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Abstract

The current contribution proposes two quadratisnpatic and hexahedral, solid—shell elements
for the geometric nonlinear analysis of laminatedposite structures. The formulation of the
proposed solid—shell elements is based on a fhllgetdimensional approach combining the
assumed-strain method and the reduced-integragicmique. In particular, only translational
degrees of freedom are considered in the formulaid a preferential direction is chosen as the
thickness direction, along which an arbitrary numdseintegration points are arranged. Making
use of different physical local frames, these el@mmare coupled with fully three-dimensional
orthotropic constitutive equations, which allowsdaling multilayered composite structures with
only a single element layer through the thicknésseries of popular nonlinear benchmark tests
for laminated composite structures is performeddsess the performance of the proposed SHB
elements. Compared to reference solutions taken the literature, the results provided by the
SHB elements show excellent agreement. Moreovetherwhole, the proposed SHB elements
perform better than state-of-the-art ABAQUS elermegnthich have the same geometry and

kinematics, using comparable mesh discretizations.
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1. Introduction

In recent years, composite materials have beemasorgly employed in modern industries
due to their excellent characteristics, which redtdm the smart combination of superior
strength, high stiffness and lightweight. Considgrihese attractive properties, designers tend to
use composite materials as alternative to convealtisheet metals for thin structures to reduce
the product weight, while maintaining high mechahiperformance. Among various types of
composite materials, the fiber-reinforced compokitainates particularly attracted researchers’
attention. Thanks to the continuous developmentcafposite manufacturing techniques,
laminated composite materials have become amongtst favorite advanced materials. Such
laminated structures can be used to satisfy varengineering requirements, through the
combination of different stacking sequences. I field, much effort has been devoted to the
numerical analysis of laminated composite materaalsl structures. In particular, extensive
research work has been conducted in the literatuestablish theoretical solutions or to develop
efficient numerical methods for solving nonlineantosite structural problems.

Early investigations mainly focused on the theaedtanalysis of simple laminated plates. For
instance, Srinivas and Rao [1] proposed a unifiedce solution for bending, vibration and
buckling of thick orthotropic rectangular platesddaminates. Constrained by the computational
resources of that time, they only considered thallsistrain framework on the basis of
ReissnerMindlin’s thick plate theory. Concurrently, Pagai], Sciuva [3] and Khdeir [4]
derived the exact solutions for composite lamindtes the classic Kirchhoff theory. One can
also find in the literature other numerical applee: for the analysis of composite structures,
such as the spline interpolation method propose@hmBung and Kong [5], the meshless method
adopted by Wang et al. [6], or the glodatal higher-order theory developed by Wu and Chen
[7].

Subsequently, other researchers directed attertborards the development of efficient
composite shell finite elements. Based on the Lagjean formulation, Wagner and Gruttmann [8]
proposed a simple shell finite element, which isyvattractive both for static and dynamic
nonlinear analysis of composite structures. Patil ouratier [9] developed a higher-order
triangular finite element for linear and nonlinearalyses of multilayered plates, in which they
applied the Argyris interpolation for the considera of the transverse displacement and the

Ganev interpolation for the membrane displacemdsitare et al. [10] established a higher-order
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facet shell element, based on the higher-orderr stefarmation theory, for vibration analysis of
composite and sandwich laminates. Lee and Han {iEleloped a 9-node shell element,
combining the assumed natural strain (ANS) methadl Mindlin-Reissner’s theory, for forced
vibration analysis of orthotropic and laminated pmsite materials. In the work of Arciniega and
Reddy [12], a higher-order tensor-based shell el¢nfiermulation has been proposed using
Lagrangian interpolation in order to avoid membramel shear locking for typical laminated
composite problems. In conjunction with the AsyntigttéNumerical Method [13], Hu et al. [14,
15] proposed a one-dimensional finite element fer analysis of sandwich beams considering
layer-wise higher-order transversal displacememguyen-Van et al. [16] used a strain
smoothing technique in the formulation of a quadeital flat shell element, which was applied to
the analysis of buckling and vibration for compes#tructures. A seven-parameter high-
polynomial order continuum shell element was dewetbby Payette and Reddy [17] for the
simulation of the mechanical response of compasiedl structures, which requires displacement
degrees of freedom (DOF) only and fully three-disienal constitutive equations. More recently,
Choi [18] proposed a geometrically nonlinear skielte element based on a doubly curved shell
theory and von Karman’s large deflection theory tfoe dynamic/impact analysis of laminates.
Yu et al. [19] developed a two-dimensional finitereent model to investigate the instability
phenomena of sandwich plates using the classicethKoff assumptions in the faces and
enriched kinematics in the core. Yang et al. [2@pesed a new family of one-dimensional finite
elements for wrinkling analysis of thin films usiimler-Bernoulli’s kinematics and Carrera’s
unified formulation [21]. Huang et al. [22] adoptadrourier-based finite element model to study
the instability phenomena of sandwich plates.

From the above literature review, one can concthdea number of conventional or improved
degenerated shell elements are capable of simglatamious types of laminated composite
structures, due to their high efficiency and accyrddowever, some idealized assumptions are
sometimes made in their formulation, which may fithieir use in some particular composite
structural applications. Also, some locking phennajesuch as shear locking or membrane
locking, are often encountered in thin shell agilans, thus compromising the overall accuracy
and efficiency of the simulations. In order to amvent these locking phenomena, special
numerical treatments are required within thesel shehulations, which makes their numerical

implementation even more complex. Furthermore, melmell elements are not able to account



for thickness variation, and they cannot be diyectimbined with continuum solid elements, due
to the complex shell-type kinematics. Consequerftly, some particular complex structures,
transition elements should be developed to endweconnection between bulk and structural
zones (see, e.g., Liao et al. [23]).

To remedy the above-mentioned limitations, a netsradtive approach for modeling thin
laminated structures consists in the developmentsalid-shell elements, in which only
displacement DOF are involved. The sesblell concept combines both the advantages ofhe 3
formulation of solid elements and the desirableabvedr of traditional shell elements. These
advantages make the calculation of thickness vaniatery easy, as well as the connection with
conventional solid elements. Similar to classicalids and shell formulations, solidhell
elements are also likely to suffer from variousking phenomena (e.g., membrane, shear,
volumetric, thickness locking...). The latter are getly eliminated by resorting to different
numerical strategies, such as the reduced integragchnique (RI), the assumed strain method
(ASM), the enhanced assumed strain method (EA8)eoassumed natural strain method (ANS).
During the last decades, much effort has been ddvotthe development of efficient selghell
elements. Klinkel et al. [24] proposed a three-disienal shell element for the nonlinear analysis
of laminated structures, in which the ASM methodwaed to eliminate the membrane and shear
locking phenomena. A low-order schshell element was also developed by Vu-Quoc and Tan
[25] for the modeling of multilayer shell structsrevhich combines the EAS and ANS methods
in order to avoid locking effects. Quy and Matzelfeni[26] combined both the higher-order
shear deformation theory and the EAS method irr 8@id-shell formulation, so that to improve
the transverse shear behavior. On the other haackW et al. [27] also adopted the combination
of EAS and ANS methods to improve the behavior i tow-order hexahedral solishell
element, which was then applied to the modelingahposite multilayered structures. More
recently, Hajlaoui et al. [28] developed a newddahell element, using the EAS method and the
first-order shear deformation concept, for the lingkanalysis of functionally graded materials,
while Kpeky et al. [29] proposed an assumed-stoased solidshell element for the modeling of
viscoelastic sandwich structures.

In this paper, two quadratic prismatic and hexatlestilid-shell elements are proposed for the
modeling of multilayered composite structures. Ehekements belong to a class of saditell

(SHB) elements that have been originally developgd\bed-Meraim and co-workers [30-34].



This SHB element family consists of linear prisroaéind hexahedral elements (SHB6 and
SHB8PS) and their quadratic counterparts (SHB15%tB20). These SHB elements are based
on a fully three-dimensional formulation with anplane reduced-integration scheme and an
arbitrarily number of integration points along théeckness direction, which allows modeling thin
structures with only a single element layer. In &aglier works on the quadratic SHB elements
(i.e., SHB15 and SHB20), their formulation was negtd to the small strain framework, with
applications limited to linear isotropic elastic nbbmark problems [33]. In the current
contribution, however, the quadratic SHB15 and SeiB@lid-shell formulations are extended to
the nonlinear analysis of orthotropic materialsjolhallows the three-dimensional modeling of
multilayered composite structures with only a stngllement layer through the thickness.

The paper is organized as follows. In Section 2, general formulation of the proposed
guadratic solidshell elements is presented. Then, the performahte resulting SHB elements
is assessed, in Section 3, through a variety ofimmar benchmark problems for composite

laminates. Finally, the main conclusions and remare drawn in Section 4.

2. Formulation of the quadratic solid-shell (SHB) elements

Owing to several similarities in the formulationtbe prismatic and the hexahedral sedidell
elements (i.e., SHB15 and SHB20, respectively),ndiad formulation for both solieshell
elements is presented in this section, for the sdl@nciseness. This general formulation was
originally developed by Abed-Meraim et al. [33],thwh the framework of small strains and
linear isotropic elasticity, while it is extended the current work to the large strain framework

and composite-type anisotropic behavior.
2.1. Geometry and integration points

Fig. 1 illustrates the three-dimensional geomefrthe 15-node prismatic solidhell element
(SHB15) and the 20-node hexahedral sdleell element (SHB20), as well as the location of
their integration points. A special direction, dertbby ¢ , is chosen as the thickness direction,
along which an arbitrary number of Gauss integraioints may be arranged. Such a strategy is
generally very convenient for thin structures, aadicularly for laminated composite structures,

for which the whole thickness is modeled with calgingle element layer.
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(a) SHB15 (b) SHB20
Fig. 1. Reference geometry and location of integratiomsdior the SHB15 and SHB20

elements.
2.2. Kinematic fields and discrete gradient operato
As mentioned in the introduction, the SHB elemdmdse only displacements as degrees of
freedom at their nodes. Accordingly, the spatiardmatesx and the displacement field are

interpolated within the element using the classglape functions for quadratic prismatic and
hexahedral elements:

X =% NERD=D ¥ NEND) )
u =d N(&m()=i_q N&.7.4), (2)

where the lowercase subscriparies from 1 to 3, and represents the spatiaidioate directions,
while the uppercase subscripgoes from 1 ta, with n being the number of element nodes
(n=15 for the SHB15 element, and= 20 for the SHB20 element).

Combining the above equations with the expressibrihe shape functions leads to an
expansion of the displacement field which, whenleatad at the element nodes, can be written

in the following form:

d =a,stayx+ta X, ax+y, ¢h,, =123 3)

where df =(d,,d,,d,--,q¢ ) represent the nodal displacement vectors, while
X! = (X, X, X3, --, %, ) are the nodal coordinate vectors. Note that in (B).above, there is

summation over index , with a ranging from 1 to 11 for the SHB15 element, ararfrl to 16
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for the SHB20 element. Also, vecter = (1, 1,-- ]) is a fifteen-component constant vector in the
case of the SHB15 element, and a twenty-comporardtant vector for the SHB20 element. As
to vectorsh,, they are obtained by evaluating somefunctions at the element nodes. These
involved h, functions, whose components are functions of tbr@hcoordinatei{,n,() in the

reference coordinate system, are defined for thB1SHelement as:

{h=fi,m=f7(,i&=€f7,m=fni,*F-fz,hs:’72’”:ZZ' (4)

h =8¢, h=n*¢, N, =% h=nd?,
while for the SHB20 element, their expressionsgaren by:
h=&,h=nl, h=En, h=E h=n* h=0* h=&n{,

hy =&, h =8¢, No=n°¢, h=n"C, N,=E0% h=n{?, (5)
h, =&, hg=¢En°¢, he=¢&nd>.

By applying some preliminarily established orthoaidy conditions, and introducing the

: N ,
Hallquist [35] vectorsb. :6_ , with N the vector whose components are the shape
X |§=n={=0

functions N, , the expressions of the unknown constatjtsandc,; in Eqg. (3) are derived as:
a =b' @, c, =y, 0, (6)

where the detailed expressions of vectpgsfor the SHB15 and SHB20 elements can be found
in [33].
Then, the components of the linear part of tharstensore within the element can be easily

expressed as:
1
‘Eijza(dilNl,j-'-dlel,i)’ (7)

where, again, the lowercase subscripgadj range from 1 to 3, while the uppercase substript
goes from 1 tan. The linear part of the strain field given in E@),(which is defined as the

symmetric part of the displacement gradient, can be rewritten in a vector form as follows:
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quy d
u X
0.(u)= “* =B =B0d, |, (8)
S ux,y+uy,x dy
u,,+u,, z
ux,z+uz,x

where the discrete gradient operabbrtakes the following matrix form:

bl +h, v, 0 0
0 b +h, ,¥a 0
0 0 b' +h o7
B - . . . . zZ a, Z’Yﬂ . (9)
b, +h, v, b,+h, v, 0
0 by +h, v, by +h, v;
bl+h,vi 0 bi+h,y;

Note that in Eqgs. (7) and (9) above, the conventibmplied summation over the repeated

indices| anda , respectively, has been used.

2.3. Variational principle

The Hu-Washizu mixed variational principle, in conjunctiovith the updated Lagrangian
approach, is used in this work to construct theiaesl-strain formulations of the SHB15 and the
SHB20 solidshell elements. More specifically, the current assdrstrain formulations are
based on the simplified form of this three-fieldiaional principle, as suggested by Simo and

Hughes [36], which writes
5;1(5):]9 &' Bdo-a" 0% =0, (10)

where s denotes a variatiorg the assumed-strain rate,the Cauchy stress tensat,the nodal

velocities, and ® the external nodal forces.

The expression of the assumed-strain rate is diyen

e(x, t)=B, (11)



where matrixB is derived from the classical discrete gradiergrafrB through a projection
technique, in the aim of eliminating most lockingepomena (e.g., membrane locking, shear
locking, thickness locking, etc.).

Substituting Eg. (11) into the simplified form dfet Hu+-Washizu variational principle, and
taking the nonlinear part of the strain field irtonsideration, the expressions of the element

stiffness matrix and internal force vector are olgd as follows:

K., =erE‘;T [T (6) B dQ +K f it :erB‘T [6(z) dQ, (12)

geom?

where C(H) is the fourth-order tangent modulus describingdttbotropic elastic behavior of the

material, whose expression will be detailed in thbsequent subsection, ard,,, is the

geometric stiffness matrix, which originates frohe tnonlinear (quadratic) part of the strain
tensor.

It is worth noting that, because no noticeable ilngkhas been observed when evaluating the
proposed elements on selective benchmark problamgrojection has been applied to their
discrete gradient operator. Additionally, the as@yof stiffness matrix rank deficiency did not
reveal any potential zero-energy hourglass modes aaocordingly, no stabilization against
spurious kinematic modes is required for the predaguadratic solicshell elements. These are
major differences with the linear versions of th¢BSelements, since no additional treatments are
required in the formulation of the proposed quadr&HB15 and SHB20 elements, thereby

simplifying their numerical implementation.

2.4. Definition of the local frames for the SHBide$hell elements

In order to extend the earlier formulations of thuadratic SHB elements to the framework of
large strains and orthotropic elastic behavior domposite materials, two local frames are
defined with respect to the global coordinate syst&ach local frame is orthogonal and is
identified by its rotation matriR , which allows transferring the stress / strairntestand all
internal variables of the element from the localrie to the global one, and vice versa. Fig. 2
illustrates the local frames used in the formulatd the proposed SHB elements. The first local
frame, denoted as the “element frame”, is attacbhete element mid-plane associated with each

integration point. In such an element frame, thetfeorder orthotropic elasticity tens@{(d) is



specified for each ply that constitutes the compdsiminate, withg being the fiber orientation
angle with respect to the orthotropy directionse Becond local frame is the so-called “material

frame”, in which the constitutive equations of thaterial are formulated.

C thickness direction
@ integration points

¢
n

“global frame”

Fig. 2. lllustration of the local frames used in the fotation of the SHB solidshell elements.

2.5. Orthotropic elastic tangent modulus

Unlike traditional shell elements, where the platress assumption is used in their
formulation, the proposed solishell elements are based on a purely three-dimeaisapproach,
with the consideration of fully three-dimensionahstitutive laws. This interesting feature makes
the SHB elements very attractive, as they allow rBbdeling of thin structures using only a
single element layer. In this work, the quadratidBSelements are formulated within the
framework of large strains and coupled with ortbpic elastic behavior, which allows extending
their application range to the 3D nonlinear analgdgicomposite laminates.

The rate form of the stresstrain relationship can be expressed by the foligwiypoelastic

law, defined in the material frame:

6=C(0): D°, (13)
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where D° is the elastic strain rate tensor. The fourth-nmfhotropic elasticity tensaE(6) is

specified with respect to the local element fraam& can be expressed as follows:
C(6)=T(8)H T (6)", (14)
where the fourth-order tensét represents the elastic compliance of the orthatropaterial,
which is defined in the fiber reference axes,, m,, m,), with m, being the fiber direction,

m, the transverse direction, amd, the normal to the ply (see the illustrative Fig. Bs

expression depends on the engineering constatite @ly and has the following form:

L
E E E
_@ i —@ 0 0 0
E E E
_@ _@ i 0 0 0
.| E E E
o o o X o ol (15)
G,
1
O 0 ©0 0 — 0
GZS
O 0 0 0 0 Gli
L 3]

where E; represents the Young modulus in th direction,v, is the Poisson ratio associated

with the i-th andj-th directions, ands,,, G,; and G,; are the shear moduli. Furthermore, the

thermodynamic constraint on the elastic constamtifthotropic materials, which is expressed

by the relationv, E, = v E; , should always be satisfied.
The rotation matrixT (6) in Eq. (14), which allows mapping the orthotroplesticity tensor

from the fiber reference axes to the local elenfimamhe, takes the following form:
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c s 0 2cs 0O O
s ¢ 0 -2s 0 O
0 0 1 0 0O O
T(8)= , 16
() -cs ¢s 0 ¢c*°-s> 0 O (16)
0 0 O 0 -S S
10 0 0 O -S C|

(b) SHB15 prismatic element

Fig. 3. Schematic representation of the fiber orientatioitls respect to the local element frame.

Several techniques can be adopted for the modefinqultilayered composite structures using
solid-shell elements. The simplest one consists in digorg the entire thickness with one
element layer per ply, which leads in the end tonasly element layers as plies. However, this
technique leads to a large number of degrees efifia for the composite structure in the case of
refined in-plane meshes, which in turn significanticreases the computational time. Another
technigue can be used, which is based on stackmglifferent composite plies within a single

solid-shell element. In this latter case, each ply is efedl using one integration point and,
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therefore, the stiffnegwmatrix associated with the entire thicknessadculatecusing the classical
Gauss integration scheroger all integration poin. This alternativéechniqui, which is adopted
in this work, allows for 3Dmodelingof multilayered composite structurusing only a single
solid-shell elementhrough the thickne.

The numerical implementation of this techniqudescribed belowAt each integration poir

of a given element, the localement frame, which is defined by its uditections(ef, e, é) is

computed using theoordinates of the element no, as illustratedn Fig. & for the SHB20 and
SHB15 elements. Once tléement frame is builthe orthotropicelasticity tensois calculated
for each ply (i.e.at each integration point) in tlocal element framesingEq. (14). Then, this
operation is repeatefr all pliesof the composite laminate, as shown in Fig. 4, wilallows

consideringseveral stacking sequences of pwithin a single elemenaye.

Fig. 4. lllustration ofthe stacking sequence technidor themultilayered composite matelr.
3. Benchmarks problemsand simulation results

The proposedjuadratic SHB elements ve been implemented intihe finite element cod
ABAQUS/Standard via UsefElement (UEL) subroutinesn this section, irepresentative set of
numerical benchmark tests chosen to assess their performaicehe context of composi
structure applications. Afinite elemenimodels of the subsequent teats discretized using tt

following nomenclature: dr hexahedral elements, meshes yxN2;xN3; elements are adopted,

13



where N denotes the number of elements in the length titrgc\,, is the number of elements in
the width direction, and Ns the number of elements in the thickness dioactivhile for meshes
with prismatic elements, the nomenclature adope8hixN,x2)xNs, which corresponds to twice
the total number of elements involved in hexahedrased meshes, due to the subdivision of
each hexahedron into two prisms. Since only a si@HB element layer is used to model the
entire thickness of composite laminates, the pat@anig is set equal to one for all simulations.

In order to demonstrate the capabilities of thedgatec SHB elements, all simulation results
are compared, on the one hand, to reference satutaken from the literature and, on the other
hand, to the results provided by ABAQUS quadratiidselements as well as ABAQUS linear
solid-shell elements, using the same in-plane meshese M@t no quadratic sohghell
counterparts exist in the ABAQUS software. The dpsion of all finite elements involved in
this paper is given in Table 1. It is worth notigit the quadratic hexahedral ABAQUS element
(C3D20) is able to model composite laminates witlyca single element layer through the
thickness, which corresponds to the same strategg for the proposed SHB elements. However,
this is not the case for the quadratic prismaticAGQRJS element (C3D15). Because the latter is
not able to model composite laminates with onlyirgle element layer through the thickness,
one has to resort to the alternative strategy, lwicnsists in using as many C3D15 element
layers as plies. Note also that, in the followingudations, the obtained numerical results that are
achieved with the designed meshes correspond toeaheerged solutions. Moreover, the total
number of increments and associated number oftitess NINC and NITER, respectively,
required to obtain the converged solutions are rtefdoat the end of the simulations, which
allows evaluating the efficiency and convergencéhefproposed SHB elements with respect to
their ABAQUS counterparts. To achieve this, thead#fautomatic incrementation procedure in
ABAQUS is adopted for both the SHB and ABAQUS elatsewith initial and maximum time

steps equal to 0.1 and 1, respectively.
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Table 1

Prismatic and hexahedral finite elements usedarsitmulations.

15-node prismatic sohlighell element with a user-defined number of

SHB15 through-thickness integration points
Prismatic 15-node prismatic solid element with three integrapoints through
C3D15 .
elements the thickness
6-node prismatic solieshell element with a user-defined number of
SC6R ) ) . i
through-thickness integration points
20-node hexahedral solishell element with a user-defined number
SHB20 ; ; . :
of through-thickness integration points
Hexahedral 20-node hexahedral solid element with three inteégrgoints
C3D20 .
elements through the thickness
SC8R 8-node hexahedral sotidhell element with a user-defined number of

through-thickness integration points

3.1. Cantilever plate with ply dropoffs

It is well known that traditional shell elementseawvidely used in the literature for the

simulation of composite structures due to theihhedficiency and accuracy. However, they are

not able to model composite laminates with zonegnigavariable thickness, which is the case of

the present nonlinear cantilever plate test with grlopoffs. Therefore, only continuum finite

elements, such as the proposed salell ones, are capable of modeling this type ofijpasite

structures that require a three-dimensional reptatien of the geometry.

Fig. 5 illustrates the geometry of the compositetitaver plate, with three ply dropoffs. Each

of these three ply dropoffs is modeled with a snfghite element layer, and contains two plies

with fiber directions oriented at -45°/45° from thettom to the top with respect to the length

direction. Hence, the thick end (clamped end) doataix plies, while the thinnest end (free end)

contains two plies. The cantilever plate is sulsigcto a bending forc&=6x10 I, with h

being the thickness of each ply (all plies havedame thickness). The engineering constants of

the orthotropic material areE,, =25%x10° , E,,=E,,=10° , V,=V;;=V,,=02 , and

G,, =G, =G,, = 05x10°. The length of the plate is=12, and the width i$©=6, with the top

15



layer removed after successive dropoffs at thedinatesx=4 and x=8 in the length direction.
Three different values for the ply thickness aresigered, i.e.h = 0.1, 0.01, and0.004.

For the hexahedral elements (i.e., SC8R, SHB20CG812R0), the plate is discretized using six
elements in the length direction and three elemanthe width direction. In the case of the
prismatic elements (i.e., SC6R, SHB15 and C3D1%)kl2ments in the length direction and six
elements in the width are used. The obtained filedlections, normalized with respect to the
reference solutions given in [25], as well as thquired NINCs and NITERs are reported in
Table 2 and Table 3, respectively, for the thregetipicknesses considered. One can observe that,
in the case of ply thickness=0.1, both SHB and ABAQUS elements predict well the
maximum deflection of this composite cantilevert@lavith equivalent NINC and NITER (see
Table 3). However, for smaller thicknesses of plies, large length to thickness ratibgh),
the quadratic SHB elements as well as the ABAQUI&Isshell elements provide the best
predictions with very high accuracy, while the gt ABAQUS solid elements reveal their

limitations in modeling very thin 3D structures.

Fig. 5. Cantilever plate with ply dropoffs.
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Table 2
Normalized deflections for the cantilever platehwply dropoffs.

aspect ratio

Ply thickness L/h SC6R C3D15 SHB15 SC8R C3D20 SHB20
0.1 120 1.0684 1.0111 0.9954 1.1258 1.0003  0.9950
0.01 1200 0.9865 0.9317 0.9980 0.9898 0.6732  1.0061
0.004 3000 0.9851 0.8338 1.0086 0.9985 0.4644  9.009
Table 3
NINC and NITER required by the SHB and ABAQUS elatsdor the cantilever plate with ply
dropoffs.
Ply thickness Element SC6R  C3D15 SHB15 SC8R  C3D20HB28
NINC 16 14 17 20 14 17
01 NITER 74 64 93 92 62 94
NINC 47 24 40 46 15 43
001 NITER 203 92 200 207 73 214
0.004 NINC 67 21 57 74 14 60
NITER 292 103 264 280 68 295

3.2. Cantilever bending of a laminated beam

As illustrated in Fig. 6, a cantilever laminatecive which is subjected to a bending load at its
free end, is analyzed in this section. Four difiéitacking sequences with respect to the length
direction are considered for the laminated beae, 0°/90°/0°], [30°/-60°/-60°/30°], [-45°/45°/-

45°/45°] and [90°/0°/90°). The engineering constanitthe orthotropic material afg, =10°,

E,, = Ey = 0.3x10°, Vj, =Vj3 =V,, = 025, G,, = G, = 0.15x10°, G,, = 0.12x10°.
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Fig. 6. Cantilever laminated beam subjected to a bendiad. |

Fig. 7 depicts the loadieflection curves obtained with the SHB and ABAQEIBments,
along with the reference solutions taken from [1Fhe NINC and NITER required by all
elements are reported in Table 4. Overall, oneotmerve that both the proposed quadratic SHB
elements and ABAQUS elements show excellent agneemath the reference solutions
corresponding to the four stacking sequences. Maredhe NINC and NITER required by the
SHB elements are relatively equivalent to thoselved by ABAQUS elements, which reveals

the good convergence of the proposed elements.
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Fig. 7. Load-deflection curves for the cantilever laminated beam
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Table 4
NINC and NITER required by the SHB and ABAQUS elasdor the cantilever laminated

beam.

Stacking sequenceElement  SC6R C3D15 SHB15 SC8R C3D20 SHB20

NINC 17 9 18 16 13 18
[0°/90°/0°]
NITER 82 50 86 80 63 88
NINC 21 16 23 21 17 24
[30°/-60°/-60°/30°]
NITER 111 83 119 110 90 127
21 12 24 22 17 21
[-450/450/-450/45°]
NITER 108 80 118 101 92 109
NINC 23 17 27 26 22 30
[90°/0°/90°]
NITER 104 95 138 122 115 147

3.3. Clamped laminated square plate under uniforesgure

In this nonlinear benchmark problem, a fully clahpeminated square plate is subjected to a
uniformly distributed pressure, as illustrated ig.B. The laminated square plate is made of four
plies, which are stacked with the following symneesequence [0°/90°/90°/0°]. The length-to-
thickness ratioL/t of the square plate is set equal to 125. The eeging constants of the

orthotropic material aréE,, =1.8282x10°, E,, = E,, =1.8315x10°, V,, =V, =V,; =0.23913

G,, =G, = G,, = 3.125x10°. Considering the problem symmetry, only one quarteéhe plate is
discretized. In order to compare the numericalltesuth the reference solutions taken from the
literature, the predictions are depicted in terrhsxan-dimensional loaedisplacement curves,

which are based on the dimensionless load parargetét/t)* q/E22 and the dimensionless

displacementw =w/t , where q and w are the uniform pressure and the out-of-plane

displacement at the central point of the squareepl@spectively. Fig. 9 shows the simulation
results obtained with the SHB and ABAQUS elemealisng with the reference solutions taken
from references [37] and [38], while the requirelN and NITER are listed in Table 5. It can

be seen that the proposed SHB elements performvwetyvith respect to the reference solutions,
which is also the case for the ABAQUS elementd)caigh the C3D15 element requires more

finite elements in the mesh, thus involving ovemllarger number of degrees of freedom.

19



Moreover, the predicted deflections are achieveth wiguivalent NINC and NITER for all

investigated elements, which proves again the goodergence of the proposed SHB elements.

30c T T T T T T T I/ 30c T T T T T T T T
/
/e

250t o et 72ER I A A
| e---- C3D15 (%5%x2)x4 (A g | e---- C3D20 55x1 /
8 200t g 8 200} g
k] — SHB15 (%5x2)x1 S —— SHB20 55x1 4
a - - SC6R (B5x2)x1 2 - - SC8R H5x1 4
2 150} / 4 2 150- / .
S /o S
g 100} ’ 1 5 10 7
S £ 7~
[a) [a)]

50} - 50} .

1 1 1 1 1 1

0 1 1 Il Il Il O Il Il Il 1 1
00 02 04 06 08 10 12 14 16 18 00 02 04 06 08 10 12 14 16 18
Dimensionless displacemewt Dimensionless displacemewt

(a) prismatic elements (b) hexahedral elements
Fig. 9. Non-dimensional loattlisplacement curves at the center point for theratad square

plate.
Table 5

NINC and NITER required by the SHB and ABAQUS elasdor the laminated square plate.

Element SC6R C3D15 SHB15 SC8R C3D20 SHB20
NINC 6 6 6 6 6 6
NITER 16 18 18 18 18 20
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3.4. Slit laminated annular plate

The slit annular plate problem is considered inlitezature as a popular benchmark test for
the performance assessment of finite elements enfridimework of large displacements and
rotations (see, e.g., [12, 17, 39—-42]). This annpilate, as illustrated in Fig. 10, is clampedra o
end, while the other free end is subjected to @ $ihear load P. The inner and outer radii of the

annular plate are equal ®, =6 and R, =10, respectively, while the thicknesstis 0.03. Two

stacking sequences with respect to the radius tiire@are analyzed here for the composite

laminate, i.e., [0°/90°/0°] and [90°/0°/90°]. Thyieeering constants of the orthotropic material
are E,=2x10 , E,,=E,=6x10° , Vv,=Vv;=03 , V,=025, G,=G,=3x10° ,
G,, = 24x10°. Fig. 11 reports the loadut-of-plane vertical deflection curves at the esrpoint

B of the annular plate, as obtained with the SHB &BAQUS elements, along with the
reference solutions taken from [12, 17], while tberresponding NINC and NITER are
summarized in Table 6. It can be seen that thematis SHB15 element shows excellent
agreement with the reference solutions, whichge #ie case for the prismatic C3D15 ABAQUS
element. For the latter, one recalls that thremel# layers are required to model the three plies
of the laminated annular plate, while only a singlger is used for the proposed SHB elements.
Note that a finer mesh is required for the prism&C6R ABAQUS solidshell element in order

to achieve an accurate solution. As to the hexahedements, Fig. 11 reveals that the proposed
SHB20 element provides the closest predictiond) véspect to the reference solutions, along the
entire loading history, while it requires slightlyigher NINC and NITER than ABAQUS

elements to obtain accurate solution (see Table 6).
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Table 6
NINC and NITER required by the SHB and ABAQUS eletsdor the slit laminated annular
plate.

Stacking sequenceElement  SC6R C3D15 SHB15 SC8R C3D20 SHB20

NINC 52 29 38 58 29 63
[0°/90°/0°]

NITER 261 159 213 260 163 305

NINC 87 36 60 86 38 81
[90°/0°/90°]

NITER 409 215 292 390 213 407

3.5. Pinched laminated semi-cylindrical shell

A pinched semi-cylindrical shell, subjected to anaentrated force at its free end, is
considered here to assess the performance of tipeged SHB elements in the context of curved
composite structures. The geometric dimensions thedboundary conditions of the semi-
cylindrical shell are represented in Fig. 12. Twacking sequences with respect to the axial
direction of the semi-cylinder are considered Herghe composite laminate, i.e., [0°/90°/0°] and
[90°/0°/90°]. The engineering constants of the atrdpic material areE, =20685 ,

E,, =E;;=517125, v, =V,;;=V,, = 03, G, =G; =G,; =7956. Owing to the symmetry, only

one half of the model is discretized. Fig. 13 deptbe loadvertical displacement curves at the
loading point A, which are obtained using the SHRI sABAQUS elements, along with the
reference solutions taken from [42, 43], while Ealdl reports the corresponding NINC and
NITER. It can be seen that the results obtainet thi¢ SHB elements are in excellent agreement
with the reference solutions along the entire Iogdhistory, while the results given by the
prismatic C3D15 ABAQUS element show some discrejgsnavith respect to the reference
solutions at large displacements. As to ABAQUSdsalhell elements (i.e., SC6R and SC8R),
the latter provide the farthest results with resgecthe reference solution. Note also that the
prismatic C3D15 ABAQUS element requires the highd#iiC and NITER to achieve the
ultimate solution, while comparable convergencenliserved for the SHB elements and the
hexahedral C3D20 ABAQUS element (see Table 7).
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Fig. 12.Pinched laminated semi-cylindrical shell.
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Fig. 13.Load-displacement curves for the pinched laminated sstmdrical shell.
Table 7

NINC and NITER required by the SHB and ABAQUS eletseor the pinched laminated semi-

cylindrical shell.

Stacking sequenceElement SC6R  C3D15 SHB15 SC8R  C3D20 SHB20

NINC 41 85 38 30 47 47
[0°/90°/0°]

NITER 224 496 213 169 287 302

NINC 47 105 60 35 59 51
[90°/0°/90°]

NITER 254 594 202 187 326 344
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3.6. Pinched laminated hemispherical shell

Fig. 14 depicts a free laminated hemisphericall shigh a 18° circular hole at its pole. The
shell is subjected to a pair of alternating forae®0° intervals. The radius and the thickness of
this thin hemispherical shell are equal to 10 a8 ,0respectively. This shell is made of a single
ply of fiber-reinforced laminate, with fiber diréahs aligned to the circumferential direction. The
engineering constants of the orthotropic materiat asee [44]) E,, =2046x10° ,
E,,=E; = 4.092x10°%, V,, =V;3=V,; =0.313, G,=G;= 2.53704x10° , G, = 1.26852x10° .
Considering the problem symmetry, only one quartéhe shell is discretized.

The loaddisplacement curves at points A and B (see Fig, @f)ch are obtained with the
SHB and ABAQUS elements, are depicted in Fig. Xn@lwith the reference solution taken
from [44], while Table 8 provides the correspondiNtNC and NITER. Note that the final
displacements of points A and B, which are of thee order of magnitude as the shell radius,
indicate the large displacements and rotationslueebin this test (see also the final deformed
shape of the hemispherical shell in Fig. 16). Omgain, one can notice the excellent agreement
between the results obtained with the proposed 8lgBients and the reference solution. Note
also that these accurate results are obtainedNWIC and NITER that are quite similar to those
involved by ABAQUS elements (see Table 8). Howevaithough the adopted meshes
correspond to converged results, the simulationltegiven by ABAQUS elements fall far from
the reference solution, showing the limitations ABAQUS solid-shell and quadratic solid

elements in modeling this severe test, which ineslstrong geometric nonlinearities.

free

1ce

Fig. 14.Pinched laminated hemispherical shell.

25



Loac

16c T T 'I T T / , T T 16( T T 'l II T / B T T
1 / /'\ . / "
140+ U=+ V— 1 140+ u,—7 N .
/ l' A X ’
"/ ’ /. ’ ;1 ///‘\-V/
120+ bop, . 120 LI ® 1
,' / ', I' / ',
100 FP At ] 100 o ]
K S
80} a4 1 g sof S -
A 3 S
60+ S /7 T 60+ K ,/’ b
a0l ,,/ Ir = Ref. [44] ] 40k ',:/,’/ = Ref. [44] |
VSR C3D15 (4&48x2)x1 oS C3D20 1x12x1
20r 7 —— SHB15 (4&48x2)x1 1 20+ .:,'/’ —— SHB20 1X12x1 -
0 A || - SCoR (484821 o=t .~ - SC8R 12124
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Displacements Displacements

(a) prismatic elements (b) hexahedral elements
Fig. 15.Load-displacement curves at points A and B for the peaclaminated hemispherical

shell.

Table 8

N

INC and NITER required by the SHB and ABAQUS elatsdor the pinched laminated

hemispherical shell.

Element SC6R C3D15 SHB15 SC8R C3D20 SHB20
NINC 9 10 10 14 10 10
NITER 51 56 73 65 52 75

Fig. 16.Undeformed and final deformed shapes of the pihd¢dminated hemispherical shell.
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3.7. Hinged laminated cylindrical roof

Fig. 17 depicts a cylindrical roof with two hingsttaight sides (the two other curved sides
being free), which is subjected to a concentrabedl lat its center. Two different thicknesses for
this hinged roof are considered, which correspand thick roof with t = 12.7 and a thin roof
with t = 6.35. Because this nonlinear benchmarkitemlves geometric-type instabilities (limit-
point buckling), the Riks path-following method &tiger with a fixed arc length is adopted to
follow the load-displacement curves beyond the limit points. Couneatly, the NINC and
NITER required by all finite elements are not shofen this test (see [42]). Four different
stacking sequences with respect to the lengthttbreare considered for the composite laminate,
i.e., [0°/90°/0°], [90°/0°/90°], [30°/-60°/-60°/BO&nd [-45°/45°/-45°/45°]. The engineering
constants of the orthotropic material &g =3300, E,, = E;; =1100, v, =Vv,;; =V,; = 025,

G, =G,;; =660, G,;, =440. Considering the problem symmetry, only one quadk the
cylindrical roof is discretized for the stackinggsences [0°/90°/0°] and [90°/0°/90°], while a
complete model is used in the simulation of theitertes with the stacking sequences [30°/-60°/-
60°/30°] and [-45°/45°/-45°/45°]. It is worth ngtithat two element layers are required to model
this cylindrical roof with the ABAQUS linear sokghell elements (i.e., SC6R and SC8R), since
the lateral straight sides are hinged on the mitasa nodes. By contrast, only a single element
layer is used with the quadratic elements, thaokbe availability of mid-surface nodes in these
guadratic elements.

The simulation results in terms of leacrtical displacement curves at the central poirdfA
the thick and thin-hinged cylindrical roofs are oglpd in Figs. 1821. From these figures, it can
be seen that for the prismatic elements, the esldtained both with the proposed setilell
element SHB15 and with the ABAQUS C3D15 solid eletm&re in good agreement with the
reference solutions taken from [12, 42], while &BRAQUS SC6R soligshell element provides
the farthest results. For the hexahedral elemdrmagever, the proposed SHB20 setthell
element provides the closest results with respethe reference solutions, while the simulation
results given by the ABAQUS C3D20 solid and SC8Rdsshell elements fall most often far
from the reference solutions, thus revealing thmitditions of these hexahedral solid and
solid-shell elements in modeling this type of limit-pobickling problem (see, e.g., Figs. 18b,

21b-d). To summarize, the snap-through and snak-laenomena, which are exhibited by the
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present hinged laminateclylindrical rooi are notwell captured by theABAQUS elements
(C3D20, SC8R and SC6R¥hereasthey are well reproducezh the wholeby the proposed SHB
elements.
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Fig. 17 Hinged laminated cylindrical roof.
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Fig. 21.Load-vertical displacement curves at the central poifiorAthe thin laminated
cylindrical roof (i.e., [30°/-60°/-60°/30°] and $%45°/-45°/45°], with t = 6.35).

3.8. Pull-out of an open-ended laminated cylindritzell

The last numerical example selected in this papea iwell-known benchmark problem
consisting in a pull-out of an open-ended laminatgdahdrical shell. As illustrated in Fig. 22, the
open-ended thin cylindrical shell is pulled by arpaf radial forces, which results in large
rotations and displacements during the stretchimggss (see the final deformed shape of the
cylindrical shell in Fig. 23). Two different staclj sequences with respect to the circumferential

direction are considered for the composite laminiage, [0°/90°] and [90°/0°]. The engineering

constants of the orthotropic material arg&;, = 305x10° , E,, =E., =105x10" ,
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Vi, =V =V, =0.3125 G,, =G,, =G,, =4x10°. Owing to the symmetry of the problem, only
one eighth of the cylinder is modeled.

Note that, due to the strong geometric nonlinezgitnvolved in this benchmark problem, a
fixed incrementation scheme is adopted insteati@tiefault automatic scheme in order to obtain
accurate results. Consequently, the NINC and NITEguired by all finite elements are not
shown for this test. The simulation results in temwhload-radial displacement curves at points A,
B and C (as depicted in Fig. 22), which are obthiwéh the SHB and ABAQUS elements, are
reported in Figs. 24 and 25 along with the refeeesmlutions taken from [44, 45]. Once again,
the proposed SHB elements successfully pass timshbeark test as compared to the reference
solutions, which is also the case for the prism@B®©15 ABAQUS element, although the latter
requires two element layers in the thickness doactFor the hexahedral C3D20 ABAQUS
element, however, some differences with respedh¢oreference solutions may be observed,
especially in the transition zone marked by thepghaough point. As to the ABAQUS solid—
shell elements (i.e., SC6R and SC8R), the lattevige the farthest results as compared to the
reference solutions (see Figs. 24 and 25).

Fig. 22.Geometry and boundary conditions for the open-éna®inated cylindrical shell.
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Fig. 23.Undeformed and final deformed shapes of the opeled laminated cylindrical shell.
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Fig. 24.Load-radial displacement curves at points A, B and GHeropen-ended laminated
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4. Conclusions

In this paper, two quadratic (prismatic and hexatl@dassumed-strain based solid—shell
elements, denoted as SHB15 and SHB20, respectihalye been proposed for the three-
dimensional modeling of multilayered composite sties. Following the earlier works on the
family of SHB elements, the formulation of thesédseshell elements is extended in this work to
the geometric nonlinear analysis of laminated casitpanaterials. These elements are based on a
fully three-dimensional framework, with only traagbnal degrees of freedom, which allows
accounting for the various through-thickness phesrmanwithout the well-known restrictions
associated with plane-stress assumptions. The tiregsubHB elements, which have been
implemented into the finite element code ABAQUSI8iard, are able to model multilayered
composite structures using only a single elemamrithrough the thickness. The performance of
the proposed quadratic solid—shell elements has kessessed through several popular
benchmark problems for geometric nonlinear analgéifaminated composite structures. The
simulation results reveal that the proposed sshell elements have very good accuracy with
respect to the reference solutions, while the ABAJhear solid—shell elements as well as the
ABAQUS quadratic solid elements show several litiotes and inaccuracies in modeling severe

nonlinear problems for composite structures. On wl®le, the variety of numerical results
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presented in this work demonstrate the good capabilof the SHB elements and their wide

prospective applications in the simulation of 3Dniaated composite structures with only a

single element layer through the thickness.
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