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Asymptotic expansions for some integrals of

quotients with degenerated divisors

Sergei Kuksin∗

September 10, 2017

Abstract

We study asymptotic expansion as ν → 0 for integrals over R2d =
{(x, y)} of quotients F (x, y)

/(
(x · y)2 + (νΓ(x, y))2

)
, where Γ is strictly

positive and F decays at infinity sufficiently fast. Integrals of this kind
appear in description of the four–waves interactions.

1 Introduction
s2

Our concern is the integrals

Iν =

∫
Rd×Rd

dx dy
F (x, y)

(x · y)2 + (νΓ(x, y))2
, d ≥ 2 , 0 < ν � 1. (1.1) I_s

Such integrals and their singular limits ν → 0 appear in physical works on the
four-waves interaction, where the latter is suggested as a mechanism, dictating
the long-time behaviour of solutions for nonlinear Hamiltonian PDEs with cubic
nonlinearities and large values of the space-period. Usually the integrals Iν
appear there in an implicit form, and become visible as a result of rigorous
mathematical analysis of the objects and constructions, involved in the heuristic
physical argument (see below in this section).

We denote (x, y) = z ∈ R2d, ω(z) = x · y, and assume that F and Γ are
C2–smooth real functions, satisfying 1

|∂αz F (z)| ≤ K〈z〉−M−|α| ∀ z, ∀ |α| ≤ 2 ; (1.2) F_1

|Γ(z)| ≥ K−1〈z〉r∗ ∀ z , |∂αz Γ(z)| ≤ K〈z〉r∗−|α| ∀ z, ∀ |α| ≤ 2 . (1.3) Ga_1

Here r∗,M,K are any real constants such that

M + r∗ > 2d− 2, M > 2d− 4, K > 1 . (1.4) hr

∗CNRS, Institut de Mathémathiques de Jussieu–Paris Rive Gauche, UMR 7586, Université
Paris Diderot, Sorbonne Paris Cité, F-75013, Paris, France; e-mail: Sergei.Kuksin@imj-prg.fr

1For example, Γ = 〈z〉2m, m ∈ R, and F is a Schwartz function.
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As usual we denote 〈z〉 =
√
|z|2 + 1.

The main difficulty in the study of Iν comes from the vicinity of the quadric
Σ = {ω(z) = 0}. The latter has a locus at 0 ∈ R2d and is smooth outside it.
Firstly we will study Iν near 0, next – near the smooth part of the quadric,
Σ \ {0} =: Σ∗, and finally will combine the results obtained to get the main
result of this work:

t_singint Theorem 1.1. As ν → 0, the integral Iν has the following asymptotic:

Iν = πν−1

∫
Σ∗

F (z)

|z|Γ(z)
dΣ∗z + I∆. (1.5) p22

Here dΣ∗z is the volume element on Σ∗
2 and |I∆| ≤ C χd(ν), where

χd(ν) =

{
1, d ≥ 3 ,
max(1, ln(ν−1)), d = 2 .

(1.6) chi_d

The integral in (1.5) converges absolutely, and the constant C depends on d,K,M
and r∗.

The integral in (1.5) may be regarded as integrating of the function F/Γ
against a measure in R2d, supported by Σ, which we will denote |z|−1δΣ∗ (here
δΣ∗ is the delta–function of the hypersurface Σ∗). For any real number m let
Cm(R2d) be the space of continuous functions on R2d with the finite norm |f |m =
supz |f(z)|〈z〉m. By (1.2) and (1.3), F/Γ ∈ CM+r∗(R2d), where M+r∗ > 2d−2.

prop Proposition 1.2. The measure |z|−1δΣ∗ is an atomlesss σ-finite Borel measure
on R2d. The integrating over it defines a continuous linear functional on the
space Cm(R2d) if m > 2d− 2.

Since any function F ∈ C∞0 (R2d) satisfies (1.2) for every M , then we have

Corollary 1.3. Let a C2–function Γ meets (1.3) with some r∗. Then the func-
tion ν/

(
(x · y)2 + (νΓ(x, y))2

)
converges to the measure |z|−1δΣ∗ as ν → 0, in

the space of distributions.

The theorem and the proposition are proved below in Sections 2–4.

In the mentioned above works from the non-linear physics, to describe the
long-time behaviour of solutions for nonlinear Hamiltonian PDEs with cubic
nonlinearities, physicists derived nonlinear kinetic equations, called the (four-)
wave kinetic equations. The k-th component of the kinetic kernel K (k ∈ Rd)
for such equation is given by an integral of the following form:

Kk =

∫
Rd

∫
Rd

∫
Rd
Fk(k1, k2, k3)δkk3k1k2

δ(ωkk3k1k2
) dk1dk2dk3 . (1.7) heur

Here δkk3k1k2
is the delta-function {k + k3 = k1 + k2} and δ(ωkk3k1k2

) is the delta-
function {ωk + ωk3 = ωk1 + ωk2}, where {ωk} is the spectrum of oscillations for

2corresponding to the Riemann structure on Σ∗, obtained by the restricting to Σ∗ the
standard Riemann stricture on R2d.
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the linearised at zero equation. If the corresponding nonlinear PDE is the cubic
NLS equation, then ωk = |k|2. In this case the two delta-functions define the
following algebraic set:

{(k1, k2, k3) ∈ R3d : k + k3 = k1 + k2, |k|2 + |k3|2 = |k1|2 + |k2|2} ,

see [5], p.91, and [3]. Excluding s3 using the first relation we write the second
as −2(k1 − k) · (k2 − k) = 0. Or −2x · y = 0, if we denote x = k1 − k,
y = k2 − k. That is, Kk is given by an integral over the set Σ∗ ⊂ R2d as in
(1.5). In a work in progress (see [4]) we make an attempt to derive rigorously a
wave kinetic equation for NLS with added small dissipation and small random
force (see [3, 4] for a discussion of this model). On this way nonlinearities of the
form (1.7) appear naturally as limits for ν → 0 of certain integrals of the form
(1.1), where, again, x = k1 − k, y = k2 − k. 3 We strongly believe that more
asymptotical expansions of integrals, similar to (1.1), will appear when more
works on rigorous justification of physical methods to treat nonlinear waves will
come out.

Proof of Theotem 1.1, given below in Sections 2–4, is rather general and
applies to other integrals with singular divisors. Some of these applications are
discussed in Section 5.

Notation. By χA we denote the characteristic function of a set A. For an
integral I =

∫
R2d f(z) dz and a submanifold M ⊂ R2d, dimM = m ≤ 2d,

compact or not (if m = 2d, then M is an open domain in R2d) we write

〈I,M〉 =

∫
M

f(z) dM (z),

where dM (z) is the volume–element on M , induced from R2d.

Acknowledgments. We acknowledge the support from the Centre National de
la Recherche Scientifique (France) through the grant PRC CNRS/RFBR 2017-
2019 No 1556 “Multi-dimensional semi-classical problems of condensed matter
physics and quantum dynamics”, and thank Johannes Sjöstrand for explaining
the way to estimate singular integrals (5.1), presented in Appendix to this work.

2 Integral over the vicinity of 0.
s_71

For 0 < δ ≤ 1 consider the domain

Kδ = {|x| ≤ δ, |y| ≤ δ} ⊂ Rd × Rd ,

and the integral ∫
Kδ

|F (x, y)| dx dy
(x · y)2 + (νΓ(x, y))2

. (2.1) int_delta

3So the integrand Fk depends on the parameter k ∈ Rd. This dependence should be
controlled, which can be done with some extra efforts.
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Obviously, everywhere in Kδ, |F (x, y)| ≤ C1 and Γ(x, y) ≥ C. So the integral is
bounded by C1Īν(δ), where

Īν(δ) =

∫
|x|≤δ

∫
|y|≤δ

dx dy

(x · y)2 + (Cν)2
.

We write Īν(δ) as

Īν(δ) =

∫
|x|≤δ

Jx dx , Jx =

∫
|y|≤δ

dy

(x · y)2 + (Cν)2
.

Let us introduce in the y–space a coordinate system (y1, . . . , yd) with the first
basis vector e1 = x/r, where r = |x|. Since the volume of the layer, lying in the
ball {|y| ≤ δ} above an infinitesimal segment [y1, y1 + dy1] is ≤ Cdδd−1dy1 and
since (x · y) = ry1, then

Jx ≤ Cdr−2

∫ δ

0

dy1
δd−1

y1
2 + (Cν/r)2

= Cdδ
d−1 tan−1(rδ/Cν)

Crν
≤ π

2
Cd

δd−1

Crν
.

So

Īν(δ) =

∫
|x|≤δ

Jxdx ≤ Cd
δd−1

Cν

∫ δ

0

rd−2 dr ≤ C ′dδ2d−2ν−1 .

Thus we have proved

l_nearsing Lemma 2.1. The integral (2.1) is bounded by Cν−1δ2d−2 .

Now we pass to the global study of the integral (1.1) and begin with studying
the geometry of the manifold Σ∗ and its vicinity in R2d.

3 The manifold Σ∗ and its vicinity.
s_3

The set Σ∗ = Σ \ (0, 0) is a smooth submanifold of R2d of dimension 2d − 1.
Let ξ ∈ R2d−1 be a local coordinate on Σ∗ with the coordinate mapping ξ 7→
(xξ, yξ) = zξ ∈ Σ∗. Abusing notation we write |ξ| = |(xξ, yξ)|. The vector
N(ξ) = (yξ, xξ) is a normal to Σ∗ at ξ of length |ξ|, and

N(ξ) · (xξ, yξ) = 2xξ · yξ = 0 . (3.1) orth

For any 0 ≤ R1 < R2 we denote

SR1 = {z ∈ R2d : |z| = R1} , ΣR1 = Σ ∩ SR1 ,

SR2

R1
= {z : R1 < |z| < R2} , ΣR2

R1
= Σ ∩ SR2

R1
,

(3.2) nota

and for t > 0 denote by Dt the dilation operator

Dt : R2d → R2d, z 7→ tz .

It preserves Σ∗, and for any ξ ∈ Σ∗ we denote by tξ the point Dt(xξ, yξ).
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l_p1 Lemma 3.1. 1) There exists θ∗0 ∈ (0, 1] such that for any 0 < θ0 ≤ θ∗0 a suitable
neighbourhood Σnbh = Σnbh(θ0) of Σ∗ in R2d \{0} may be uniquely parametrised
as

Σnbh = {π(ξ, θ) : ξ ∈ Σ∗, |θ| < θ0} , (3.3) par

where π(ξ, θ) = (xξ, yξ) + θNξ = (xξ, yξ) + θ(yξ, xξ).
2) For any vector π = π(ξ, θ) ∈ Σnbh its length equals

|π| = |ξ|
√

1 + θ2. (3.4) length

The distance from π to Σ equals |ξ||θ|, and the shortest path from π to Σ is the
segment [ξ, π] = {π(ξ, tθ) : 0 ≤ t ≤ 1} =: S.
3) If z = (x, y) ∈ SR is such that dist(z,Σ) ≤ 1

2Rθ0, then z = π(ξ, θ) ∈ Σnbh,

where |θ| < θ0 and |ξ| ≤ R ≤ |ξ|
√

1 + θ2
0.

4) If π(ξ, θ) ∈ Σnbh, then
ω
(
π(ξ, θ)

)
= |ξ|2θ. (3.5) p0

5) If (x, y) ∈ SR ∩ (Σnbh)c, then |x · y| ≥ cR2 for some c = c(θ0) > 0.

The coordinates (3.3) are known as the normal coordinates, and their ex-
istence follows easily from the implicit function theorem. The assertion 1)
is a bit more precise than the general result since it specifies the size of the
neighbourhood Σnbh.

Proof. 1) Fix any positive κ < 1. Then for θ∗0 small enough it is well known
that the points π(ξ, θ) with ξ ∈ Σ1+κ

1−κ and |θ| < θ0 ≤ θ∗0 form a neighbourhood

of Σ1+κ
1−κ in R2d and parametrise it in a unique and smooth way. Besides, any

point π′ ∈ R2d such that dist (π′,Σ1) ≤ 1
2θ0, may be represented as

π′ = π(ξ′, θ′), ξ′ ∈ Σ1+κ
1−κ, |θ′| < θ0 , (3.6) p3

and
π(ξ1, θ1) = π(ξ2, θ2), ξ1, ξ2 ∈ Σ1+κ

1−κ ⇒ |θ1|, |θ2| ≥ 2θ∗0 . (3.7) p39

We may assume that θ∗0 <
1
2κ. The mapping Dt sends Σ1+κ

1−κ to Σt+tκt−tκ and sends

π
(
Σ1+κ

1−κ × (−θ0, θ0)
)

to π
(
Σt+tκt−tκ × (−θ0, θ0)

)
. This implies that the set Σnbh,

defined as a collection of all points π(ξ, θ) as in (3.3), makes a neighbourhood
of Σ∗. To prove that the parametrisation is unique assume that it is not. Then
there exist t1 > t2 > 0, θ1, θ2 ∈ (−θ0, θ0) and ξ1 ∈ Σt1 , ξ2 ∈ Σt2 such that
π(ξ1, θ1) = π(ξ2, θ2). So π1 = π2, where

π1 = π(t−1
1 ξ1, θ1), π2 = π(t−1

1 ξ2, θ2),

and 1 = |t−1
1 ξ1| > |t−1

1 ξ2|. Let us write |t−1
1 ξ2| as 1− κ′, κ′ > 0. If κ′ < κ, then

(ξ1, θ1) = (ξ2, θ2) by what was said above. If κ′ > κ, then |t−1
1 ξ1 − t−1

1 ξ2| ≥
|t−1

1 ξ1| − |t−1
1 ξ2| ≥ κ. Since

|π1 − t−1
1 ξ1| = θ1, |π2 − t−1

2 ξ2| = |θ2Nt−1
1 ξ2
| ≤ θ2 ,
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then |π1−π2| ≥ κ− θ1− θ2 ≥ κ− 2θ0. Decreasing θ∗0 if needed, we achieve that
κ > 2θ0, so |π1 − π2| > 0. Contradiction.

2) The first assertion holds since by (3.1) the vector Nξ is orthogonal to
(xξ, yξ) and since its norm equals |ξ|. The second assertion holds since the
segment S is a geodesic from π to Σ∗, orthogonal to Σ∗. Any other geodesic
from π to Σ∗ must be a segment S′ = [π, ξ′], ξ′ ∈ Σ∗, orthogonal to Σ∗. It
is longer than |θ||ξ|. To prove this, by scaling (i.e. by applying a delation
operator), we reduce the problem to the case |ξ| = 1. Now, if ξ′ ∈ Σ1+κ

1−κ, then
π(ξ′, θ′) = π = π(ξ, θ) for some real number θ′. So by (3.7), |θ| ≥ 2|θ∗0 |, which
is a contradiction. While if ξ′ 6∈ Σ1+κ

1−κ, then the distance from π to ξ′ is bigger
than κ − θ0 > θ0. Indeed, if |ξ′| ≥ 1 + κ, then the distance is bigger than
1 + κ− |π| ≥ 1 + κ− 1− θ0 = κ− θ0. The case |ξ′| ≤ 1− κ is similar.

3) If R = 1, then the assertion follows from (3.6) and (3.4). If R 6= 1, we
apply the operator DR−1 and use the result with R = 1.

4) Follows immediately from (3.1).
5) If R = 1, then the assertion with some c > 0 follows from the compactness

of S1 ∩ (Σnbh)c. If R 6= 1, then again we apply DR−1 and use the result with
R = 1.

Let as fix any 0 < θ0 ≤ θ∗0 , and consider the manifold Σnbh = Σnbh(θ0). Be-
low we provide it with some additional structures and during the corresponding
constructions decrease θ∗0 , if needed. Consider the set Σ1. It equals

Σ1 = {(x, y) : x · y = 0, x2 + y2 = 1} .

Since the differentials of the two relations, defining Σ1, are independent on Σ1,
then this set is a smooth compact submanifold of R2d of codimension 2. Let us
cover it by some finite system of chartsN1, . . . ,Nñ, Nj = {ηj = (ηj1, . . . , η

j
2d−2)}.

Denote by m(dη) the volume element on Σ1, induced from R2d, and denote the
coordinate maps as Nj 3 ηj → (xηj , yηj ) ∈ Σ1. We will write points of Σ1 both
as η and (xη, yη).

The mapping

Σ1 × R+ → Σ∗, ((xη, yη), t)→ Dt(xη, yη),

is 1-1 and is a local diffeomorphism; so this is a global diffeomorphism. Accord-
ingly, we can cover Σ∗ by the ñ charts Nj × R+, with the coordinate maps

(ηj , t) 7→ Dt(xηj , yηj ), ηj ∈ Nj , t > 0 ,

and can apply Lemma 3.1, taking (η, t) for the coordinates ξ. In these coordi-
nates the volume element on Σt is t2d−2m(dη). Since ∂/∂t ∈ Tη,tΣ∗ is a vector
of unit length, perpendicular to Σt,4 then the volume element on Σ∗ is

dΣ∗ = t2d−2m(dη) dt . (3.8) vol_on_*

4as ∂/∂t ⊥ St and St ⊃ Σt.
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The coordinates (η, t, θ) with η ∈ Nj , t > 0, |θ| < θ0, where 1 ≤ j ≤ ñ, make
coordinate systems on the open set Σnbh. Since the vectors ∂/∂t and t−1∂/∂θ
form an orthonormal base of the orthogonal complement in R2d to T(η,t,0)Σ

t,5

then in Σnbh the volume element dx dy may be written as

dx dy = t2d−1µ(η, t, θ)m(dη)dt dθ , where µ(η, t, 0) = 1 . (3.9) p4

For r > 0 the transformation Dr multiplies the form in the l.h.s. by r2d,
preserves dη and dθ, and multiplies dt by r. Hence, µ does not depend on t,
and we have got

l_p2 Lemma 3.2. The coordinates

(ηj , t, θ), where ηj ∈ Nj , t > 0, |θ| < θ0 , (3.10) chj

and 1 ≤ j ≤ ñ, define on Σnbh coordinate systems, jointly covering Σnbh. In
these coordinates the dilations Dr, r > 0, reed as

Dr : (η, t, θ) 7→ (η, rt, θ) ,

and the volume element has the form (3.9), where µ does not depend on t.

Besides, since at a point z = (x, y) = π(ξ, θ) ∈ Σnbh we have (∂/∂θ) = ∇z ·
(y, x), then in view of (1.2), (1.3)

∣∣ ∂k
∂θk

F (η, t, θ)
∣∣ ≤ K ′(1 + t)−M ,

∣∣ ∂k
∂θk

Γ(η, t, θ)
∣∣ ≤ K ′(1 + t)r∗ (3.11) new_est

for 0 ≤ k ≤ 2 and for all (η, t, θ).
For 0 ≤ R1 < R2 we denote(

Σnbh
)R2

R1
= π

(
ΣR2

R1
× (−θ0, θ0)

)
.

In a chart (3.10) this domain is {(ηj , t, θ) : ηj ∈ Nj , R1 < t < R2, |θ| < θ0}.

4 Global study of the integral (1.1)
s4

To study Iν and the integrals 〈Iν ,
(
Σnbh

)R2

R1
〉, 0 ≤ R1 < R2, we pass to the

coordinates (η, t, θ) and write the former using (3.9). First we will examine in
details the integrals over µ(η, θ) dθ, and next integrate them over t2d−1m(dη) dt.

5Since the vector ∂/∂t is perpendicular to Σt and lies in T(η,t,0)Σ∗, and ∂/∂θ is proportional
to the vector N(η,t,0), normal to Σ∗ at (η, t, 0).
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4.1 Desintegration of Iν and integrating over µ dθ.

Using (3.9) we write the integral 〈Iν ,
(
Σnbh

)R2

R1
〉 as∫

Σ1

m(dη)

∫ R2

R1

dt t2d−1

∫ θ0

−θ0
dθ

F (η, t, θ)µ(η, θ)

(x · y)2 + (νΓ(η, t, θ))2

=

∫
Σ1

m(dη)

∫ R2

R1

dt t2d−1Jν(η, t) ,

(4.1) 3.9

where by (3.5)

Jν(η, t) =

∫ θ0

−θ0
dθ

F (η, t, θ)µ(η, θ)

t4θ2 + (νΓ(η, t, θ))2
.

To study Jν(η, t) =: Jν we write Γ as

Γ(η, t, θ) = hη,t(θ)Γ(η, t, 0) .

The function h(θ) := hη,t(θ) is C2-smooth, and in view of (3.11) and (1.3) it
satisfies

|h(θ)| ≥ C−1
0 ,

∣∣∣ ∂k
∂θk

h(θ)
∣∣∣ ≤ Ck ∀ η, t, θ, 0 ≤ k ≤ 2 . (4.2) p11

Denoting
ε = νt−2Γ(η, t, 0),

we write Jν as

Jν = t−4

∫ θ0

−θ0

F (η, t, θ)µ(η, θ)h−2(θ) dθ

θ2h−2(θ) + ε2
.

Since h(0) = 1, then in view of (4.2) the mapping

f = fη,t : [−θ0, θ0] 3 θ 7→ θ̄ = θ/h(θ)

is a C2–diffeomorphism on its image such that f(0) = 0, f ′(0) = 1 and the
C2-norms of f and f−1 are bounded by a constant, independent from η, t (to
achieve that, if needed, we decrease θ∗0). Denote

θ+
0 = f(θ0), θ−0 = −f(−θ0), θ̄0 = min(θ+

0 , θ
−
0 ) .

Then 2−1θ0 ≤ θ±0 ≤ 2θ0 if θ∗0 is small, and

Jν = t−4

∫ θ+0

θ−0

F (η, t, θ)µ(η, θ)h−2(θ)(f−1(θ))′ dθ̄

θ̄2 + ε2
.

Denote the nominator of the integrand as Φ(η, t, θ̄). This is a C2–smooth func-
tion, and by (3.11) and (4.2) it satisfies

| ∂
k

∂θk
Φ| ≤ C(1 + t)−M for 0 ≤ k ≤ 2 .

8



Moreover, since h(0) = 1 and (f−1(0))′ = f ′(0) = 1, then in view of (3.9) we
have that

Φ(η, t, 0) = F (η, t, 0) . (4.3) p13

Consider the interval ∆η,t = f−1
η,t (−θ̄0, θ̄0). Then

(−θ0/2, θ0/2) ⊂ ∆η,t ⊂ (−θ0, θ0)

for all η and t. Now we modify the neighbourhood Σnbh(θ0) to

Σnbhm = Σnbhm(θ0) = {π(η, t, θ) : η ∈ Σ1, t > 0, θ ∈ ∆η,t} .

Then
Σnbh( 1

2θ0) ⊂ Σnbhm(θ0) ⊂ Σnbh(θ0) . (4.4) Smod

The modified analogy Jmν of the integral Jν has the same form as Jν , but the
domain of integrating becomes not (−θ0, θ0), but ∆η,t. Then

Jmν = t−4

∫ θ̄0

−θ̄0

Φ(η, t, θ) dθ̄

θ̄2 + ε2
.

To estimate Jmν , consider first the integral J0m
ν , obtained from Jmν by frozen-

ing Φ at θ̄ = 0:

J0m
ν = t−4

∫ θ̄0

−θ̄0

Φ(η, t, 0) d θ̄

θ̄2 + ε2
= 2t−4F (η, t, 0)ε−1 tan−1 θ̄0

ε

(we use (4.3)). From here

|J0m
ν | ≤ πε−1t−4|F (η, t, 0)| . (4.5) p_triv

As 0 < π
2 − tan−1 1

ε̄ < ε̄ for 0 < ε̄ ≤ 1
2 , then also

0 < πν−1t−2(F/Γ) |θ=0 −J0m
ν <

2

θ̄0
t−4F (η, t, 0) , (4.6) p17

if
νt−2Γ(η, t, 0) ≤ 1

2 θ̄0. (4.7) p18

Now we estimate the difference between Jmν and J0m
ν . We have:

Jmν − J0m
ν = t−4

∫ θ̄0

−θ̄0

Φ(η, t, θ̄)− Φ(η, t, 0)

θ̄2 + ε2
dθ̄ .

Since each Ck–norm of Φ , k ≤ 2, is bounded by C(1 + t)−M , then

Φ(η, t, θ̄)− Φ(η, t, 0) = A(η, t)θ̄ +B(η, t, θ̄)θ̄2 ,

where |A|, |B| ≤ C(1 + t)−M . From here

|Jmν − J0m
ν | ≤ C1(1 + t)−M t−4

∫ θ̄0

0

θ̄2 dθ̄

θ̄2 + ε2
≤ C1(1 + t)−M t−4θ̄0 .

Denote
Jν(η, t) = πt−2

(
FΓ−1

)
(η, t, 0) . (4.8) p20

Then, jointly with (4.6), the last estimate tell us that

|Jmν − ν−1Jν(η, t)| ≤ C(1 + t)−M t−4θ̄−1
0 if (4.7) p19holds. (4.9) p19
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4.2 Proof of Theorem 1.1
s_76

To estimate Iν we write it as Iν = 〈Iν , (Σnbhm)
C−1√ν
0 〉 + 〈Iν , (Σnbhm)∞

C−1
√
ν
〉 .

We will show that the first term is small by Lemma 2.1, and that the second
may be approximately calculated using the representation (4.1) and the estimate
(4.9). Doing that we have to distinguish the cases r∗ ≤ 2 and r∗ > 2.

Let r∗ ≤ 2. Then by (1.3) assumption (4.7) holds if t ≥ C−1
√
ν (where

C depends on θ̄0). Integrating Jmν (η, t) and ν−1Jν(η, t) with respect to the
measure t2d−1m(dη) dt and using (4.9), (4.1) and (1.4) we get that

|〈Iν , (Σnbhm)∞C−1
√
ν〉 − ν

−1

∫
Σ1

m(dη)

∫ ∞
C−1
√
ν

dt t2d−1Jν(η, t)|

≤ C
∫

Σ1

m(dη)

∫ ∞
C−1
√
ν

dt t2d−1t−4(1 + t)−M ≤ Cχd(ν)

(4.10) p41

(for the quantity χd(ν) see (1.6)). In view of (4.8) and Lemma 2.1 with δ =
2C−1

√
ν,

|〈Iν , (Σnbhm)
C−1√ν
0 〉 − ν−1

∫
Σ1

m(dη)

∫ C−1√ν

0

dt t2d−1Jν(η, t)|

≤ Cν−1νd−1 + Cν−1

∫ C−1√ν

0

t2d−1t−2 dt ≤ C1

(4.11) p42

as d ≥ 2. Next, by (4.8) and (1.4)∫
Σ1

m(dη)

∫ ∞
0

dt t2d−1|Jν(η, t)| ≤ C
∫ ∞

0

t2d−1−2(1 + t)−M−r∗ ≤ C1 , (4.12) p43

and by (3.8)∫
Σ1

m(dη)

∫ ∞
0

dt t2d−1Jν =π

∫
Σ1

m(dη)

∫ ∞
0

dt t2d−3(F/Γ) |θ=0

=π

∫
Σ∗

|z|−1(F/Γ)(z)dΣ∗z .

(4.13) p44

This gives us asymptotic description as ν → 0 of the integral (1.1), calculated
over the vicinity Σnbhm of Σ∗. It remains to estimate the integral over the
complement to Σnbhm . But this is easy: by (4.4),

|〈Iν ,R2d \ Σnbhm〉| ≤ |〈Iν , {|(x, y)| ≤ 2ν}〉|

+ Cd

∣∣∣ ∫ ∞
ν

dr r2d−1

∫
Sr\Σnbh(θ0/2)

F (x, y) dSr

(x · y)2 + (νΓ((x, y))2

∣∣∣ .
By item 5) of Lemma 3.1 the divisor of the integrand is ≥ C−2r4. Due to this
and (1.2), the second term in the r.h.s. is bounded by

C

∫ ∞
ν

(1 + r)−Mr2d−5 dr ≤ C1χd(ν) .
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This estimate and Lemma 2.1 with δ = 2ν imply that

|〈Iν ,R2d \ Σnbhm〉| ≤ Cχd(ν) . (4.14) p45

Now relations (4.10), (4.11), (4.13), (4.14) imply (1.5), while (3.8) and (4.12)
imply that the integral in (1.5) converges absolutely.

Let r∗ > 2. Then condition (4.6) holds if

Cβν
−β ≥ t ≥ C−1

√
ν , β =

1

r∗ − 2
.

Accordingly, the term in the l.h.s. of (4.10) should be split in two. The first
corresponds to the integrating from C−1

√
ν to Cβν

−β and estimates exactly as
before. The second is

|〈Iν , (Σnbhm)∞Cβν−β 〉 − ν
−1

∫
Σ1

m(dη)

∫ ∞
Cβν−β

dt t2d−1Jν(η, t)| . (4.15) p02

To bound it we estimate the norm of the difference of the two integrals via the
sum of their norms. In view of (4.5) and (4.8) both of them are bounded by

Cν−1

∫
Σ1

m(dη)

∫ ∞
Cβν−β

dt t2d−3(F/Γ)(η, t, 0) .

So
(4.15) ≤ Cβν

−1+β(M+r∗+2−2d) ≤ Cβ
since M > 2d− 4.

Adding this relation to (4.10), applied to the integrating from C−1
√
ν to

Cβν
−β , and – as before – using this jointly with (4.11), (4.13), (4.14), we again

get (1.5) (while the absolute convergence of the integral still follows from (4.12)).

4.3 Proof of Proposition 1.2

For any R > r > 0 let us denote by BR and BRr the ball {|z| ≤ R} and the
spherical layer {r ≤ |z| ≤ R}, and consider the measure µRr = χBRr (z)|z|−1δΣ∗ .

This is a well defined Borel measure on the manifold Σ∗ and on the space R2d,
supported by BR. By the Riesz theorem the family of measures {µRε , 0 < ε ≤ 1}
is weakly compact in the space of measures on BR, and it is easy to see that
for any bounded continuos function f(z) the curve ε→

∫
f(z) dµRε (dz) satisfies

the Cauchy condition as ε→ 0. So the measures µRε weakly converge to a limit
as ε→ 0. This is the restriction of the measure |z|−1δΣ∗ to BR, and its further
restriction to BRr equals µRr . So |z|−1δΣ∗ is a σ–additive Borel measure on R2d,
and it has no atoms outside the origin. Let us abbreviate |z|−1δΣ∗ = µ. By
(3.8), for any 0 < r ≤ R and ε ≤ r,∫

BRr

dµ =

∫
BRr

dµRε =

∫ R

r

t2d−2t−1 dt =
1

2d− 2
(R2d−2 − r2d−2).

11



From here and the weak convergence of the measures µRε to µ |BR we get that
µ{|z| < ρ} ≤ ρ2d−2/(2d − 2) if ρ < R, so µ has no atom in the origin and is
atomless. Next, for any function f ∈ Cm(R2d) we have∫

f(z)µ(dz) ≤ |f |m
∞∑
R=0

∫
BR+1
R

〈z〉−m µ(dz)

≤ C1|f |m
∞∑
R=0

〈R〉−m (R+ 1)2d−2 −R2d−2

2d− 2

≤ C2|f |m
∞∑
R=0

(R+ 1)2d−1

〈R〉−m
= C3|f |m,

if m > 2d− 2. This proves the proposition.

5 Other integrals
s_other_integrals

The geometrical approach to treat integrals (1.1), developed above, applies to
various modifications of these integrals. Below we briefly discuss three more
examples.

5.1 Integrals (1.1) with d = 1
s_d1

The restriction d ≥ 2 was imposed in the previous sections since in the one-
dimensional case some integrals, involved in the construction, strongly diverge
at the locus of the quadric Σ. This problem disappears if the function F vanishes
near the locus. Indeed, consider

I ′ν =

∫
R2

F (x, y)

x2y2 + (νΓ(x, y))2
dxdy ,

where F ∈ C2
0 (R2) vanishes near the origin. The quadric Σ′ = {xy = 0} ⊂ R2 is

one dimensional, has a singularity at the origin, and its smooth part Σ′
∗

= Σ′\0
has four connected components. Consider one of them: C1 = {(x, y) : y =
0, x > 0}. Now the coordinate ξ is a point in R+ with (xξ, yξ) = (ξ, 0) and
with the normal N(ξ) = (0, ξ), the set Σ1 ∩ C1 is the single point (1, 0) and the
coordinate (η, t, θ) in the vicinity of C1 degenerates to (t, θ), t > 0, |θ| < θ0,
with the coordinate-map (t, θ) 7→ (t, tθ). The relations (3.8) and (3.9) are now
obvious, and the integral (2.1) vanishes if δ > 0 is sufficiently small. Interpreting
z = (x, y) as a complex number, we write the assertion of Theorem 1.1 as

∣∣J ′ν − πν−1

∫
Σ′

F (z)

|z|Γ(z)
dz
∣∣ ≤ C ,

where the integral is a contour integral in the complex plane.
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5.2 Integrals of quotients with divisors, linear in ω.

Consider

I ′ν =

∫
R2d

F (x, y) dxdy

x · y + iνΓ(x, y)
. (5.1) another_integral

Now there is no need to separate the integral over the vicinity of the origin, and
we just split I ′ν to an integral over Σnbhm and over its complement.

To calculate 〈I ′ν ,Σnbhm〉 we observe that an analogy of J0m
ν is the integral∫ θ̄0

−θ̄0

F (η, t, 0) dθ̄

t2θ̄ + iνΓ(η, t, 0)
= t−2F (η, t, 0) ln

θ+
0 + iνt−2Γ(η, t, 0)

−θ̄0 + iνt−2Γ(η, t, 0)
,

which equals πt−2F (η, t, 0) + O(ν). So 〈I ′ν ,Σnbhm〉 = π
∫

Σ∗

F (z)
|z| dΣ∗z + O(ν) .

The integral over the complement to Σnbhm is∫
R2d\Σnbhm

F (x, y) dxdy

x · y + iΓ(x, y)
=

∫
R2d\Σnbhm

F (x, y) dxdy

x · y
+ o(1)

as ν → 0 (the integral in the r.h.s. is regular). In difference with (1.1) the last
integral is of the same order as the integral over Σnbhm . So we have that

I ′ν = π

∫
Σ∗

F (z)

|z|
dΣ∗z +

∫
R2d\Σnbh

F (x, y) dxdy

x · y
+ o(1) ,

in agreement with the estimate (6.4), applied to (5.1).

5.3 Integrals, coming from the three-waves interaction

The three-waves interacting systems lead to integrals, similar to (1.7), where
R3d is replaced by R2d and the δ-factor is replaced by δkk1k2δ(ω

k
k1k2

), which gives
rise to the algebraic set

{(k1, k2) : k1 + k2 = k, |k1|2 + |k2|2 = |k|2}
(see [5], Section 6). I.e., k2 = k − k1, where k1 ∈ {r ∈ Rd : |r − 1

2k|
2 = 1

4 |k|
2}.

Accordingly, in the variable z = r − 1
2k some constructions from the study of

the three-waves interaction lead to the integrals

I ′ν =

∫
Rd
dz

F (z)

ω(z)2 + (νΓ(z))2
, d ≥ 2,

with ω(z) = |z|2 − 1
4 |k|

2. Now the quadric Σ = {ω = 0} is a sphere, i.e.
a smooth compact manifold. Denoting by η a local coordinate on Σ with a
coordinate mapping η 7→ z(η) ∈ Σ and the volume form m(dη) we see that,
similar to Section 3, the local coordinate in the vicinity Σnbh of Σ is (η, θ),
|θ| < θ0, with the coordinate mapping (η, θ) 7→ z(η)(1 + θ) and the volume
form ( 1

2 |k|)
−1µ(η, θ)m(dη)dθ, µ(η, 0) ≡ 0. The proof in Sections 2–4 simplifies

and leads to the asymptotic∣∣I ′ν − πν−1

∫
Σ

(
F (z)/Γ(z)

)
dz
∣∣ ≤ Const,

valid for C2-functions F and Γ, satisfying some mild restriction.

13



6 Appendix

Let ϕ(x) and g(x) be smooth functions on Rn and ϕ has a compact support.
Consider the integral

I(λ) =

∫
Rn
ϕ(x)eiλg(x) dx, λ ≥ 1.

Assume that g(x) has a unique critical point x0, which is non-degenerate. Then,
by the stationary phase method,

I(λ) =
(2π

λ

)n/2|det gxx(x0)|−1/2ϕ(x0)eiλg(x0)+(iπ/4) sgn gxx(x0) +Rλ−n/2−1

(6.1) stph_thm

for λ ≥ 1, where R depends on ‖ϕ‖C2 , ‖g‖C3 , the measure of the support of
ϕ and on supx∈suppϕ(|x − x0|/|∇g(x)|) =: C#(g). See Section 7.7 of [2] and
Section 5 of [1].

If the functions ϕ and g are not C∞–smooth, but ϕ ∈ C2
0 (Rn) and g ∈

C3(Rn), then, approximating ϕ and g by smooth functions and applying the
result above we get from (6.1) that

|I(λ)| ≤ C ′λ−n/2 ∀λ ≥ 1 , (6.2) stph_est

with C ′ depending on ‖ϕ‖C2 , ‖g‖C3 and C#(g).

Now let f(x) ∈ C2
0 (Rd) and g(x) ∈ C3(Rd) be such that

|f | ≤ C, meas( suppf) ≤ C.

Let an x0 be the unique critical point of g(x) and

C−1 ≤ |det Hess g(x0)| ≤ C. (6.3) hess

Consider the integral

I(ν) =

∫
Rd

f(x)

Γ + iν−1g(x)
dx = ν

∫
Rd

f(x)

νΓ + ig(x)
dx , 0 < ν ≤ 1 ,

where Γ is a positive constant. Let us write it as

I(ν) =

∫
Rd

∫ 0

−∞
f(x)et(Γ+iν−1g(x)) dt dx =:

∫
Rd

∫ 0

−∞
Fν(t, x) dt dx = I1 + I2 ,

where

I1 =

∫
Rd

∫ 0

−ν
Fν(t, x) dt dx , I2 =

∫
Rd

∫ −ν
−∞

Fν(t, x) dt dx .

Clearly, |I1| ≤ C2ν. To estimate I2 consider the internal integral

J(t) = etΓ
∫
Rd
f(x)e−iν

−1|t|g(x) dx ,
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and apply to it the stationary phase method with λ = ν−1|t| ≥ 1. By (6.2) and
(6.3), |J(t)| is bounded by etΓK1(f, g)(ν−1|t|)−d/2. So

|I2| =
∫ ν

−∞
J(t) dt ≤ K1(f, g)νd/2

∫ ν

−∞
|t|−d/2etΓ dt ≤ K2(f, g)νd/2ν−d/2+1χd(ν)

since Γ > 0, where χd(ν) is defined in (1.6).
Thus

|I(ν)| ≤ |I1|+ |I2| ≤ K(f, g) ν χd(ν) . (6.4) Aa3

The constant K(f, g) depends on C, ‖f‖C2 , ‖g‖C3 and C#(g).
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