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ARTICLE

Observation of quantum many-body effects due to
zero point fluctuations in superconducting circuits
Sébastien Léger1, Javier Puertas-Martínez1, Karthik Bharadwaj1, Rémy Dassonneville1, Jovian Delaforce1,

Farshad Foroughi1, Vladimir Milchakov1, Luca Planat1, Olivier Buisson1, Cécile Naud1, Wiebke Hasch-Guichard1,

Serge Florens1, Izak Snyman2 & Nicolas Roch1*

Electromagnetic fields possess zero point fluctuations which lead to observable effects such

as the Lamb shift and the Casimir effect. In the traditional quantum optics domain, these

corrections remain perturbative due to the smallness of the fine structure constant. To

provide a direct observation of non-perturbative effects driven by zero point fluctuations in an

open quantum system we wire a highly non-linear Josephson junction to a high impedance

transmission line, allowing large phase fluctuations across the junction. Consequently, the

resonance of the former acquires a relative frequency shift that is orders of magnitude larger

than for natural atoms. Detailed modeling confirms that this renormalization is non-linear and

quantum. Remarkably, the junction transfers its non-linearity to about thirty environmental

modes, a striking back-action effect that transcends the standard Caldeira-Leggett paradigm.

This work opens many exciting prospects for longstanding quests such as the tailoring of

many-body Hamiltonians in the strongly non-linear regime, the observation of Bloch oscil-

lations, or the development of high-impedance qubits.
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The realization of many-body effects in quantum matter,
often associated with remarkable physical properties, hin-
ges on strong interactions between constituents. Mechan-

isms to achieve strong interactions include the Coulomb
interaction in narrow band electronic materials, and Feshbach
resonances that can produce arbitrarily large scattering lengths in
ultracold atomic gases. In contrast, while providing great design
versatility, purely photonic platforms1–3, are not easily amenable
to realizing strong correlations, since they usually come with
weak nonlinearity. To circumvent this, superconducting circuits,
which operate in the microwave range and display high tun-
ability, have been proposed4 for the exploration of correlated
states of light. Here, correlations originate from nonlinear ele-
ments, such as Josephson junctions, and the enhancement of
nonlinearities is accompanied by large zero-point fluctuations
(ZPF). This can be understood in the electronics language of
impedance as follows. The dynamics of a Josephson junction is
described by two conjugate variables: the number of transferred
Cooper pairs n̂ and the superconducting phase difference ϕ̂.
Despite being an anharmonic oscillator, a Josephson junction
with Josephson energy EJ and charging energy Ec, can be asso-

ciated to an impedance ZJ ¼ �h=ð2eÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ec=EJ

q
; which sets the

amplitude of the fluctuations of n̂ and ϕ̂. When hϕ̂2i is sufficiently
smaller than unity, hϕ̂2i / ZJ=RQ and hn̂2i / RQ=ZJ, with RQ ¼
h=ð2eÞ2 ’ 6:5 kΩ the superconducting quantum of resistance.
Consequently, at low ZJ, phase fluctuations are weak and the
anharmonic Josephson cosine potential EJð1� cos ϕ̂Þ can be
reduced to a quadratic potential plus a quartic perturbation, as is
the case for the transmon qubit5. On the other hand, if ZJ is large,
the full cosine potential is explored due to strong phase fluctua-
tions. Anharmonicity then becomes important, as observed with
the Cooper-pair box6 or the fluxonium qubit7, and as a result, the
oscillation frequency ωJ can strongly deviate from the harmonic
value

ffiffiffiffiffiffiffiffiffiffiffiffi
2EJEC

p
. Thus, exploring many-body physics in circuit

quantum electrodynamics must rely on a careful tailoring of ZPF.
The approach8 that we follow to explore many-body effects

originating from a single nonlinear superconducting element is to
couple it to many harmonic modes. In the presence of such an
environment, the degree of anharmonicity of a nonlinear junction
will also depend on the external impedance, and three regimes
can be identified. When ZJ does not match the environmental
impedance ZenvðωÞ at frequencies ω close to ωJ, the junction is
accurately described as an almost isolated system, so that the
effect of the environment only amounts to small perturbative
corrections, similar to the Lamb shift9. At the same time, an
impedance-mismatched environment remains weakly perturbed
by the nonlinear junction, and this absence of back-action allows
it to be described as a set of harmonic oscillators, following the
Caldeira–Leggett approach10. This simplified description is at the
core of the current understanding of open quantum systems, and
was already verified experimentally in the early studies of mac-
roscopic quantum tunneling11. The important role of ZPF in the
damping effect that such an environment has on a Josephson
junction was already noticed experimentally12 and explained
theoretically13,14 three decades ago. In these early works, the
effect of ZPF was to renormalize junction properties such as the
critical DC current by about 1%, which nonetheless had a large
effect on macroscopic quantum tunneling rates. When
Zenv � ZJ � RQ, the junctions and its environment fully hybri-
dize, since they are impedance matched, but the anharmonicity of
the junction remains weak and can be treated pertubatively15–18.
The case Zenv � ZJ � RQ is much more challenging, both
experimentally and theoretically since the strongly anharmonic
junction hybridizes with many modes of its environment.

In DC measurements, such effects result in the celebrated
Schmid–Bulgadaev transition predicted more than 30 years
ago19,20, a localization phenomenon whose relevance for micro-
wave AC measurements requires further experimental and the-
oretical investigations21. The environment provides a strong
action on the junction, which itself induces a sizeable back-action
on many modes of the environment, the combined circuit
forming a complex many-body system reminiscent of quantum
impurity problems encountered in condensed matter22. More
specifically, the frequency shift induced by the environment on
the junction can be comparable with ωJ, a nonperturbative effect
due to a modification of the vacuum23. At the same time, the
nonlinearity of the junction is transferred into the environmental
modes, affecting for instance their broadening, and producing a
physical regime that was not addressed so far.

In this work, we report on the effects of ZPF in a device consisting
of a fully characterized multimode environment and a highly
nonlinear single Josephson junction, acting as a weak link between
two linear transmission lines, with all subsystems reaching the high-
impedance regime. As a result, the transmission of single photons
through our device is strongly affected by the interplay of non-
linearities and ZPF. We observe a 30% renormalization of the
junction frequency as compared with the value that would have
been obtained without ZPF—analogous to a giant Lamb shift—and
we provide clear evidence for modifications of the environmental
vacuum, which inherits strong nonlinear effects. A detailed tem-
perature analysis of our system proves the quantum origin of these
fluctuations and eliminates an explanation in terms of classical
hybridization effects. Finally, our experimental findings are in
quantitative agreement with a microscopic theory based on the self-
consistent harmonic approximation (SCHA), embedded within a
fully fledged microscopic description of our circuit using microwave
simulation tools.

Results
Background. The many-body regime of a single nonlinear
junction coupled to a high-impedance environment has remained
largely unexplored experimentally, since obtaining Zenv � RQ at
gigahertz frequencies is very challenging. One option is to use on-
chip resistors24. However, this may lead to unwanted Joule
heating25. Therefore, we rather pursue a solution that relies on
superconducting (lossless) high-inductance materials such as
Josephson junction arrays26–28, noting that disordered super-
conductors29 are also promising. In Josephson junction arrays,
Zenv ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
can reach RQ given the large inductance of these

materials, while maintaining good quality factors in the device.
Early experiments have embedded ultrasmall Josephson junc-

tions between highly resistive leads, demonstrating the incoherent
tunneling of Cooper pairs24 in the framework of the PðEÞ theory30.
In this case however, no supercurrent flows through the junction
and no quantum coherent effects were observed. Later, the phase/
charge duality in the regime ZJ, Zenv > RQ was explored using
SQUID arrays as the environment31–33. Experimental results were
explained by fluctuations due to the finite temperature of the
electromagnetic environment and the effect of ZPF could not be
investigated. Moreover, these two series of experiments relied on
DC measurements. This has the disadvantage that nonequilibrium
effects need to be taken into account when results are interpreted,
while the system is not directly probed at the finite frequencies—
around ωJ—that are of greatest interest.

It has since become possible to obtain a frequency-resolved
picture of the environment of quantum systems such as
Josephson junctions, thanks to the advent of circuit QED34.
Here, microwave techniques allow a more accurate examination
of the effects of ZPF on Josephson junctions35, and observations
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of perturbative spectral shifts (below 1%) attributed to ZPF were
reported9,36,37. Several bottom-up experiments explored non-
perturbative effects of light–matter interaction at ultrastrong
coupling between a qubit and a single-mode resonator (for a
review see Forn-Dìaz et al.38 or Kockum et al.39). An effect similar
to the Lamb shift—a reduction of the effective Josephson energy
—was also reported recently for a DC-biased Josephson junction
coupled to a single mode high-impedance resonator40. Moving
towards many-body territory, a nonperturbative renormalization
of the frequency of a flux qubit was demonstrated41,42. However,
in this experiment, fluctuations were mainly thermal, and in
addition, the environment cutoff frequency could not be clearly
measured. The resulting unknown parameters prevented a
quantitative modeling of the experiments. Indeed, as pointed by
various authors43–46, it is necessary to account for all the
microscopic details of the circuit to get rid of unphysical

divergences in multimode models. Furthermore, a thorough
modeling of such circuits is mandatory to discriminate the trivial
effects of normal mode splitting (spectral shifts observed when
two classical harmonic oscillators hybridize) from the dynamical
ones associated to true vacuum fluctuations. With the exception
of Gely et al.47, this important issue has received surprisingly
little attention in the circuit-QED context.

Presentation of the experiment. Our system builds on recent
advances in the fabrication and control of large-scale Josephson
arrays18,48. It consists of a small Josephson junction of characteristic
impedance on the order of RQ (EJ=Ec ≲ 1), which is embedded in
the middle of two SQUID chains, each consisting of 1500 unit cells
(Fig. 1), forming high-characteristic impedance transmission lines.
We measure the characteristics of this environment precisely: its
high-frequency cutoff—or plasma frequency—ωplasma ’ 17 GHz

and its wave impedance Zchain ¼
ffiffiffiffiffiffiffiffiffiffi
L=Cg

q
’ 1:8 kΩ (see Table 1

and Supplementary Note 10). The SQUID parameters were care-
fully chosen to maintain a negligible phase slip rate (EJ=Ec ≲ 500),
ensuring that these chains can be described as a linear environment.
They are capacitively coupled to the measurement setup to suppress
DC noise which could affect the small junction (Fig. 1c). In order to
vary the degree of nonlinearity and hence the strength of the ZPF,
we measured three samples with different small junction sizes,
connected to nominally identical chains (see Table 1).

The broadband microwave transmission of the full system
shows a series of resonances (see Fig. 2b). A broadening of the
modes in the array is expected since the SQUID chains are
capacitively coupled to the 50 Ω measurement lines, hence
forming very long microwave resonators. The transmission of the
system is measured using very low microwave power, down to the
single-photon regime. This prevents any power-induced broad-
ening or frequency shift of these resonances (see Supplementary
Note 9). A closer look at Fig. 2b reveals that resonances come in
pairs. This is expected given the symmetry of the sample: our
system can be decomposed into two subsystems (See Supple-
mentary Note 2). One is made of even modes, which are
decoupled from the small Josephson junction, while the other is
composed of odd modes, with impedance Zenv ¼ 2Zchain,
ultrastrongly coupled to the small Josephson junction18,48. A
more surprising observation is that the odd modes are much
more damped than the even ones. We interpret this as resulting
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Fig. 1 SQUID chains coupled to a small Josephson junction (weak link). The upper part represents the spatial phase distribution of the two first standing
waves or resonant modes of the total system (Josephson junction+ chains). And odd (even) mode—which couples (does not couple) to the junction—is
represented in purple (orange). The lower part is a schematic of the system. The SQUID chains, depicted as blue transmission lines, are capacitively
coupled to the input and output 50Ω coaxial cables and galvanically coupled to the small Josephson junction (in red). a Optical picture of the input and
output capacitive couplings. b SEM picture of a few of the SQUIDs (1500 in total for each chain) that are coupled to the small Josephson junction (in red).
c Equivalence between the transmission line effective picture and the SQUID chain characterized by three microscopic parameters L and C the inductance
and capacitance per SQUID respectively and Cg the ground capacitance

Table 1 Parameters of three samples. The bare Josephson
energy EABJ;bare is inferred using the Ambegaokar–Baratoff law.
E�J is the measured value of the renormalized Josephson
energy. As a consistency check, the bare value EthJ;bare is also
extracted from the fit of E�J using the SCHA. Csh is the
capacitance shunting the small Josephson junction (see
Supplementary Note 9). C, Cg, and L are obtained from the
dispersion relation of the chain (see Supplementary
Note 10)

Sample A B C

Small junction
Area [μm2] 315 × 195 370 × 190 440 × 185
CJ [fF] 2.7 ± 0.3 3.2 ± 0.3 3.7 ± 0.4
Csh [fF] 3.0 ± 0.5 2.4 ± 0.4 5.1 ± 1.0
E�J [GHz] 1.8 ± 0.1 3.1 ± 0.2 5.7 ± 0.3
EABJ;bare [GHz] 3.7 ± 0.2 5.8 ± 0.3 6.8 ± 0.5
EthJ;bare [GHz] 3.7 5.5 8.2
Nonlinearity EJ;bare=Ec 0.27 0.40 0.93
Renormalization E�J =EJ;bare 0.49 0.56 0.70
Chain
C [fF] 144 144 144
Cg [fF] 0.189 0.192 0.181
L [nH] 0.66 0.60 0.61
EJ=Ec 460 506 498
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from the nonlinearity that odd modes inherit from the small
Josephson junction. This is experimental evidence of the strong
back-action of the small Josephson junction on the many modes
of the chain forming its linear environment.

Line shapes
The line shape of a given even–odd pair of resonances can be
obtained by associating with it two effective LC oscillator49

connected via the small Josephson junction (see insets in Fig. 2b).
In the regime of interest (See Supplementary Note 5 and 6) this
junction can be treated as a ZPF-dependent inductance L�J in
parallel with a capacitance Ck, with resonance frequency

ω�
J ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
L�JCk

q
. The odd and even modes mentioned earlier are

characterized by respective frequencies ωeven ¼ 1=
ffiffiffiffiffiffi
LC

p
and

ωodd ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
LΣCΣ

p
, with 1=LΣ ¼ 1=2Lþ 1=L�J and

CΣ ¼ C=2þ Ck. Then for modes at frequencies such that
ωodd;ωeven � ω�

J , the capacitance of the small junction can be
neglected (Ck � 0) leading to ωodd > ωeven. In the opposite case
(ωodd;ωeven � ω�

J ) the inductance can be neglected, giving
ωodd < ωeven. The most interesting regime is when the system is
probed close to ω�

J . In that case, the impedance of the small
junction diverges and consequently the two effective oscillators
are uncoupled leading to ωodd ¼ ωeven. In the Supplementary
Note 7, we confirm that a fully microscopic model of the whole
circuit also predicts that the frequency splitting between even and

odd modes changes sign at the renormalized frequency of the
junction ω�

J . The frequencies of each even–odd pair of modes is
extracted by fitting the peaks Fig. 2 to line shapes of an
input–output formalism based on the simple model just described
(see Supplementary Fig. 3 and “Methods” section).

Renormalized Josephson energy E�
J . The effective resonance

frequency of the junction, ω�
J , depends on its environment due to

the interplay of strong anharmonicity and many-body ZPF, and can
be inferred by tracking the evolution of the normalized frequency
splitting S ¼ ðωodd;k � ωeven;kÞ=ðωeven;kþ1 � ωeven;kÞ, between even
(uncoupled) and odd (coupled) modes, where k ¼ 0¼M refers to
mode number. As shown in Puertas-Martìnez et al.18, in a long
chain, this quantity equals the phase shift difference between even
and odd modes. It vanishes when the left and right halves of the
device decouple, so that even and odd modes become degenerate.
Figure 2c shows the experimentally obtained S for one of our
samples, from which we extract ω�

J . As we show in the Supple-
mentary Notes 4 and 5, the ZPF-dependent effective inductance of
the weak link is related to a renormalized Josephson energy E�

J ¼
ð�h=2eÞ2=L�J as

ω�
J ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2E�

J Ec

q
; ð1Þ

where Ec ¼ ð2eÞ2=ð2ðCJ þ CshÞÞ, with CJ the intrinsic capacitance
of the junction and Csh a shunting capacitance due to the
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Fig. 2 Inferring the renormalized resonant frequency ω�
J of the small Josephson junction. a Amplitude of the microwave transmission jS21j versus frequency

(sample A, 24mK). The even–odd modes frequency splitting S changes sign precisely at ω�
J . Arrows are guides to the eye of the splitting sign. b Fit of the

double peaks for three cases: well below the resonant frequency of the small Josephson junction (blue) its inductive part dominates, close to ω�
J (orange)

the impedance of the junction is large so that the two modes are almost decoupled, and well above ω�
J (green) the capacitive part of the junction

dominates. c Experimental normalized frequency splittings S obtained from the previous fits (dots) and theoretical prediction (full line). The resonance
frequency ω�

J of the small Josephson junction corresponds to the vanishing value of the normalized splitting S
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surrounding circuitry. Note that we define E�
J in terms of L�J , and

not in terms of the DC critical current as is done in for instance23.
We use Eq. (1) to infer E�

J experimentally. CJ is given by the
junction size measured from an SEM picture. The way Csh is
extracted is explained in the Supplementary Note 9. Values for
sample A, B, and C are reported in Table 1. To see the effect of
vacuum fluctuations, we compare E�

J with the bare Josephson
energy of the weak link, which was obtained as follows. We
fabricated many nominally identical Josephson junctions on
the same chip and measured their room temperature resistances.
The expected bare Josephson energy of the small Josephson
junction EAB

J;bare (see Table 1) was then inferred using the
Ambegaokar–Baratoff law. We observe a systematic shift between
this bare energy and the renormalized one we inferred from jS21j
measurements, a shift that is more pronounced for sample A that
shows a high nonlinearity. This points towards a large renormali-
zation induced by the strong zero-point phase fluctuations of the

hybridized junction-chain modes, as expected since the small
junction is impedance matched to the chains.

We now show that this renormalization is quantitatively
captured by a microscopic model based on the SCHA. Its success
in accounting for nonlinearities introduced by Josephson
junctions is well-established13,14,50,51. More recently it was
employed in detailed microscopic models in the field of circuit
QED18,52. The idea behind the SCHA is that the strong phase
fluctuations allowed by the environment average the nonlinear
potential of the small Josephson junction, lowering its effective
Josephson energy from the bare value EJ to the renormalized one
E�
J . This is valid, provided the phase ϕJ, though strongly

fluctuating, is still sufficiently localized. In this regard we note
the following. Though large, the effective environmental impe-
dance 2Zchain ’ 3:8 kΩ seen by the weak link, is still less than
RQ. Under this condition, the environment is known to produce
spontaneous symmetry breaking of the 2π periodicity in the
phase difference ϕJ across the weak link19,20,22. It is therefore
reasonable to approximate the system’s full wave function with a
Gaussian that is fairly well localized in the ϕJ direction, which is
the essence of the SCHA. At zero temperature, the interplay of
many-body ZPF and nonlinearity can be described is approxi-
mated by replacing the cosine Josephson potential by an effective
quadratic term E�

J ϕ
2
J =2, where the renormalized Josephson energy

E�
J is given by the self-consistent equation:

E�
J ¼ EJ;bare e

�hϕ2J ðE�
J Þi=2: ð2Þ

Here, the total phase fluctuation across the junction hϕ2J i is
given by

hϕ2J i ¼
X
k2odd

ϕ2k; ð3Þ

where ϕ2k is the contribution to the small junction ZPF coming from
odd mode k. Importantly, in the strong ZPF regime, the expectation
value must be taken with respect to the modified vacuum of the
hybridized modes, which means that the normal modes of the
systems has to be updated during the numerical iteration of Eq. (2).
This is in contrast to familiar examples of ZPF induced phenomena,
such as the Lamb shift in hydrogen, where the perturbative nature
of the effect allows one to calculate fluctuations with respect to the
bare vacuum of the environment. We independently extracted the
parameters of the whole circuit (junction+ chains), and then used
Eq. (2) to determine the theoretical bare Josephson energy required
to find back the measured renormalized E�

J (see next section for
more details). The agreement between experimentally and theore-
tically estimated EJ;bare (see Table 1) provides strong evidence that
our system displays large ZPF, which leads to a renormalization of
up to 50% of the Josephson energy of the small junction (or
equivalently 30% of its resonant frequency ωJ). Moreover, as
expected, this renormalization increases when the ratio EJ;bare=Ec

decreases, or equivalently when the nonlinearity of the small
Josephson junction increases.

Quantum versus thermal fluctuations. As ω�
J is renormalized by

phase fluctuations across the weak link, one expects a crossover
from quantum to thermally driven fluctuations as temperature
increases. Extending the SCHA to nonzero temperatures (see
Supplementary Note 4 and 5), we find that the fluctuations of
mode k contain a Bose factor contribution:

ϕ2kðTÞ ¼ ϕ2k 1þ 2
expð�hωk=kBTÞ � 1

� �
ð4Þ

with ωk the frequency of mode k, and ϕ2k its zero temperature
ZPF. Therefore, at low temperature, fluctuations saturate to a
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Fig. 3 Temperature-induced renormalization. a Zoom on a even–odd pair of
transmission peaks for sample A at temperature ranging from 23 to 150
mK. The even mode (gray) does not move while the odd mode (blue is at
25 mK, red at 130mK) shifts down in frequency when warming up, showing
a downward renormalization of the junction frequency ω�

J . b ZPF of the
small junction hϕ2J i as a function of the temperature for three samples (A, B,
and C ranging from dark to light blue), extracted from Eq. (2). ZPF are
stronger in sample A, which is associated to a smaller ratio EJ;bare=Ec (large
nonlinearity). The measured quantum to classical crossover is in good
agreement with theory (full lines). The inset displays the corresponding
renormalized junction frequency f�J ¼ ω�

J =2π of the three samples. The full
lines are the SCHA predictions while the dashed lines represent what would
be the temperature evolution of these frequencies if ZPF were omitted from
hϕ2J i, using the same values of EJ;bare
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finite ZPF value (a hallmark of quantum uncertainty), while at
high temperature they increase linearly with temperature (4).
According to Eq. (2), ω�

J should decrease when the system is
heated up. Consequently, odd modes’ frequencies are shifted to
lower values when temperature increases, while the even modes
stay put. This striking experimental signature of nonlinearity can
clearly be seen in 3a. This constitutes smoking gun evidence of
the back-action of the Josephson junction on its environment: the
shift of ω�

J to smaller values at increasing temperatures indicates
that fluctuations are thermally enhanced.

The recipe to extract Eth
J;bare is the following: E�

J ðTÞ is obtained
from S21 measurements at different temperatures. Since all the other
parameters (L, C, Cg, CJ, and Csh) are known, we can fit E�

J ðTÞ using
Eqs. (2) and (4), taking Eth

J;bare as the (only) fitting parameter. Then,

Eth
J;bare being determined, we can compute the phase fluctuations

across the small Josephson junction using Eq. (1) and (2):

hϕ2J iðTÞ ¼ 4log
2Eth

J;bareEc

ω�
J ðTÞ

 !
: ð5Þ

We checked that at the lowest temperature of our cryostat, the phase
fluctuations experienced by the small Josephson junction are fully in
the quantum regime, by measuring jS21j from 25 to 130mK. Results
are shown in Fig. 3b. We observe that the quantum to classical
crossover appears at decreasing temperatures from sample C to A.
This is because ω�

J decreases from sample C to A. Therefore the
junction is coupled to modes with lower and lower frequencies,
which are thermally occupied at lower temperatures. The inset in
Fig. 3b shows the corresponding fit of ω�

J for the three samples. The
dashed lines represent ω�

J obtained using the value of EJ;bare extracted
from the previous fit but including only thermal renormalization of
ω�
J i.e. disregarding ZPF. Consequently, hϕ2J i is given by:

ϕ2kðTÞ ¼ ϕ2k
2

expð�hωk=kBTÞ � 1

� �
: ð6Þ

The discrepancy between the dashed lines and the fit clearly shows
that the fluctuations have mainly quantum origin. At increasing
temperatures, thermal fluctuations add to the quantum ZPF, and
cause a rise in hϕ2J i, witnessed both in the experimental extraction
and the predictions from SCHA, see Fig. 3b. It is likely that the
extracted hϕ2J i for sample A is systematically underestimated due to
sizeable errors in the SCHA that rapidly set in after hϕ2J i ≳ 1,
leading to a mismatch with the theory at high temperatures.

Many-body nature of the ZPF. In order to confirm the many-
body character of this renormalization, we can estimate how
many modes are affecting the small junction simultaneously. The
ZPF are quantitatively determined by how the full vacuum of the
whole circuit is dressed by the coupling through the weak link.
Within the SCHA, the number of modes contributing a finite
amount of ϕ2k provides a measure of the number of interacting
particles in the system. In Fig. 4 we compare the experimentally
extracted hϕ2J ðTÞi with various calculated values. In each calcu-
lation, the full system was truncated to a finite number of modes
in a window around ω�

J . If the window is too narrow, important
contributions to the ZPF are neglected, and hϕ2J ðTÞi is under-
estimated. The comparison unambiguously shows that, in sample
B, around 30 modes contribute to the total phase fluctuations. In
circuit-QED language, the full width at half maximum (FWHM)
of the environmental ZPF ϕ2kðωkÞ – labeled ΓJ – is about 7 GHz
for our samples (see inset of Fig. 4). Therefore, our device
operates in a regime where ΓJ=ω

�
J � 1 due to the impedance

matching to the transmission line. Moreover, our device is

strongly nonlinear. Consequently, it is not possible to treat per-
turbatively the nonlinearity as is usually done in the field for
the Transmon qubit or other weakly nonlinear circuits5,15–17

(a detailed analysis is given in Supplementary Note 11).
This work provides a direct observation of several quantum

many-body effects driven by ZPF in an open quantum system. This
was achieved by developing a spectroscopic setup where the high-
impedance environment of a single nonlinear Josephson junction
was monitored mode by mode, and compared with a detailed
microscopic model. A strong quantum renormalization (up to 50%)
of the Josephson energy of the single junction was demonstrated,
analogous to a nonperturbative Lamb shift. In addition, the back-
action of the small Josephson junction causes nonlinear broadening
and strong temperature dependence of the environmental modes,
providing the most striking signature of the many-body effects that
take place in our circuit. The measured temperature dependence of
the phase fluctuation across the Josephson junction indicates that
our device remains quantum coherent at cryogenic temperatures.
As many as 30 modes are involved in the renormalization of the
small junction. Our superconducting circuit thus behaves as a fully
fledged quantum many body simulator, paving the way for the
further observation of various many-body nonlinear effects in
circuit QED53–59.

Methods
Full model. The Hamiltonian of the full system can be decomposed into odd and
even parts—containing respectively the modes coupled and not coupled to the
junction (see Supplementary Note 2). The odd Hamiltonian reads

Ĥ ¼ Ĥ0 þ 1 � EJ;bare cos ϕ̂J

� �
; ð7Þ

Ĥ0 ¼
2eð Þ2
2

XN
i;j¼0

n̂i½Ĉ��1
i;j n̂j þ

EJ;S

4

XN�1

i¼1

ϕ̂i � ϕ̂iþ1

� �2 ð8Þ

with n̂0 � n̂J and ϕ̂J referring to the charge the phase drop across the small

junction while n̂i and ϕ̂i, i 2 ½1::N� refer to the charge and phase operators on chain
site i 2 ½1::N�. Charge and phase operators obey the commutation rules
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Fig. 4 Many-body nature of the ZPF. Total phase fluctuations across the
small Josephson junction in sample B, taking into account in our model (full
lines) different numbers of modes of the environment, ranging from one
(light blue) to the total number (dark blue). The inset shows the relative
contribution of the different modes to the total fluctuations, with ΓJ being
the FWHM of this quantity
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½ϕ̂k; n̂p� ¼ iδk;p . The microscopic parameters are EJ;S, the Josephson energy of the
SQUIDs, EJ;bare the bare Josephson energy of the small junction, and the capaci-
tance matrix:

Ĉ ¼ 1
2

CI �C 0 0 0 ¼ 0

�C 2C þ Cg �C 0 0 ¼ 0

0 �C 2C þ Cg �C 0 ¼ 0

..

. ..
. . .

. . .
. . .

.
¼ 0

0 0 0 �C 2C þ Cg �C 0

0 0 0 0 �C 2C þ Cg �C

0 0 0 0 0 �C C0

2
6666666666664

3
7777777777775

with:

CI ¼ 2ðCJ þ CshÞ þ C þ Cg; ð9Þ

C0 ¼ Cc þ Cc;I þ C: ð10Þ

Self-consistent harmonic approximation (SCHA). Because of the cosine term in
Eq. (7), we are dealing with an interacting many-body problem that cannot be
solved analytically. To study the best variational harmonic approximation we use
the SCHA:

Ĥ ¼ Ĥ0 þ
E�
J

2
ϕ̂
2
J þ 1� EJ;bare cos ϕ̂J

� �
� E�

J

2
ϕ̂
2
J

ð11Þ

¼ Ĥt þ 1� EJ;bare cos ϕ̂J

� �
� E�

J

2
ϕ̂
2
J

ð12Þ

with Ĥt the trial harmonic Hamiltonian that will approximate Ĥ, optimized with
respect to the renormalized Josephson energy E�

J . The variational principle gives

∂

∂E�
J
hΨtjĤjΨti ¼ 0; ð13Þ

with Ψtj i the many-body ground state of Ĥt. Because of the harmonic character of
Ĥt , we have

hΨtj cos ϕ̂JjΨti ¼ e�hΨt jϕ̂
2
J jΨti=2: ð14Þ

Inserting (14) into (13) we end up with the self-consistent equation:

E�
J ¼ EJ;baree

�hϕ2J ðE�
J Þit=2: ð15Þ

The physical interpretation is the following: when ZPF are negligible, hϕ̂2J i ’ 0
and E�

J ¼ EJ;bare, so in its ground state the junction behaves as an harmonic
oscillator of frequency ωJ;bare ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EJ;bareEc

p
. For weak nonlinearity, fluctuations

increase but remain such that hϕ̂2J i � 1, resulting in E�
J ’ EJ;bareð1� hϕ2J i=2Þ, so

that the junction behaves as a weakly anharmonic oscillator with fundamental

frequency ωJ;bareð1� hϕ̂2J i=4Þ. For an isolated junction hϕ̂2J i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ec=2EJ;bare

q
, and

the frequency becomes ωJ;bare � Ec=4, a well-known result for the Transmon
qubit5. For larger fluctuations, the principle remains the same but no analytical
formula can be derived, so that one should solve the self-consistent equation
numerically. A more detailed derivation—including thermal fluctuations—is pre-
sented in Supplementary Notes 4 and 5.

Frequency splitting S between odd and even modes. The splitting S is linked to
the phase shift difference θ between even and odd modes in the thermodynamic
limit18:

S ¼ θ

π
: ð16Þ

The analytical formula of the phase shift difference—derived in the Supplementary 6
and 7 reads

θ ¼ 2 arccotðXÞ þ arctan
1� λ

1þ λ
X

� �
ð17Þ

with

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C
Cg

þ 1

 !
ωp

ω

� �2
� 1

	 
vuut ; ð18Þ

λ ¼ 1� ω2CL
1þ 2L=L�J � ω2CIL

; ð19Þ

ωp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðC þ Cg=4Þ

q
being the plasma frequency of the chain and L�J ¼

�h2=ð2eÞ2E�
J the effective inductance of the small junction.

Fitting formula for the peaks. Input–output theory is used to fit the parameters
associated to the double resonances observed in the transmission spectrum. These
are mapped to two coupled harmonic modes α and β with mutual coupling rate g,
external coupling κext and internal loss κin, with Hamiltonian:

Ĥ ¼ �hωrðâLy âL þ aR
yâRÞ þ gðâL þ âL

yÞðâR þ âR
yÞ: ð20Þ

Here âinL , âoutL are the left input and output signals and âoutR is the right output
signal. Thus the input–output relations are :

âinL þ âoutL ¼
ffiffiffiffiffiffiffi
κext

p
âL; ð21Þ

âoutR ¼ ffiffiffiffiffiffiffi
κext

p
âR: ð22Þ

The equations of motion are:

�iðω� iωrÞâL þ
κext
2

âL ¼ �igâR � ffiffiffiffiffiffiffi
κext

p
âinL ; ð23Þ

�iðω� iωrÞâR þ κext
2

âR ¼ �igâL: ð24Þ
The complex transmission is defined as S21 ¼ âoutR=âinL , and can be calculated
using Eqs. (21)–(24). We define the even ωe ¼ ωr þ g and odd ωo ¼ ωr � g fre-
quencies, and add phenomenologically losses in the odd modes κo ¼ κin þ κadd (we
keep κe ¼ κin), so that:

S21 ¼
iκextðωo � ωeÞ

κext þ κo þ�2iðω� ωoÞð Þ κext þ κe � 2iðω� ωeÞð Þ : ð25Þ

For some of the odd modes, we found a signature of inhomogeneous broadening,
that we modeled by a convolution of their frequency with a gate function defined as
ΠδωðωÞ ¼ 1=δω if ω 2 ½ω� δω=2;ωþ δω=2�. Understanding microscopically this
additional broadening, possibly due to offset charges, is beyond the scope of the
description using the SCHA, and will require additional theoretical developments.

Data availability
The data that support the findings of this study as well the treatment scripts are
available at the open access repository Zenodo [https://doi.org/10.5281/zenodo.3520349].
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