements of two phases530

A and B. For phase A, only the feature P1 was retained, whereas for phase B,

four features were selected: {P1, P,QH , Q3}. Most of them are related to odd
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order harmonics. The proposed FSADP method is also applied to other real-

world experimental power signals containing 1203 hand-labeled events coming

from several HEAs switched on and off, and extracted from current and volt-535

age measurements acquired using our own system. Among the 34 features re-

lated to power characteristics, only a subset of four features corresponding to

{P, PH , Q3, Q9} were found to be the most relevant since they improved the

detector performances. The selected features clearly depend on the nature of

the HEAs turned on/off. The detection performances improvement provided by540

the FSADP is observed by the increase of the Probability of Detection and the

decrease of the False Alarm rate. This substantial improvement is essential in a

NILM event-based pipeline since the success of HEAs identification depends on the

detection step. Any error or missing in detection would lead to incorrect HEAs

identification. For future work, other detectors in their multivariable version545

could be studied and assessed for HEAs purposes using the proposed method. In

addition to dealing with mean changes, an interest could be given to variance

changes under hypothesis H1. Then, another extension may consist in investi-

gating time-frequency analyzing methods using Short Time Fourier Transform

(STFT) instead of using the time series signals for the event detection. For this550

purpose, the time signals must be transformed into the time-frequency domain.

The idea would be to observe if changes in the signals have high-frequency

components that can be used for event detection. Our long term perspective

consists in setting up the whole block diagram shown in Fig. 1. With the de-

tection and distinction between the switching On and Off, the HEAs can be555

identified and their energy consumption as well as their cost in a bill can be

computed. Proposals for energy-saving can be finally made.
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tivariate abrupt change detectors, Research report, Université de Nantes
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