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A B S T R A C T

This paper presents the forward modelling aspects of the SMOS (Soil Moisture and Ocean Salinity) activities at
ECMWF (European Centre for Medium-Range Weather Forecasts). Several parameterizations of the Community
Microwave Emission Modelling Platform (CMEM) are used to simulate L-band Brightness Temperatures (TBs)
and compared to the SMOS TBs for 2010–2011. We show that simulated TBs are primarily sensitive, by order of
importance, to the soil roughness model, the vegetation opacity and the soil dielectric model. In particular, best
CMEM results are obtained with the simple Wigneron soil roughness model and the Wigneron model for the
vegetation opacity. For the soil dielectric model, performances of the Wang and Schmugge and the Mironov
models are shown to be similar and better than the Dobson model. The Wang and Schmugge model is then used
in the next steps of this paper combined with the Wigneron roughness and vegetation models. The paper de-
scribes a multi-angular multi-polarised bias correction method based on a linear rescaling (mean and variance)
computed at the monthly scale using SMOS observations and ECMWF-CMEM re-analysed TBs for a four year
period (2010–2013). Results show that for 2010–2013 the seasonal multi-angular multi-polarisation bias cor-
rection approach reduces global RMSE to 7.91 K, compared to 16.7 K before bias correction, whereas the mean
absolute bias is reduced to 1.39 K, compared to 11.04 K before bias correction. The consistency between the
seasonality of simulated and the observed TBs is also improved by using a monthly bias correction, leading to
correlation values improvement to 0.62 after bias correction compared to 0.56 before. The 2010–2013 bias
correction applied to the 2014–2016 period at 40° incidence reduces the global RMSE from 15.56 K to 8.19 K,
and the mean absolute bias from 10.16 K to 2.51 K, with no impact on the correlation values that remain at 0.61
in both cases. Long term monitoring of SMOS TB is presented covering a 7-year period (2010–2016) at both
polarisations, at 40° incidence angle. Results show that the consistency between SMOS and ECMWF reanalysis-
based TBs progressively improved between 2010 and 2016, pointing out improvements of level 1 SMOS TB
products quality through the SMOS lifetime.

1. Introduction

Soil moisture is an important variable of the Earth System and it
largely controls the water and energy budgets and the land-atmosphere
interface (Taylor et al., 2012; Koster et al., 2004; Trenberth et al.,
2007). Initial state of soil moisture influences weather prediction at the
medium range (de Rosnay et al., 2013; Drusch, 2007) and at seasonal
range (Koster et al., 2011). It is also of crucial importance for agri-
cultural drought monitoring (Kumar et al., 2014) and flood forecasts

(Wanders et al., 2014; Alfieri et al., 2013).
At continental and global scale land surface models (Balsamo et al.,

2015; Reichle et al., 2011; Dirmeyer et al., 2006) and satellite sensors
(Mecklenburg et al., 2016; Wagner et al., 2013; Entekhabi et al., 2010;
Kerr et al., 2010b) provide reliable estimates of soil moisture. The
Advanced Scatterometer (ASCAT) sensors on board the Metop satellite
series have been providing active microwave C-Band (5.255 GHz) data
since 2006. ASCAT surface soil moisture estimates are produced oper-
ationally, at resolutions of 50 km and 25 km, by EUMETSAT and made
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available for Numerical Weather Prediction (NWP) Centres. Passive
microwave at L-band (1.4 GHz) are highly sensitive to surface soil
moisture and are used for soil moisture dedicated missions. It was first
demonstrated with the Skylab mission which provided nine overpasses
of L-band observations, at a resolution of 110 km, from 1973 to 1977
(Eagleman and Lin, 1976). The European Space Agency (ESA) Soil
Moisture and Ocean Salinity (SMOS) mission was launched in 2009.
SMOS was specifically designed for soil moisture measurements from
space. Its concept relies on measurements of multi-angular fully po-
larised passive microwave emission of the Earth at L-band (1.4 GHz).
SMOS Brightness Temperature (TB) observations have a resolution of
about 40 km. These observations have been available in Near Real Time
(NRT) since 2010. In 2016 a NRT level2 soil moisture product was
developed based on a neural network soil moisture retrieval approach
(Muñoz-Sabater et al., 2016; Rodríguez-Fernández et al., 2016, 2017).
The NRT soil moisture product as well as the SMOS-IC product
(Fernandez-Moran et al., 2017) are of great interest for operational
hydrology applications in particular. Following SMOS, the National
Aeronautics and Space Administration (NASA) Soil Moisture Active
Passive (SMAP) mission (Entekhabi et al., 2010), was launched in
January 2015. SMAP uses a rotating antenna, which takes measure-
ments at a single incidence angle. The concept of SMAP is based on the
combination of active and passive observations to produce high re-
solution (9 km) soil moisture estimates from Space. After the active
sensor of SMAP failed in July 2015, it was decided the Sentinel-1 radar
observations at C-band will be used for the active component of the
SMAP mission (Das et al., 2018).

Several operational centres started to investigate the assimilation of
L-band passive microwave observations from SMOS and SMAP in NWP
systems, using either TB data, at ECMWF and Environnement and
Climate Change Canada (ECCC), or using retrieved soil moisture pro-
ducts, e.g. at National Oceanic and Atmospheric Administration
(NOAA) (Muñoz-Sabater et al., 2018, 2019; Carrera et al., 2017, 2015;
Zhan et al., 2016). Furthermore, several studies were conducted to
assimilate SMOS or SMAP TBs data in land surface models for soil
moisture retrieval and/or processes studies (De Lannoy et al., 2013; De
Lannoy and Reichle, 2015, 2016; Lievens et al., 2015). Using TBs data
requires the use of a forward operator to simulate the TBs as seen from
space. Different radiative transfer models are used in the community,
which all rely on so-called tau-omega parameterisations such as those
used in the SMOS and SMAP soil moisture retrieval (Kerr et al., 2010a;
Reichle et al., 2016), or in the ECCC and ECMWF systems. The latter
two systems use the Community Microwave Emission Modelling plat-
form (CMEM) that was developed by ECMWF to simulate brightness
temperatures at low frequency and based on state-of-the-art para-
meterisations (Holmes et al., 2008; de Rosnay et al., 2009a, b; Drusch
et al., 2009; Muñoz-Sabater et al., 2011b; Albergel et al., 2012). At
ECMWF the SMOS data is implemented in the Integrated Forecasting
System (IFS) and used for SMOS monitoring (Muñoz-Sabater et al.,
2011b). Drusch et al. (2009) conducted a first evaluation of the ECMWF
forward simulation of L-band TBs against the historic Skylab observa-
tions (S-194 radiometer). Their study was preliminary; limited by the
number of observations and the coarse resolutions of the observations
and the ERA-40 reanalysis. However it allowed to show that the choice
of parameterisations used in CMEM to account for vegetation opacity or
soil roughness has a strong influence on the simulated TB. The authors
showed that the simple parameterisation of Kirdyashev et al. (1979) for
the vegetation opacity model provided TB in best agreement with the
Skylab observations. de Rosnay et al. (2009a) used the Advanced Mi-
crowave Scanning Radiometer - Earth Observing System (AMSR-E) C-
band TB observations over West Africa to evaluate CMEM for different
combinations corresponding to 12 configurations of the soil dielectric
model, soil roughness model and vegetation opacity model. More re-
cently the capacity of the Variable Infiltration Capacity model coupled
to CMEM was evaluated against SMOS L-Band observations over the
upper Mississippi basin for 2010–2011 (Lievens et al., 2015).

This paper further investigates passive microwave forward model-
ling to use SMOS data for global NWP applications at ECMWF.
Introducing a new observation type, such as SMOS measurements in
this case, in a NWP system requires a number of technical and scientific
developments. We first discuss the development and configuration of
the CMEM observation operator, which is used to simulate measure-
ments based on model output parameters. In this case, CMEM is applied
to generate L-band TBs from a range of model fields, including soil
temperature, soil moisture, vegetation type and properties. Some stu-
dies rely on calibration of the forward model parameters, as described
for example by De Lannoy et al. (2013); De Lannoy and Reichle (2015).
The approach used at ECMWF for SMOS is based on a bias correction
that aims to minimise systematic differences between the simulated
first guess TBs and the corresponding measurements. It relies on a linear
rescaling approach as also used at ECCC (Carrera et al., 2015, 2017),
but it accounts for combined multi-angular and seasonal corrections.
The bias correction, which is used for data assimilation studies as
presented in Muñoz-Sabater et al. (2018, 2019), is fully described in
this paper and results are presented for sub-periods used to compute the
parameters and for later years using independent observations. Finally,
this paper presents long term SMOS TB monitoring results, based on
ECMWF reanalysis-based forward brightness temperature, i.e. the si-
mulated values and the measurements are compared over an extended
multi-year period of time, to identify anomalies and trends in the data.

Section 2 presents the data and methods used in this paper. It de-
scribes the SMOS data, the ECMWF IFS and the CMEM forward op-
erator. It also presents the microwave models inter-comparison
methods and the multi-angular seasonal bias correction approach that
was developed for SMOS. Section 3 presents results. It includes dis-
cussions on the results of the microwave models inter comparison re-
sults, the bias correction results and the 7-year SMOS monitoring sta-
tistics against the ERA-Interim based forward TB from ECMWF. Section
4 concludes.

2. Data and methods

2.1. SMOS brightness temperature observations

SMOS is a soil moisture remote sensing satellite mission (Kerr et al.,
2010b, 2012; Mecklenburg et al., 2016). It provides 2D-interferometric
measurements of multi-angular and full polarisation TBs at L-band
(1.4 GHz) with a spatial resolution of 35 km to 50 km. At ECMWF the
full operational Near Real Time (NRT) level 1 TB product of SMOS is
used. It is available within 3 h of sensing, which is suitable for opera-
tional NWP applications. For this study we used the consistent re-
processed and operational level1 TB products from the SMOS processor
v5.05 from January 2010 to March 2012 and from April 2012 to April
2015, respectively. Note that v5.05 is the latest reprocessed version
available of the full NRT TB product. Therefore, from May 2015 to
December 2016 the operational SMOS NRT TB from the processor
version 6.20 was used.

TB data at X and Y polarisations at the antenna reference frame are
used in this study. Observations at incidence angles of 30°, 40° and 50°
were pre-processed by applying a noise filtering using a 2° binning
angle, as described in Muñoz-Sabater et al. (2014). Quality control
based on the NRT v5.05 product flag information was applied to ensure
that only the Alias Free Field of View data is used for this study. We also
discarded observations which are flagged to be affected by Radio Fre-
quency Interferences (RFI), as well as observations with unrealistic TB
values lower than 150 K or larger than 330 K. SMOS observations are
discarded for pixels with fraction of water bodies larger than 5% or
with radiometric accuracy exceeding 4 K.

The SMOS TB observations were interpolated, using a bi-linear in-
terpolation approach, to the ECMWF reduced Gaussian model grid at
80 km resolution for the inter comparison study, and at 40 km for the
bias correction and for the SMOS long term monitoring and comparison
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with ERA-Interim based TBs for 2010–2016 (see Sections 2.4 for the
experiments description).

2.2. ECMWF land surface model

H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges
over Land) is the land surface model used in the ECMWF IFS (Balsamo
et al., 2015, 2009; van den Hurk et al., 2000; Viterbo and Beljaars, 1995).
It is a point-wise land surface model, which represents the vertical soil
water movements on each model grid-point by solving the Richard's
equation (Richards, 1931) over four soil layers of 7 cm, 21 cm, 72 cm and
1.89 m thickness from top to bottom of the root zone. The surface runoff
is based on the variable infiltration capacity (Balsamo et al., 2009). The
soil texture is accounted for using the Food and Agriculture Organisation
(FAO) Digital Soil Map of the World (DSMW) (FAO, 2003). H-TESSEL
land use classification follows the Global Land Cover Characteristics
(GLCC) data (Loveland et al., 2000), with assigned dominant high and
low vegetation types. Land cover heterogeneities are represented using a
tile approach that allows to account to a maximum of seven tiles per
model grid point: bare soil, two tiles of vegetation (low and high), in-
terception, two tiles for snow (exposed and shaded snow) and a lake tile
as described in Dutra et al. (2010). The vegetation annual cycle is ac-
counted for using a monthly Leaf Area Index climatology (Boussetta
et al., 2013). Maps of lake fraction are derived at each model resolution
using the GLOBCOVER land sea mask (http://due.esrin.esa.int/page_
globcover.php) and a flood-filling algorithm (Documentation, 2018).

H-TESSEL is fully coupled to the atmosphere for NWP applications.
It has also been used in stand-alone mode, forced by global reanalysis
ERA-Interim atmospheric conditions available from 1979 (Dee et al.,
2011) at a resolution of 80 km. The H-TESSEL soil moisture was eval-
uated against in situ soil moisture measurements by Albergel et al.
(2013), showing good performance of the land surface model forced by
ERA-Interim to capture soil moisture variabilities at time scales ranging
from daily scale to seasonal and inter-annual scales.

In this paper, we use a global land-reanalysis produced by forcing H-
TESSEL, cycle 41R1, by ERA-Interim atmospheric conditions. Using the
offline land surface model may lead to some slight differences with the
operational system used for data assimilation. However, it is necessary
to use a consistent and recent version of the model through the SMOS
lifetime rather than the operational system which relies on various
versions of the system that included several resolution changes. Data
assimilation results from Muñoz-Sabater et al. (2019) showed that bias
correction parameters derived from this offline approach are reliable to
use in the IFS. H-TESSEL simulations are conducted at a resolution of
40 km, which is the reduced Gaussian grid closest to the SMOS spatial
resolution, for the period from 2010 to 2016, providing input land
surface conditions, including soil moisture and temperature at different
model depths, air temperature, and vegetation characteristics to CMEM.

2.3. The Community Microwave Emission Modelling Platform

CMEM is the forward operator used at ECMWF for low frequency
passive microwave TB observations monitoring and data assimilation
(de Rosnay et al., 2009a; Drusch et al., 2009; Holmes et al., 2008). It is a
community model, developed and maintained by ECMWF. In this
paper, the latest release of CMEM (v5.1) is described and the results
presented in section 3.1 define the default configuration of this CMEM
release that has been used for operational monitoring and research
developments of SMOS TB data assimilation (Muñoz-Sabater et al.,
2019). CMEM is an open source code, freely available to the scientific
community from ECMWF, with an Apache licence. It has been used by a
number of research and operational centres as forward model for low
frequency passive microwave applications (Muñoz-Sabater et al., 2018;
Carrera et al., 2015; Lievens et al., 2015).

For each model grid point, CMEM computes the Top-of-Atmosphere
(TOA) TB TBtoa p, , for each polarisation p (h or v for horizontal or

vertical, respectively), and for each incidence angle θ. It is expressed as
the sum of the ascending atmospheric emission (TBau p, ) and the
weighted sum of the T i( )Btov p, , the TB computed at the top the vegetation
for each individual land surface model tile ( =i 1 to 7, see section 2.2
above):

= +
=

T T exp f i T i( ) ( ) ( )Btoa p Bau p atm p
i

Btov p, , , , , ,
1

7

, ,
(1)

where atm p, , is the atmospheric optical depth, and f i( ) is the fraction
coverage of each tile.

Following state-of-the-art low frequency passive microwave mod-
elling approaches such as described by Wigneron et al. (2017), as-
suming a single isothermal vegetation layer, the TB at the top of the
vegetation layer computed for each tile as:

=
+ +

+

T r T exp
T r exp

T r exp

(1 ) ( )
(1 ( ))

( 2 )

Btov p r p eff veg p

Bveg p r p veg p

Bad p r p veg p

, , , , , ,

, , , , , ,

, , , , , , (2)

where Teff is the soil effective temperature, rr p, , is the rough soil surface
reflectivity (also expressed as one minus the emissivity er p, , ); TBVeg p, ,
and TBad p, , are the TB of the vegetation and downward atmospheric
components, respectively, and veg p, , is the vegetation optical depth at
polarisation p and incidence angle θ.

CMEM is composed of four modules to compute the contributions
from the soil, vegetation, snow and atmosphere to the TOA TB. It in-
cludes a choice of different parameterizations for each component of
the modules as summarised in Table 1.

2.3.1. CMEM soil module
In the soil module, the dielectric mixing model is used to compute

the soil dielectric constant depending on the microwave frequency, soil
moisture and temperature and soil texture. Three parameterizations are
implemented in CMEM to infer the soil dielectric constant. The Dobson
model is valid for frequency in a range of 1 GHz to 20 GHz (Dobson
et al., 1985). The Mironov (Mironov et al., 2004) and the Wang and
Schmugge (1980) models are valid for frequencies between 1 GHz and
10 GHz. Results from de Rosnay et al. (2009a) over West Africa showed
that the Wang and Schmugge model and the Mironov model perform
better than the Dobson model at C-band. They account for the effect of
bound soil water and they are more suitable for a large range of fre-
quencies. The Mironov parameterisation has been widely used for L-
band applications at the field scale (Mialon et al., 2012, for example),
and at global scale in particular in the SMOS retrieval algorithm (Kerr
et al., 2016).

The soil TB is expressed, following the Rayleigh-Jeans approxima-
tion, as the product between the effective temperature Teff and the
rough soil emissivity er p, , . A simple model was proposed by Choudhury
et al. (1982) to approximate the effective temperature as a function of
the surface soil temperature (at ~5 cm), soil temperature at depth (at
~50 cm) and a frequency dependent parameter. This parameterisation
was modified by Wigneron et al. (2001) for L-band radiometry to ac-
count for soil moisture in the parameter. Holmes et al. (2006) in-
troduced further dependence to the soil conditions in the empirical
parameter with the dielectric constant. Based on the long term
SMOSREX data set, in southwest of France, de Rosnay et al. (2006)
compared these parameterizations and showed that the Wigneron et al.
(2001) was best suited for global scale studies. This parameterisation is
used as default configuration in CMEM to compute the soil effective
temperature (de Rosnay et al., 2009a).

Soil roughness has a large impact on soil emission and reflectivity
(Mialon et al., 2012; Escorihuela et al., 2007). Increase in surface
roughness leads to higher emissivities and reduced differences between
horizontally and vertically polarized brightness temperatures. CMEM
includes five soil roughness parameterizations (listed in Table 1), all
derived from the semi-empirical approach proposed by Wang and
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Choudhury (1981) and described in detail in Muñoz-Sabater et al.
(2011a). The rough soil reflectivity is computed as:

= +r Q r Q r exp h cos( (1 ) ) ( )r p s q s p
N

, , , , , , (3)

where rs q, , is the the specular reflectivity (from the Fresnel equations),
p and q are polarisations, and θ the incidence angle. The parameters Q,
N and h account for polarisation mixing, angular dependence, and
roughness. The value of Q is zero at L-band (Lawrence et al. (2013);
Wigneron et al. (2007); Njoku et al. (2003)). Two parameterisations are
derived from Equation (3), with =N 0 and:

=h k Choudhury(2 ) ( )2 (4)

=h L Wigneron1.3972 ( / ) ( 2001)c
0.5879 (5)

with k the wave number, Lc the correlation length and σ the surface
roughness standard deviation. Soil roughness parameters cannot be
measured accurately at global scale. They can be calibrated a priori,
providing constant maps of roughness coefficients, to minimise clima-
tological biases (De Lannoy et al., 2013). However calibration may
compensate for simplified parameterisations in other components of the
forward model and lead to unrealistic parameter values. Besides, cali-
brated coefficients do not capture temporal variations in roughness
characteristics related to hydro-meteorological conditions or to crop
management practices, for example. In this study soil roughness para-
meters used for the Choudhury and Wigneron (2001) models (Equa-
tions (4) and (5)) are set to a constant value in space and time =( 2.2
cm and =L 6c cm) following the approach of Carrera et al. (2015);
Drusch et al. (2009); de Rosnay et al. (2009a), and using parameters as
defined by Muñoz-Sabater et al. (2011a). We also use two soil rough-
ness models for which parameter values are non constant over the globe
as they account for soil moisture and soil texture (Kerr et al., 2010a), or
for the vegetation type as described in Wigneron et al. (2007). For these
parameterisations, CMEM relies on the H-TESSEL physiographic in-
formation (look-up tables) for soil texture and land cover (see Section
2.2). The Wegmüller and Mätzler (1999) model, which is included in
CMEM and uses a single roughness parameter =h k , is not used in
this study. Table 1 highlights in bold the CMEM parameterizations used
and evaluated against the SMOS observations in this paper.

2.3.2. CMEM vegetation module
The vegetation layer is represented in CMEM following the

approach. As formulated in Equation (2), vegetation contributes in
several ways to the measured signal at the top of the atmosphere. It
attenuates the soil emission, the downward atmospheric emission and
the upward atmospheric emission after it was reflected on the soil
surface, and it has a direct contribution to the signal expressed as:

=T T exp(1 ) (1 ( ))Bveg p c p veg p, , (6)

where Tc is the canopy temperature and p is the single scattering al-
bedo at polarisation p. CMEM includes a choice of four parameterisa-
tions to account for the vegetation effect on the signal. They differ in
the approach used to compute the vegetation optical depth depending
on the Leaf Area Index and vegetation water content as described in
details in a number of papers including for example (de Rosnay et al.,
2009a; Drusch et al., 2009; Wigneron et al., 2007). In this paper we use
the GLCC (Loveland et al., 2000) physiographic information for vege-
tation type and vegetation cover used in H-TESSEL with the seasonally
varying Leaf Area Index from the climatology as described in Boussetta
et al. (2013) (see section2.2).

While the parameterizations from Wigneron et al. (2007) and
Jackson and O'Neill (1990) are most suitable at L-band, the Kirdyashev
et al. (1979) and Wegmüller et al. (1995) models account for the wave
number in their parameterisation of the optical depth. They are ap-
plicable for a larger range of frequencies. In this paper CMEM perfor-
mances are compared and evaluated against SMOS data, for different

Table 1
Modular configuration of CMEM. For each module components, a choice of
parameterizations is available. Parameterizations in bold are those used in this
paper. Different combinations of CMEM using three different dielectric models,
four roughness models and three vegetation optical depths models are com-
pared, leading to 36 configurations evaluated against SMOS observations.

CMEM modules Choice of parameterizations

Short name Reference

Soil module:
Dielectric mixing model Dobson (Dobson et al., 1985),

Mironov Mironov et al. (2004)
Wang Wang and Schmugge

(1980)
Effective temperature model Surface temperature

forcing,
Choudhury Choudhury et al. (1982)
Wigneron Wigneron et al. (2001)
Holmes Holmes et al. (2006)

Soil roughness model Choudhury (Choudhury et al., 1979),
Wign07 Wigneron et al. (2007)
Wign01 Wigneron et al. (2001)
Texture dependent citepatbd:10
Wegmüller Wegmüller and Mätzler

(1999)

Vegetation module:
Vegetation optical depth

model
Wegmüller (Wegmüller et al., 1995),

Jackson Jackson and O'Neill
(1990)

Kirdyashev Kirdyashev et al. (1979)
Wigneron Wigneron et al. (2007)

Snow module:
Snow emission model HUT single layer

model
Pulliainen et al. (1999)

Atmospheric module:
Atmospheric emission

model
Pellarin (Pellarin et al., 2003),

Ulaby Ulaby et al. (1986)

Table 2
Description of the numerical experiments conducted for model configuration, bias correction and long term evaluation and monitoring purposes. The 36 experiments
of Set 1 use different CMEM configurations corresponding to different combinations of parameterisations shown in Table 1. Experiments conducted for Set 2 and Set 3
rely on the best CMEM configuration selected after Set 1 experiments are compared to SMOS data.

Purpose Set Number Period Resolution Incidence SMOS Results

name of runs angle processor

CMEM configuration Set 1 36 2010–2011 80 km (TL255) 40° v5 Section
3.1

Bias correction Set 2 1 2010–2013 40 km (TL511) 30° , 40° , 50° v5 Section
3.2

Long term evaluation and monitoring Set 3 1 2010–2016 40 km (TL511) 40° v5 (until 04.2015)
v6 (from 05.2015)

Section
3.2,3.3
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configurations using the parameterizations of Wigneron et al. (2007),
Jackson and O'Neill (1990), and Kirdyashev et al. (1979).

2.3.3. CMEM snow and atmospheric modules
In the case of presence of snow, CMEM accounts for a snow layer as

described in Holmes et al. (2008) with the snow reflectivity computed
using the single layer version of the Helsinki University of Technology
(HUT) model (Pulliainen et al., 1999). In this study the snow covered
areas are filtered out in the quality control as described in the next
subsection.

In the atmospheric module of CMEM, the atmosphere optical
thickness atm p, is computed following the parameterisation developed
by Pellarin et al. (2003).

2.3.4. Faraday rotation
CMEM as described above simulates TOA TB in the Earth reference

frame at both horizontal and vertical polarisations. These TB need to be
transformed into the SMOS antenna frame to be compared to the SMOS

data. The transformation of CMEM's TBtoa h, and TBtoa v, into the SMOS
antenna frame, as described in the Kerr et al. (2010a), accounts for the
SMOS geometry and to the Faraday rotation in the ionosphere. The
latter causes a rotation of the plane of polarisation and the strength of
the rotation is proportional to the electronic content of the ionosphere.
Generally speaking it produces a change of only a few K to the TOA TB.
In dual polarisation mode, used for SMOS monitoring and assimilation
activities over land surfaces, the transformation of TB is expressed as
follows:

=
T
T

cos a sin a
sin a cos a

T
T

( ) ( )
( ) ( )

Becm X

Becm Y

Btoa h

Btoa v

, ,

, ,

2 2

2 2
, ,

, , (7)

where a is the total rotation angle computed as sum of the geometric
and the faraday rotation angles. This transformation is included as a
CMEM post-processing step in the ECMWF IFS. In the following of the
paper, we use TBecm X, , and TBecm Y, , from CMEM to compare with the
SMOS TB data in the antenna frame.

Figure 1. L-band TB (K) annual mean maps (2010–2011), at 40° incidence angle, X polarisation (left) and Y polarisation (right), observed by SMOS (a), simulated by
ECMWF (b), and first guess departure (Observation-Model, c). ECMWF TBs shown here are obtained from one of the Set1 experiments (Table 2), using the dielectric
model of Wang and Schmugge (1981), the simple soil roughness Model of Wigneron et al. (2001) and the Wigneron et al. (2007) vegetation opacity model.
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2.4. Numerical experiments

A series of numerical experiments were conducted with CMEM,
using the H-TESSEL land surface model input, to define CMEM's con-
figuration, to develop and evaluate bias correction, and to assess long
term SMOS monitoring statistics. To identify CMEM's bests configura-
tions, 36 different CMEM configurations, corresponding to different
combinations of three dielectric models, three vegetation opacity
models and four roughness models presented in Table 1, were evaluated
against SMOS TB observations. Due to the large number of experiments,
this set was limited to 40° incidence angle and it was conducted at a
resolution of 80 km for a two-year period (2010–2011). To develop the
bias correction, the selected best CMEM configuration was used and
numerical experiments were conducted at three different incidence
angles, 30°, 40° and 50°, at a resolution of 40 km, which is close to the
SMOS resolution, for 2010–2013. The 40° experiment was extended for
2014–2016 and used to evaluate the bias correction using independent
data and for long term monitoring purpose. Table 2 summarises the

experiments conducted. It also indicates the version of the SMOS pro-
cessor used to produce the SMOS data compared to the ERA-Interim
based CMEM forward TBs, and it indicates in which section the results
are presented.

In addition to the quality control described in Section 2.1, which
was based on the SMOS product quality flags, we used the reanalysed
land surface conditions from H-TESSEL from each experiment to dis-
card model and observation values for grid points with presence of
snow, and grid points with air temperature lower than 273 K. We also
discarded areas with complex topography with a slope larger than 4%,
and areas with water fraction larger than 5%.

2.5. Bias correction method

At ECMWF, SMOS TBs are being processed and monitored for a
continuous assessment of the quality of the measurements. For the
analysis experiments, such as described in Muñoz-Sabater et al. (2018,
2019), they are used in the land surface analysis to initialise the NWP

Figure 2. Comparison between SMOS observations and simulated L-band TB for 2010–2011, at 40° incidence angle, at X polarisation (left) and Y polarisation (right):
RMSE (a), URMSE (b) and correlation (c). ECMWF TBs shown here are obtained from one of the Set1 experiments (Table 2), using the dielectric model of Wang and
Schmugge, the simple soil roughness Model of Wigneron et al. (2001) and the Wigneron et al. (2007) vegetation opacity model.
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system. A key assumption for data assimilation is that model and ob-
servations are unbiased, with random zero-mean errors (Yilmaz and
Crow, 2013; Dee, 2005). However, in reality, systematic differences
exist between modelled and observed radiances. They are caused by a
number of reasons such as problems with the data, representativeness
issues, forward model approximations, simplified representation of the
processes. So, it is of crucial importance to correct for the systematic
differences between the model and the observations prior to data as-
similation. De Lannoy et al. (2013) and De Lannoy and Reichle (2015)
calibrated their forward model parameters by minimising the bias in
the mean and variance between multi-year simulated and observed
SMOS TBs across incidence angles and polarisations. This calibration
approach correct for the long term biases, but seasonal and shorter term
Tb biases at individual incidence angles and polarisations still need to
be corrected within the data assimilation system, as discussed in De

Lannoy and Reichle (2015, 2016).
Cumulative Distribution Function matching (CDF-matching)

methods allow to match the statistical moments of the observational
data to the model ones, typically mean, variance, skewness and kurtosis
(Reichle and Koster, 2004; Drusch et al., 2005). Scipal et al. (2008)
proposed a simplified CDF-matching that relies on a linear approach to
correct for the first two moments of the CDF (mean and variance). The
simplified CDF-matching has been largely used by the land surface
community showing that it efficiently removes the differences between
model and observations for the first two moments of the CDF (Albergel
et al., 2019; Barbu et al., 2014; Scipal et al., 2008). As pointed out by
Barbu et al. (2014); Draper et al. (2012) there are also systematic dif-
ferences between the seasonal cycles of models and observations. Not
accounting for these seasonal scale systematic discrepancies would af-
fect the matching at both short and seasonal time scales.

In this paper we use a grid-point based rescaling similar to the

Table 3
Statistics of the global scale comparison between ECMWF ERA-Interim-based
CMEM simulations and SMOS observations of L-band brightness temperature at
X polarisation for a 40° incidence angle for 2010–2011 for 36 CMEM config-
urations of Set 1 experiments (see Tables 1 and 2). For each dielectric model
best statistics are highlighted in bold. SDV is the normalised standard deviation
(ratio between the simulated and observed TB standard deviations).

Dielectric Vegetation Soil Roughness R uRMSE Bias SDV

Model Opacity Model Model (K) (K)

Jackson Choudhury 0.53 12.00 −20.92 0.45
Wign07 0.56 11.90 −0.16 0.71
Wign01 0.56 11.77 −7.13 0.59
Texture
dependent

0.55 13.20 17.17 0.92

Kirdyashev Choudhury 0.54 11.90 −20.04 0.45
Dobson Wign07 0.54 12.14 5.71 0.72

Wign01 0.55 11.82 −2.30 0.58
Texture
dependent

0.46 14.28 29.10 0.97

Wigneron Choudhury 0.54 11.92 −19.06 0.46
Wign07 0.56 11.96 5.09 0.76
Wign01 0.56 11.70 −2.20 0.63
Texture
dependent

0.55 13.57 27.65 1.03

Jackson Choudhury 0.53 11.93 −21.98 0.45
Wign07 0.57 11.81 −3.15 0.72
Wign01 0.57 11.65 −9.69 0.60
Texture
dependent

0.56 13.21 12.01 0.94

Kirdyashev Choudhury 0.55 11.82 −21.29 0.46
Mironov Wign07 0.54 12.17 2.18 0.75

Wign01 0.55 11.76 −5.34 0.62
Texture
dependent

0.48 14.61 22.96 1.05

Wigneron Choudhury 0.55 11.84 −20.24 0.47
Wign07 0.57 11.91 1.76 0.78
Wign01 0.57 11.60 −5.08 0.65
Texture
dependent

0.55 13.72 21.86 1.07

Jackson Choudhury 0.53 11.94 −21.60 0.46
Wign07 0.56 11.90 −1.96 0.73
Wign01 0.56 11.67 −8.78 0.61
Texture
dependent

0.56 13.32 13.84 0.96

Kirdyashev Choudhury 0.55 11.81 −20.92 0.46
Wang Wign07 0.55 12.23 3.33 0.77

Wign01 0.56 11.74 −4.46 0.62
Texture
dependent

0.48 14.63 24.74 1.05

Wigneron Choudhury 0.55 11.84 −19.86 0.47
Wign07 0.56 12.03 2.95 0.80
Wign01 0.57 11.63 −4.16 0.66
Texture
dependent

0.55 13.90 23.70 1.09

Table 4
Statistics of the global scale comparison between ECMWF CMEM simulations
and SMOS observations of L-band brightness temperature at Y polarisation for a
40° incidence angle for 2010–2011 for 36 CMEM configurations if Set 1 ex-
periments (see Table 1 nd 2). For each dielectric model best statistics are
highlighted in bold. SDV is the normalised standard deviation (ratio between
the simulated and observed TB standard deviations).

Dielectric Vegetation Soil Roughness R uRMSE Bias SDV

Model Opacity Model Model (K) (K)
Jackson Choudhury 0.51 11.46 −12.11 0.48

Wign07 0.52 11.66 −0.59 0.69
Wign01 0.53 11.47 −3.57 0.62
Texture
dependent

0.51 13.07 11.16 0.94

Kirdyashev Choudhury 0.52 11.38 −12.12 0.49
Dobson Wign07 0.50 11.91 2.62 0.73

Wign01 0.52 11.54 −0.93 0.64
Texture
dependent

0.45 14.01 18.57 1.02

Wigneron Choudhury 0.52 11.41 −11.01 0.49
Wign07 0.51 11.79 2.37 0.75
Wign01 0.52 11.49 −0.51 0.66
Texture
dependent

0.49 13.57 17.81 1.06

Jackson Choudhury 0.52 11.42 −12.92 0.48
Wign07 0.52 11.60 −2.69 0.69
Wign01 0.53 11.39 −5.55 0.62
Texture
dependent

0.52 13.02 7.24 0.94

Kirdyashev Choudhury 0.53 11.34 −13.10 0.50
Mironov Wign07 0.51 11.93 0.04 0.75

Wign01 0.52 11.52 −3.32 0.66
Texture
dependent

0.46 14.16 13.78 1.06

Wigneron Choudhury 0.52 11.37 −11.93 0.49
Wign07 0.52 11.75 −0.00 0.75
Wign01 0.53 11.43 −2.75 0.67
Texture
dependent

0.50 13.60 13.35 1.07

Jackson Choudhury 0.52 11.42 −12.71 0.48
Wign07 0.52 11.71 −2.10 0.71
Wign01 0.53 11.44 −5.06 0.63
Texture
dependent

0.51 13.23 8.21 0.97

Kirdyashev Choudhury 0.53 11.34 −12.91 0.50
Wang Wign07 0.51 12.05 0.61 0.77

Wign01 0.52 11.56 −2.85 0.67
Texture
dependent

0.46 14.38 14.72 1.09

Wigneron Choudhury 0.52 11.37 −11.73 0.50
Wign07 0.51 11.88 0.60 0.78
Wign01 0.53 11.49 −2.25 0.69
Texture
dependent

0.49 13.87 14.34 1.11
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simplified CDF-matching approach described by (Scipal et al., 2008).
However we apply it at the monthly scale to remove the seasonally
varying systematic biases between SMOS and ECMWF brightness tem-
peratures, and we use a different set of rescaling coefficients at each
incidence angle and polarisation. We use the 4-year (2010–2013)
monthly climatology of observations and forward simulations, at 40 km
resolution of experiments of Set 2 (Table 2). Using a 3-month moving
window, we compute, for each calendar month from January to De-
cember, the mean 2010–2013 statistical moments (mean and variance)
of the observed (TBsmos) and simulated (TBecm) TBs. So, the approach
accounts for the seasonal cycle but not for the inter-annual variability.
The moments are computed separately at each grid point, at each po-
larisation, and for each incidence angle of 30°, 40° and 50° and for each
month. At each grid point location and for each polarisation, incidence
angle and multiyear 3-month window, a minimum of 50 model and
observation values remaining after quality control (sections 2.1 and
2.4) is required to compute the moments. The statistical moments are
then used to compute a set of monthly maps of rescaling parameters
(A,B) for each X and Y polarisations, and for each 30°, 40° and 50°
incidence angles. They are used to transform the observed SMOS ob-
servations for assimilation purposes as:

= +T A B TBsmos Bsmos (8)

with

= < >A T T StDev T
StDev T

( )
( )Becm Bsmos

Becm

Bsmos (9)

=B StDev T
StDev T

( )
( )

Becm

Bsmos (10)

The first parameter, A, is considered as a bias correction parameter
and the second parameter, B, as a rescaling slope parameter. The ob-
tained matching parameters and results of the seasonal bias correction
approach are presented in section 3.2.

3. Results

3.1. CMEM global intercomparison

Global maps of 2010–2011 mean TBs at X and Y polarisations are
given in Fig. 1, (a) as observed from SMOS and (b) simulated from one
of the experiments of Set 1 (see Tables 1 and 2): the one using Wang for
the dielectric model, the Wigneron et al. (2001) soil roughness model
and the Wigneron vegetation model and using input data as described
in Section 2.3. Fig. 1(c) shows the mean first guess departure (ob-
servation minus model) TB at each polarisation. Fig. 2 presents, maps of
root mean square error (RMSE), unbiased RMSE (uRMSE) and corre-
lation for the same period and experiment. Mean values of SMOS TB at
X polarisation typically range between 240 K and 280 K in most areas
(Fig. 1(a)), with colder mean TBs at high latitude. As expected, mea-
sured SMOS TBs are larger at Y than at X polarisation, in particular over
warm desert areas with up to 300 K mean values for 2010–2011.
Fig. 1(b,c) shows that forward simulations using this configuration of
CMEM tend to overestimate TB values at both X and Y polarisations by
up to 20 K, specially in dry areas, but also in North America and India,
and to underestimate them over tropical forest areas and at high lati-
tudes.

The top panel of Fig. 2 indicates relatively large RMSE values often
between 16 K and 30 K at X and Y polarisations matching relatively well
areas with large bias shown in Fig. 1(c). Maps of uRMSE, Fig. 2(b),

Fig. 3. Comparison between ECMWF simulated and SMOS measured TBs at L-band (1.4 GHz) at X (left) and Y (right) polarisations, for 2010–2011 for 36 CMEM
configurations of Set 1 experiments (see Tables 1 and 2). Symbols colour and shapes represent different vegetation opacity and roughness models, respectively; and
for each three identical symbols are used for the different dielectric models. (For interpretation of the references to colour in this figure legend, the reader is referred
to the Web version of this article.)
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show much lower values than for RMSE, indicating the large con-
tribution of the bias to the RMSE for this configuration of CMEM. Areas
with uRMSE larger than 16 K remain in Asia and Eastern Europe. These
areas are known to be affected by RFI sources leading to unreliable
SMOS measurements. Pixels contaminated by RFI are not systematically
accurately flagged out in the SMOS product. Residual SMOS measure-
ments affected by RFI are in strong disagreement with the simulated
values, explaining large uRMSE in these regions. The bottom panel of
Fig. 2 shows that SMOS measurements and CMEM forward simulations
are well correlated for 2010–2011, with values larger than 0.4 in most
areas. This shows good agreement between simulated and observed TBs
seasonal and sub-seasonal cycles, which is remarkable as they result

from combined temperature, soil moisture and vegetation water con-
tent evolution. Lowest correlation values are shown in grey in tropical
forests areas. They are due to the relative stable TBs in these areas, with
low temporal dynamics in both the model and the observations, leading
to low correlation. Low correlation values are also shown in RFI af-
fected areas of Asia. Global mean statistics for this configuration of
CMEM indicate correlation values of 0.57 and 0.53 at X and Y polar-
isation, respectively. Values of uRMSE are 11.63 K and 11.49 K.

Global mean 2010–2011 statistics are provided in Tables 3 and 4 for
each of the 36 experiments of Set 1 corresponding to different config-
urations of CMEM. They include correlation, uRMSE, bias and SDV,
which is the normalised standard deviation, i.e the ratio between the

Fig. 4. Annual cycle of the global mean correlation (top) and URMSE (bottom) between L-band TBs observations from SMOS and ECMWF forward simulations for the
36 CMEM configurations of Set 1 experiments (see Tables 1 and 2), at X (left) and Y (right) polarisations, for a 40° incidence angle. Statistics are computed on the
period 2010–2011.
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simulated and observed TB standard deviations. The results of these
two Tables are also summarised in Taylor diagrams (Taylor and Clark,
2001) given in Fig. 3, whereas the annual cycles of uRMSE and corre-
lation statistics are shown in Fig. 4. The Taylor diagrams show averaged
statistics, so the classic relationship between E, R and SVD found in
Taylor diagrams is not strictly valid, however they clearly illustrate
model performances shown in the Tables.

In this paper, the primary criteria of evaluation to select best CMEM
parameterizations are correlation and uRMSE metrics, whereas bias and
SDV results are secondary criteria. This is because NWP applications,
including monitoring and assimilation, apply an a priori a bias cor-
rection to match the mean and the variance of model and observed TBs
(Section 2.5).

Results of Tables 3 and 4 and Fig. 3 all clearly show that the choice
of the roughness parameterisation has the largest impact on correlation,
uRMSE, bias and SDV statistics. The texture dependent soil roughness
model, when it is used in combination with the Kirdyashev vegetation
model, tend to show poorer correlation and poorer uRMSE

performances than the other parameterisations. This result is persistent
across the annual cycle as shown by Fig. 4. Results from the two tables
and the Taylor diagrams show however that experiments using the
texture dependent roughness model best capture the SMOS TB standard
deviation, with SDV values close to 1. The other roughness para-
meterisations lead to SDV values lower than 1, indicating that they
underestimate the variance compared to the SMOS data. As described in
Sections 2.2 and 2.3, the forward model uses H-TESSEL input, with a
7 cm top soil layer, which is in most situations larger than the SMOS
sensing depth. In turn, the SMOS data with a shallower sensing depth is
expected to capture larger standard deviation, related to highly variable
surface soil moisture, than the model, which explains that most
roughness models underestimate SDV. The Wigneron 2007 and
Wigneron (2001) roughness parameterisations better match the SMOS
data than the soil texture dependent roughness (Kerr et al., 2010a) or
Choudhury (Choudhury et al., 1979) models in terms of correlation,
uRMSE and bias. And looking into more details at the Wigneron (2001)
and Wigneron (2007) statistics, results show that Wigneron (2001)

Fig. 5. ECMWF monthly rescaling parameters A in K (left) and B (right), for January, at X polarisation, computed at 40 km resolution, at 30° (top panel), 40° (middle
panel) and 50° (bottom panel), for the default CMEM configuration using the dielectric model of Wang and Schmugge, the simple soil roughness Model of Wigneron
et al. (2001) and the Wigneron et al. (2007) vegetation opacity model.
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leads to lower uRMSE and larger correlation than the Wigneron (2007)
roughness model.

For the vegetation optical depth, statistics given in Tables 3 and 4
show that Jackson and Wigneron perform better than Kirdyashev in
terms of correlation and uRMSE. This result differs from the results
obtained at C-band by de Rosnay et al. (2009a) who showed that Kir-
dyashev was performing better than Jackson or Wigneron over West
Africa. Result obtained here at L-band are not surprising as Jackson and
Wigneron parameterisations were developed for L-band, so they are
best suited for SMOS applications, whereas Kirdyashev is a multi-fre-
quency model. The Wigneron vegetation opacity parameterisation tend
to show slightly better statistics than Jackson in terms of uRMSE.

Simulated TBs are less sensitive to the dielectric model than to the
vegetation opacity and soil roughness models. Evaluated against SMOS
observations, performances of the Wang and Schmugge and the
Mironov soil dielectric models are similar and better than with the
Dobson model. The Wang and Schmugge model is used in the following
sections of the paper, along with the Wigneron simple roughness and

vegetation models. This combination of CMEM options also defines the
CMEM v5.1 default configuration which was released by ECMWF based
on these results.

3.2. Bias correction results

Figs. 5 and 6 show the maps of rescaling parameters (Section 2.5) at
X polarisation, for 30°, 40° and 50° incidence angles, for January and
July, respectively, using the 2010–2013 data sets (see Table 2). Both the
bias correction term A and the rescaling term B show a relatively good
consistency across the different incidence angles. The bias correction
parameter A has generally positive values in desert areas, in particular
in Sahara and Australia, which are consistent with the departure results
presented at 40 in Fig. 1 for 2010–2011 at coarser resolution. In Jan-
uary, Fig. 5 shows that large areas in the northern hemisphere do not
have any rescaling parameters due to quality control rejecting frozen
and snow covered areas in the winter hemisphere. In both January and
July, areas with complex topography (e.g. in the US Rocky mountains,

Figure 6. ECMWF monthly rescaling parameters A in K (left) and B (right), for July in X polarisation, computed at 40 km resolution, at 30° (top panel), 40° (middle
panel) and 50° (bottom panel), for the default CMEM configuration using the dielectric model of Wang and Schmugge, the simple soil roughness Model of Wigneron
et al. (2001) and the Wigneron et al. (2007) vegetation opacity model.
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The Andes, the Alpes and parts of the Himalayan mountains) are
masked out. The figures also show that regions in China are masked out,
which is due to RFI filtering.

These rescaling parameters are applied to the ERA-Interim based
CMEM forward simulations conducted for 2010–2013, for experiments
of Set 2 as detailed in Section 2.

Global CDFs of TBs for the year 2013 are presented in Fig. 7, at X
polarisation (left) and Y polarisation (right), at 40° incidence angle for
ECMWF CMEM forward simulations (blue), SMOS observations before
bias correction (red) and SMOS observations after bias correction
(green). The figure shows that the multi-angular polarised monthly bias
correction approach allows to effectively match the cumulative dis-
tributions of the observed and simulated TBs.

Fig. 8 provides detailed examples of time series and CDF of ECMWF
CMEM simulations and SMOS observations before and after bias cor-
rection in two areas of Australia (25S–35S; 140E-150E), and South
America (15S–20S; 50W–45W) for 2013. As shown in the time series
presented in the top panel of Fig. 8, in Australia, the SMOS observations
before bias correction (red) are colder that the ECMWF CMEM forward
simulations, as already pointed out with the global maps shown in
Fig. 9. The figure also points out that the annual cycle and the shorter
time scale variability are captured by the observations and the model
(which is consistent with Fig. 10 for this area). There are several oc-
currences of strong decrease in TB, typically corresponding to pre-
cipitation events and increased soil moisture, observed and simulated
around day 25 and 60 and 145. It is clear from this figure that the SMOS
observations have a larger variability than the model forward simula-
tions as expected and as discussed in the previous subsection, partly due
to the model parameter settings as well as a shallower SMOS sampling
depth than the ECMWF model top layer thickness. For example on days
90 and 145, the amplitude of the SMOS signal is larger than that of
ECMWF. On a single event, it could be attributed to a number of rea-
sons, such as for example a lack of precipitation in the ECMWF system
leading to an underestimation of soil moisture increase. However, the
fact that the SMOS variability is systematically larger than the ECMWF
forward simulations is consistent with model top layer and SMOS
sampling depth mismatch and the fact that the model uses uniform
vertical soil moisture profile in the top layer (Wilker et al., 2006). One
of the purposes of bias correction is specifically to correct for model
approximations that lead to systematic differences (Dee, 2005). After
bias correction, the SMOS data is in general better agreement with the

model at the seasonal scale with remaining differences at the daily scale
and precipitation event scale which are of potential relevance for data
assimilation purpose (green curve of the top panel of Fig. 8). In South
America (bottom panel of Fig. 8) the observed and simulated TB are
already in relatively good agreement before bias correction, both in
terms of mean value and variability. For both regions of Fig. 8, the right
panels show that the CDF are efficiently matched at the regional scale.

Tables 5 and 6 give an overview of the yearly statistics of the
ECMWF CMEM forward simulations and the SMOS TBs observations for
each incidence angle, each polarisation for all years between 2010 and
2013. They indicate the 95% Confidence Interval (CI) computed for
each correlation using a Fisher Z transform. Before bias correction
(Table 5), depending on the incidence angle and the year, RMSE values
range between 16.96 K and 20.64 K at X polarisation and between
12.77 K and 17.30 K at Y polarisation, with mean value for all polar-
isations and incidence angles of 16.67 K. These mean statistics hide
large spatial scale differences as shown in Figs. 9 and 10. Correlation
values are on average 0.56, varying between 0.51 and 0.60 at X po-
larisation, and between 0.49 and 0.64 at Y polarisation, with large
confidence interval for each angle, polarisation and year. Anomaly
correlations are computed based on time series obtained by removing
the seasonal cycle based on a 4-month moving window with an aver-
aged value of 0.31. The Mean Absolute Bias (MAB) has an average value
of 11.04 K. After bias correction, the mean correlation, RMSE and MAB
are improved to 0.62, 7.91 K and 1.39 K, respectively. The anomaly
correlation remain very close to its value before bias correction, 0.31,
which is as expected since the seasonal bias correction approach pre-
serves the SMOS signal short term variability.

The impacts of using the 2010–2013 rescaling coefficients on the
SMOS-CMEM differences for the 2014–2016 period is shown in Table 7
at 40° incidence angle. Results show that correlation and anomaly
correlation values are very close before and after bias correction.
However mean absolute bias and RMSE are drastically reduced after
bias correction compared to before bias correction. Although the re-
sidual mean absolute bias is slightly larger than for the 2010–2013
period, it is lower than 3 K instead of more than 11 K and 8 K before
bias correction at X and Y polarisations, respectively. RMSE is reduced
from values above 17 K and 13 K at X and Y polarisations before bias
correction, to less than 9 K at both polarisations after bias correction.
On average, the 2014–2016 global RMSE is reduced from 15.56 K be-
fore bias correction, to 8.19 K after bias correction, and the mean

Fig. 7. Global and temporal Cumulative Distribution Function of SMOS observed (red), ECMWF reanalysed (blue) and SMOS monthly rescaled SMOS (green) TBs (K)
for 2013 at X pol (left) and Y pol (right) at 40° incidence angle. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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absolute bias from 10.16 K to 2.51 K, with no impact on the correlation
values that remain at 0.61 in both cases.

Maps of RMSE and mean difference between SMOS observations
and ECMWF CMEM forward simulations at 40° incidence angle, for
2015 computed before (left) and after (right) bias correction are given
in Fig. 9. Before bias correction, RMSE values typically range between
16 K and 20 K (red colours). After bias correction RMSE values are in
the range of 4 K to 8 K in most areas. The annual mean bias is also
reduced to a residual value lower than 3 K in most areas. Fig. 10 pre-
sents maps of correlation and standard deviation before and after bias
correction for 2015. The top-left panel of Fig. 10 indicates very good
correlation values between SMOS observations and CMEM even before
bias correction. In North America and in parts of Australia, correlation
values larger than 0.8 dominate. The bias correction, because it relies
on a monthly approach, further improves the agreement between the
SMOS observations and CMEM at the seasonal scale, leading to in-
creased correlation values after bias correction, with extended areas
with correlation values larger than 0.8 in North America, in Sahel, in

Siberia and parts of Europe (top right of Fig. 10).
Histograms of global scale SMOS first guess departure (observations

minus model) are presented in Fig. 11 before and after bias correction,
at 40° incidence angle at X polarisation and Y polarisation, for 2015.
Before bias correction (in red) the distributions are uncentered, with a
relatively large spread, which illustrate systematic differences between
the observations and the model at all incidence angles and polarisa-
tions. The monthly bias correction (in green) leads to narrow and
centred first guess departure distributions, validating the bias correc-
tion approach using independent observations.

3.3. Long term SMOS monitoring

Long term global scale spatial averaged monitoring statistics are
presented in Fig. 12. They are obtained at a 40° incidence angle, from
2010 to 2016 using the ERA-Interim-based CMEM forward simulations
of Set 3 described in Table 2 and the SMOS TB measurements for the
entire period as described in Section 2.1. The left panel shows that at

Fig. 8. Annual cycle (left) and CDF (right) for 2013 of X pol TB (in K), at 40 incidence angle, simulated by ECMWF CMEM (blue), observed by SMOS (red) and
matched using monthly rescaling (green), and annual rescaling (yellow) for two areas located in Australia (a) and South America (b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 9. Comparison between ECMWF CMEM and SMOS TBs before (left) and after (right) bias correction, for 2015, at X pol and 40° incidence angle. Panels a and b
show RMSE (K) and bias (K), respectively.

Fig. 10. Comparison between ECMWF CMEM and SMOS TBs before (left) and after (right) bias correction for 2015, at X pol and 40° incidence angle. Panel a shows
correlation and panel b shows differences in STD (K).
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both polarisations, correlations and anomaly correlation statistics
steadily improve between 2010 and 2016. The correlation values in-
crease from 0.57 to 0.63 at X polarisation and from 0.53 to 0.63 at Y
polarisation. Although the improvement remains in the 95% confidence
interval (see Tables 5–7) the improvement is consistent from 2010 to
2016. The anomaly correlation values also increase from 0.34 to 0.40
and from 0.27 to 0.37 at X and at Y polarisations, respectively. The right
panel shows that the RMSE and uRMSE values decrease from 2010 to
2016 at both polarisations. The RMSE values range from 18.62 K in

2010 to 17.12 K in 2016 at X polarisation and from 16.27 K to
13.57 K at Y polarisation. For the uRMSE, the results show an im-
provement from 11.82 K to 10.46 K and from 11.75 K to 9.25 K at X and
Y polarisations, respectively. These results are based on reanalysis
based forward simulations, which are expected to be of nearly constant
quality. Consistent SMOS TBs from the SMOS processor v5.05 are used
until April 2015 and from the SMOS processor v6.20 after May 2015
(Section 2.1). So, the steady improvement shown from 2010 to 2014 is
mostly due to SMOS observations improvement, possibly due to actions

Table 5
Statistics of the global scale comparison, before bias correction, between the ECMWF CMEM Set 2 experiment, using the Wang and Schmugge dielectric model, the
Wigneron (2001) roughness model and the Wigneron (2007) vegetation model (see Tables 1 and 2), and SMOS observations of L-band TB at X and Y polarisations for
30°, 40°, 50° incidence angles, for 2010–2013.

Angle Year pol N R Confidence Anomaly R RMSE (K) MAB (K)

30 2010 X 101.63 0.57 0.43 0.69 0.32 18.06 12.23
30 2011 X 106.86 0.59 0.45 0.70 0.32 17.53 12.11
30 2012 X 94.66 0.59 0.44 0.71 0.33 17.11 11.74
30 2013 X 101.44 0.60 0.46 0.72 0.34 16.96 11.87
40 2010 X 150.17 0.57 0.45 0.67 0.34 18.62 12.71
40 2011 X 157.68 0.58 0.46 0.68 0.35 18.04 12.56
40 2012 X 139.84 0.58 0.46 0.68 0.36 17.61 12.21
40 2013 X 149.58 0.60 0.48 0.69 0.37 17.38 12.29
50 2010 X 148.28 0.51 0.37 0.62 0.27 20.64 14.68
50 2011 X 155.76 0.51 0.38 0.62 0.27 20.02 14.67
50 2012 X 138.50 0.52 0.38 0.63 0.27 19.57 14.11
50 2013 X 147.69 0.53 0.41 0.64 0.28 19.33 14.27

30 2010 Y 101.00 0.58 0.43 0.69 0.33 17.30 11.23
30 2011 Y 106.34 0.60 0.46 0.71 0.36 16.30 10.78
30 2012 Y 94.44 0.62 0.47 0.73 0.39 15.34 10.16
30 2013 Y 101.11 0.64 0.50 0.74 0.40 14.81 10.00
40 2010 Y 146.74 0.53 0.40 0.64 0.27 16.27 9.72
40 2011 Y 154.41 0.54 0.42 0.65 0.28 15.46 9.34
40 2012 Y 136.88 0.56 0.43 0.66 0.30 14.49 8.72
40 2013 Y 146.83 0.58 0.46 0.68 0.31 13.97 8.54
50 2010 Y 140.68 0.49 0.35 0.61 0.24 15.14 8.49
50 2011 Y 147.65 0.50 0.37 0.61 0.24 14.26 8.01
50 2012 Y 130.59 0.53 0.39 0.64 0.27 13.29 7.43
50 2013 Y 140.27 0.54 0.41 0.65 0.28 12.77 7.18

Table 6
Statistics of the global scale comparison, after bias correction, between the ECMWF CMEM Set 2 experiment, using the Wang and Schmugge dielectric model, the
Wigneron (2001) roughness model and the Wigneron (2007) vegetation model (see Tables 1 and 2), and SMOS observations of L-band TB at X and Y polarisations for
30°, 40°, 50° incidence angles, for 2010–2013.

Angle Year pol N R Confidence Anomaly R RMSE (K) MAB (K)

30 2010 X 102.08 0.64 0.50 0.74 0.31 7.95 −0.36
30 2011 X 107.54 0.65 0.52 0.75 0.32 7.46 0.20
30 2012 X 95.69 0.65 0.51 0.75 0.32 7.42 0.50
30 2013 X 101.74 0.67 0.54 0.76 0.34 7.09 0.24
40 2010 X 151.29 0.63 0.52 0.72 0.34 8.04 −0.42
40 2011 X 159.04 0.64 0.54 0.73 0.35 7.53 0.18
40 2012 X 141.95 0.65 0.54 0.73 0.35 7.48 0.55
40 2013 X 150.50 0.67 0.56 0.75 0.37 7.13 0.35
50 2010 X 148.95 0.57 0.44 0.67 0.26 8.96 −0.33
50 2011 X 156.65 0.58 0.46 0.67 0.26 8.50 0.12
50 2012 X 139.98 0.58 0.46 0.68 0.27 8.41 0.50
50 2013 X 148.16 0.60 0.48 0.70 0.28 8.05 0.33

30 2010 Y 100.90 0.63 0.50 0.74 0.33 8.53 −0.76
30 2011 Y 106.17 0.66 0.53 0.76 0.35 7.64 −0.13
30 2012 Y 94.79 0.68 0.55 0.77 0.39 7.14 0.37
30 2013 Y 100.76 0.70 0.58 0.79 0.40 6.76 0.32
40 2010 Y 147.16 0.58 0.46 0.68 0.27 8.90 −0.84
40 2011 Y 154.34 0.60 0.49 0.69 0.28 8.16 −0.15
40 2012 Y 137.43 0.62 0.50 0.71 0.30 7.68 0.28
40 2013 Y 146.12 0.64 0.53 0.73 0.31 7.26 0.32
50 2010 Y 139.51 0.54 0.41 0.65 0.25 9.43 −1.17
50 2011 Y 145.79 0.56 0.43 0.66 0.25 8.66 −0.36
50 2012 Y 129.31 0.58 0.45 0.69 0.28 8.07 0.14
50 2013 Y 137.93 0.60 0.47 0.70 0.29 7.75 0.16
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taken to manage RFI contamination (Mecklenburg et al., 2016; Kerr
et al., 2016). Improvements for 2015–2016 result from combined SMOS
processor improvements and possible RFI contamination decrease. Al-
though the different contributions are difficult to disentangle these
results clearly show an overall SMOS TB product quality substantial
improvement at both polarisations between 2010 and 2016.

4. Summary and conclusion

This paper presented the SMOS forward modelling activities con-
ducted at ECMWF to use the SMOS TB data. The first step was to de-
velop and configure the observation operator CMEM. We evaluated
different combinations of CMEM parameterisations against SMOS ob-
servations and to define CMEM's configuration for SMOS monitoring
and data assimilation activities at ECMWF. To identify the best con-
figuration of CMEM, 36 numerical experiments, using different com-
binations of three dielectric models, three vegetation opacity models
and four roughness models, were conducted at 80 km resolution and at
40° incidence angle for 2010–2011. Experiments were conducted using
ERA-Interim conditions as input of the land surface model H-TESSEL
and the forward model CMEM. Results were evaluated against SMOS TB
observations at both polarisations. They showed that simulated TBs are
most sensitive to the soil roughness models, with less sensitivity to the

dielectric model. Best CMEM results were obtained with the Wigneron
model for the vegetation opacity and the simple Wigneron soil rough-
ness model. For the soil dielectric model, performances of the Wang and
Schmugge and the Mironov models were shown to be similar and better
than with the Dobson model. The Wang and Schmugge model was used
in the next steps of this paper, along with the Wigneron simple
roughness and vegetation models. This combination of CMEM options
defines the CMEM v5.1 default configuration which was released by
ECMWF based on these results.

In a second step, we presented and evaluated the SMOS bias cor-
rection approach developed to use SMOS TB measurements for data
assimilation purpose as investigated by Muñoz-Sabater et al. (2019).
The paper described a multi-angular multi-polarised bias correction
method based on a linear rescaling computed at the monthly scale using
SMOS observations and ECMWF-CMEM re-analysed (ERA-Interim) TBs
for a four year period (2010–2013). Experiments were conducted at
40 km resolution with and without bias correction and results were
compared to the SMOS observations at global scale and at regional
scale. Results showed that the seasonal multi-angular multi-polarisation
bias correction approach reduces global RMSE to 7.91 K, compared to
16.7 K before bias correction, whereas the the mean absolute bias is
reduced to 1.39 K (compared to 11.04 K before bias correction). The
consistency between the simulated and the observed TBs seasonality is

Table 7
Statistics of the global scale comparison between ECMWF CMEM and SMOS observations at 40° incidence angle at X and Y polarisations before and after bias
correction with the 2010–2013 bias correction coefficients applied to 2014–2016.

Angle Year pol N R Confidence Anomaly R RMSE (K) MAB (K)

Before BC 2014 X 161.57 0.61 0.50 0.70 0.37 17.23 11.93
2015 X 157.69 0.61 0.50 0.70 0.38 17.51 11.97
2016 X 142.04 0.63 0.52 0.72 0.40 17.12 11.92
2014 Y 158.69 0.58 0.47 0.68 0.32 13.88 8.28
2015 Y 154.41 0.60 0.49 0.70 0.34 14.03 8.50
2016 Y 139.23 0.63 0.51 0.72 0.37 13.57 8.36

After BC 2014 X 162.85 0.60 0.49 0.69 0.37 8.20 2.11
2015 X 159.28 0.60 0.49 0.70 0.38 8.75 2.94
2016 X 142.85 0.63 0.52 0.72 0.40 8.43 2.93
2014 Y 159.04 0.59 0.48 0.68 0.32 7.86 1.99
2015 Y 155.10 0.60 0.49 0.70 0.34 8.05 2.51
2016 Y 139.31 0.63 0.51 0.72 0.36 7.84 2.59

Fig. 11. Histograms of monthly mean first guess departures (Observation - Model in K) for July 2015 at 40° incidence angle, at X pol (left) and Y pol (right). Red and
green colours show first guess departure distribution with no bias correction and with monthly bias correction, respectively. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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also improved by using a monthly bias correction, leading to correlation
values improvement to 0.62 after bias correction compared to 0.56
before. The 2010–2013 bias correction applied to the 2014–2016
period at 40° incidence reduces the global RMSE from 15.56 K before
bias correction, to 8.19 K after bias correction, and the mean absolute
bias from 10.16 K to 2.51 K, with no impact on the correlation values
that remain at 0.61 in both cases. Some RFI can still be embedded in the
product after filtering, however, remaining discrepancies between si-
mulated and observed TBs are mostly random difference of relevance
for future data assimilation studies.

Finally, long term monitoring statistics of SMOS observations were
presented and analysed for an extended period covering 2010–2016,
focusing on 40° incidence angle data. Results of the comparison with
reanalysis-based forward simulations were presented. They showed that
the consistency between SMOS and ECMWF reanalysis-based TBs gra-
dually improved between 2010 and 2016, pointing out improvements
of level 1 SMOS TB products quality through the SMOS lifetime. The
improvement shown from 2010 to 2014 relies on a consistent SMOS
processor version and reanalysed ECMWF TBs of constant quality. So, it
is entirely due to SMOS observations improvement, likely due to actions
taken to manage RFI contamination. Improvements for 2015–2016 re-
sult from combined SMOS processor improvements and possible RFI
contamination decrease. These results nevertheless clearly show an
overall substantial quality improvement SMOS TB product at both po-
larisations between 2010 and 2014 and between 2015 and 2016.

The forward modelling results and bias correction results presented in
this paper demonstrate the relevance of the SMOS observations for NWP
applications. Long term monitoring results also open perspectives for
SMOS and SMAP brightness temperatures data assimilation studies for
environmental systems monitoring, prediction and long term reanalyses.
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