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Abstract: Monitoring crop status at plot scale in agricultural areas is essential for crop and irrigation
management and yield optimization. The Vegetation Optical Depth (VOD) of canopy is directly
related to the canopy water content, and thus, it represents an effective tool for crop health monitoring.
Currently, VOD is provided at low spatial resolution which makes these estimations useless for
vegetation monitoring at plot scale. Therefore, the aim of this study is to provide the first approach to
estimate VOD at plot scale for non-irrigated plots from C-band Sentinel-1 (S1) Synthetic Aperture
Radar (SAR) data. The proposed approach was tested on a study site of 50 km × 50 km located in
Catalonia, Spain. VOD estimates were provided for two crop growth cycles of non-irrigated crop
types (barley, fallow, oat, wheat, and rapeseed). The relevance of VOD estimates was investigated for
both growth cycles using temporal profiles of the Normalized Difference Vegetation Index (NDVI).
It is shown that the temporal dynamics of VOD values computed from VV polarization fits that of
NDVI with a medium to good coefficient of determination (R2 ranging from 0.39 to 0.61 for barley,
fallow, oat, and wheat respectively). However, during the beginning of the senescence period in both
cycles (mainly in May for winter crops), VOD decreases with the decrease in Vegetation Water Content
(VWC) while NDVI keeps increasing as photosynthetic activity continues developing. This illustrates
the importance of VOD in crop water loss (stress and/or transpiration) monitoring. The potential of
VOD to spot water loss in vegetation is also demonstrated as the evening (18h00) VOD values are
lower than those of morning (06h00) due to high daytime temperature that reduces water content in
vegetation. Finally, it is shown that VOD values computed from VH polarization are not correlated
with NDVI.

Keywords: Vegetation optical depth; Sentinel-1; Sentinel-2; Crops

1. Introduction

According to United Nations, the world population will reach 9.7 billion by 2050. As global air
temperature is rising and water scarcity is pushing, maintaining food security for the next generations
is certainly a challenge. Tools and solutions should then be developed to adapt agricultural practices
to future climate and water conditions, which are likely to not be favorable for having enough food
production and to precisely predict the impact of agricultural practices and weather changes on crop
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yield. Currently, several agronomic models have been developed in order predict the yield, based
on several parameters including, but not limited to, weather conditions and agricultural practices.
Such models can predict potential stress and thus can aid decision makers to take actions. For reliable
predictions, the calibration of these models, by ground truth data, is a must. As in-situ sensors are
limited to crop or field scale, remote sensing, on the other hand, is an effective tool in providing
observations on larger scales, with high temporal resolution (6 days of revisit time for Sentinel).
In addition to feeding crop models, remote sensing observations can save yield by early detecting the
presence of crop diseases and thus could assist farmers for better interventions.

Monitoring crop growth and the state of vegetation is needed for better irrigation management
and for optimizing yield. Optical observations at visible and near-infrared wavelengths are commonly
used for crop monitoring and crop parameter estimation [1–5]. However, optical observations from
space cannot ensure continuous crop monitoring since they are useless in the presence of clouds.
Microwave remote sensing at low frequencies is able to operate in all weather conditions and can
complement optical observations by monitoring the temporal change in the Vegetation Water Content
(VWC). Because a large fraction of the crop biomass consists of water, VWC is related to the amount of
fresh biomass and to the vegetation water status.

Several studies have shown that the Vegetation Optical Depth (VOD) derived from microwave data
can be used to monitor crops [6–13]. The optical depth of crops is a measure of how opaque a canopy is
to microwave radiation passing through it and it is directly related to VWC as well as to instrumental
parameters (incidence angle, polarization, and frequency) [6,14–16]. Currently, several VOD products
at low spatial resolution are provided from the C-band ASCAT (Advanced SCATterometer), AMSR-E
& -2 (Advanced Microwave Scanning Radiometer), and from L-band radiometers such as, SMOS (Soil
Moisture and Ocean Salinity) and SMAP (Soil moisture Active and Passive) [6–13,17]. These VOD
products were evaluated by several authors. For instance, Patton et al. [12] and Lawrence [10] found
that changes in SMOS VOD over croplands in the USA are consistent with the crop cycle: VOD increases
during the growing season and decreases during the senescence. Moreover, Lawrence [10] assessed
the relationship between SMOS VOD and crops (wheat hay and corn) optical indices including the
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index
(LAI), and Normalized difference Water Index (NDWI). They found that VOD is correlated with theses
optical indices with a coefficient of determination (R2) of about 0.33. Chapparo et al. [18] assessed
the relationship between SMAP VOD and crops yield (barley, bean, canola, corn, flaxseed, lentils,
oat, pea, sorghum, soybean, and wheat) in north-central USA using principal component regressions.
For the part of the study site dominated by corn and soybean (cover fraction > 95%), the first principal
component (PC1) explained 78% of yield variance, whereas the part of the study site containing wheat
and mixed crops PC1 explained 43% of yield variance. Teubner et al. [13] explored the relationship
between the crop and grassland Gross Primary Production (GPP) and VOD data taken from SMOS,
ASCAT, and AMSR-E. They showed that changes in VOD are generally consistent with changes in
GPP, especially for the C- and X-bands.

Even though VOD data from AMSR-E, SMOS, SMAP, and ASCAT allow crop monitoring, the low
spatial resolution of these products (25-km for SMOS, 9-km for SMAP, 12.5-km for ASCAT) is a
limitation for crop monitoring and irrigation management in agriculture areas. Up to date, there is
no VOD product available at the plot scale. The Sentinel-1A (S-1A) and Sentinel-1B (S-1B) sensors
operating in the C-band have observation capacity allowing us to derive VOD at plot scale as these
instruments provide images with a good revisit time (6 days over Europe) and a high spatial resolution
(10 m × 10 m).

The aim of this study is to present a new approach for cropland VOD mapping at plot scale
from S-1A and S-1B SAR data. The derivation of VOD is based on the use of the Water Cloud Model
(WCM) [19]. The study was conducted over an area of 50 km × 50 km located in Catalonia, Spain,
which contains a large variety of crop types. For this area, plot VOD values were derived from S1A
and S1B SAR data for two crop growth cycles. The first crop growth cycle is between September 2017
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and September 2018 and the second one is between September 2018 and September 2019. The NDVI
derived from Sentinel-2 images corrected for atmospheric effects was used to evaluate the robustness
of the derived VOD values. Section 2 presents the study area and the data used. Section 3 gives an
overview of the methodology. The results are described in Section 4. Section 5 provides a discussion of
the results. Finally, Section 6 presents the main conclusions.

2. Study Area and Database

2.1. Study Area

The study was conducted over an area of 50 km by 50 km (altitude between 200 and 900 m),
located in Catalonia, Spain (centered on 1.195◦E and 41.665◦N, as shown in Figure 1). The climate
is typically Mediterranean: The mean daily air temperature varies between 4 ◦C and 28 ◦C and the
average annual precipitation is around 376 mm (347 mm in 2015, 385 mm in 2016, and 397 mm in
2017) (Figure 2) [20]. The zone of this study contains several crops types, for a total of 87439 plots,
with plot slopes lower than 10%. Plot delineations and crop types were provided by the Geographical
Information System for Agricultural Parcels (http://agricultura.gencat.cat/ca/serveis/cartografia-sig/

aplicatius-tematics-geoinformacio/sigpac/descarregues/). The dominant crops are barley (37817 plots),
wheat (21562 plots), fallow (5781 plots), corn (5156 plots), bean (3604), alfalfa (3244), oat (1730), and
rapeseed (1626). These crops represent 96% of cultivated fields in the study area. The slopes of plots are
lower than 10%. A total of 235 Sentinel-1 (S1) images in ascending and descending modes, as well as 24
Sentinel-2 (S2) images acquired between September 2017 and September 2019, were used in this study.
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Figure 2. Precipitation (mm) and mean temperature (◦C) registered from a weather station in the
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2.2. Database Description

2.2.1. Sentinel-1 Data

In this study, 235 C-band (5.405 Ghz) SAR images acquired by S-1A (launched on 3 April 2014) and
S-1B (launched on 25 April 2016) in both ascending (117 images) and descending (118 images) modes
were used. These images were acquired between September 2017 and September 2019. The acquisition
mode of these images was Interferometric Wide (IW) swath (~250 km × ~150 km) with VV and VH
polarizations. The IW swath is the primary conflict-free acquisition mode used over land. The 235 S1
images are derived from the Level-1 Ground Range Detected (GRD) product with a spatial resolution
of 10 m × 10 m and a revisit time of 6 days. These images were downloaded from the Copernicus
website (https://scihub.copernicus.eu/dhus/#/home, last access September 2019).

The Sentinel-1 toolbox (S1TBX) developed by the European Spatial Agency (ESA) was used to
calibrate the S1 images. This calibration converts the digital number of downloaded SAR images to
backscattering coefficients in linear unit.

2.2.2. Sentinel-2 Images

In this study, 24 cloud-free S2 images acquired between September 2017 and September 2019 were
used (one image each month). The S2 images were obtained from the Theia website at the French
Land Data Center (https://www.theia-land.fr/, last access September 2019). Theia provides S2 images
corrected for atmospheric effects using the method developed by Hagolle et al. [21,22]. The S2 data
were used to generate NDVI images.

3. Methodology

In this study, VOD was computed for two crop growth cycles that occurred between September
2017 and September 2019. VOD computation was based on the use of C-band Sentinel-1 time series
and the Water Cloud Model (WCM) [19]. In the WCM, the total backscattered signal (σ0

tot) is the sum
of vegetation contribution (σ0

veg) and soil contribution (σ0
soil) attenuated by the vegetation canopy

(Equations (1) and (2)). In addition to sensor parameters (SAR wavelength, incidence angle and
polarization), soil contribution is a function of soil moisture and surface roughness. WCM does not

https://scihub.copernicus.eu/dhus/#/home
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consider high order scattering mechanisms like double scattering from ground–stem interactions.
The total backscatter, in the power domain, is expressed as follows:

σ0
tot = σ0

veg + T2σ0
soil (1)

T2 = e−2 VOD
cosθ (2)

where, θ is the SAR incidence angle (in degrees), and T2 is the two-way attenuation.
Using two SAR images acquired at two different dates (t1 and t2) and by supposing that the

vegetation characteristics are constant between these two dates (i.e., ∆σ0
veg,t2−t1 = σ0

veg,t2 − σ
0
veg,t1 = 0),

Equations (1) and (2) can be solved to estimate VOD as:

VOD = −
cosθ

2
ln

 ∆σ0
tot,t2−t1

∆σ0
soil,t2−t1

 (3)

For a given plot, VOD can be analytically computed from Equation (3) if σ0
tot and σ0

soil are known
from the SAR images on dates t1 and t2. However, to compute σ0

soil from radar backscattering models
(e.g., [23–25]), estimates of soil moisture and surface roughness values are needed. These values are
often unavailable or available only for a few plots within the study area. It is worth mentioning that
VOD estimation from WCM (Equation (3)) may be inaccurate in the case of important double-scattering
mechanisms as this mechanism is not considered in Equation (1) as mentioned above.

To estimate VOD over vegetated plots, σ0
tot is computed for a given plot as the average of the SAR

pixel values within that plot. Only plots with NDVI values higher than 0.3 are considered for VOD
computation in order to ensure that VOD will be computed only over plots covered by vegetation.
To compute soil contribution (σ0

soil), we assume that the underlying soil of a given vegetated plot has
the same properties (soil moisture and roughness) as the soil of the bare agricultural plots situated in a
grid of 5 km × 5 km centered at the considered plot. Bare agricultural soils within SAR images can be
spotted using NDVI images calculated from S2 acquisitions. It is assumed that bare soils correspond to
NDVI values lower than 0.3 [26,27]. Thus, σ0

soil for a given plot at a given date corresponds to σ0
soil

averaged over all S1 bare pixels located in the 5 km × 5 km grid at the same date. This assumption is
valid only for non-irrigated plots where the increase and decrease in soil moisture is mainly related to
rainfall and temperature conditions which are assumed to be homogeneous in a grid of 5 km × 5 km.
For this reason, VOD was computed only for non-irrigated crops (winter crops) in the present study.

VOD values were computed separately from SAR data time series in ascending and descending
modes. For each acquisition mode, one VOD value is computed for each set of four consecutive SAR
images. The use of four SAR dates to compute one mean VOD value was considered to decrease
the noise in VOD computation (we assumed that VOD remains stable during 18 days using four S1
SAR images with a revisit time of 6 days over Europe). This assumption is made in many studies
considering VOD retrievals from space-borne observations [28,29].

For each SAR acquisition mode, each combination of two S1 images among the four S1 images
(six combinations) was used to compute one VOD value (Equation (3)). This step can generate six
possible VOD values (VOD1, . . . , VOD6) for each SAR acquisition mode. Negative VOD values
were eliminated, as well as VOD values when both ∆σ0

tot and ∆σ0
soil were lower than 0.5 dB. Indeed,

a variation in σ0
tot and σ0

soil lower than 0.5 dB is assumed not to be significant and could be related to
SAR radiometric noise. As a result, six VOD values from the four images in ascending mode (VOD1A,
. . . , VOD6A) and six VOD values from the four images in descending mode (VOD1D, . . . , VOD6D) can
be obtained at most for each plot. Finally, for each SAR acquisition mode, the mean of the six VOD
values was calculated.

It should be noted that VOD was computed using SAR images in VV and VH polarizations
separately. In the following, VOD-VVA and VOD-VVD will denote VOD values computed from VV
polarization of SAR data in ascending and descending modes, respectively. Similarly, VOD-VHA and
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VOD-VHD will denote VOD values computed from VH polarization of SAR data in ascending and
descending modes, respectively.

To assess the relevance of VOD estimates, the temporal evolution of VOD was analyzed in
comparison to that of NDVI for the two crop growth cycles. Several studies have used vegetation
indices derived from optical images to evaluate the relevance of VOD estimations over crops since
optical indices are well-suited/efficient to monitor the crop development [9,13]. For each polarization
and each SAR overpass mode (Ascending and Descending), VOD values obtained over each crop plot
were separately averaged for each non-irrigated crop type (barely, fallow, oat, rapeseed, and wheat)
and the associated standard deviation (σ) is also calculated. For each crop type, the averaged value of
VOD-VVA, VOD-VVD, VOD-VHA, and VOD-VHD are denoted later as VOD-VVA,av, VOD-VVD,av,
VOD-VHA,av, and VOD-VHD,av, respectively. Similarly, for each crop type, NDVI values of plots were
averaged for the study zone (NDVIav). As a reminder, in this study VOD was computed only for
non-irrigated crops (winter crops).

4. Results

4.1. VOD Computed using SAR Data in VV Polarization

Figure 3 shows that, in general, VOD-VV values (VOD-VVA,av and VODD,av) in both crop growth
cycles have similar temporal dynamics as NDVIav. For the first crop growth cycle (between September
2017 and September 2018), VOD-VV values of barley, fallow, oat, and wheat, at the early growth stage
(before 1 January 2018) are low (about 0.15) and the NDVIav values are lower than 0.2 (Figure 3a–d).
Later, between 1 January 2018 and 1 May 2018, VOD-VV and NDVIav values appear to start increasing
at the same time. VOD-VV values reach a maximum values of about 0.50 while NDVIav reach values
of about 0.8 in the case of barley, oat, and wheat. In the case of fallow, VOD values reach a maximum
of about 0.38 while NDVIav reaches values of about 0.43. Between 1 May 2018 and 1 November 2018,
VODA,av and VODD,av start decreasing to reach a minimum of ~0.15 while NDVIav reaches about
0.2. Similar results were obtained for the second crop growth cycle (between September 2018 and
September 2019) where the temporal dynamics of VOD-VV match well to that of NDVIav. However,
for the second crop cycle of fallow, two VOD-VV peaks were observed. The first VOD-VV peak is on 25
February 2019 and the second one is on 1 May 2019. An analysis of plots fallow NDVI profiles shows
that some plots have high NDVI between December 2018 and February 2019 while the remaining plots
have high NDVI between May 2019 and June 2019.

In contrast to the other crop types, Rapeseed VOD-VV values from 1 January 2018 to 1 May 2018
in both growth cycles are not consistent with NDVI (Figure 3e). VOD values are found to be almost
constant and do not increase with NDVIav during the growing period. For instance, in the first crop
growth cycle, VOD-VV of Rapeseed increases from around 0.15 to 0.20 while NDVIav increases from
0.18 to 0.70.

Moreover, Figure 3 reveals two interesting phenomena observed in both crop growth cycles:

• First, VOD-VVA,av and VOD-VVD,av have very close values except during mainly the periods
from 13 May 2018 to 18 June 2018 and from 1 May 2019 to 1 June 2019. During these periods,
VOD-VVA,av values are lower than those of VOD-VVD,av. For instance, for wheat at around
31 May 2018 (VOD was calculated with S1 images acquired between 13 May 2018 and 31 May
2018), VOD-VVA,av is lower than VODD,av by 0.18.

• Second, in both crop growth cycles, VOD-VVA,av and VOD-VVD,av reached a peak earlier than
NDVI by about 18 days. For instance, for wheat, VOD-VVA,av peaks on 25 April 2018 (VOD
calculated with S1 images acquired between 7 April 2018 and 25 April 2018) while the NDVIav

peaks on 15 May 2018, about 3 weeks later.
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computed (Figure 4). For barley, fallow, oat, and wheat, medium to good correlations were obtained 

Figure 3. Temporal patterns of VOD values computed at VV polarization (VOD-VVA,av and
VOD-VVD,av) and NDVIav. (a) Barley, (b) Fallow, (c) Oat, (d) Wheat, (e) Rapeseed. The shaded region
represents the mean ± standard deviation of VOD values for all plots at a given date.

To better analyze the temporal correlation between the retrieved VOD and NDVI values for both
growth cycles, the coefficient of determination between VOD-VV values and NDVIav was computed
(Figure 4). For barley, fallow, oat, and wheat, medium to good correlations were obtained (R2 values
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about 0.58, 0.39, 0.46, and 0.61, respectively) (Figure 4a–d). For rapeseed, a poor correlation was
obtained (R2 about 0.18).
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and NDVIav is about 0.45 for barely, 0.20 for fallow, 0.26 for oats, 0.40 for wheat, and 0.01 for 
rapeseed (Figure 6).  
  

Figure 4. VOD values computed at VV polarization (VOD-VVA,av and VOD-VVD,av) as a function of
NDVIav values. (a) Barley, (b) Fallow, (c) Oat, (d) Wheat, (e) Rapeseed.

4.2. VOD Computed using SAR Data in VH Polarization

In this section, the time variations of VOD-VH values (VOD-VHA,av, and VOD-VHD,av) obtained
for the VH polarization are compared to that of NDVIav. Figure 5 shows that the temporal dynamic
of VOD-VH in both crop growth cycles does not match that of NDVIav. During the growing period,
VOD-VH values increase slightly (by about 0.10) while NDVIav presents a sharp increase before
reaching its peak value. For instance, VOD-VHA,av for wheat increases from 0.16 to 0.27 while NDVIav

increases from 0.2 to 0.8 (Figure 6d). Finally, the coefficient of determination (R2) between VOD-VH
and NDVIav is about 0.45 for barely, 0.20 for fallow, 0.26 for oats, 0.40 for wheat, and 0.01 for rapeseed
(Figure 6).
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Figure 6. VOD values computed from VH polarization (VOD-VHA,av and VOD-VHD,av) as a function
of NDVIav values. (a) Barley, (b) Fallow, (c) Oat, (d) Wheat, (e) Rapeseed.

4.3. Can Vegetation Water Status Maps be Produced using VOD?

The method developed in this study for VOD mapping at plot scale has the potential to become
operational since it only uses free and open access S2 and S1 data. VOD maps at plot scale were
computed for barley, fallow, oat, and wheat plots located in our study zone, but rapeseed plots were
excluded in this mapping process. Each VOD map was obtained using four SAR images (18 days),
and the attributed date to each VOD map was that of the last used SAR image, as explained in the
method section.

Figure 7 shows four VOD-VV maps with assigned dates 12 February 2018, 2 March 2018, 7 April
2018, 25 April 2018, and 13 May 2018 (Figure 7a–e). Figure 7 also shows NDVI maps for dates close
to those assigned to VOD maps (Figure 7f–j). For most plots, VOD values are lower than 0.3 on 12
February 2018 and 2 March 2018 (Figure 7a,b). On 7 April 2018 (Figure 7c), we can observe a spatial
heterogeneity in VOD values. The study area appears to be divided into two zones of VOD values.
The first zone at the East (delineated by a black polygon) is dominated by VOD values mostly lower
than 0.3, while the other zone at the West (delineated by a red polygon) is dominated by higher VOD
values (mostly between 0.3 and 0.5). This spatial heterogeneity is more pronounced on 25 April 2018
(Figure 7d) where many plots have high VOD values between 0.5 and 0.8 (mainly plots displayed in
orange and red color codes), while small areas in the eastern part of the study area present low to
medium VOD values (mainly plots situated in the black dashed ellipsoid). In the VOD map on 13 May
2018, most of the plots with high VOD values on 25 April 2018 present a decrease in VOD to attain
low to medium VOD values whereas the majority of the plots with low to medium VOD values on
25 April 2018 present larger VOD values on 13 May 2018 (Figure 7d,e). One possible explanation is
that crops with high VOD values on 25 April 2018 were sown before those with low VOD values and
have reached a more advanced stage in the growth cycle.
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dimension of 15 km × 15 km around Montpellier region of France, were analyzed. Within this area, 
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NDVI for the dates of 10/02/2018 (f,g), 30/03/2018 (h), 26/04/2018 (i), and 15/05/2018 (j). Coordinates are
in UTM (Universal Transverse Mercator) ZONE 31 North.

Finally, results show that between 12 February 2018 and 25 April 2018 VOD-VV values tend to
increase together with NDVI. However, VOD-VV (Ascending, 18h00) starts to decrease on 13 May
2018 while NDVI values remain high (Figure 7e,j). This was expected since VOD peaked earlier than
NDVI (Figure 3).

5. Discussion

5.1. Impact of Our Assumption of Spatial Homogeneity of Soil Moisture and Roughness on VOD Calculation

5.1.1. Impact of Soil Moisture Spatial Homogeneity

In this study, it is assumed that the surface soil moisture (SSM) for vegetated plots is similar to
the averaged SSM of all bare soils in the surrounding 5 km × 5 km. However, in some places the
SSM is not homogeneous in a pixel of 5 km × 5 km due to many factors related, and not limited to,
meteorological context and soil texture. In-situ SSM measurements performed between 2016 and
2018 over non-irrigated plots (mainly non-irrigated wheat and grassland), located in a flat area with
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dimension of 15 km × 15 km around Montpellier region of France, were analyzed. Within this area, the
SSM values of plots with vegetation cover were close to the averaged SSM values of all bare plots in
the 15 km × 15 km area. The histogram displayed in Figure 8 (established using 165 samples) shows
the distribution of the difference between the SSM of each vegetated plot (Height > 15 cm) and the
averaged SSM of all bare plots (vegetation height < 15 cm). The mean of the difference distribution is
about 1.1 vol.% with a standard deviation (std) of 3.0 vol.%. This result signifies that the SSM values of
non-irrigated plots (bare or with vegetation cover) were homogeneous (up to a certain limit) within
the area of 15 km × 15 km. However, even though most in-situ SSM points show a high consistency
between the SSM measured on plots with vegetation cover and the average SSM calculated using all
the SSM measurements made on the bare soil plots in an area of 15 km × 15 km, Figure 8 also shows
that for a small part of the data, the SSM of plots with vegetation are 5 vol.% higher than the SSM of
the bare soils.
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Furthermore, a sensitivity analysis was performed to assess the impact of 5 vol.% SSM
underestimation for vegetated soil on VOD estimation from Equation (3). Indeed, we assume
in our method that the SSM of vegetated plots is similar to that of bare soils whereas in fact the SSM of
vegetated plots could be in some cases higher than the SSM of bare soils (about 5 vol.% as shown in
Figure 8). First, the impact of the error on the SAR backscattering coefficients σ0

tot and σ0
soil due to an 5

vol.% underestimation for the SSM of vegetated plots is quantified. Then, the impact of the errors on
σ0

tot and σ0
soil on VOD estimation was investigated through sensitivity analysis of Equation (3).

A synthetic database of σ0
soil and of σ0

tot was generated using the calibrated IEM combined with the
Water Cloud Model [23,30] for SSM values between 10 and 30 vol.% (step of 5 vol.%), NDVI between
0.4 and 0.8, soil roughness defined by the root mean surface height “Hrms” fixed to 1.5 cm, and SAR
incidence angle “θ” was fixed to 35◦ (S1 incidence angle). From each reference element of the synthetic
database (composed of θ, Hrms, SSM and NDVI), 1000 elements containing SSM values noisy with a
Gaussian noise with a mean of 5 vol.% and std of 5 vol.% were generated. Using the calibrated Integral
Equation Model and the Water Cloud Model, σ0

soil and σ0
tot were computed for each reference element

(reference σ0
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tot) and for the corresponding 1000 noisy elements (noisy σ0
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tot on VOD values computed from Equation (3). For each possible couple of reference elements
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(σ0
soil and σ0

tot) and their associated noisy elements, reference VOD and noisy VOD were computed.
Then, the reference VOD values (without error on SSM) and noisy VOD values were compared
(Figure 9). Results show that an underestimation of the vegetated plots SSM of 5 vol.% leads to a
slight underestimation of VOD of 0.02 (with an RMSE of 0.04). In addition, the impact of 5 vol.% SSM
underestimation on VOD estimations was analyzed according to the NDVI for values between 0.4 and
0.8 (Figure 10). The underestimation of VOD as well as the RMSE increases when the NDVI increases.
The underestimation on VOD increases from 0.010 for NDVI = 0.4 to 0.035 for NDVI=0.8. Similarly,
the RMSE increases from 0.02 for NDVI=0.4 to 0.06 for NDVI=0.8. Accordingly, the assumption about
the equivalence between σ0

soil of vegetated plots and that of bare plots in the surrounding 5 km × 5km
considered in order to solve the Equation (3) would not considerably impact VOD estimation.
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5.1.2. Impact of Soil Roughness Spatial Homogeneity

A wide in-situ surface soil roughness dataset (defined by the root mean square surface height
Hrms), collected over several agricultural study sites [24,30], was used to analyze the distribution
of Hrms values in agricultural areas (around 500 samples). Measurements of soil roughness were
carried out using a needle profilometer 1 m in length with 2 cm sampling intervals. Ten roughness
profiles were established in each plot. From these profiles, two surface roughness parameters were then
calculated: the average root mean square surface height (Hrms), which specifies the vertical scale of the
roughness, and the correlation length (L), representing the horizontal scale. In general, the Hrms-values
of cultivated winter crops (wheat, barley, oat, rapeseed . . . ) are between 1 and 1.5 cm, whereas they
fall between 1 and 3 cm for 90% of the measurements carried out on agricultural bare plots (Figure 11).
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In the present study, it was assumed that the Hrms for all agricultural plots located within an area
of 5 km × 5 km is similar. However, in some places the Hrms values are not homogeneous in an area
of 5 km × 5 km because some plots are plowed (in general, higher Hrms) and others are cultivated
(in general, lower Hrms). Thus, in some cases, the Hrms of plots with vegetation cover may be lower
than the averaged Hrms over an area of 5 km × 5 km.

An analysis on the impact of this overestimation of Hrms on the calculation of VOD was carried
out by using the calibrated Integral Equation Model combined with the Water Cloud Model [23,30].
The C-band radar signal was simulated as a function of Hrms for a θ of 35◦ (S1 incidence angle) and a
SSM of 20 vol.% (Figure 12). Results show that an overestimation of Hrms by about 1 cm on average
for the plots with vegetation cover (assuming that Hrms of plots with vegetation = average Hrms of
bare soils) would lead to an overestimation of the soil contribution of 1 dB maximum (Figure 12).Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 23 
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Figure 12. Behavior of radar signal according to Hrms using C-band, θ of 35◦, SSM of 20 vol.% and VV
polarization. The calibrated Integral Equation Model was used for these simulations.

The impact of a 1 cm Hrms overestimation of vegetated plots on VOD estimates was investigated
through a sensitivity analysis of Equation (3). As done for analyzing the impact of SSM errors on VOD
estimation, a synthetic database of σ0

soil and of σ0
tot was computed using the calibrated IEM combined
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with the Water Cloud Model [23,30] for Hrms values between 1 and 3.5 cm (step of 0.1 cm), NDVI
between 0.4 and 0.8, SSM fixed to 20 vol.%, and θ was fixed to 35◦. From each reference element of the
synthetic database composed of θ, Hrms, SSM, and NDVI, 1000 elements containing Hrms-values noisy
with a Gaussian noise of 1 cm mean and 1 cm standard deviation were generated.

Figure 13 shows the reference VOD values (without bias on Hrms) and noisy VOD values (1 cm
Hrms overestimation). Results show that a 1 cm Hrms overestimation leads to a slight overestimation
of VOD of 0.03 (with an RMSE of 0.04). In addition, the impact of 1 cm Hrms overestimation on VOD
estimation was analyzed according to the NDVI for values between 0.4 and 0.8. The overestimation of
VOD as well as the RMSE increase as the NDVI increases (Figure 14). The overestimation on VOD
increases from 0.02 for NDVI = 0.4 to 0.05 for NDVI = 0.8. Similarly, the RMSE increases from 0.02 for
NDVI = 0.4 to 0.05 for NDVI = 0.8. Accordingly, the assumption about the equivalence between σ0

soil
of vegetated plots and that of bare plots in the surrounding 5 km × 5 km considered in order to solve
Equation (3) would not considerably impact VOD estimation.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 23 
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5.2. Complementarity of NDVI and VOD in Vegetation Monitoring

At VV polarization, results show that VOD values obtained from the SAR data in ascending and
descending mode fit the temporal dynamics of NDVI (R2 varies from 0.39 to 0.61 for barley, fallow,
oat, and wheat) (Figures 3 and 4). However, these VOD-VV values peak earlier than the NDVI by
about 18 days (Figure 3). A possible explanation is that during the beginning of the senescence period
(mainly in May for winter crop), the canopy begins to lose water content while photosynthetic activity
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has not yet decreased; so that VOD, which is sensitive to the vegetation water content (VWC), begins to
decrease while NDVI, which is sensitive to the vegetation photosynthetic activity, continues increasing
or remains stable [31,32]. Another possible explanation is that during the growing season the NDVI
saturates earlier than VOD (namely, the peak in the vegetation photosynthetic activity cannot be well
identified with the NDVI index) and thus the NDVI will decrease later than VOD. The value of 18
days, which represents the difference between NDVI peak date and VOD peak date, may be inaccurate
since NDVI data are sometimes missing and the temporal resolution of computed VOD is 18 days.
However, according to temporal profiles of NDVI and VOD in both growth cycles, this difference
cannot be shorter than 18 days. On the other hand, Jones et al. [33] showed that NDVI reached a peak
earlier than VOD computed from ARMS-E. Similarly, Lawrence et al. [10] showed that VOD computed
from SMOS (L-band) peaked later than MODIS LAI values, with an estimated time difference of about
19 days. Such inconstancy may be related to the SAR technology and the used frequency. In this study,
SAR C-band (5.4 GHz) data were used, whereas in the studies of Jones et al. [33] and Lawrence et
al. [10] data used were provided from radiometers at 18.7 GHz and 1.4 GHz, respectively.

Moreover, the use of the SAR data in both ascending and descending modes provides approximately
the same VOD values, except for the periods from 13 May 2018 to 18 June 2018 and from 1 May 2019 to
1 June 2019 (Figure 3). During these periods, it is observed that VOD computed from ascending SAR
images acquired at the end of the day (~18h00 UTC) is lower than VOD computed from descending
SAR images acquired in the morning (~06h00 UTC). This observation may be explained by the fact
that VWC is much lower at 18 h than at 6 h due to canopy water loss (stress and/or transpiration)
which increases during the day, especially in the presence of high temperatures [7,34]. Indeed, Figure 2
shows that between 3 May 2018 and 18 June 2018, the daily average temperature increased to a ~25 ◦C
(daily maximum temperature varied between 24 ◦C and 33 ◦C). This may indicate that VOD-VV
derived from S1 has the potential to monitor plants water status at the plot scale. This is consistent
with results obtained at a large scale over the USA by Schroeder et al. [35].

At VH polarization, VOD computed separately from S1 images in ascending and descending
mode are weakly correlated to NDVI (R2 varies between 0.1 and 0.5 for barley, fallow, oat, and wheat)
(Figures 5 and 6). The VH signal results from the incident wave depolarization caused principally by
volume scattering, namely multiple interactions between SAR microwave radiations and vegetation
elements [36,37]. Thus, VH observations are more sensitive to the vegetation structure than the
vegetation water content [38,39]. Moreover, multiple scattering mechanisms are not taken into account
in the simple WCM model formulation. The used WCM describes soil surface scattering attenuated by
vegetation canopy, an attenuation parameterized by the vegetation water content.

Finally, in contrast to NDVI, VOD is an all-weather parameter. This property (all-weather
parameter) is particularly useful in rainy spring situations. For example, the description of the rainy
spring episode of the year 2016 in the Paris region by Ben-Ari et al. [40] was not possible with NDVI
and LAI indices because of clouds.

5.3. Possible Limitations of WCM Modelling?

In this study, it is shown that VOD retrievals for rapeseed are probably not logical (not correlated
to NDVI). Yang et al. [24] reported that an important double bounce scattering mechanism may occur
over a well-developed rapeseed crop after a heavy rainfall. The double bounce scattering could be
due to soil moisture increase in the underlying soil and to the presence of water standing in the
canopy. The observations of Yang et at. [24] fit particularly well with our case study since between
24 March 2018 and 12 May 2018 and between 1 March 2019 and 1 June 2019, when the rapeseed was
well-developed (NDVI between 0.6 and 0.7), frequent rainfall events occurred (Figure 2). Thus, the
inaccurate VOD estimation obtained over our study area may be related to the double scattering
mechanism which is not considered in the WCM modelling.

In our method we assume that there is no difference in the vegetation contribution to total
backscatter between two images up to 18 days apart. However, substantial fresh biomass and structural
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changes can occur within 18 days, particularly during the vegetative stages [41,42]. The choice of 18
days is the compromise to have enough images (four S1 images), to robustly estimate VOD while
assuming that the vegetation has changed a little. In some cases, this assumption may not be valid.
As a reminder, currently, VOD is calculated using only low spatial resolution data but with a revisit
time of about 1 day (SMOS, SMAP, and ASCAT). The 1-day revisit time allows combining several data
to estimate VOD once a year or once a month.

It is worth mentioning that for the regions in the world where the revisit time of S1 is 12 days
(region outside Europe), VOD computed using the present method may be useless for crop monitoring.
In the case of 12 days revisit time, the use of four images (as in the present method) will lead to one
VOD value each 36 days, which is longer than one crop growth stage’s period, and thus the assumption
about vegetation condition stability considered in order to resolve Equation (3) will be no longer valid.
Finally, the approach developed in this study is not applicable for irrigated plots.

6. Conclusions

In this study, an approach for Vegetation Optical Depth (VOD) mapping at plot scale has
been proposed. This approach is based on retrievals from times series of Sentinel-1 (S1) images
using the Water Cloud Model (WCM). The approach developed here is valid only for non-irrigated
areas. The NDVI derived from Sentinel-2 images was used to evaluate the relevance of our VOD
estimations. VOD values were computed separately at VV and VH polarizations and from ascending
and descending modes.

For VOD computed at VV polarization, results show that the temporal dynamic of the estimated
VOD fits generally well with the temporal dynamics of NDVI. In general, a medium to good correlation
between VOD and NDVI temporal dynamics was obtained (R2 about 0.58, 0.39, 0.46, and 0.61 for
barley, fallow, oat, and wheat, respectively). However, during the beginning of the senescence period
(from 25/04/2018 to 15/05/2018 and from 20/04/2019 to 10/05/2019), VOD and NDVI values became
uncorrelated. VOD started decreasing on 25/04/2018 in the first crop growth cycle and on 20/04/2019
in the second crop cycle due to a decrease in the canopy water content while NDVI continued
increasing due to the increase in the vegetation photosynthetic activity. Moreover, results showed
that in the presence of a high temperature over a well-developed canopy (NDVI reaching its peak
value), VOD values computed from the SAR images acquired at ~18h (Ascending mode) were lower
than those computed from the SAR images acquired at ~6h (Descending mode). This observation was
attributed to changes in the canopy water status which leads to a decrease in VWC during the hot
afternoon. Finally, our results showed that the temporal dynamics of VOD values computed from VH
polarization do not perfectly match that of NDVI (R2 lower than 0.4 for barley, fallow, oat, and wheat).
It is likely due to the multiple-scattering mechanisms present in VH polarization and which is not
considered in WCM formulation. In future, other more complex modelling approaches will be used to
better account for these volume scattering effects.

The developed approach should be applied to other agricultural areas with more crop types to
better assess its relevance. Moreover, in a context of operational crop monitoring, future work will
focus on improving the approach developed in this study to map VOD over irrigated agricultural
areas. Finally, to well assess the relevance of VOD computation, estimated VOD values should be
compared to in-situ measurements of VWC [43].
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