

DAYS THREE CONFERENCES ONE EXHIBITION

PORTE DE VERSAILLES PARIS, FRANCE 29TH SEPTEMBER - 4TH OCTOBER 2019 Exhibition Hours: Tuesday, 1st October 9.30 - 18.00 Wednesday 2nd October 9.30 - 17.30 Thursday 3rd October 9.30 - 16.30

www.eumweek.com

WS-01 Recent advances in SiGe BiCMOS: technologies, modelling & circuits for 5G, radar & imaging

On wafer small signal characterization beyond 100 GHz for compact model assessment

<u>Sebastien Fregonese^{#1}</u>, Marina Deng^{#1}, Marco Cabbia^{#1}, Chandan Yadav^{#1}, Soumya Ranjan Panda ^{#1&2}, Thomas Zimmer^{#1}

^{#1}Université Bordeaux / CNRS, laboratoire IMS, FRANCE

^{#2}IIT Madras, India

^{#1} Sebastien.Fregonese@ims-bordeaux.fr

The 49th European Microwave Conference

- Motivation
- EM simulation vs Measurement up to 500 GHz
- HBT measurement up to 500 GHz
- Conclusion and Outlooks

Transistor HF Characterization Challenges

T A R A N T O -3-

Calibration & De-embedding Issues

T A R A N T O -4-

Calibration & De-embedding Issues

A R A N T O - 5 -

Calibration & De-embedding Issues

A R A N T O -6-

• S parameters measurement above 110 GHz requires to answer the following questions:

- Which calibration & de-embedding method should I use ?
- Do I really measure my DUT ?
 - \Rightarrow Impact of adjacent structures
 - \Rightarrow Impact of probes

=> Need for reproducing measurement results with EM simulation tools

- 7 -

A R A N T O -8-

Characterisation of the ISS calibration kit for SOLT

122.33 pm	
14,27 µm	
-	
24,47 µm	251,11 µm
13,25 μm	

Interferometry image of the through from the ISS (GGB-CS15)

	Data sheet of CS15 delivered by Pico-probe GGB industries used for 50-125 µm probe pitch	EM simulation for 50 μm probe pitch (extracted from TRL at 60 GHz and 250 GHz)
Open	3.25fF	3.2-3.4fF
Short	2pH	1.5 pH-2.5pH
Load	1.5fF	1.4-2.2fF
Through	1.13ps	1.10ps

WS-01 - Recent advances in SiGe BiCMOS: technologies, modelling and circuits for 5G, radar and imaging

A R A N T O -9-

WS-01 - Recent advances in SiGe BiCMOS: technologies, modelling and circuits for 5G, radar and imaging

- 10 -

Pad short & Pad open

A R A N T O - 12 -

• Calibration and de-embedding : transistor open

plane

A R A N T O - 14 -

T A R A N T O - 15 -

• Calibration and de-embedding : transistor open

A R A N T O - 16 -

• Calibration and de-embedding : meander line

R A N T O - 17 -

- Limitation of the SOLT ISS parameters:
 - Frequency dependence
 - Probe dependence
- Substrate to probe coupling
 - Probe dependence
 - Cal-kit material and wafer material
- Limitation of the de-embedding
- => TRL on ISS is used to identify these 3 limitations

 SOLT on ISS and TRL ISS with pad-open pad-short deembedding and on wafer TRL versus intrinsic simulation

- ISS SOLT and TRL give similar results on the phase but deviate slightly from the intrinsic result from 50 GHz
- \Rightarrow Deviation is due to electrostatic environment and/or de-embedding procedure
- ⇒SOLT calibration itself and parameters cannot explain the deviation of the phase

• Impact of adjacent structures: EM simulation @ 500 GHz

 Impact of adjacent structures: mag(S21) (dB) -1 EM sim. +TRL cal. Measurement + TRL cal. -2 100 200 300 400 500 0 Frequency (GHz) 0 mag(S21) (dB) With adjacent devices in Thru, -1 EM sim. with neighboring Refl., Line and DUT structures +TRL cal. Measurement + TRL cal. -2 300 100 200 400 0 500 Frequency (GHz) Ref. plane Adjacent structures modifies the result

- 21 -

Impact of probe topology

IEEE ICMTS 2018

• On wafer calibration (STMicroelectronics B55 technology)

- STMicroelectronics B55 technology
 - On wafer TRL + short-open de-embedding
 - Improved test structures (Pads layout, more space between structures, ...)
 - Measurement vs HICUM compact model with substrate extension

Characterisation & modelling is uncertain above 350 GHz

• STMicroelectronics B55 technology

0 - 24 -

Ν

- The simulation methodology has been proven to be able to accurately reproduce the impact of the measurement methodology and set-up
- ISS calibration (SOLT or TRL) with OS de-embedding is not accurate above 200 GHz
- Adjacent structure have an impact on measurement results => requires optimized layout
- HBT: On wafer TRL and especially SO de-embedding => to be verified above 350 GHz

- 25 -

Thank you

EUROPEAN MICROWAVE WEEK 2019

PORTE DE VERSAILLES PARIS, FRANCE 29TH SEPTEMBER - 4TH OCTOBER 2019

Exhibition Hours: Tuesday, 1st October 9.30 - 18.00 Wednesday 2nd October 9.30 - 17.30 Thursday 3rd October 9.30 - 16.30

```
www.eumweek.com
```


The research leading to these results has received funding from the European Commission's ECSEL Joint Undertaking under grant agreement n° 737454 - project TARANTO - and the respective Public Authorities of France, Austria, Germany, Greece, Italy and Belgium.

A R A N T O - 26 -

- Our recent references:
 - S. Fregonese et al., Comparison of on-wafer TRL calibration to ISS SOLT calibration with open-short de-embedding up to 500 GHz, IEEE Trans. Thz Sci., 2019
 - S. Fregonese et al., On-wafer characterization of silicon transistors up to 500 GHz and analysis of measurement discontinuities between the frequency bands, , IEEE Trans. on MTT 2018
 - M. Deng, "RF Characterization of 28 nm FD-SOI Transistors Up To 220 GHz", EUROSOI ULIS, 2019
 - C. Yadav et al., On the Variation in Short-Open De-embedded S-parameter Measurement of SiGe HBT upto 500 GHz, 2019 GeMiC
 - C. Yadav et al., Analysis of Test Structure Design Induced Variation in on Si Onwafer TRL Calibration in sub-THz, 2019, ICMTS

- 27 -