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A model for full-field optical coherence tomography in scattering media
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2Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France

We develop a model of full-field optical coherence tomography (FF-OCT) that includes a descrip-
tion of partial temporal and spatial coherence, together with a mean-field scattering theory going
beyond the Born approximation. Based on explicit expressions of the FF-OCT signal, we discuss
essential features of FF-OCT imaging, such as the influence of partial coherence on the optical
transfer function, and on the decay of the signal with depth. We derive the conditions under which
the spatially averaged signal exhibits a pure exponential decay, providing a clear frame for the use
of the Beer-Lambert law for quantitative measurements of the extinction length in scattering media.

I. INTRODUCTION

Since its initial development [1], Optical Coherence Tomography (OCT) has proven its ability to image inside
scattering materials with micrometer resolution in three-dimensions [2]. The possibility to access cellular structures
in tissues at millimeter depth has been a breakthrough in biomedical optics, which stimulated a fast and broad
dissemination of the technique.

The OCT setup is essentially a low coherence Michelson interferometer, in which one arm collects the light backscat-
tered from the sample, while the other arm produces a reference beam reflected on a mirror. The main feature of
an OCT setup is the ability to decouple the depth (longitudinal) and transverse resolutions [3]. Depth resolution
is produced by temporal coherence gating, and is controlled by the spectral width of the incident light. Transverse
resolution is controlled by the numerical aperture (NA) of the microscope objective in the sample arm. In scanning
OCT (S-OCT) [1, 4–7], a point-by-point image is formed by three-dimensional scanning of a focal spot. OCT systems
recording en face images in planes perpendicular to the optical axis have also been developed, using spatially coher-
ent illumination as in wide-field OCT (WD-OCT) [8–10], or spatially incoherent illumination as in full-field OCT
(FF-OCT) [11, 12].

Since OCT is expected to collect the singly backscattered photons, the signal is substantially affected by multiple
scattering, whose contribution overcomes the signal at depths larger than the scattering mean free path [13]. Several
approaches have been followed to decrease the mutiple scattering contribution by reducing the weight of long light
paths, including spatial filtering through confocal detection [14], time gating [15], or polarization gating [16, 17].
Other strategies address an inverse problem to correct a posteriori for multiple scattering, and increase resolution
and penetration depth. Approaches based on interferometric synthetic aperture microscopy [18], or computational
adaptive optics [19], have proven to be successful. Interestingly, it has been shown that the effect of multiple scattering
depends on the degree of spatial coherence of the illuminating beam [18]. It was also demonstrated that aberrations in
the sample arm do not influence the transverse resolution in FF-OCT using spatially incoherent light [20]. Recently,
a method based on the measurement of the reflection matrix has demonstrated an efficient discrimination between
singly and multiply scattered light, with an unprecedented increase in the OCT working depth [21], thus pushing the
limits of optical microscopy in highly scattering media [22].

Despite the success of OCT, from basic to clinical studies, a comprehensive theoretical model of the OCT signal, that
handles a description of partial coherence together with a realistic scattering model (beyond the Born approximation),
is still missing. In this paper we develop such a model, and use it to discuss different aspects of FF-OCT imaging. We
study the influence of partial coherence on the optical transfer function. We also address the question of the decay
of the signal with depth, that is captured by a mean-field scattering approach. Depending on the degree of spatial
coherence and on the numerical aperture of the illumination/collection optics, we derive the conditions under which
the spatially averaged FF-OCT signal exhibits a pure exponential decay with depth. The provides a clear frame for
the use of the Beer-Lambert law for quantitative measurements of the extinction length in scattering media.
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II. SCATTERING MODEL

We consider a sample made of large-scale inhomogeneities immersed in a scattering medium made of randomly
distributed scattering centers, as represented in Fig. 1(a).The sample is characterized by a dielectric function ε(r)
that we write as ε(r) = εb + εd(r) + δε(r), where εb denotes a uniform background, εd(r) is a large-scale deterministic
dielectric function varying on a scale Lε & λ, with λ the wavelength in vacuum, and δε(r) is a real random variable
describing a disordered distribution of small-scale scattering centers. We assume that δε(r) satisfies 〈δε(r)〉 = 0, the
brackets denoting a statistical average over an ensemble of realizations of the disordered scattering background, and
that the correlation function 〈δε(r)δε(r′)〉 is of the form f(|r − r′|/`ε), where f is a positive decaying function with
range close to unity. This defines `ε as the microscopic length scale of the disordered scattering medium, and we
assume `ε . λ. Note that this description is very general. For example by setting εd(r) = 0 we would describe a
purely scattering medium, as that represented in Fig. 1(b) (OCT is sometimes used to measure the extinction length
`e in such materials). By setting δε(r) = 0 we would describe large-scale objects in a uniform background.
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Figure 1: (a) Heterogeneous medium with large scale inhomogeneities immersed in a scattering background. (b) Purely
scattering medium with small scale fluctuations of the dielectric function around a uniform value εb. (c) Effective medium
characterizing the propagation of the average field.

In the statistical approach, in which the scattering background is treated as a random medium, the scattered field
is a random variable. In a given realization of the sample (deterministic large-scale objects immersed in one statistical
realization of the scattering background), the total field can be written E = 〈E〉 + δE. In OCT, one measures the
backscattered field Es = E − E0, E0 being the incident field, and we can also write Es = 〈Es〉+ δEs. In the regime
of weak-scattering characterized by the condition |δEs| � |〈E〉|, multiple scattering in the background scattering
medium can be described in the mean-field approximation. This approximation is based on well-established result in
multiple scattering theory [23], that are summarized in Appendix A. In the mean-field approach, the fluctuating part
δEs of the scattered field at point rD in the detector plane, and at frequency ω, reads

δEs(rD) = k2
0

∫
〈G(rD, r

′)〉∆ε(r′)〈E(r′)〉d3r′ , (1)

where k0 = ω/c is the wavenumber in free space, 〈G(rD, r
′)〉 is the average Green’s function connecting a point r′ in

the sample to the detection point rD, and the integration is over the volume of the sample. Here the average Green’s
function 〈G〉 and the average field 〈E〉 are defined as solutions of a propagation equation in an effective medium,
described by an effective dielectric function εeff , representing the average contribution of the random scattering
background (the detailed derivation of Eq. (1) is given in Appendix A). It is important to note that this effective
medium description is a rigorous result of multiple scattering theory [23, 24]. Noting that ∆ε(r′) = ε(r′)− εeff is the
local dielectric contrast between a heterogeneity in the sample and the effective medium, a clear physical meaning can
be given to Eq. (1): It expresses the fluctuating part δEs of the scattered field as the result of single scattering in the
effective medium, a result valid in the weak-scattering regime |δEs| � |〈E〉|. The mean-field approach differs from
the Born approximation by the renormalization of the background medium into an effective medium, that accounts
in particular for the decay of the average Green’s function due to scattering, as we shall see. The average field is
connected to the incident field E0 in the source plane by the relation

〈E(r)〉 = A

∫
〈G(r, rS)〉E0(rS) d2ρS (2)

where 〈G(r, rS)〉 is the average Green’s function connecting a point rS = (ρS , zS) in the source plane to an arbitrary
point r, A is a constant that we do not need to specify, and the integration is along the source plane. Inserting Eq. (2)
into Eq. (1) leads to

δEs(rD) = Ak2
0

∫
d3r′

∫
d2ρS 〈GT (rD, r

′)〉∆ε(r′)〈GT (r′, rS)〉E0(rS) . (3)
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In this expression, for the sake of clarity, we have denoted by 〈GT 〉 the Green’s function that accounts for propagation
through the optics in the sample arm, transmission at the effective medium surface, and propagation inside the
effective medium. The average scattered field at the detector is readily deduced from Eq. (2), and reads

〈Es(rD)〉 = A

∫
〈GR(rD, rS)〉E0(rS) d2ρS . (4)

Here, the average Green’s function 〈GR〉 accounts for propagation through the optics in the sample arm, and reflection
at the effective medium surface. For practical calculations, the average Green’s function in transmission or reflection
can be approximated using a simple model, as we shall see below.

III. FF-OCT SIGNAL

An OCT setup is based on a Michelson interferometer, as represented schematically in Fig. 2. Starting from
the source, the beam is divided by a beam-splitter to travel along two arms. The sample arm collects the field
backscattered from the sample. In the second arm, a reference beam is produced by reflection on a mirror. The
detector collects the intensity resulting from the interference between the sample and reference beams. In FF-OCT,
a full-field illumination is used in combination with an array of detectors (in practice a CCD camera) to record the
signal at multiple transverse locations in parallel, and produce an en face image. This means that both arms contain
a microscope objective, not represented in Fig. 2 for simplicity. The state of coherence of the light source plays a
crucial role in FF-OCT. Beyond the longitudinal sectioning given by the temporal coherence length (or equivalently
the spectral bandwidth), spatial coherence influences the lateral resolution, as well as the sensitivity to aberrations
in the sample arm [20]. In order to understand precisely the role of temporal and spatial coherence, we need to build
a model of the FF-OCT signal that includes the scattering model introduced in the previous section, and the main
features of the interferometric and broadband detection used in OCT.

Figure 2: Schematic view of a FF-OCT setup using a source with partial temporal and spatial coherence. The detector measures
the interferogram between the light backscattered from the sample, and the light reflected on the mirror. Illumination and
collection optics (such as microscope objectives) in the different arms of the interferometer are not represented, since the model
does not rely on a particular design. The z-axis of the reference frame is chosen so that the plane z = 0 coincides with the
input surface of the sample (referred to as sample plane), with z < 0 inside the sample. The z-axis follows the optical axis in
each arm, with the source, reference mirror and detector planes corresponding to z = zS , z = z0 and z = zD, respectively.

Under illumination by statistically stationary light, the intensity recorded by a Michelson interferometer is charac-
terized by three terms: The (time) average intensity of the reference field, the average intensity of the scattered field,
and the cross-correlation between them (interference term). Assuming |Es| � |E0|, the signal carrying information on
the sample is the interference term (the intensity of the scattered field is negligible, and the intensity of the reference
field only contributes as a background signal) [25]. In the frequency domain, the OCT signal measured at a given
point rD in the detector plane is

S(rD, ω) = E∗ref(rD)Es(rD) , (5)

where Eref and Es are, respectively, the complex amplitude of the reference and backscattered field at frequency ω,
the superscript ∗ denotes the complex conjugate, and the overline means a time averaging over the fluctuations of the
partially coherent source.
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The incident field E0 at a point r = (ρ, z) can be written in the form of a plane-wave expansion

E0(r) =

∫
d2q e0(q) exp[iq · ρ− ikz(q)z] , (6)

with kz(q) = (k2
0− q2)1/2. The z-axis is chosen such that the plane z = 0 coincides with the sample plane (the sample

filling the half-space z < 0), and the axis z > 0 follows the optical axis in each arm (see Fig.1(d)). Assuming a
weakly focused beam (the influence the numerical aperture is discussed in section V), we can perform a zeroth-order
paraxial approximation kz(q) ' k0, resulting in E0(r) = E0(ρ, z = 0) exp(−ik0z). The field in the reference arm is
assumed to coincide with the incident field longitudinally shifted by the mirror displacement. Under the same paraxial
approximation, we can write E∗ref(rD) = E∗0 (ρD, z = 0) exp[−ik0(zD − 2z0)] where z0 is the position of the mirror
along the z-axis in the reference arm and zD is the position of the detection plane along the z-axis in the detection
arm. From Eqs. (3), (4), (5) and the expressions of E0 and E∗ref above , we can write the FF-OCT signal as

S(rD, ω) = 〈S(rD, ω)〉+ δS(rD, ω) (7)

with

〈S(rD, ω)〉 = A exp[ik0(2z0 − zS − zD)]

∫
d2ρS 〈GR(rD, rS)〉W0(ρS − ρD) , (8)

δS(rD, ω) = Ak2
0 exp[ik0(2z0 − zS − zD)]

∫
d3r′

∫
d2ρS 〈GT (rD, r

′)〉∆ε(r′)

×〈GT (r′, rS)〉W0(ρS − ρD) . (9)

In these expressions we have introduced the cross-spectral density

W0(ρS − ρD) = E∗0 (ρD, z = 0)E0(ρS , z = 0) , (10)

that characterizes the state of coherence of the incident field in the sample plane z = 0 [26]. Here we assume that
the incoming intensity is uniform over the sample surface, and use a homogeneous Schell model such that W0 is a
function of ρS − ρD only [18].

It is clear that 〈S(rD, ω)〉 characterizes the effective medium, and does not carry information on ∆ε(r′). In order
to build the simplest model, we assume weak scattering, meaning that k0`e � 1 with `e the extinction mean free path
characterizing the decay of the average field (the exinction coefficient µe = 1/`e can also be used equivalently). The
effective medium, as seen by the average field, is described by a dielectric function εeff = εb + i/(k0`e) (this expression
being valid to first order in the small parameter 1/(k0`e)) [23, 24]. In this limit, the reflected average Green’s function
〈GR〉 simply describes reflection at the surface of the effective medium, and contributes as a uniform background.
Assuming a low index mismatch with εb ' 1, the contribution of 〈S(rD, ω)〉 becomes negligible. In the following we
focus on the contribution δS(rD, ω) that carry the relevant information on the image formation process. It is useful
to introduce the plane-wave expansion of the average Green’s function:

〈GT (r, r′)〉 =
i

2π

∫
d2q

g(q)

kz(q)
exp

[
iq · (ρ− ρ′) + ikz(q)|z − z′|

]
. (11)

We take kz(q) = (k2
0 − q2)1/2 for propagation outside the sample (for z, z′ > 0), and kz(q) = keff

z (q) = (εeffk
2
0 − q2)1/2

for propagation inside the sample (for z, z′ < 0). The filter g(q) plays the role of a pupil function that limits the
transverse wavevector q within a region bounded by the numerial aperture NA of the objectives (the simplest model
for g(q) is a disk with radius k0NA) [27]. For g(q) = 1 (infinite pupil), we recover the Weyl expansion of the
free-space Green’s function. To get an expression of the FF-OCT signal relevant for an analysis in terms of optical
transfer function, we insert Eq. (11) into Eq. (9), and perform again a zeroth-order paraxial approximation, using
kz(q) ' k0 outside the sample, and keff

z (q) ' k0 + i/(2`e) inside the sample. The result is easily written in terms of

the 2D Fourier transform of the signal, δ̃S(q, ω) =
∫
δS(rD, ω) exp(−iq · ρD)d2ρD/4π

2, and reads

δ̃S(q, ω) = −4π2A

∫
dz′ exp[2ik0(z0 − z′)] ∆̃ε(q, z′) exp(−|z′|/`e)

×
∫
d2q′g(q′)g(q + q′)W̃0(q′) , (12)

where ∆̃ε(q, z′) is the 2D Fourier transform of ∆ε(ρ′, z′), and W̃0(q′) is the 2D Fourier transform of W0(ρS − ρD).

Note that W̃0(q′) ∝ I0(q′), with I0(q′) the angular distribution of the incident intensity [26, 28]. Also note that this
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expression does not rely on any assumption regarding the optics in the illumination, reference and detection arms,
and does not depend on the definition of a focal plane for either illumination of detection (these features drive the
precise form of the Green’s function g(q)). In practice, in order to control the degree of spatial coherence in the
sample plane z = 0, one could choose to control the intensity distribution in the source plane z = zS and conjugate
this plane with the plane z = 0, but this practical choice does not influence the general form of Eq. (12).

A feature of OCT is to integrate the signal over a broad spectral range. For a statistically stationary source,
the broadband signal is obtained by integrating the different frequency components over the source bandwidth ∆ω.
Assuming that W0 and ∆ε have a weak dependence on ω, the spectral integration gives∫ ω0+∆ω/2

ω0−∆ω/2

exp[2ik0(z0 − z′)]dω = exp[2ik̄0(z0 − z′)] sinc[(z0 − z′)∆ω/c] ∆ω , (13)

where k̄0 = ω0/c, with ω0 the central frequency of the source. The sinc function, considered as a function of z′, is
centered at z0 with a width `ω = c/∆ω corresponding to the temporal coherence length of the incident light, and is
responsible for the longitudinal sectioning in OCT. When `ω � `e, we can use the approximation sinc[(z0− z′)/`ω] '
π`ωδ(z0 − z′). We endup with a closed-form expression of the 2D Fourier transform of the broadband OCT signal

δ̃S(q) =
∫

∆ω
δ̃S(q, ω)dω, that depends on the position z0 of the mirror and on the source bandwith ∆ω:

δ̃S(q) = −4π3Ac ∆̃ε(q, z0) exp(−z0/`e)

∫
d2q′g(q′)g(q + q′)W̃0(q′) . (14)

Expression (14) of the the FF-OCT signal implicitly involves different length scales, whose interplay is critical in the
analysis of the signal: The length scale `ε characterizing the microscopic random inhomogeneities in the sample, the
length scale Lε characterizing large-scale deterministic fluctuations of the dielectric function, the temporal coherence
length `ω and the spatial coherence length `c of the incident light. Expression (14) is similar to that previously derived
in Ref. [18]. The main difference is that our derivation includes a scattering model based on a mean-field approach,
that only relies on the weak-scattering assumption |δEs| � |〈E〉|, always satisfied when the scattered field remains
much smaller than the incident field. This approach goes beyond a first-order or second-order Born approximation,
by accounting rigorously for the propagation of the average field in a renormalized effective medium. An interesting
consequence is that the extinction of the signal with depth, due to scattering and absorption, emerges explicitly.

IV. SPATIAL COHERENCE AND RESPONSE FUNCTION

Expression (14) is an interesting starting point for the analysis of the role of spatial coherence on the image formation
in FF-OCT. To proceed, let us rewrite it in the compact form

δ̃S(q) = H̃(q) ∆̃εz0(q) , (15)

where H̃(q) ∼
∫
d2q′g(q′)g(q+q′)W̃0(q′) is the FF-OCT transfer function (we omit constant prefactors for simplicity),

and ∆̃εz0(q) = ∆̃ε(q, z0) exp(−z0/`e) is the weighted 2D Fourier transform of the dielectric contrast. The width of
the cross-spectral density W0(ρ) defines the spatial coherence length `c of the incident field in the sample plane z = 0.

When `c � Lε � `ε, the incident light can be considered fully coherent, which corresponds to W̃0(q′) ∼ I0δ(q
′), I0

being proportionnal to the incident intensity. The transfer function for spatially coherent illumination becomes

H̃c(q) ∼ I0 g(0)g(q) . (16)

The coherent transfer function H̃c(q) posseses the same spatial frequency content as g(q), and covers the spatial
frequency range q ≤ k̄0NA, leading to a transverse spatial resolution limit λ/(2NA), where λ = 2π/k̄0 is the central
wavelength of the incident field. The regime of spatially incoherent illumination corresponds formally to W0(ρ) ∼ δ(ρ),

or equivalently W̃0(q′) = I ′0. The transfer function for spatially incoherent illumination reads as

H̃i(q) ∼ I ′0
∫
d2q′g(q′)g(q + q′) . (17)

In practice, since `c cannot be made smaller than λ/2 under far-field illumination, the condition `c � `ε � Lε that
rigorously corresponds to W0(ρ) ∼ δ(ρ) is out of reach. Nevertheless, provided that FF-OCT is used to image the
large-scale inhomonegeities at the scale Lε, and not to resolve the small-scale random scattering centers, the condition
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of incoherent illumination can be relaxed to be `c ' `ε � Lε. The integral term in Eq. (17) shows that the spatial

frequency range encompassed by H̃i(q) is broader by a factor of two compared to coherent illumination, which is a
usual result in optical microscopy, leading to a theoretical resolution limit λ/(4NA). The results above, for coherent
and incoherent illumination, are identical to those previsouly established in Ref. [18], and in agreement with the
qualitative analysis of coherent and incoherent FF-OCT presented in Ref. [27].

Expressions (16) and (17) may also provide a theoretical frame to study the influence of aberrations in the sample
arm on the image quality, recently discussed in Ref. [20]. A precise study is beyond the scope of the present work.
Qualitatively, we can simply note that weak aberrations that would tend to squeeze the Green’s function g(q) in

Fourier space (without changing the cutoff frequency) would narrow the shape of H̃c(q), thus degrading the image
quality. For incoherent illumination, the convolution product in Eq. (17) reduces the sensitivity of the transfer function
to change in shapes due to weak aberrations, resulting in a better protection of the image quality.

V. DEPTH DEPENDENCE OF THE SPATIALLY AVERAGED SIGNAL

The decay of the signal with depth is a feature of OCT. For paraxial illumination and detection, and in a medium

with ∆̃ε(q, z0) independent of z0, the signal follows an exponential decay exp(−z0/`e), as described by Eq. (14). This
exponential decay can be used for the measurement of the extinction length in weakly scattering materials [29]. At
higher numerical aperture, a correction to a pure exponential decay is expected, that may also depend on the degree of
spatial coherence of the incident field. To address this question, we make use of a second-order paraxial approximation

kz(q) ' k0 −
1

2

q2

k0
, (18)

keff
z (q) ' √εeffk0 −

1

2

q2

√
εeffk0

' k0 +
i

2`e
− 1

2

q2

k0
+

iq2

4k2
0`e

, (19)

in the plane-wave expansions of the incident field [Eq. (6)] and of the average Green’s function [Eq. (11)]. Note that,
as a result of the mean-field approach, the paraxial approximation in the scattering medium amounts to replacing
k0 by

√
εeffk0. This strongly influences the dependence of the FF-OCT on the numerical aperture, as we shall see.

Following again the steps leading to Eq. (14), we end up with an expression of the FF-OCT signal that explicitely
accounts for the angular aperture of the illumination and detection beams. In order to discuss the depth dependence

of the spatially integrated signal, we consider δ̃S(q = 0), which can be cast in the following form (details of the
derivation are given in Appendix B):

δ̃S(q = 0) = −4π3Ac ∆̃ε(q = 0, z0) exp(−z0/`e)

∫
d2q′g2(q′)W̃0(q′) exp[−q′2z0/(2k̄

2
0`e)] , (20)

where k̄0 = ω0/c is the central wavenumber of the polychromatic incident field. This expression is well suited to
a discussion of the depth dependence of the integrated FF-OCT signal. Note that in practice, an exponential fit
to the signal is often used to estimate the extinction mean free path `e in statistically homogeneous and isotropic
scattering media. From Eq. (20), it is clear that at finite NA a deviation from a pure exponential decay exp(−z0/`e)
may be observed due to the dependence on z0 of the integral over q′. This integral contains several cutoffs. First,
the last exponential term gives a depth-dependent cutoff q′z0 ' k̄0(`e/z0)1/2. For z0 � `e, the integral is restricted
to vanishingly small q′, and a pure exponential decay exp(−z0/`e) is always expected in the tail of the signal versus
depth. Second, the angular spectrum of the Green’s function g(q′) produces a cutoff q′NA ' k̄0NA, showing that for
NA→ 0 a pure exponential decay is observed, in agreement with Eq. (14). Third, the Fourier transform of the cross

spectral density W̃0(q′) introduces a cutoff q′c ' 2π/`c that depends on the degree of spatial coherence of the incident
light in the sample plane. For `c → ∞ (spatially coherent illumination), a pure exponential decay is also observed.
More precisely, to prevent the exp[−q′2z0/(2k̄

2
0`e)] term in the integral to play a role, we need either NA� (`e/z0)1/2

(low numerical aperture regime), or `c � λ(z0/`e)
1/2 (coherent illumination).

This qualitative analysis is confirmed by numerical calculations of the spatially integrated signal using Eq. (20), as
shown in Fig. 3. A non-exponential decay is observed in the regime NA ' (`e/z0)1/2 ' λ/`c. The deviation from
a pure exponential decay is enhanced at high NA and low spatial coherence. Although the curves are displayed in
the regime z0 ' `e, we have verified that an exponential decay exp(−z0/`e) is recovered in any case when z0 � `e.
Numerical calculations based on ab initio simulations could extend the analysis beyond the weak-scattering regime
and second-order paraxial approximations used in this model. This is left for future work.
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Figure 3: Spatially integrated FF-OCT signal δ̃S(q = 0) versus the normalized depth z0/λ for different values of the spatial
coherence length `c and numerical apertures NA. The curves are normalized by their value at z0 = 0. The central wavelength
of the incident light is λ = 800 nm, the temporal coherence length is `ω = 1 µm, and the extinction length is `e = 8λ. The pupil

function g(q) is modeled by a Gaussian profile g(q) ∝ exp[−q2/(k̄0NA)2]. The cross-spectral density W̃0(q) in the Gaussian

Shell-model is W̃0(q) ∝ exp[−q2`2c/(4π2)]. (a): Signal for different degrees of spatial coherence with NA = 1. (b): Signal for
different values of `c and NA. The vertical dashed line corresponds to z0 = `e.

VI. CONCLUSION

In summary, we have developed a model of FF-OCT that includes a mean-field scattering theory, in addition to
a precise description of temporal and spatial coherence. The model describes the decay of the signal with depth
due to scattering and absorption, an essential feature in OCT imaging. It also permits an analysis of the interplay
between different length scales characterizing the scattering medium and the degree of coherence of the incident field.
Based on explicit expressions of the FF-OCT signal, we have discussed several features of FF-OCT imaging. We
have analyzed the influence of spatial coherence on the optical transfer function, and discussed the particular cases
of fully coherent and incoherent illuminations. We have also studied the depth dependence of the signal integrated
over the transverse directions, that not only limits the penetration depth in OCT, but is also used to measure the
extinction length in scattering materials. For spatially incoherent illumination, and/or with high numerical aperture
of the illumination/detection optics, deviations from a pure exponential decay exp(−z0/`e) can be observed. A pure
exponential decay is always recovered in the tail of the signal versus depth when z0 � `e. Our analysis provides a
clear frame for the use of the Beer-Lambert law for quantitative measurements of the extinction length in scattering
media. The model also provides a framework for a precise analysis of the role of aberrations generated by the optics
in the sample arm, or by the scattering medum itself, and for the development of advanced inverse reconstruction
procedures going beyond the first and second-order Born approximations.
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Appendix A: Elements of multiple scattering theory

In order to build a mean-field expression of the scattered field, we first consider a purely scattering medium with
dielectric function εb + δε(r), as represented in Fig. 1(b). We assume that the random variable δε(r), that describes a
spatial distribution of small-scale scattering centers, is statistically homogeneous and isotropic. An important result
of multiple scattering theory, states that the average field obeys a propagation equation in an effective homogeneous
medium, as represented in Fig. 1(c). We take this result as our starting point (for a derivation, see for example
Refs. [23, 24]). More precisely, the average field obeys

∇2〈E(r)〉+ k2
0εeff 〈E(r)〉 = 0 , (A1)

where εeff is the effective dielectric function that describes the average contributio of the random scattering medium.
Equivalently, the average Green’s function satisfies the Dyson equation

∇2〈G(r, r′)〉+ k2
0εeff 〈G(r, r′)〉 = −δ(r− r′) , (A2)

with an outgoing wave condition at infinity. This effective medium approach is strictly valid provided that `ε � λ,
meaning that non-locality in the effective dielectric function can be neglected, `ε being the microscopic clength scale
associted to δε(r) [23]. Interestingly, the imaginary part of the effective dielectric constant describes the attenuation
of the average field by scattering (and absorption), and defines the extinction mean free path `e such that Imεeff =
(k0`e)

−1. In absence of absorption, the extinction mean free path coincides with the scattering mean free path `s.
In the general situation represented in Fig. 1(a), in which large-scale deterministic objects are superimposed to the

random scattering background, the dielectric function is ε(r) = εb + εd(r) + δε(r). The total field obeys

∇2E(r) + k2
0ε(r)E(r) = 0 . (A3)

In order to obtain the equation satisfied by the fluctuating scattered field δEs = E − 〈E〉, we subtract Eq. (A1) to
Eq. (A3), which leads to

∇2δEs(r) + k2
0εeff δEs(r) = −k2

0[ε(r)− εeff ]E(r) . (A4)

Using the average Green’s function 〈G(r, r′)〉 defined in Eq. (A2), the solution to Eq. (A4) is shown to obey the
following integral equation:

δEs(r) = k2
0

∫
〈G(r, r′)〉[ε(r′)− εeff ]E(r′)d3r′ . (A5)

Assuming that scattering is sufficiently weak for the condition |δEs| � |〈E〉| to be valid, the above expression can be
approximated by

δEs(r) = k2
0

∫
〈G(r, r′)〉[ε(r′)− εeff ]〈E(r′)〉d3r′ . (A6)

Equation (A6) is a mean-field approximation to Eq. (A5). Physically, it describes the scattered field in one realization
of the medium as resulting from a single scattering process in the effective medium.

Appendix B: FF-OCT signal in the second-order paraxial approximation

In this appendix we develop the steps leading to Eq. (20). We start by performing the expansion (18) in Eq. (6),
resulting in the following expressions of the incident and reference fields:

E0(rS) = exp(−ik0zS)

∫
d2q e0(q) exp(iq · ρS) exp[iq2zS/(2k0)] , (B1)

E∗ref (rD) = exp[−ik0(zD − 2z0)]

∫
d2q e∗0(q) exp(−iq · ρD) exp[iq2(zD − 2z0)/(2k0)] . (B2)

Next we use expansions (18) and (19) in the expressions (11) of the average Green’s function. Here the expansion
to second order in q is performed only in the exponential term, keeping a zeroth-order expansion kz(q) ' k0 in the
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denominator that plays a minor role in the overall z dependence. Using the resulting expressions of E0, E∗ref and

〈GT 〉 into Eqs. (3) and (5), we obtain

δ̃S(q, ω) = −4π2A

∫
dz′ exp[2ik0(z0 − z′)] ∆̃ε(q, z′) exp(−|z′|/`e)

× exp[iq2(z′ − zD)/(2k0)] exp[−q2|z′|/(4k2
0`e)]

∫
d2q′g(q′)g(q + q′)W̃0(q′)

× exp[iqq′(z′ − zD)/k0] exp[iq′2(z′ − z0)/k0] exp[−(qq′ + q′2)|z′|/(2k2
0`e)] . (B3)

This expression extends Eq. (12) to incident and detection beams with non-negligible numerical apertures. We now
focus on the expression of the signal integrated over the transverse direction, which is obtained by taking q = 0:

δ̃S(q = 0, ω) = −4π2A

∫
dz′ exp[2ik0(z0 − z′)] ∆̃ε(q = 0, z′) exp(−|z′|/`e)∫

d2q′g2(q′)W̃0(q′) exp[iq′2(z′ − z0)/k0] exp[−q′2|z′|/(2k2
0`e)] . (B4)

It can be verified by a numerical evaluation that the integral over q′ weakly depends on frequency over a bandwidth
∆ω corresponding to a depth resolution on the order of one micrometer, which corresponds to `ω ' 1µm. Making
use of Eq. (13) in the limit `ω � `e, the signal integrated over frequencies becomes

δ̃S(q = 0) = −4π3Ac ∆̃ε(q = 0, z0) exp(−z0/`e)

∫
d2q′g2(q′)W̃0(q′) exp[−q′2z0/(2k̄

2
0`e)] , (B5)

where k̄0 = ω0/c is the central wavenumber of the incident field. This expression is Eq. (20) of the main text.
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[13] J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14,
1231–1242 (1997).

[14] R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427 (1996).
[15] M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical

coherence tomography,” Opt. Lett. 18, 950–952 (1993).
[16] J. Schmitt, A. Gandjbakhche, and R. Bonner, “Use of polarized light to discriminate short-path photons in a multiply

scattering medium,” Appl. Opt. 31, 6535–6546 (1992).



10

[17] C. M. Macdonald, U. Tricoli, A. Da Silva, and V. A. Markel, “Numerical investigation of polarization filtering for direct
optical imaging within scattering media,” J. Opt. Soc. Am. A 34, 1330–1338 (2017).

[18] D. L. Marks, B. J. Davis, S. A. Boppart, and P. S. Carney, “Partially coherent illumination in full-field interferometric
synthetic aperture microscopy,” J. Opt. Soc. Am. A 26, 376–386 (2009).

[19] S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband
optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. (USA) (2012).

[20] P. Xiao, M. Fink, and A. C. Boccara, “Full-field spatially incoherent illumination interferometry: a spatial resolution
almost insensitive to aberrations,” Optics letters 41, 3920–3923 (2016).

[21] A. Badon, D. Li, G. Lerosey, A. C. Boccara, M. Fink, and A. Aubry, “Smart optical coherence tomography for ultra-deep
imaging through highly scattering media,” Science advances 2, e1600370 (2016).

[22] A. Badon, A. C. Boccara, G. Lerosey, M. Fink, and A. Aubry, “Multiple scattering limit in optical microscopy,” Opt.
Express 25, 28914–28934 (2017).

[23] P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2010).
[24] E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2007).
[25] B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Autocorrelation artifacts in optical coherence

tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441–1443 (2007).
[26] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
[27] A. Sentenac and J. Mertz, “Unified description of three-dimensional optical diffraction microscopy: from transmission

microscopy to optical coherence tomography: tutorial,” J. Opt. Soc. Am. A 35, 748–754 (2018).
[28] Y. N. Barabanenkov and V. Finkelberg, “Radiation transport equation for correlated scatterers,” Sov. Phys. JETP 26,

587–591 (1968).
[29] R. Bocheux, P. Pernot, V. Borderie, K. Plamann and K. Irsch, “Quantitative measures of corneal transparency, derived

from objective analysis of depth-resolved corneal images, demonstrated with full-field optical coherence tomographic mi-
croscopy,” PLoS ONE 14, e0221707 (2019).


	I Introduction
	II Scattering model
	III FF-OCT signal
	IV Spatial coherence and response function 
	V Depth dependence of the spatially averaged signal
	VI Conclusion
	 Funding
	 Acknowledgments
	A Elements of multiple scattering theory
	B FF-OCT signal in the second-order paraxial approximation
	 References

