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We analyze the interaction between orthogonally polarized solitons and dispersive waves via four-
wave mixing in a birefringent fiber. We calculate analytically the efficiency of the phase-sensitive
scattering between orthogonally polarized soliton and dispersive wave. Experiments performed by
using a photonic crystal fiber perfectly match the analytical predictions.

I. INTRODUCTION

The interaction between solitons and dispersive waves
(DWs) in optical waveguides is an active field of research.
These phenomena typically take place during the process
of supercontinuum generation [1], making their deep un-
derstanding relevant for the design of broadband sources.
These interactions have been proposed as a candidate to
optical switching [2], as a close analogy with event hori-
zon in black holes [3, 4] and for the trapping of DWs in
a cavity-like soliton pair [5–7]. Classically, these inter-
actions were fundamentally studied in the case of bright
fundamental solitons, but recently, it has been found that
other kinds of solitons can interact with linear waves
through this mechanism such as dark [8] and higher order
solitons [9].

Physically, the scattering of a DW on a soliton can be
understood as a four-wave mixing (FWM) process [10–
12], which, under appropriate conditions, gives birth to
new spectral components. Two different kinds of soli-
ton/DW interaction can take place: in the first one,
called non-phase sensitive, the moving refractive index
variation produced by the soliton itself is able to gen-
erate new spectral components via cross-phase modula-
tion (XPM). The frequencies of these bands do not ex-
plicitly depend on the soliton phase. The second type,
called phase-sensitive [13], involves a genuine FWM pro-
cess between the soliton and the dispersive wave, which
generates new spectral bands whose frequencies directly
depend on the soliton phase [13, 14]. The efficiency of
these interactions depends on the frequency of the in-
volved waves, the spectral width of the soliton and the
group velocity difference between the waves. In the case
of non-phase sensitive resonance, the efficiency has been
calculated analytically [12, 15, 16], whereas, in the case of
phase-sensitive process, a full theoretical understanding
is still missing.

The main goal of this paper is to characterize theoret-
ically and experimentally the phase-sensitive interaction
between solitons and DWs and demonstrate conditions
providing maximal power of the generated signal. We
consider the collision between a soliton and a weak con-
tinuous wave (CW) orthogonally polarized in a birefrin-
gent fiber. In this case the frequency of the waves gen-

erated by the phase-sensitive and phase-insensitive scat-
tering can be unambiguously identified. The article is
organized as follows. In Sec. II we present the analytical
calculations of the efficiency of the phase-sensitive pro-
cess. In Sec. III we describe the experimental results and
compare them with the theory. Conclusions are drawn
in Sec. IV.

II. THEORY

The evolution of the two linear polarization compo-
nents along a birefringent fiber can be described by means
of two coherently coupled nonlinear Schrödinger equa-
tions [17]:

i∂zAx,y+Dx,y(i∂t)Ax,y + γ[|Ax,y|2 +

+
2

3
|Ay,x|2]Ax,y +

γ

3
A∗

x,yA
2
y,x = 0. (1)

The dispersion operators are defined as:

Dx(i∂t) =
∑

n≥2

βnx

n!
(i∂t)

n, (2)

Dy(i∂t) = ∆β0 +∆β1i∂t +
∑

n≥2

βny

n!
(i∂t)

n, (3)

where βn = ∂n
ωβ(ω)|ω=ω0

, ∆β0 = β0y−β0x, ∆β1 = β1y−
β1x. We consider β0y > β0x so that x is the fast axis,
according to the usual terminology. Here, Ax,y are the
field envelopes polarized along the fiber neutral axes x
and y, respectively, z is the longitudinal coordinate, and
γ is the nonlinear coefficient. The characteristics (power
and duration) of the pulses considered here permits to
safely neglect the Raman and self-steepening effects.
We study the propagation along the fiber of a soliton

polarized along the x (fast) axis Ax=
√
P0sech(t/T0)e

iqz

(q = γP0/2) with frequency ω0, together with a weak
continuous wave Ay = g polarized along the y (slow) axis
with frequency ωp, that we term the pump, following the
terminology of Refs. [10, 13].
We report in Figure 1 a typical example of the interac-

tion under investigation in this paper. We considered a 3
m-long photonic crystal fiber (PCF), whose parameters



2

(b)
0

1

2

Time (ps)
0 4 8-4-8

0

1

2

D
is

ta
n

c
e
 (

m
)

Time (ps)

Power 

(W)
188

0

(a)

x10-2

2

4

6

0
40-4-8-12

P
o
w

e
r
 (

m
W

)

Time (ps)

(d)

1200 1400 1600

-10

-30

-50

-10

-30

-50

input

output

(c)

In
te

n
si

ty
 (

d
B

)

Wavelength (nm)

D
is

ta
n

c
e
 (

m
)

-8 -4 0 4 8

FIG. 1. Collision between a soliton and a CW. (a),(b) Spa-
tiotemporal evolutions of the x and y components, respec-
tively, obtained from numerical solution of Eqs. (1). (c) To-
tal input (top) and output (bottom) spectrum. (d) Temporal
profile of the generated pulse at 1318 nm. Simulation param-
eters: see text.

at 1430 nm are ∆β0 = 295 m−1, ∆β1 = −0.4 ps.m−1,
β2x ≈ β2y = −4.5 × 10−26s2/m and γ = 5 W−1. km−1,
corresponding to the PCF used in experiments hereafter.
Dispersion terms of order higher than 2 turn out to be
irrelevant, and have been neglected. It is worth not-
ing that, despite the high value of ∆β0, coherent terms
A∗

x,yA
2
y,x in Eq. (1) are not negligible. For example, they

can be perfectly phase-matched for a soliton and a CW
located around 1430 nm and 1570 nm, respectively.

Figures 1 (a),(b) show the evolution along the fiber of
the field intensity in time domain for the x and y polar-
izations. The input fundamental soliton, of peak power
P0 = 188W (q=0.47m−1), duration T0 = 0.21 ps, wave-
length λ0 = 1430 nm, propagates without deformation,
and is almost not perturbed by the collision with the y-
polarized linear wave, as shown in Fig. 1 (a). The CW
has an average power of 0.1 W and central wavelength
λp =1570 nm. As shown in Fig. 1 (b), during the inter-
action with the soliton, a part of the CW is reflected and
propagates with a different group velocity, corresponding
to a new generated spectral component around 1318 nm,
as can be seen from the output spectrum reported in Fig.
1 (c). The temporal profile of this new spectral compo-
nent shown in Fig. 1 (d) (obtained by filtering-out
the CW pump from the output pulse polarized
along the y-axis) is a square-like pulse of duration Tg.
A small quantity of radiation is also emitted at the very
beginning of the process [see Fig. 1 (b)], which rapidly
goes away and does not play any role.

The numerical simulation clearly indicates that the
soliton does not experience any dynamics, since it is not
perturbed by the collision, nor it is emitting Cherenkov
radiation [18], due to the negligible value of β3 at the
soliton wavelength. Therefore, we can assume that
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FIG. 2. Phase-matching diagram: graphical solution of Eq.
(6). Upper (lower) curve correspond to linear dispersion in
the y-axis (x-axis). Horizontal line correspond to equation
(6). Parameters as in Fig. 1.

Ax(z, t) = F (t)eiqz =
√
P0sech(t/T0)e

iqz in Eq. (1), and
linearize for |g| ≪ |Ax|, to get the following evolution
equation for the y component:

i∂zg +Dy(i∂t)g +
γ

3
(2|F |2g + F 2g∗ei2qz) = 0. (4)

We can write the field g as the sum of the cw pump and
the generated wave:

g = W ei(kpz−ωpt) + u(z, t)ei(kgz−ωgt), (5)

where kg,p = Dy(ωg,p). The generated frequency ωg,
such that kg = Dy(ωg), can be found from the phase-
matching conditions [11–13]:

Dy(ω) = 2q −Dy(ωp), (6)

Dy(ω) = Dy(ωp), (7)

where Dy(ω) = ∆β0+∆β1ω+
∑

n≥2 βny ω
n/n! is the dis-

persion operator (3) in frequency domain. Equation (6)
is the phase-sensitive phase-matching condition, which
describes FWM between the soliton and the CW pump.
Equation (7) is the non phase-sensitive phase-matching
condition describing an XPM process and it does not de-
pend explicitly on soliton parameters. Figure 2 (a) dis-
plays the phase-matching diagram [graphical solution of
Eq. (6)]. The red (upper) curve corresponding to Dy(ω)
shows that a soliton at 1430 nm (at the top of the blue
(lower) curve) and a CW pump at 1570 nm generate a
wave at 1318 nm (at the intersection with the black (hor-
izontal) line). The phase-insensitive process is inefficient
and no spectral component associated to it can be gener-
ated. As we want to study the FWM process, we require
that the perturbation field satisfies the condition (6).
By inserting the Ansatz (5) into Eq. (4), and assuming

that the generated wave is spectrally narrow, so that one
only account for the first order dispersion, we get:

i∂zu+ iD′
g∂tu+

γ

3
(2|F |2u+ F 2W ∗ei∆ωt) = 0, (8)
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FIG. 3. (a) Energy of the generated wave as a function of cw
pump wavelength. Solid blue curve and red dots stand for the-
oretical [Eq. (12)] and numerical results. (b) Red (dashed)
curve: wavelength at which 2ω0 = ωp + ωg (energy conser-
vation), as a function of cw pump wavelength. Blue (solid)
curve: wavelength at which phase-sensitive phase-matching
is satisfied [Eq. (6)], as a function of cw pump wavelength.
Parameters as in Fig. 1.

where we have defined ∆ω = ωg + ωp − 2ω0, and D′
p,g =

∂ωDy(ω)|ωp,ωg
. The forcing term |F |2u in Eq. (8) can

be disregarded if we assume that the generated wave is
small (|u| ≪ |w|):

i∂zu+ iD′
g∂tu+

γ

3
F 2W ∗ei∆ωt = 0. (9)

Equation (9) can be easily solved:

u(τ, z) =
iγ

3

∫ z

0

W ∗F 2(τ, s)ei∆ω(τ+D′

g
s)ds (10)

with τ = t − D′
gz. The integral in Eq. (10) can be

calculated explicitly since we have considered a cw pump
(W =

√

Pp):

u =
iγ
√

PpP0

3D′
g

∫ t

t−D′

g
z

sech2
(

t′

T0

)

ei∆ωt′dt′ ≈

≈ iγ
√

PpP0

3|D′
g|

∫ ∞

−∞

sech2
(

t′

T0

)

ei∆ωt′dt′ =

=
πγ∆ωPsol

√

PpT
2
0

3|D′
g|

sinh−1

(

∆ωT0π

2

)

. (11)

Supposing that the generated wave amplitude stays
constant, the energy of the generated pulse can be ap-
proximated as Eg = |u|2Tg, where the duration Tg is
calculated as Tg = (Lfiber/D

′
g). We get

Eg = Pp

( |β2x|∆ωπ

3

)2

sinh−2

(

∆ωT0π

2

)

Lfiber

D′
g

, (12)

where we have used Psol = |β2x|/(γT 2
0 ).

The maximal generated wave energy is attained when
the condition ∆ω = 0 is satisfied, i.e. when 2ω0 =
ωp + ωg. This states the conservation of energy for the
degenerate FWM process between the soliton, pump and
generated wave. This condition is complemented by the
phase-matching relation Eq. (6), so that the conversion is
maximal when both energy and momentum are conserved

during the scattering process. Figure 3(a) shows an ex-
ample of generated wave energy as a function of pump
wavelength. The maximum is reached around 1570 nm,
where energy and momentum are conserved at the same
time, as shown in Fig. 3(b). Figure 3(a) shows a compar-
ison between numerical simulations and the theory. The
agreement between numerical (red dots) and analytical
result (blue (solid) curve) obtained by using Eq. (12) is
excellent.
The frequency at which the generation is maximal is:

ωg = −
√

2(q −∆β0)

β2x
. (13)

In the case of a quite highly birefringent fiber, ∆β0 ≫ q
and β2x < 0, therefore only solitons polarized along the
fast axis can fulfill both energy and momentum conser-
vation. It is important to note that, as it was shown
in Refs. [19, 20], a soliton polarized along the fast axis
can be unstable if a power threshold is reached. Soliton
dynamics in this regime and its stability were studied in
Refs. [21–24]. In all the cases we consider, the soliton
power is well below the instability threshold.

III. EXPERIMENTS

Figure 4 displays the experimental setup that we have
built to study the conversion efficiency of the FWM pro-
cess. The soliton is excited using gaussian pulses of 250 fs
full width at half maximum (FWHM) duration centered
at 1430 nm delivered from an optical parametric oscilla-
tor (OPO) pumped by a Ti:Sa laser. A variable attenu-
ator made of a half-wave plate and a polarizer is placed
at the OPO exit and allows to finely adjust the input
power. An additional half-wave plate allows to orientate
the incident polarization state on the beam splitter so
that transmission is maximized. To generate the CW
pump, we use a CW laser diode tunable in the range
1540-1600 nm. This radiation is then amplified using an
erbium doped fiber amplifier. A half-wave plate placed
just after sets the polarization state orthogonal to the
one of the first beam. After the two beams are combined
using the beam splitter, a final half-wave plate is used to
align both orthogonally polarized beams to the polariza-
tion axes of the PCF. Care is taken to launch the short
pulse exciting the soliton on the fast axis and the CW
pump on the slow axis. The PCF has a group birefrin-
gence of 1.2 × 10−4 at 1430 nm. At this wavelength, it
exhibits large anomalous group velocity dispersion which
equals β2 = −4.5×10−26 s2/m. The nonlinear coefficient
is γ =5 W−1× km−1.
The input power of gaussian pulses was carefully ad-

justed in order to excite a fundamental soliton. This was
checked from autocorrelation measurements at the fiber
output [see example in Fig. 4(b)], which gave a duration
of T0 = 133 fs for the fundamental soliton. A typical out-
put spectrum in the presence of both the soliton (centered
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FIG. 4. (a) Experimental setup. OPO: optical parametric
oscillator; BS: beam splitter; P: polarizer; λ/2: half-wave
plate; Ampli: amplifier; OSA: optical spectrum analyzer. (b)
Autocorrelation trace of the soliton after propagation in the
3 m-long PCF. (c) Typical output spectrum after amplified
spontaneous emission (ASE) filtering.

at 1430 nm) and the CW pump (located at 1570 nm) is
displayed in Fig. 4(c). In addition to these two spectral
peaks, the wave generated through the phase-sensitive
FWM was observed at 1317 nm, in excellent agreement
with the predictions Eq. (6). Additional measurements
not reported here showed that the generated wave is po-
larized along the slow axis, as predicted by the theory.
As a next step of our study we have verified the va-

lidity of Eq. (12) and measured the energy of the gen-
erated wave, Eg, as a function of the pump wavelength.
In experiments, Eg is measured by directly integrating
the output spectrum. However, only a small fraction of
the pump effectively interacts with the soliton over a fi-
nite fiber length Lfiber . To take this into account, we
introduce a conversion efficiency η as follows [15]:

η = lim
Tp→+∞

|u|2Tg

PpTp

=

(

β2x∆ωπ

3D′
g

)2

sinh−2

(

∆ωπT0

2

)

D′
g

D′
p

, (14)

where Tp = Lf/D
′
p is the duration of the part of the

pump that has effectively interacted with the soliton over
the fiber length Lfiber .

Figure 5, shows the results from Eq. (14), assuming a
soliton duration T0 of 133 fs (blue (solid) curve), together
with the experimental recordings (black dots). There is a
good agreement between the numerical and experimental
data.
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FIG. 5. Comparison between theoretical (blue (solid) curve,
Eq. (14)) and experimentally measured (black dots) conver-
sion efficiency. Soliton duration T0 = 133 fs; other parameters
as in Fig. 1.

IV. CONCLUSIONS

We developed a theory predicting the efficiency of gen-
eration of new frequencies due to the phase-sensitive
FWM process between a soliton and an orthogonally po-
larized CW. Our theoretical predictions have been fully
validated by numerical simulations as well as by the
experimental measurement performed in a birefringent
PCF. This study contributes to a further understanding
of the rich dynamics related to soliton interaction with
pulsed or continuous waves that is expected to occur in
highly nonlinear and complex phenomena such as super-
continuum generation or rogue wave formation.
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